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5. Lumped Modeling with Circuits Elements

Introduction

MEMS devices exist in a three-dimensional physical continuum 
and their behavior is governed by the laws of physics, chemistry, 
and biology.

Through analysis, we can extract simplified device 
representations that are readily expressible with equivalent 
electrics circuits.

Circuit analogies also permit efficient modeling of the interaction 
between the electronic and the non-electronic components of a 
microsystem.

Unlike 3D physical objects, which are bounded by surfaces, circuit 
elements are abstractions that have two or more discrete 
terminals to which potential difference (voltage) can be applied 
and into which electric currents can flow.

Kirchhoff’s Laws govern the relationships among the voltages and 
currents that must be satisfied when circuit elements are 
connected into complete circuits.

Conjugate Power Variables

We define the power flow (i.e., the energy flow per unit time) from A to B as        
,     and the reverse power flow from B to A as         .

The net power flow from A to B is the difference:

Inserting the appropriate squared term, we find:

Which can be factored to yield:
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Conjugate Power Variables (ctnd.)

In the most general case, we define the two (time-dependent) conjugate 

power variables as an effort           and a flow          .

Associated with the flow is a time-dependent generalized displacement            
,          , given by: 

The dimension of the product            is power. Therefore, the dimension of 
the product          is energy.

We can also define a time-dependent generalized momentum                     
given by:

The dimension of the product             is also energy. 
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Conjugate Power Variables (ctnd.) One-Port Elements

A port is a pair of terminals on a circuit element that must carry the 

same current through the element.

In anticipation of generalizing  this concept to other energy 

domains, we call the current the through variable.

We call the voltage difference between the terminals the across 
variable.

One-Port Elements

In electric circuits, the effort variable is the across variable (voltage), while 
the flow variable is the through variable (current).

We will call this particular assignment the             convention because effort 
and voltage are linked.

Standard sign conventions are useful to ensure that the algebraic sign of the 
power is calculated correctly.

Once we assign a reference direction for positive flow into one of the 
terminals, we choose to use that same terminal as the positive terminal for 
defining effort.

When we follow this convention, the product of e and f    is the power 
entering the element.

Ve→

One-Port Elements

We now wish to make an analogy to the other energy domains and, therefore, 
must decide which variable gets assigned as the through variable, and which as 
the across variable.

As we will see, the            convention has the advantage that potential energy is 
always associated with  energy storage in capacitors.

In the mechanical energy domain, the            convention assigns force to voltage 
and velocity to current, making displacement analogous to electric charge.

In the thermal energy domain, while temperature     is a perfectly good across 
variable, the entropy flow rate turns out not to be a good choice for the through 
variable. Instead, we use the heat current       , which has units of Watts.
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One-Port Source Elements

Figure 5.3 shows two independent source elements, a flow source and an 
effort source (analogous to current and voltage sources in electrical circuits).

The definition of the effort source is that the effort     equals the source value          
for any flow    .

The flow source (assuming it is connected to a network that provides a path 
for the flow) is defined as having a flow     equal to the source value                          
for any value of the effort    . 

These are clearly active elements, in that they supply power to the other 
elements whenever the product of     and    is negative.
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One-Port Circuit Elements

There are three basic one-port circuit elements: the 
generalized resistor, which is a dissipative element, and two 
energy-storage elements: the generalized capacitor and the 
generalized inductor, also called an inertance. 

One-Port Circuit Elements

The characteristics of the generalized resistor is defined directly in terms of        
and   . That is, we write either    as a function of            , or    as a 

function of               .

An important characteristic of these functions is that they go through the 
origin (if not, the element can be redefined as containing one of the source 
elements in a combination with a resistor whose characteristics does go 
through the origin).

A second important characteristic is stated in terms of the quadrants of the       
plane the functions occupy.
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One-Port Circuit Elements

If the functions fall entirely in the first and third quadrants, so that the 
product      is always positive, the element is a purely dissipative element.

