EE 552 Project
Smart Audio Equalizer
Final Report

David R. Bull
bull@ee.ualberta.ca

Dustin R. Demontigny
demontig@ee.ualberta.ca

March 27, 2003

Declaration of Content

The design elements of this project and report are entirely the original work
of the authors and have not been submitted for credit in any other course,
except for the following:

- We will be using VHDL code from [5] - Inputting and Outputting
Stereo Signals Through the Codec.

David R. Bull Dustin Demontigny

Date

Abstract

This report describes the design and implementation of a smart audio equal-
izer system. The equalizer is a 2-channel, 10 band audio equalizer using the
XSA-100 + Xstend prototyping board. The stereo audio codec on the XS-
tend board digitizes the analog audio and constructs a digital bitstream.
The audio equalizer can be customized by the user to best suit his or her
individual hearing characteristics. The system optimizes the audio signal
generated in real time to best suit each listener. The hardware compo-
nents used are described in detail as well as the current VHDL source code
including simulation waveforms and test benches.

ii

Contents
1 Achievements
2 Introduction

3 Design Concept

4 Stereo Audio Codec
4.1 Codec Interface
4.2 Clock Generator

5 Filter Subsystem
6 RAM Loader

7 User Interface

7.1 Description . .
7.2 Implementation

8 Arithmetic Unit

8.1 Description . .
8.2 Implementation

9 FPGA Requirements

10 Experiments and Characterization

11 External Sources

12 Datasheets

13 Design Verification

14 Design Hierarchy
15 VHDL Code
16 Test Benches

17 Schematics

11

12

14

16

18

55

57

130

155

18 Inputting/Outputting Stereo Signals Through the Codec 158

iii

1 Achievements

The first design of our digital filter module was not very good. The old
design instantiated a multiplier and adder for each filter tap and consumed
a large portion of the logic resources. A second filter design implements a
larger filter with higher resolution at the cost of 1/3 the hardware. This
was a very good achievement.

The new filter design works beautifully in simulation, unfortunately, at this
point we have been unable to get it working on the board. We have spent
many hours debugging the problem but have not yet reached a solution.
We are hopeful that we will get something working before the end of the
term.

We were successful, however, in getting the first design of our digital filter
to produce valid output given a set of test data. This experiment is
outlined in the testing section of this report.

The current version of the user interface successfully reads the inputs from
3 pushbuttons to control the state and gain settings of the smart equalizer
system. The user toggles between the preset value using the incr or decr
pushbuttons. The system can be reset with the third push button. The
preset number is displayed using the seven segment LED display on the left
side of the XStend board. The gain vector is sent to the arithmetic unit.

An arithmetic unit has been added to the smart equalizer system since the
creation of the simulation report. This section of the code evaluates the
coeflicients needed by the filter block using the tap and gain values. This
section has no connection with the outside world. It serves as the interface
between the user I/O and the filter block. The description of operation is
described in more detail in the following sections. Test benches used to
simulate the arithmetic unit are attached in the Design and Verification
section.

2 Introduction

The human ear responds differently to sounds at various frequencies. In
general, the ear is most sensitive to sounds at frequencies near 1kHz and

becomes increasingly insensitive as the the frequency deviates from this
range[1]. Using an equalizer we can amplify the components of the signal
we have difficulty hearing. Our smart equalizer will allow the user to
configure the system to best suit his or her individual hearing
characteristics providing the user with the best listening experience.

3 Design Concept

The proposed project will incorporate the XSA-100 4+ XStend project
board, with an on-board stereo audio codec, to implement a 2-channel,
10-band audio equalizer. The gain for each band will be adjusted manually
by the user. The top level diagram of the system is shown in Figure 1.

Jl —<—+{000000000

Di Stereo AUDIO_MCLK | XC2S100 FPGA LED array

AUDIO_IN Audio AUDIO_SCLK . 7-segnent LED
Codec AUDIO_LRCK 8

auDio_spT1 | smart_eq.vhd

Pushbutton 1
AUDIO_SDTO

Pushbutton 2

Pushbutton 3

Je
—

AUDIO_OUT

Figure 1: Top Level Diagram

The system inputs a stereo audio signal into the stereo codec. The codec
runs off of three clock signals provided by the circuitry in the FPGA; mclk,
sclk and Irck. The digitized audio samples are fed into the FPGA through
the sdout pin. The top level entity in the FPGA, smart_eq.vhd, will filter
the input samples and send them serially to the audio codec via the sdin
pin. The reconstructed analog audio signal is output from the audio codec.

