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18. Piezoresistive Pressure Sensors : Case Study

Introduction
Piezoresistance
Motorola MAP sensor

Example: membrane pressure sensor

Piezoresistive pressure sensor design

The piezoresistive straing gauge are usually made of doped poly-Si and are 
designed in pairs with a readout cicuitry (usually a Wheatstone bridge).
While strain-pressure reponses of the membrane have been modelled in 
previous chapter, practical devices are usually rather calibrated, and their 
response stored on-chip in a look-up table.
The response of the device to applied pressure is related through the 
mechanical response of membrane, piezoresistive response of transducer:
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Capacitive pressure sensor design

In this design, a capacitive bridge can be formed wit two reference 
capacitors, and the output voltage is related to the deflection of the 
membrane Δx and hence the differential pressure (P - P0) through:

By controlling the background pressure P0 it is possible to fabricate the 
following types of pressure sensors:

An absolute pressure sensor that is referenced to vacuum (P0 = 0)
A gauge-type pressure sensor that is referenced to atmoshperic 
pressure (P0 = 1 atm)
A differential sensor where P0 is maintained at a known value
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Piezoresistive vs capacitive approaches

Piezoresistive designs are the most employed because of its low cost, 
robustness, and ease of circuit integration

Piezoresistive pressure sensors

This chapter introduces piezoresistive devices through the 
specific case study of membrane pressure sensors

While other approaches such as capacitive effects can be 
used for such applications, silicons also possess the 
property of piezoresistance whose implementations as 
transduction mechanism in membrane is somewhat more 
straightforward 

9. Piezoresistive Pressure Sensors : Case Study

Introduction
Piezoresistance
Motorola MAP sensor

Piezoresistivity

Piezoresistivity is the dependence of electrical resistivity on strain
Such an effect is related to the rearrangement of energy bands of a 
solid under applied strain (above)
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Piezoresistivity

Such strain will modify both the bandgap as well as the effective 
masses (and thus mobilities) ascribed to the bands 
The effect is isotropic in as much as a given strain may increase 
resistivity along one direction while decreasing it along others

Analytic formulation in cubic materials

Assuming effect is linear, the relationships between electric field 
and current density is given by:

where ρe is the resistivity tensor, Π is the piezoresistive tensor, σ is 
the stress tensor, and J is the current density

Note: while ε and J are vectors, ρe and σ are second rank tensors, 
while Π is a fourth rank tensor

However, in a cubic crystal the resistivity tensor is diagonal and 
characterized by a unique diagonal value ρe

In addition, as previously described, the stress tensor can be 
reduced to six independent elements and re-annoted as such:
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Analytic formulation in cubic materials (ctnd.)

Thus, the above equation can be written along the three principal 
directions of the cubic lattice

where the three independent piezoresistive coefficients are:
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Longitudinal and transverse piezoresistance

If a relatively long and narrow resistor is defined in a planar 
structure, then the primary current density and electric field are 
both along the long axis of the resistor.

Structures are usually designed so that one of the axes of the 
principle in-plane stress is also along the resistor axis.

This simplifies the set of equations to following simplified 
formulation:

where R is the resistance of the resistor and the subscripts l & t
refer to transverse and longitudinal stresses along the resistor
axis.
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Longitudinal and transverse piezo... (ctnd.)

The orientations of resistor is not necessarily aligned with 
crystalline orientations of device

The general expressions πl and πt are related to the original tensor 
through:

and

where (l1, m1, n1) are  the directional cosines between the 
longitudinal resistor direction and the crystal axis and (l2, m2, n2) 
is the direction cosines between the transverse direction and the 
crystal axes

Note: by this definition l1l2 + m1m2 + n1n2 = 0 given that these 
direction cosines are orthogonal to each other.
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Longitudinal and transverse piezo... (ctnd.)

Piezoresistors are often oriented in the [110] directions.

The directional cosines are:

Thus:
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Piezoresistive coefficients in Si Design example

The resistors are fabrictated along the [110] directions
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Design example (ctnd.)

For n-type resistors:
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Design example (ctnd.)

For p-type resistors:

thus, p-type is better suited to perform piezoresistive 
readout in this direction
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Design example (ctnd.)

