Encryption/Decryption Using Stream Ciphers

--

The purpose of encryption is to turn ordinary data into completely random-looking bits.

Data is encrypted with a key that can be a random string of bits, or some word or phrase that you pick. The key is like a password. It needs the same degree of secrecy and the same care in creating a word or phrase that cannot be guessed. The key is used by the encryption algorithm to scramble your data and to unscramble it on the other side.

Data encryption ciphers are grouped into two categories:

(i) stream ciphers.

The stream cipher is a simple single-character-in, single-character-out cipher. That is, it does the encryption one character at a time.

(ii) block ciphers

A block cipher encrypts whole blocks of data at a time. Unlike a stream cipher, the block cipher can scramble all the bits in a block so that the bits for the first byte of the block can be scrambled and placed in strange places.

We will focus on the stream cipher since stream ciphers are more suitable for hardware implementation and real-time systems where bits of data are received serially.

Stream Ciphers

Stream ciphers convert plaintext to ciphertext one bit at a time. The stream cipher implementation that we use is the XOR algorithm. Refer to Figure 3.1. In this implementation, the keystream generator outputs a stream of bits: k1, k2, k3, . . ., ki. Then this keystream is XORed with a stream of plaintext bits (p1, p2, p3, . . ., pi) to produce the stream of ciphertext bits. This operation is described by the formula: ci = pi (ki
To recover the plaintext bits at the decryption end, the ciphertext bits are XORed with an identical keystream. This operation is described by: pi = ci (ki.

[image: image1.wmf]Figure 3.1: XOR Stream Cipher

Keystream

Generator

Keystream

Generator

K

i

K

i

Keystream

Keystream

P

i

P

i

Ciphertext

C

i

Plaintext

Plaintext

Encrypt

Decrypt

Shift Registers

As shown in the diagram above, a keystream generator is needed. We use a keystream generator based on linear feedback shift registers (LFSRs).

The feedback shift register is made up of two parts: a shift register and a feedback function. The shift register is initialized with n bits (called the key), and each time a keystream bit is required, all of the bits in the register are shifted 1 bit to the right. So the least significant bit is the output bit. The new left-most bit is computed as the XOR of certain bits in the register. This arrangement can potentially produce a 2n-1 bit-long pseudo-random sequence (referred to as the period) before repeating. To make this maximal-period LFSR, the polynomial formed from the tap sequence (bits that are XORed together) plus the constant 1 must be a primitive polynomial (irreducible polynomial that divides x2^(n-1)+1, but not xd+1 for any d that divides 2n-1) mod 2. The degree of the polynomial is the length of the shift register.

Our implementation uses an 8-bit register with the primitive modulo 2 polynomial x8+x4+x3+x2+1. Therefore, the tap sequence consists of bit 8, bit 4, bit 3, and bit 2. By XORing these bits together, the resultant LFSR will be maximal length, so it will cycle through 28-1 values before repeating. Refer to Figure 3.2 below. Two other shift registers of length 11 bits and 13 bits are used as well. The primitive polynomials modulo 2 are x11+x2+1 and x13+x4+x3+x1+1, respectively.

[image: image2.wmf]Figure 3.2: 8-bit Long Maximal-Length LFSR

b

8

b

7

b

6

b

5

b

4

b

3

b

2

b

1

Output Bit

Keystream generator

By combining LFSRs of different lengths (i.e. different feedback polynomials), a keystream generator is made. To create a maximal length generator, the lengths of the constituent LFSRs must be relatively prime, and all of the feedback polynomials must be primitive modulo 2. Each time a keystream bit is required, the LFSRs are shift once and an output bit is produced as a function of the output bits of each LFSR.

The keystream generator we use is the Geffe Generator. This keystream generator uses three LFSRs combined in a nonlinear manner. Refer to Figure 3.3 below. Two of the LFSRs are inputs into a multiplexer, and the third LFSR controls the output of the multiplexer. Suppose a1, a2, and a3 are the outputs of the three LFSRs, then the output of the Geffe generator is the following:

b = (a1 ^ a2) (((~a1) ^ a3)

where ^ represents “AND”

 (represents “XOR”

 ~ represents “NOT”

The period of this combination keystream generator is the least common multiple of the periods of the three generators:

n = n1 * n2 * n3
 = 13 * 11 * 8

 = 1144

[image: image3.wmf]Figure 3.3:

Geffe generator

2-to-1

Multiplexer

Select

LFSR-2

LFSR-3

b(t)

LFSR-1

References :

http://members.tripod.com/e5ryx/Java_expert_Solutions/Ch27/htm

http://www.tccsecure.com/voicetx.htm

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

� EMBED Word.Document.8 \s ���

[image: image4.wmf]Figure 3.1: XOR Stream Cipher

Keystream

Generator

Keystream

Generator

K

i

K

i

Keystream

Keystream

P

i

P

i

Ciphertext

C

i

Plaintext

Plaintext

Encrypt

Decrypt

[image: image5.wmf]Figure 3.2: 8-bit Long Maximal-Length LFSR

b

8

b

7

b

6

b

5

b

4

b

3

b

2

b

1

Output Bit

[image: image6.wmf]Figure 3.3:

Geffe generator

2-to-1

Multiplexer

Select

LFSR-2

LFSR-3

b(t)

LFSR-1

_1001681295.doc

Figure 3.2: 8-bit Long Maximal-Length LFSR

b1

b2

b3

b4

b5

b6

b7

b8

Output Bit

_1001681452.doc

Figure 3.3: Geffe generator

2-to-1

Multiplexer

LFSR-2

b(t)

LFSR-3

Select

LFSR-1

_1001681033.doc

Figure 3.1: XOR Stream Cipher

Keystream

Generator

Keystream

Generator

Keystream

Keystream

Ki

Ki

Plaintext

Plaintext

Ciphertext

Ci

Pi

Pi

Decrypt

Encrypt