If the graph enters either the second or fourth quadrant at any point, the 
element can, over some portion of its characteristics, deliver net power to 
other elements. In this case, the element is considered an active element.

ef
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The Generalized Capacitor

The generalized capacitor is defined in terms of a relation between effort 
and displacement, that is,               where     is a well-behaved function that 
go through the origin of the          plane.

Referring to Figure above, we can write  

Where           is the stored potential energy in the capacitor defined by         
when it has displacement     .
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The Generalized Capacitor

We will also use Figure 5.5 to define another energy quantity, the co-energy
. The first definition we shall use is :

Based on this visualization, we can also write an integral definition:

Where we have used the inverse of         to represent the relation                 .
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The Generalized Capacitor (ctnd.)

An electrical example of a generalized capacitor is a parallel-plate capacitor, 
having area     and a medium of dielectric permittivity    between the plates.

In general, for a linear capacitor, we can write

Where     is the charge on the capacitor,     is the voltage across the 
capacitor, and     is the capacitance of the capacitor.

The total charge on the plate is           , and the capacitance is given by
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The Generalized Capacitor (ctnd.)

The energy stored in the capacitor is :

And the co-energy              is :
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The Generalized Capacitor (ctnd.)

We now examine a mechanical element, continuing to use the      
convention.
Figure above shows the schematic for a Hooke’s Law spring, for which the 
force     is related to the displacement    by the linear spring constant    : 

The stored energy in the spring when displaced by    is :

If we assume that the two generalized displacements,     for the capacitor 
and      for the spring should lead to the same form of stored potential 
energy function, we are led to the conclusion that the circuit analog for a 
spring is a capacitor, with
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The Generalized Inertance

The generalized inertance (or generalized inductor), which is represented 
by the inductance symbol in Figure above, is defined by a functional 
relation between the flow    and the momentum    of the form    .
The energy and co-energy are defined as :

And, in the general definition,

Leading to the integral definition for the co-energy :
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The Generalized Inertance (ctnd.)

In the           convention inertances are used for stored kinetic energy.
The most obvious example is an inertial mass, defined by the relation

Where    is the usual linear momentum,     is the mass, and    is the velocity. 
For this element, the function        would be written

The stored energy at a particular momentum     would be :

While the co-energy              would be :
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Circuit Connections in the e ->V Convention

Perhaps the most difficult aspect of using lumped circuit elements 
to build device macro-models is to determine how to connect 
them together.

We are all familiar with series and parallel connections for 
electrical elements.

But how do these apply to mechanical or other elements?

There are two basic concepts that hold for the           convention:

Shared Flow and Displacement: Elements that share a common 
flow, and hence a common variation of displacement, are 
connected in series.

Shared Effort: Elements that share a common effort are 
connected in parallel.

Ve→
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Circuit Connections… (ctnd.)

Figure 5.9 shows a spring-mass-dashpot assembly, like that used to 
illustrate the object in a position-control system.
The mass is connected via a spring to a fixed support, being pulled by a 
force    .
Also shown is a dashpot, a mechanical damping element analogous to 
an electrical resistor.
All three elements share the same displacement.
Using the reasoning above, all three elements should be connected in 
series.

F

Kirchhoff’s Laws

The various circuit elements are connected at nodes, and are 
governed by generalizations of Kirchhoff’s Laws.

These are:
Kirchhoff’s Current Law (KCL): The sum of all currents (flows) 
entering a node is zero.
Kirchhoff’s Voltage Law (KVL): The oriented sum of all voltages 
(efforts) around any closed path is zero.

Kirchhoff’s Laws (ctnd.)

To use KVL, it is necessary to label the effort across each element, as in 
Figure 5.10.
In this figure, the effort variable for each of the mechanical circuit 
elements is assigned the + sign at the terminal where the flow  enters 
the element.
The KVL equation for this circuit then becomes:

The physical interpretation of this equation is that the total applied force 
has three components: the part of the force that is accelerating the 
mass      , the part that is required to stretch the spring     , and the part 
that is appears as a damping force in the dashpot       .
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Complex Impedances

If complex impedances are used (the s-plane of the Laplace transform), 
each linear resistor is represented by itself, each linear capacitor by an 
impedance.