User input will be obtained with the use of pushbuttons and dip-switches.
There are four on-board pushbuttons, only three of which are accessible for
general purpose input, and 12 dip-switches. Since only three pushbuttons
is insufficient for this system, we will use the dipswitches to set a “mode”
for which the pushbuttons will operate. This way, we can effectively create

3 x 2™ pushbutton inputs, using 3 bushbuttons and n dip-switches. We will
only use one dip-switch.

A T-segment LED display and an 8-segment LED bargraph will be used do
display the status of the system and to guide the user.

The equalizer system is divided into three main sections:

1. A codec interface (codec_intfc.vhd)

2. A filter module (filter.vhd)

3. A user interface (user_io.vhd)

The operation of these subsystems is described in the sections that follow.

4 Stereo Audio Codec

The XStend board includes a 20-bit stereo audio codec that digitizes a two
channel analog signal while simultaneously reconstructing a two channel
analog signal. A high level diagram of the codec chip is shown in [5]. The
codec chip includes a series of 20-bit shift registers used to serially transfer
sample values to and from the FPGA. The codec interface will also include
a series of 20-bit shift registers as well as circuitry to read and write to
them.

4.1 Codec Interface

The XStend Board V1.3.2 User Manual includes documentation and
VHDL code for a codec interface circuit (codec_intfc.vhd) used to send and
received data to and from the stereo audio codec. This document is
included in Appendix 18. Our system will incorporate this codec interface
circuit.

The codec interface is composed of two modules:

e A clock generator module (clk_gen.vhd) which generates and outputs
the codec clock signals, and

e A channel module (channel.vhd) which contains the shift registers
and control circuitry for a single serial stream of input/output data.

These two modules are integrated together to form the codec interface
circuit.

The sample code was revised to change the reset signal from active-high
asynchronous to active-low synchronous, since the reset signal will be
triggered using an active-low pushbutton. Also, the bit_cnir signal was
included as an output of the codec_intfc module so that it can be used in
the filter module. The revised code is included in Appendix 15.

4.2 Clock Generator
Three clock signals must be provided to the codec chip.

1. meclk - master clock to codec
2. sclk - serial data clock

3. Ilrck - left/right codec channel select

For sampling frequency fs, the clock signals are related as follows:

melk = 256 f
sclk = 64f;
lrck = fs

Taking mclk = 100M Hz/8 = 12.5M Hz, we get a sampling frequency of
fs =48.8KH 2.

5 Filter Subsystem

Consider the simplified schematic on the following page. The filter is
composed of two counters (counter and counterd), two single port
distributed RAMs (distram), a signed multiplier (fmult) and an
accumulator (facc). One RAM holds the filter coefficients and the other
holds the sample values. The RAM holding the sample values is twice the
size of the RAM holding the filter coefficients. The top half holds the
sample values for the left channel and the bottom half holds the sample
values for the right channel. The input to the coefficient RAM is fed by a
RAM loader, which is discussed in the following section. The sample RAM
inputs digitized samples from the codec interface.

The counters hold the RAM addresses. When an audio sample is received
from the codec interface it is loaded into the sample RAM and the address
counters are enabled. The RAMs loop throught and multiply the
coefficients with the corresponding sample values. The result is stored in
the accumulator. The accumulator is reset after the value at the output of
the filter is read.

6 RAM Loader

A device which we call a RAM loader is used to load the filter coefficients
into the RAM. See the following page for a simplified schematic. A slightly
modified RAM loader is also used to initialize the contents of the sample
RAM. The RAM loaders use several handshaking signals. When data is
ready to be loaded into the RAM the data_in_rdy signal is asserted. The
RAM loader requests control of the RAM control signals (address, write
enable, etc.) by asserting cont_req. The RAM is granted control when the
cont_ack signal is asserted. And finally, when the RAM loader has finished
it asserts both the cont_rel and data_in_ack signals.

