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7. Lumped-Element System Dynamics

Introduction

The spring-mass-dashpot system we encountered in the position-control 
system of Section 2.3 was linear and was described by the following set of 
state equations:

Where     is the position of the object,      is the velocity of the object,     is the 
mass,    the spring constant, and    the damping constant.

We have also encountered a nonlinear system, the voltage-controlled parallel-
plate electrostatic actuator of Section 6.4. The three state equations were:

Where     is the capacitor charge,    is the capacitor gap,     is the velocity of 
the moveable plate,    is the permittivity of the air,    is the plate area,     is the 
at-rest gap, and    is the source resistance of the (possibly time-dependent) 
voltage source     .
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Introduction

If a system is linear, a host of powerful and quite general analytical 
techniques are available: Laplace transform, s-plane analysis with 
poles and zeros, Fourier transform, convolution, superposition, and 
eigenfunction analysis, to name several.

If the system is nonlinear, the approach becomes much more 
problem-specific, and, in general, much more difficult to bring to 
rigorous closure.

In both types of systems, we shall see that direct numerical 
integration of the state equations is a very useful simulation method.

An additional issue is whether or not the system involves feedback.

Nonlinear systems with feedback can exhibit new and complex 
behavior, including sustained oscillations called limit cycles.

Linear System Dynamics

A typical set of linear state equations can be written in compact matrix form,

where    is a column vector of state variables,    is a column vector of system 
inputs,   is a column vector of outputs, and A, B, C, and D are the time-
independent matrices that constitute the system.

For the spring-mass-dashpot system already examined, there is one scalar 
input    , and the output is equal to   . The matrices for this case are, for the 
state equations,

and

And, for the output equations,

and
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Linear System Dynamics

If we want to have both the position, and the velocity available as system 
outputs, then the C-matrix becomes

Equations in this form can always be developed from the equivalent circuit 
for a linear system. 

We will now examine a variety of ways of analyzing system behavior.
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System Functions

We can compute the single-sided Laplace transform of the state equations 
to obtain:

Where        is the Laplace transform of the vector      ,        is the initial state 
for the system, and        is the Laplace transform of the input. This leads 
directly to the solution for    

We can split this system response in two parts. The first is the zero-input 
response , whose source is the initial state with zero applied input, 
(also called the “natural response” or the “transient response”, although 
these usages have a risk of imprecision). It is the first term in the         
expression above:

The second term is the zero-state response whose source is the 
applied inputs assuming one started in the zero state,          .

Both parts of the response require that the matrix             be an invertible 
matrix; that is, it cannot be singular.
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System Functions (ctnd.)

However, as is well-known, there are isolated values of s which matrix will 
have a vanishing determinant, and hence will be singular.

The s-values for which this occurs are said to be the natural frequencies of 
the system. The s-values are also called the poles of the system.

A partial-fraction expansion of           leads, via the inverse Laplace
transform, to a sum of terms dependent on the initial state, each term 
having a characteristic time dependence of the form

Where     is one of the natural frequencies.

We can write the Laplace transform of the system output as:

In most systems we shall encounter, the D matrix is zero, which is assumed 
in the following.  
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System Functions (ctnd.)

We can rewrite the zero-state response part of the output in the form

where

is called the system function or transfer function for the system.

A general component of         has the from:

Where        is a numerator polynomial and             is the denominator 
polynomial.

Once the poles and zeros of a transfer function are specified, the only 
remaining feature of         is an overall multiplicative constant for each entry 
that sets the correct units and magnitude.

Thus, systems with the same pole-zero combinations have the same basic 
dynamic behavior. 
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System Functions (ctnd.)

We now continue with our spring-mass-dashpot example. In this case, the 
outputs         are the state variables themselves. The         matrix becomes:

Where the first entry is the input-output response with     as the input and 
position            as the output, and the second entry is the input-output 
response with      as the input and velocity           as the response.
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System Functions (ctnd.)

We can also write          in a factored form that emphasizes its pole-zero 
structure:

Where the two poles,    and    are given by:

We see that this system has two poles, and the velocity response has a zero 
at        . The location of the poles depends on the undamped resonant 
frequency       , given by

And on the damping constant     , given by:
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System Functions (ctnd.)

We define the quality factor or of the system as :

For this example,    =2. This gives rise to a moderately underdamped step 
response which exhibits a few cycles of overshoot and ringing after the step 

When           , the response is critically damped, with both poles occurring at            
. The      value of a critically damped system is ½.

When a system is driven with an input of the form     , then the response consist 
of a sum of terms, one which is             , the remaining terms having time 
dependences determined by the poles of the system.

