

	Advantages .	Disadvantages
Capacitive	More sensitive (polysilicon)	Large piece of silicon for bulk micromachining
	Less temperature-sensitive	Electronically more complicated
	More robust	Needs integrated electronics
Piezoresistive	Smaller structure than bulk capacitance	Strong temperature- dependence
	Simple transducer circuit	Piezocoefficient depends on the doping level
	No need for integration	

Piezoresistive pressure sensors

- This chapter introduces piezoresistive devices through the specific case study of membrane pressure sensors
- While other approaches such as capacitive effects can be used for such applications, silicons also possess the property of piezoresistance whose implementations as transduction mechanism in membrane is somewhat more straightforward

• The effect is isotropic in as much as a given strain may increase resistivity along one direction while decreasing it along others

- The orientations of resistor is not necessarily aligned with crystalline orientations of device
- The general expressions π_1 and π_t are related to the original tensor through: $\pi_1 = \pi_{11} - 2(\pi_{11} - \pi_{12} - \pi_{44})(l_1^2 m_1^2 + l_1^2 n_1^2 + m_1^2 n_1^2)$

 $\pi_{t} = \pi_{12} + (\pi_{11} - \pi_{12} - \pi_{44})(l_{1}^{2}l_{2}^{2} + m_{1}^{2}m_{2}^{2} + n_{1}^{2}n_{2}^{2})$

and

where (I_1, m_1, n_1) are the directional cosines between the longitudinal resistor direction and the crystal axis and (I_2, m_2, n_2) is the direction cosines between the transverse direction and the crystal axes

Note: by this definition I₁I₂ + m₁m₂ + n₁m₂ = 0 given that these direction cosines are orthogonal to each other.

Туре	Resistivity	π_{11}	π_{12}	π_{44}
Units	Ω-cm	10 ⁻¹¹ Pa ⁻¹	10 ⁻¹¹ Pa ⁻¹	10 ⁻¹¹ Pa ⁻¹
n-type	11.7	-102.2	53.4	-13.6
p-type	7.8	6.6	-1.1	138.1

$$\frac{\varepsilon_3}{\rho_e} = \left[1 + \pi_{11}\sigma_3 + \pi_{12}(\sigma_1 + \sigma_2) \right] J_3 + \pi_{44}(\tau_{13}J_1 + \tau_{23}J_2)$$

since $J_2 = J_3 = 0$ and $\sigma_3 = \tau_{13} = \tau_{23} = 0$, we obtain:

$$\begin{split} \epsilon_1 &= \rho_e (1+\pi_{11}\sigma_1+\pi_{12}\sigma_2)J_1 \\ \epsilon_2 &= \rho_e \pi_{44}\tau_{12}J_1 \\ \epsilon_3 &= 0 \end{split}$$