7 User Interface

7.1 Description

The smart equalizer has a user interface that allows interaction between
the equalizer parameters and the outside world. The hardware components
used in the user interface include 3 pushbuttons and a seven segment LED
display, which are all accessible on the XStend board.

The user can select a preset value for the band gains. Two pushbuttons are
used to cycle up or down between the desired preset values. Preset 0 will
create an equalizer with a flat response (unity gain). Preset 1 will
correspond to user 1 (i.e.Dave’s setting), preset 2 to user 2 and so on. The
current preset will be displayed on the 7 segment display.

The user interface manipulates input data from the outside world and
stores band gain values in a register for use in the filter subsystem. It is
important to note here that the User Interface is not channel dependent.
In other words it applies the same gain to the left channel as it does to the
right channel.

7.2 Implementation

The user interface incorporates four main components: a debouncer, a
preset counter, a preset decoder and a bcd decoder. These four
components are instantiated structurally in one VHDL file user_io.vhd
which is the top level for the user interface. The project package file,
smart_eq_pack.vhd holds all of the constants and component declarations
used in the user interface.

The debounce entity described in debouncer3.vhd removes unwanted
transients from the pushbutton inputs creating stable pulses of varying
width. It does this by counting the number of clock cycles that occur.
When the number of clock cycles (count) reaches the required value set by
the constant (debounce_delay), the input signals are mapped to the
output. This method works well as long as the debounce delay is greater
than the maximum bounce duration of the pushbuttons. It is important to
mention here that a debounce_delay of 7 was used for simulation purposes
whereas a debounce duration of 1023 will be used when implementing the
design on the FPGA. The outputs from the debouncer are sent to the
input of the preset counter.

The preset counter is decribed in preset_counter.vhd. This component
reads the input pushbuttons to set the desired preset value. It works
similar to an up down counter. When (incr) is pressed the preset value is
incremented by one. Similarily, when (decr) is pressed the preset value is
decremented by one. A synchronous reset button is used to set the preset
value to zero. A very important requirement is to allow the preset value to
increment or decrement only once for every press cycle. This requirement
is fullfilled by using (press) variables to be used on the pushbuttons.
These variables act as a flags to indicate when the pushbutton signals goes
low. These flags are then checked whenever the pushbuttons are not low.
If the flags are set, then the preset value is incremented or decremented
accordingly and the flag is reset to zero. It is important to note here that
this system relies on only one pushbutton being pressed at one time. This
requirement is acceptable considering the manner in which the user
interface is used.

The output from the preset counter is sent to two decoders: a bed decoder
and a preset decoder. These are described in files becd_decoder.vhd and
preset_decoder.vhd respectively. The bcd decoder takes the value of the

preset counter and converts it to a decimal number display on the seven
segment LED display. The preset decoder converts the value of the preset
counter to a vector of gain values. This vector is sent to the arithmetic
unit to calculate the resulting filter coefficients for the filter block.The
configuration of the LED segments and the preset values are stored in the
package file smart_eq_pack.vhd and can be changed or updated as needed.

8 Arithmetic Unit

8.1 Description

The smart equalizer uses an arithmetic unit to calculate the filter
coefficients. The inputs to the arithmetic unit include the gain values for
all bands from the user interface and the hard coded filter taps listed in
the top level package file smart_eq_pack.vhd. The arithmetic unit
calculates the values of each of the filter coefficients and sends them to the
filter block eq. The arithmetic unit has no external FPGA connections.

8.2 Implementation

The arithmetic unit uses five components: two temporary registers, a
multiplier, an accumulator and a register controller . These five
components are instantiated structurally in one VHDL file arith_unit.vhd.
The project package file, smart_eq_pack.vhd holds all of the constants and
component declarations used in the arithmetic unit.

The first temporary register is used to shift the gain vector input and
output the require gain of each band, one at a time. The signal aload
inputs the whole vector into the register. The clock signal shifts the
register to the right by one gain value (usually 4 bits). The output is the
least significant 4 bits, which is equivalent to the gain of the selected band.

