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Application 
 
In a digital communication system or a digital signal processing application, frame 
synchronization is one of the most fundamental issues in the system design.  Usually, the control 
information and data have been assembled into a frame from the network layer, and the 
synchronization code is attached at the start of a frame at the data link layer.  The complete frame 
is sent to physical layer for spreading (in a spreading communication system) and modulation.  
Correct synchronization at the receiver is the basis of the functional system.   
 
The burst communication system includes time division multiplexing (TDM), code division 
multiplexing (CDMA) or the simpler time division dulplexing (TDD). In such a system, each user 
is assigned a time slot for transmission and multiple user data are collected by a central 
processing node.  A frame is assembled and with certain binary pattern as the frame 
synchronization code.  The receiver searches this binary pattern to determine the transmitter 
timing as well as the start of the frame data.  In such a system, a binary pattern correlator is 
needed at the receiver for  
• Matching the binary pattern  
• Achieve frame synchronization 
• Transmitter timing 
• Valid frame data for the next module to process. 
Once the frame synchronization pattern is established, the frame boundary as well as the receiver 
frame timing is aligned with the transmitter.  This pattern correlator can also be used as 
despreader in a spreading communication system. 
 
As part of Altera Megafunction Partner Program, NOVA Engineering Inc. developed a product 
called "Binary Pattern Correlator" [1] to implement the above-mentioned functions.  Instead of 
purchasing from NOVA, the detailed design as well source code of such a binary pattern 
correlator is introduced in this application note.  The design has been simulated and tested in our 
CDMA based communication system project and it can achieve all the features mentioned below. 
 
Features: 
 
• Designed for Altera FLEX 10K20RC240-4 FPGA 
• Parallel processing and pipelined summing network to achieve maximum speed 
• Programmable reference pattern (synchronization code) 
• Application includes: 

• Frame synchronization 
• Pattern recognition 
• Despreading in a spreading communication system 
 

 



 
General Description 
The synchronizer introduced here is a binary pattern correlator, which compares the input digital 
data with the preset synchronization code (binary pattern).  The correlator contains:  
• A shift register that converts the serial input bits into parallel data 
• Synchronization code (reference pattern) register which stores the synchronization code 
• Correlation unit that correlates the received data with the reference pattern 
• Summing network which finds the correlation of the input data and the reference code 
• Decision device that makes the decision of which logic data have been received according to 

the result of the summing network. 
 
Functional Description 
To understand the design of the binary pattern correlator, some technical terms have to be 
explained.   We define the distance of two signals or two sequences as the number of term-by-
term disagreement.  Then the correlation of the two sequences should be the number of term-by-
term agreement [2].  For example, for signals (in the digital communication a signal is a sequence 
of logic numbers) A and B where  
 
A= {a1, a2, … an}    B={b1, b2, …bn} 
Correlation{A, B} =  N- distance{A, B}  i=1, 2, …n. 
 
First the bit stream coming in the pattern correlator is shifted into a shift register and compared 
with the preset reference pattern.  The comparison is the negated exclusive or logic operation on 
the two input vectors.  We denote the output of the comparison as the weight vector.  The number 
of '1's in the weight vector is the correlation of the two sequences.  The correlation is obtained 
from the summing network.  Then at the decision unit the correlation is compared with a 
threshold to make a decision whether a synchronization code has been received.  For example, if 
a 32-bit synchronization code is used, the threshold can be set to (>= 30).  The threshold of 32 
requires a complete match, while a lower threshold can give some margin when the frame suffers 
from noise and interference.  The bottleneck of the design is how fast the correlation of the 
signals can be found.  An adder is one choice, but for synchronization code size larger than 4, the 
delay in finding the distance of two sequences is almost intolerable for the design of the digital 
system.   We provide a pipelined summing network with reduced logic complexity of the 
summing operation. 
 
Ports 
Table 1 describes the ports for the synchronizer.   

Table 1. Synchronizer Ports 

Name Type Size (bits) Description 

Rx Input 1 Serial or sampled input 

Sync_code Input Variable; 32 in our 
design 

Synchronization code or 
reference pattern 

device_en Input 
1 

System work when set to 
high 

Clock Input 
1 

System clock 

Reset Input 
1 

System reset 



Table 1. Synchronizer Ports 

frame_bit Output 

1 

Frame data in serial output; 
synchronization code has 
been stripped from the 

frame data 
bit_ready Output 

1 
Flag signal of detecting the 

sync code 
 
Parameters 
 
All the register length and the reference code are implemented as generic data so can be easily 
modified. 