Which is better, a longitudinal or a transverse resistor?
The transverse resistor is fully plunged in region of maximum 
strain, but will also be greatly affected by placement error
The longitudinal resistor spans over a wider region of stresses. It 
will be less sensitive, but will be less prone to alignment errors 
from device to device

Numerical example

The n-type cantilever is 200 μm long 20 μm wide and 5 μm thick. It is bent 
by a point load on its end. The p=type piezoresistors are 20 μm long and 
2μm wide. A force of 10 μN is applied at extremity of device. Calculate 
change of resistance 
From Senturia, section 9.3:

The cantilever deflection at any point x is given by:
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Numerical example (ctnd.)

The radius of curvature is then given by:

Since                  , the stress at surface (z =-H/2) is given by:

Given that :

It therefore spans from σ = 24 MPa at x = 0 to 21.6 MPa at x = 20 μm
An average stress of σ = 22.8 MPa is therefore used to calculate change of 
resistance. We finally get:
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Alternate design

All four resistors are aligned along one of the [110] directions, and 
aligned with the principle axes of stresses

Alternate design (cntd)

Resistors R1 and R3 experience stresses σ in their longitudinal 
direction and a stress υσ in their transverse direction:

(note: the Poisson ratio in the [110] direction is ν = 0.064)
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Alternate design (ctnd.)

Resistors R2 and R4 experience stresses σ in their transverse 
direction and a stress υσ in their longitudinal direction:
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Alternate design (ctnd.)

Connecting the four resistors in a Wheatstone bridge configuration, 
we get:

where: 
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Averaging over doping variations

Real life piezoresistors will present some degree of non-uniformity 
with respect to the doping levels and the stress distribution they are 
subjected to.
For instance, creation of piezoresistor through surface diffusion 
doping will create a depth-dependent profile of the unstrained 
resistivity ρ0, as seen above.
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Averaging over doping variations (cntd)

To calculate the nominally unstrained resistance R0 , we evaluate the 
following integral:

where zj is the junction depth equal to the edge of the space-charge 
junction.
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Averaging over stress variations

The neutral axis is at z = H/2 thus:

Transverse stresses are neglected, thus, the stress-induced 
resistivity change is:

Thus:
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Averaging over stress variations (cntd)

Rearranging:
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9. Piezoresistive Pressure Sensors : Case Study

9.1 Introduction
9.2 Piezoresistance
9.3 Motorola MAP sensor

Motorola MAP sensor

The Motorola MAP sensor has been developped to measure the 
absolute pressure in the intake of automobile engines

Motorola MAP sensor

The Motorola MAP sensor has been developped to measure the 
absolute pressure in the intake of automobile engines
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Motorola MAP sensor: transistor fabrication Motorola MAP sensor: transistor fabrication

Motorola MAP sensor: diaphragm fabrication Motorola MAP sensor: diaphragm fabrication (cntd.)
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Design of piezoresistor

piezoresistor in the [100] direction

1 2

3

Design of piezoresistor (ctnd.)

The resistor is probed in a four-point configuration as follows:
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Design of piezoresistor (ctnd.)

The current density J in resistor is J = J1 along resistor axis but is J = 0 along the 
other direction.

However the field in the transverse direction is not zero due to the piezoresistive 
properties of the materials

Using the piezoresistive equations:

since J2 = J3 = 0 and σ3 = τ13 = τ23 = 0, we obtain:
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Design of piezoresistor (ctnd.)

The voltage across the piezoresistor is given by:

The transverse voltage is given by:

Thus the transverse voltage V2 only depends on the shear stress present in 
regions between the two taps.
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Stress analysis

A uniform plate under uniform pressure possess a displacement function 
of:

with C1 is the displacement in center of plate, and is given by:

where P is the applied pressure.

The radius of curvature in the middle of the edge is given by

The related surface stress at that location is:

Thus:
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Stress analysis

Since we are dealing with a plate, the y direction stress at center of 
the edge is:

Using υ = 0.06 for the [110] direction:

A numerical analysis of that structure would actually yield:

which is a factor of two off from our analytical solution. This numerical 
result is used for the rest of the analysis.
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Stress analysis (ctnd.)

Now, lets calculate the shear stress on the resistors arranged as above.

The axial stresses in the x and y directions add up to a shear stress 
given by:

Thus:

With we get:

P
H
L141.0

2

2
yx

12 ⎟
⎠
⎞

⎜
⎝
⎛=

σ−σ
=τ

P
L
W

H
L141.0

L
W

V
V

R

R
2

44
R

R
1244

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛π=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
τπ=

5/1LW and ,50HL,Pa10138 RR
111

44 ==×=π −−

kPaV
mV096.0

V
V

1

2
⋅

=