Every time the register switches from one band to the next, the coef_value
changes. This is performed using a process inside the arithmetic unit that
increments the tap number. The value of signal coef_value is equal to the
tap_number element in the tap array declared in the package file.
Essentially this performs as an on chip ROM device.

The multiplier takes the coef_value from the on chip ROM and multiplies
it by the band gain. The output of the multiplier has the same number of
bits as the signal coef value. It does this by simply truncating the output
value by the number of bits in the band gain value.

The accumulator takes the output from the multiplier and creates a
running sum of the signal vectors. It performs as many accumulations as
there are bands (usually 10). Once it has performed these ten
accumulations, it is cleared to zero and starts accumulating the values for
the next coefficient. The output from the accumulator is sent to the second
temporary register.

The second temporary register grabs the coefficient values from the
accumulator and stores them in an array of vectors which are sent to the
filter block. The array length is determined by the number of coefficients
(number of filter taps plus one). The length of the coefficients is
determined by the resolution of the filter (usually 12 bits).

The arithmetic unit is controlled by the entity reg _control.vhd. It performs
similar to a state machine. It controls the loading and shifting of the first
temporary register as wells as the accumulation function and the storage of
the coeflicients stored in the second temporary register. After each
individual coefficient is loaded into the array of vectors in the second
temporary register, it shifts the gain to the beginning (least significant four
bits), clears the accumulator, and starts calculations for the next
coefficient.

9 FPGA Requirements

The revised filter design, as predicted, has drasticly reduced the logic
requirements for our project.

The first filter design implemented two discrete 6/ order FIR filters with
16-bit audio samples and 8-bit filter coefficients. Each filter contained 7
16 x 8 bit multipliers (one for each filter tap) and 7, 20-bit adders to sum
the products. Obviously the resource requirements for this design were
quite significant. This design used over 90% of the logic resources
(including codec interface).

The new filter design implements two 10 order FIR filters using circular
buffers in RAM and a single multiplier and accumulator. We use 20-bit
audio samples and 12-bit filter coefficients. The filter, codec interface and
control circuitry for this design only consume 26% of the logic resources.
In this case we have essentially doubled the size of the filter and we use
only 1/3 the hardware.

The second module is the user interface. This module tests the
functionality of the user input pushbuttons and dip switch and verifies
proper operation using the seven segment display, LED bargraph. This
module consumes 15% of the FPGA resources.

The user interface was also redesigned. The original architecture did not
seperate the module into a controller and datapath. It consumed 27% of
the FPGA resources, which was much more than originally scheduled.
This required us to rethink the design and change the interface to toggle
between preset values. The redesign, although costly in terms of timeline,
resulted in a significant decrease in FPGA resources. The current version
of the user interface (user_io.vhd), which uses a preset counter, uses 14% of
the FPGA requirements. This is reasonable considering the size of the gain
register. The user interface could be enhanced if time and space permits.
Reducing the size of the user interface would be quite difficult. Lowering
the debounce delay, optimizing the preset counter and using RAM to store
the gain values could possibly reduce the FPGA resource requirements of
the user interface.

An arithmetic unit has been added to the smart equalizer system since the
writing of the simulation documentation. This module is used to store the

11

tap values and evaluate the filter coeflicients using the gain values. This
unit stores the tap values in a ROM listed in the top level package file
smart_eq_pack.vhd. The arithmetic unit uses 17% of the logic resources of
the FPGA.

The top level smart equalizer system occupies 53% of the logic blocks of
the FPGA. This is much less than the original filter and user interface
design which took up 90% and 27% respectively. This is quite an
improvements since the original filter was for a single band, and the user
interface was slow and unreliable. The remaining 47% of the FPGA could
be used to implement the enhancements listed in previous reports.
Examples of these further enhancements include real time automatic
optimization and VGA graphic equalizer display.

10 Experiments and Characterization

Since the new filter design uses RAM we tested the two different RAM
types, distributed RAM and block RAM. Block RAM uses dedicated RAM
blocks (there are 10 4K RAM blocks in the XC25100 FPGA) and
distributed RAM is implemented in the logic resources. Since we only use
approximately 840 bits of RAM in total we chose to use distributed RAM.
It was also easier to use the distributed RAM since the RAM can be read
asynchronously. The implementation of the distributed RAM used
minimal logic resources (i.e. only a few percent).