Table 2. Synchronizer Parameters 

Name Typical value  Customization 

serial_to_parallel register length 8 to 32( 32 used in our design) Changeable length 

sync_code (reference pattern) 
Lengh: 8 to 32(32 used in our 

design) Changeable length and value 

Correlation sum 6(for 32 code length) Designed for 32 bits code length 

 
 
Performance 
 
The bottleneck of the design for this synchronizer is the summing network, which finds the 
number of '1's in the weight vector.  By using pipelines and reduced adder structure, the 
synchronizer can operate at a high speed (much better than the Binary Pattern Correlator of 
NOVA that has maximum clock frequency of 40Mhz according to their data sheet). 
 

Table 3. Typical Device Utilization (using FLEX10K20RC240-4) 

Implementation Clock (fmax) Logic Cells EABs 

Input data width =1 bit 
Serial-to-parallel 

register width = 32 bits 
Synchronization code 

length = 32 bits 
Pipeline stages = 4 

59.52 MHz 
63 

(For using sync_code as 
a constant) 

0 

 
 
Implementation 
 
The key design of the correlation is the summing network, which must operate at the high speed.  
Suppose we use a 32-bit synchronization code, the counting of the ‘1’s in the weight vector gives 
a value between 0 and 32.  So the output of the summing network is a 6-bit vector.  
  



The weight vector obtained from the correlating unit indicates whether the two sequences are the 
same at the each position.   We need to go through every bit to count how many term-by-term 
agreements they have.   
 
We group every two adjacent bits and map them to the inputs of 16 half adders.  Then we take the 
output of each half adder as a 2-bit vector.  The carry is the MSB; the sum is the LSB.  Thus the 
outputs of the half-adder bank are 16 2-bit vectors.  Then we need to sum all of the 16 vectors.  
Eight 2-bit ripple carry adders can be used to do the first stage summation.  But we notice that the 
input to the 2-bit adder can never be “11”.  That is, not all combinations of the inputs are possible 
at the input to the adder.   Again, we let the carry output be the MSB of the output vector of each 
adder, thus form a vector length of 24 bits in all.   
 
The second stage summation can be done by four 3-bit adders, again the input to the adder will be 
no larger than b”100” since there can be no more than four ‘1’s in a 4-bit binary vector.  We can 
thus design an incomplete adder, which reduces the n-bit ripple carry adder into a (n-1)-bit adder 
in certain situation.  After that, two 4-bit adders and one 5-bit adder are needed to complete the 
summation. 
 
The incomplete 3-bit adder I propose here is like a 4-to-1 multiplexer.  For example, suppose the 
input addends to a 3-bit incomplete adders are { x2 x1x0} and {y2y1y0}.  { x2 x1x0} are the outputs 
from a 2-bit incomplete adder of the previous stage.  x2 is the carry and x1x0 are the sum.  They 
show how many ones are in the 4-bit section of the weight vector.  Thus, the possible 
combination of { x2 x1x0} are X”0” to X”4”.  We can use the MSB of vectors x and y as the 
selector of the multiplexer.  When x2 y2 = “00”, lower bits of x and y sum like a conventional 2-
bit ripple carry adder, and the carry of the 3-bit incomplete adder is zero.  When x2 y2 = “01” or 
“10”, value 4 is summed with a vector that is less than 4, so the output carry of the adder is zero, 
the most significant of the sum part is ‘1’, and the lower bits of the sum part is just the addend 
that is not four.  When x2 y2 = “11”, all other bits of x and y must be zeros, so the output is eight.   
As a summary of the above explanation, the schematic of the incomplete adder is as follows: 
 

Fig. 1 Schematic of the incomplete 3-bit adder 
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Similarly, the incomplete 2-bit, 4-bit and 5-bit adders are obtained by giving different values to 
the generic adder size.   
 
This design allows the counting of the ‘1’s in a 32-bit vector to operate at the speed of 21.4MHz 
(maximal clock frequency).  To speed up the operation, pipeline registers can be inserted after the 
adder bank.  The pipeline register width of the first, second, third and fourth stage is 32, 24, 16 
and 10 respectively.  When the tradeoff the speed and resources need to be considered, pipeline 
stages can be inserted only after the third or the fourth stage where the summation of the ripple 
carry adder is slow.  When four pipeline stages are used, the maximal clock frequency is found to 
be 59.52 MHz.  In the application of Altera UP-1 board, where the system clock frequency is 
25MHz, this frequency leaves enough time margins for preparing data at the output. 
 
When pipeline registers are used, the frame data after the synchronization code need to be 
delayed by corresponding clock periods in the synchronizer.  This can be simply achieved by 
sending the corresponding serial-to-parallel register bit as the output bit. 
 
NOTE:  
To save resources, the synchronization code or the reference pattern can be set as constants in 
VHDL instead of using a register.  The number of logic cells saved by using constants varies with 
implementation of other parts of the module and the synchronization code or pattern chosen. 
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