Distributed and Block RAM
Memory Internal to the FPGA

David R. Bull
March 25, 2003

This document discusses the implementation of distributed and block RAM in
the Xilinx Spartan ITI FPGA.

There are two types of on-chip memory, namely:

1. Distributed
2. Block

Distributed RAM is built using the logic resources and is ideal for small RAMs
that are closely integrated with external logic. Alternately, block RAM is
implemented in dedicated blocks of true RAM divided into 4K sections. In the
XSA100 there are 10, 4K blocks for a total of 40K.

Distributed and block RAM also differ in the way they operate. Distributed
RAM is read asynchronously whereas in block RAM the address is latched on
the clock edge.

Either memory can be instantiated using the library primitives or can be
inferred in the VHDL code. A listing of the library primitives for the Spartan
IT FPGA can be found at

http:/ /toolbox.xilinx.com/docsan/xilinx5 /data/docs /1ib/1ib0024.8.html.

Below are examples on inferring both distributed and block RAMs.
Example 1: Distributed RAM

Here we infer a 640-bit (32-by-20) single port distributed RAM. Data on the
input lines is written to the RAM, at the location selected by the address
lines, when the enable signal is high on the rising edge of the clock. The RAM
is read asynchronously.

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
entity distram is

generic (
portwidth : integer := 20;

addwidth : integer := 5);
port (
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(addwidth-1 downto 0);
di : in std_logic_vector(portwidth-1 downto 0);

do : out std_logic_vector(portwidth-1 downto 0));
end distram;
architecture ramarch of distram is

type ram_type is array (2**addwidth-1 downto 0) of
std_logic_vector (portwidth-1 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then
if (we = ’1’) then
RAM(conv_integer(a)) <= di;
end if;
end if;
end process;
do <= RAM(conv_integer(a));
end ramarch;

Example 2: Block RAM

Here we infer a 640-bit (32-by-20) single port Block RAM. Like the distributed
RAM, the data on the input lines is written to the RAM, at the location
selected by the address lines, when the enable signal is high on the rising edge
of the clock. Unlike distributed RAM, the address is latched on the clock edge,
so the RAM can only be read synchronously.

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
entity rambank is

generic (

portwidth : integer := 20;
addwidth : integer := 5);
port (
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(addwidth-1 downto 0);
di : in std_logic_vector(portwidth-1 downto 0);

do : out std_logic_vector(portwidth-1 downto 0));
end rambank;
architecture ramarch of rambank is

type ram_type is array (2**addwidth-1 downto 0) of
std_logic_vector (portwidth-1 downto 0);

signal RAM : ram_type;

signal read_a : std_logic_vector(addwidth-1 downto 0);

begin
process (clk)
begin
if (clk’event and clk = ’1’) then
if (we = ’1%) then
RAM(conv_integer(a)) <= di;
end if;
read_a <= a;
end if;
end process;
do <= RAM(conv_integer(read_a));
end ramarch;

Other resources that discuss implementing on-chip RAM are the XST User
Guide and Xilinx Application Note XAPP173, which can be found on the
Xilinx web page (www.xilinx.com).