The structure of the user interface changed drastically during the
development of the smart equalizer. Originally, the whole system including
datapath and controller were linked into one file. The inputs were
debounced in a seperate entity and instantiated structually in the top
level. The original layout used 27% of the logic cells on the FPGA and
operated quickly, although unreliably. For this reason, the datapath and
controller of the user interface were seperated into datapath and controller
sections in order to simply the layout and improve stability.

Two debounce mechanisms were designed in order to determine the best

alternative. One used a counter that started counting once the signal went
high. After the counter reached a certain value (say 1023) the output went
high if the input remained high during the count sequence. Otherwise the

12

output stayed low. This design is demonstrated in debouncer.vhd. This
implementation used 17 logic blocks in the FPGA.

The second debounce mechanism used an enable signal that was pulsed
high every couple thousand clock cycles. The input is latched to the
output on the rising edge of this enable signal. This method proved to be
much more efficient than the previous design using only 12 logic blocks.
The VHDL code for this debouncer can be seen in debouncer2.vhd. Both
debouncers are used during the simulation and testing of the project
components to observe how they affect the reliability and operation of the
system.

Both versions of the debouncer use the same amount of clock cycles to
delay the input. This allowed us to determine that the second
implementation was more efficient since it used less of the FPGA resources
but operated at the same speed. The speed of the user interface isn’t as
critical as it’s reliablity since it is used to manipulate the parameters of the
filters in the equalizer.

The user interface was changed later to reduce FPGA requirements and
speed up operation. The current version of the user interface occupies
approximately 15% of the logic resources of the FPGA. This is just over
half of the original version. Most of the large registers and MUX devices
were removed. This limited the abilities of the user but simplified the
design creating a mechanism that was more reliable. The reduced size on
the IC is also a bonus.

During the simplification of the filter system, the coefficient requirements
were changed. The updated filter only needs as many coefficients as there
are taps. This reduces the previous amount by a factor equal to the
number of bands (in our case 10). The new coeflicients are calculated using
the arithmetic unit. This unit occupies 17% of the FPGA which is not
very much considering it stores all of the tap values and stores the
resultant coefficient. The arithmentic unit provides the interface between
the filter and the user interface.

13

11 External Sources

As mentioned previously, the XStend Board V1.3.2 Manual includes the
VHDL code for a codec interface circuit. This module is used in our
system with slight modifications. The modified VHDL source code
(loopback.vhd, codec_intfc.vhd, clkgen.vhd and channel.vhd) can be found
in Appendix 15.

Modifications to the sample code include changing the reset signal from
active-high asynchronous to active-low synchronous, since the reset signal
will be triggered using an active-low pushbutton. The bit_cntr signal was
included as an output of the codec_intfc module so that it can be used in
the filter module.

When compiling the sample code we came across an error. In the
loopback.vhd file the signals left_channel and right_channel were only
allocated 8 bits when they were expected to carry 20-bit signals. A simple
correction of the vector indicies corrected the problem.

14

References

[1] Multimedia Signals and Systems, Mrinal Kr. Mandal, Kluwer
Academic Publishers, 2003

[2] Signal Processing and Linear Systems, Lathi, B.P., Berkeley Cambridge
Press, 1998.

[3] Discussions with Dr. Behrouz Nowrouzian, Electrical and Computer
Engineering, University of Alberta.

[4] Implementation of an Audio Filter on an FPGA Board, Herbertz, Kay,
March 2002.

[5] XStend Board V1.3.2 Manual, XESS Corporation, 2001.
[6] Xstend Board V2.0 Manual, XESS Corporation, 2002.

[7] Xilinx Synthesis Technology (XST) User Guide, Xilinx Inc.

15

12 Datasheets

The only device peripheral to the FPGA is the on-board stereo audio
codec. The codec features a 20-bit analog to digital converter and digital
to analog converter. The digitized audio samples are read from and
written to serially. The coverpage for the codec datasheet is included on
the following page. A schematic of the interface to the codec chip is

included in Appendix 17.