And each linear inductor by an impedance :

For each impedance, the relation between effort and flow is the same:

Thus, if         is the Laplace transform of the applied force, the KVL 
equation is written

Where       is the Laplace transform of the velocity of the mass. 
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Complex Impedances

This leads to the transfer function:

When rationalized, this becomes:

This transfer function has a pair of poles at:
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Transformers and Gyrators

There are two important two-port elements that are used to aid in 
translating variables from one energy domain to another.

These are the transformer and the gyrator.

In technical parlance, they are lossless and memoryless (i.e., unlike 
capacitors and inductors, they contribute no state variables to the 
system).

For a lossless two-port, the total power entering the element through 
both ports must be zero. Therefore, the element must satisfy the
following equation:

0fefe 2211 =+

Transformers and Gyrators (ctnd.)

There are two ways of constructing linear elements that satisfy this constraint. 
One is the transformer; the second is the gyrator.

TRANSFORMER:

GYRATOR:
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The Electrical Inductor

Current in the coil establish a magnetic field which, because of the high 
permeability of the magnetic core, establishes flux in a magnetic circuit 
consisting of the core plus the air gap.

The line integral of the magnetic field     around the magnetic circuit is the 
magnetomotive force, abbreviated MMF, and denoted by:

Where        is the    -field in the permeable ring and      is the    -field in the gap. 

The flux through any cross-sectional surface     in the magnetic circuit is 
defined as:
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The Electrical Inductor (ctnd.)

Since the flux is continuous around the circuit, we conclude that  , or

Thus we can now solve for the flux density in the gap:
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The Electrical Inductor (ctnd.)

From which we obtain the flux in the gap:

We recognize this as a relation between applied force        and a generalized 
displacement, the flux    . Thus, this element looks like a spring. It stores 
magnetic potential energy by establishing flux in response to an applied MMF.
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The Electrical Inductor (ctnd.)

The reluctance of a magnetic circuit is defined as the ratio of MMF to flux:

Where      is the reluctance, or, to put in the form analogous to the capacitor

is directly analogous to the spring constant of a spring, and should be 

represented in the magnetic energy domain by a capacitor of value        , where
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The Electrical Inductor (ctnd.)

So, where is the inductor? We thought this element was an inductor, 
not a capacitor. Yet it stores potential energy, like a capacitor. 

The answer lies in the choice of energy domain. We chose to model this 
inductor in the energy domain. But in a circuit, it must interact with 
real currents and voltages. 

The connection between the circuit domain and the magnetic domain is 
through a gyrator, as shown on the left-hand side of Fig. 5.16
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The Electrical Inductor (ctnd.)

The governing equations for the gyrator, taking note of the reference direction 
for      in the figure, are written:

Where the gyrator parameter n is, in this case, the number of turns in the coil. 

The first gyrator equation is Faraday’s Law of Induction, which says that the 
induced EMF in the coil is the time rate of change of the linked flux, while the 
second gyrator equation is just the definition of the MMF in terms of current 
derived in Appendix B of text.
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It is readily shown from these two equations that

Which is our familiar electrical inductor, with inductance L given by

Thus, a completely equivalent representation is the simple electrical 
inductor shown on the right-hand side of Fig. 5.16.

The stored energy in the inductor when carrying current I can be found by 
considering the stored potential energy in the capacitor. This energy is
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The Electrical Inductor (ctnd.)

The stored energy in the inductor when carrying current I can be found by 
considering the stored potential energy in the capacitor. This energy is

The corresponding co-energy is:

If we use the gyrator relation between FMM and I, we find that the co-energy is 
the familiar result:

The Electrical Inductor (ctnd.)
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