The term that has the same time dependence as the input is called the forced 
response, and, provided that the transient pole-related terms die out faster than 
the     input, the forced response is the persistent response 

We can use this fact to gain insight into the interpretation of a zero.

The complex frequency s=0 correspond to a constant applied force, which will 
clearly outlast any transient.

In contrast, the position forced response is finite at s=0 and has value          , just 
has one would expect from the mechanics of the problem.
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Sinusoidal Steady State

An important signal domain is the sinusoidal steady state, in which all inputs 
are sinusoids and all transients are presumed to have died out.

The forced response must itself be sinusoidal, consisting of a sum of terms (or, 
as with the Fourier transform, a continuous superposition) at the various 
frequencies of the inputs. Specifically, for a sinusoidal input given by:

The sinusoidal-ready-state output           is given by :

where:

And where the phase angle     is given by
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Sinusoidal Steady State (ctnd)

Graphs of      and      versus       are  frequently used to show the full 
frequency response of a system in the sinusoidal steady state.

When plotted on logarithmic axes for      and    and a linear axis for     , these 
plots are referred to as Bode plots.

Figure above shows the position and velocity Bode plots for the spring-mass-
dashpot system with the values m=1,  k=1, and b=0.5.
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Non-Linear Dynamics

When the system is nonlinear, the most general form of the state and output 
equations is :

and :

Where     and      are nonlinear functions of the state and inputs.

The behavior of nonlinear system can be very complex, especially when 
system have nonlinearities that lead to so-called jump-phenomena between 
different states.

We will examine only three specific issues using the parallel-plate 
electrostatic actuator as a common example:

Fixed-point analysis

Linearization about an operating point

Numerical integration of the state equations

( )u,xfx =&

( )u,xgy =

f g

Fixed Points of Nonlinear Systems

The fixed points of a nonlinear systems are the solutions of :

A global fixed-point is a fixed point of the system when all inputs are zero. It 
correspond to the system at rest.

An operating point is a fixed point that is established by non-zero but 
constant inputs.

When we refer to an operating point, we also imply a stable fixed point set up 
by constant inputs.

We already performed fixed-point analysis for a nonlinear system in Section 
6.4 when we examined the equilibrium points of the parallel-plate 
electrostatic actuator, whether charge-driven or voltage-driven.

For the charge-driven case, we found a well-behaved single fixed point for 
the gap at each value of charge.

For the voltage-driven case, we found two fixed points for voltages below 
pull-in, one which was stable, the other unstable, and no fixed points for 
voltages above pull-in.

In the following section, we examine a general method that can, among 
other things, assist in the evaluation of fixed-point stability.

( ) 0u,xf =

Linearization About an Operating Point

In many system examples, we are interested in a small domain of state 
space near an operating point.

Suppose that:

And:

Where      and       are constants (the operating point), and where, on an 
appropriate scale, both       and       are small. Substitution into the state 
equations followed by the use of Taylor’s theorem leads to:
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Linearization About an Operating Point

The two matrices in this equation are the Jacobian’s of the original 
function             . In full matrix form, these equations becomes:

Where the first Jacobian is an n Xn matrix, where n is the number of state 
variables, and the second Jacobian is an m Xm matrix, where m is the 
number of inputs.

This is now a linear problem, which, for small amplitudes of input and 
output, can be analyzed with all the powerful tools available for linear 
system

One side-benefit of linearization is that it makes the assessment of fixed-
point stability quite easy. An example follows.
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For the electrical domain:

And for the mechanical domain, using the force as:

We obtain:
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Linearization of the Electrostatic Actuator

To get into a state form, we must identify three state variables. If we select as 
state variables:

The state equations become:
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Linearization of the Electrostatic Actuator (ctnd.) Linearization of the Electrostatic Actuator (ctnd.)

The Jacobian of the set of three state equations for this parallel-plate 
electrostatic actuator is therefore given by:

Where operating point values for the charge      and position   have been 
substituted into the Jacobian.

If we use some numerical values for the parameters, things simplify quite a 
lot.

With the component values in Table 7.1, the state equations reduce to
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Linearization of the Electrostatic Actuator (ctnd.)

If we use some numerical values for the parameters, things simplify quite 
a lot.

With the component values in Table 7.1, the state equations reduce to

The operating-point solutions are found by setting the three equations to 
zero, and solving.

Mathematically, there are three possible solutions for the equilibrium 
charge      , the three roots of:

The corresponding value of the equilibrium gap is then
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Linearization of the Electrostatic Actuator (ctnd.)

One of the three roots turns out to be negative for positive values of      and is 
discarded. The other two roots have positive values of both charge and gap. The 
locations of these three roots in the voltage-gap plane are plotted in above Figure.

We recognize a pair of solutions whereas, with the values above being 
stable and the values below              being unstable (corresponding to pull-in).