16

13 Design Verification

Index of Test Cases

Case 1:

Case 2:

Case 3:
Case 4:
Case b:

Case 6:
Case T:
Case 8:
Case 9:

Case 10:
Case 11:
Case 12:
Case 13:
Case 14:
Case 15:
Case 16:
Case 17:

Board hardware is tested by displaying counter value on the
on-board LED displays

On-board audio codec is tested using the loopback circuit
provided in XStend V1.3.2 Manual

Loopback circuit is tested with real audio signals
Simulation of the codec interface circuit

Simulation of the codec interface circuit integrated with a
single band FIR filter

Simulation and verification of debouncer3

Simulation and verification of preset counter

Simulation and verification of user interface (user_io)

Test bench verification of the filter module

Simulation verification of the RAM loaders

Simulation verification of the new filter

Test bench verification of the new filter

Test bench for the first temporary register

Test bench for the multiplier

Test bench for the accumulator

Test bench for the entire arithmetic unit

Debugging test bench for smart eq system

18

19

19

19
19
21

23
25
27
29
36
38
42
45
47
49
51
53

Case 1

The first experiment was to implement a 4-bit counter whose value is
decoded through a BCD to 7-segment decoder and displayed on all
on-board 7-segment displays. The circuit functioned properly with one
exception. Segment 6 on one of the LED displays did not light up at all. It
was discovered that in order to use the pin connected to this segment, the
on-board CPLD needed to be reprogrammed. Since we do not know how
to program the CPLD properly and since we do not need to use this
particular LED display in our system, we did not investigate this problem
any further.

Case 2

The second experiment was to implement the loopback circuit provided in
the XStend V1.3.2 manual. The code from the manual was copied from
the manual into a text file and compiled. There was, however, an error in
this code that needed to be fixed which prevented a successful compilation.
The signals left_channel and right_channel in the loopback.vhd file were
only allocated 8 bits when they were expected to pass 20-bit signals. A
simple correction of the signal indices corrected the problem. The code was
also modified to change the active-high synchronous reset to active-low
asynchronous, since an active-low synchronous pushbutton was used to
generate the reset signal.

Case 3

To verify the operation of the loopback circuit we input an audio signal
from a CD player and played the output audio from the codec on a stereo
system. The loopback circuit worked properly as the audio was unaltered
by the loopback circuitry.

Case 4

Simulation of the codec interface circuit was performed to analyze the
timing requirements. The simulation waveform is included on the following

page.

19

Case 5

Next a single-band digital filter was integrated with the loopback circuit.
The input samples from the codec are passed through the filter, then sent
back to the codec for reconstruction. Simulation of the integrated circuit
confirmed proper operation, however, the hardware has not yet been tested
with an audio signal. The simulation waveform is included on the following

page.

21

Case 6 - Test Debouncer

The test_db test bench sends various inputs to the debouncer. This
ensures that the output signals are only assigned the input values every n
* clock_period seconds where n is equal to the constant debounce_delay,
which is assigned in user interface package file. For simulation purposes a
value of 7 was used for the debounce delay. In the actual implementation a
value of 1023 will be used. This shouldn’t affect the operation of the user
interface since speed isn’t a priority.

23

Case 7 - Test User I/0O

The test_io test bench is used to test the entire user interface module. The
test bench models noisy pushbutton inputs to see how the interface would
react. It can be seen that the noisy inputs become smooth pulses of vary
width depending on the timing of the inputs. These pulses trigger the
preset counter to increment or decrement. The preset counter increments
or decrements only once for every pulse. The two decoders are able to
convert the preset value to display the hexadecimal digit on the seven
segment display and store the gain value.

25

Case 8 - Test Preset Counter

The test_preset_counter test bench simulates the operation of the preset
counter using variable pulse widths. It can be seen in the following
waveform that the preset counter properly increments and decrements the
preset value only oncer for every input pulse. The resulting output preset
value will be stable as long as the inputs are not noisy. This requirement is
fulfilled using the debouncer mechanism.

27

Case 9 - Test Filter Module - Old Design

The filt_test bench emulates the on-board stereo audio codec and generates
the master clock and global reset signals. It is used to verify that the
filtered samples output from the bandpass filter are correct.