Every point on the dashed curve, when substituted into the Jacobian, yields a right-
half-plane natural frequency, indicating an unstable operating point.

Every point on the solid curve yields a left-half-plane natural frequency, meaning 
that the set of operating points along the solid curve are locally stable.

0V

3g2 0

3g2 0

Linearization of the Electrostatic Actuator (ctnd.)

We can also use the linearized system to study the small-amplitude behavior 
about the operating point. In particular, it is very interesting to examine the 
small-amplitude damped resonant frequency for this system as a function of 
an applied operating-point DC voltage.

Figure above shows, on the left, the equilibrium position and charge as a 
function of DC operating-point voltage and, on the right, the damped natural 
frequency for small amplitude vibration about the operating point.

The damped resonance frequency is found as the imaginary part of the 
oscillatory natural frequencies obtained from the Jacobian evaluated at the 
operating point.

Transducer Model for Linearized Actuator

With the concept of linearization in hand, we can now apply the linear transducer 
model of Section 6.6 to a linearized model of the electrostatic actuator.

Figure 7.6 shows a redrawn version of the electrostatic actuator circuit of Fig. 6.9.

For purposes of finding the operating point, this is a voltage-controlled system 
because, at the operating point, , and     must equal     .

We recall from a previous section that for a voltage-controlled representation of the 
transducer

and

where     is the gap with no applied voltage.
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Transducer Model for Linearized Actuator

To linearize these equations, we can assume that      has a DC value       plus some 
variation       .

The DC value sets the operating point of the nonlinear system while the effects of 
the variation in      are what will be captured in the linearized model.

Using      equal to        , we can find the operating-point force, which we denote     , 
and the operating gap, which we denote     to distinguish it from the gap with zero 
applied voltage.

The operating-point output force         is zero, since      must be zero.

We now assume that we have solved this problem, and have the operating point 
values in hand.
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Transducer Model for Linearized Actuator (ctnd.)

To linearize the model so it can be matched to the form of Fig. 7.7, we need
expressions for      and        .

It turns out to be easier to work with the energy formulation rather than the 
co-energy formulation.

Therefore, we need one additional operating point value, the charge on the 
capacitor at the operating point, denoted         .

It has the value:
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Transducer Model for Linearized Actuator (ctnd.)

The equations governing the charge-controlled representation of the 
transducer, now including both the electrostatic force and the force on the 
spring, are :

And

To linearize these equations about the operating point, we form the Jacobian, 
and find:
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Transducer Model for Linearized Actuator (ctnd.)
But we have a problem. The linearized variables on the right-hand side are        

and      , whereas the variables we will need to form the linear
transducer model are      and      .

The relation between       and       is simply integration. That is,

Since the linearized equations are now linear, we can use the Laplace
transform to obtain

Similarly,

Therefore, after substituting, the linearized model becomes:

From these equations, we can identify the elements of the transducer model:

This impedance is a capacitor whose value is that of the parallel-plate 
capacitance at the operating-point gap.
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ĝ

F
V

0

00

As
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Transducer Model for Linearized Actuator (ctnd.)

The other impedance in the model,         is given by:

This is simply the capacitance that represents the spring. The coupling 
impedances are equal to each other, and have the value

To form the equivalent of Fig. 7.7 we need to compute    , which is given by

The apparent units of     are Coulombs/meter. These units are the same as the 
Newtons/Volt we would expect on the basis of a transformer that couples
voltage to force.
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Transducer Model for Linearized Actuator (ctnd.)

We also need the electromechanical coupling constant      given by:

With the result that the final element in the model          can be found:

We see that         represents a spring that at zero applied voltage (i.e. ) 
has value     , but as voltage is applied, shifting the operating point, the value 
of the spring constant decreases.
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Direct Integration of Steady State Equations

When the state variables of a system undergo large variations, too large to 
represented accurately by a linearized model, it is necessary to use the full set 
of state equations to examine dynamic behavior.

Nonlinear state equations can be integrated numerically, using, for example, 
the ode command in MATLAB.

Alternatively, a system block-diagram can be constructed in SIMULINK, and 
simulations can be performed in that environment.

We recall the three state equations for the parallel-plate electrostatic actuator:

Where     is the capacitor charge,      is the capacitor gap,   is the velocity of 
the moveable plate,    is the permittivity of the air,     is the plate area,    is the 
at-rest gap, and     is the source resistance of the time-dependent     voltage 
source. A SIMULINK model implementing these equations appears on next slide.
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Direct Integration of Steady State Equations (ctnd.)
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Direct Integration of Steady State Equations (ctnd.) Direct Integration of Steady State Equations (ctnd.)

Direct Integration of Steady State Equations (ctnd.)