We begin the experiment by generating 30 random 20-bit numbers using
Microsoft Excel. The numbers are then processed using MATLAB to
calculate the correct filter output samples. The matlab code is provided
below.

% this matlab program generates the output of a FIR digital filter y(n)
% given input x(n) and filter coefficents b(i)
% the input and output samples are written to xy.txt

clear;
b=[1 -6 18 101 18 -6 1];
x=[0 0 0 0 0 0 0];
x1=[71 60 -86 -100 -24 22 14 119 82 0];
x2=[42 59 6 -76 111 -66 -1 31 -117 39];
x3=[-22 -52 126 99 105 121 71 92 -28 28];
xin=2"12*[x1 x2 x3];
for i=1:30,
x=[xin(i) x(1:6)];
y(i)=floor (sum(x.*b)/2048);
end
fidl=fopen(’xin.txt’,’w’);
fid2=fopen(’y.txt’,’w’);
fid3=fopen(’xy.txt’,’w’);
fprintf (£id3,’Input Samples Output Samples\n\n’);
for j=1:30,
fprintf(£fidl,’x(%i) = %9i\n’,j-1,xin(j));
fprintf(£fid2,’y(%i) = %7i\n’,j-1,y(j));
fprintf(£id3,’x(%2i) = %9i, y(%2i) = %7i\n’,j-1,xin(j),j-1,y(G));
end
fclose(fidl);
fclose(fid2);
fclose(fid3);

The matlab program generates an output file zy.tzxt containing two
columns. This file is included on page 31. The first column contains the
input sample values and the second column contains the corresponding

29

output sample values. The sample values are 20-bit signed numbers and
are displayed in base 10 for clarity.

The randomly generated input samples were copied into the test bench file
as an array of constants. The test bench loads the sample values in turn
into a shift register on the rising edge of the lrck_tb signal so that the
sample values are the same for both the left and right channels. This is not
necessary, it is done to simplify the verification process. The samples are
then serially shifted into the filter on the rising edge of the sclk_tb signal.

As the input samples are shifted out, the filtered samples from the
previous input samples are shifted in. The filtered samples are loaded into
an array on the rising edge of the lrck_tb signal.

The bandpass filter features an ‘on/off” switch that toggles the filter
coefficients between two predefined sets of values. For this test case the
bandpass filter (bndfilt.vhd) is set in ‘off” mode. The corresponding filter is
a 6th order lowpass FIR filter with a normalized cutoff frequency of 0.8
(see bndfilt.vhd).

The waveforms generated from the simulated test bench are included on
the following pages. Comparison to the results listed in the zy.tzt file
confirm that the filter is executing correctly.

30

Input

x(
x(
x(
x(
x(
x(
x(
x(
x(
x(

0)

Samples

1 =
2) =

3)

4) =
5) =
6) =

7)
8)

9) =
x(10)
x(11)
x(12)
x(13) =
x(14) =
x(15) =
x(16) =
x(17) =
x(18)
x(19)
x(20) =
x(21) =
x(22) =
x(23) =
x(24) =
x(25) =
x(26) =
x(27)
x(28) =
x(29)

290816,
245760,
-352256,
-409600,
-98304,
90112,
57344,
487424,
335872,
0,
172032,
241664,
24576,
-311296,
454656,
-270336,
-4096,
126976,
-479232,
159744,
-90112,
-212992,
516096,
405504,
430080,
495616,
290816,
376832,
-114688,
114688,

Output

y(0) =
y(1) =
y(2) =
y(3) =
y(4) =
y(B) =
y(6) =
y(7) =
y(8) =
y(9) =
y(10) =
y(11) =
y(12) =
y(13) =
y(14) =
y(15) =
y(16) =
y(17) =
y(18) =
y(19) =
y(20) =
y(21) =
y(22) =
y(23) =
y(24) =
y(25) =
y(26) =
y(27) =
y(28) =
y(29) =

Samples

142
-732
1664

17334
12732
-19332
-24974
-6434
3848
7008
27266
20338
2368
9638
14944
-1368
-10974
17430
-9054
-1464
2516
-21074
3376
-4760
-8440
26468
27584
26846
28682
21340

31

Case 10 - RAM Loader

The following simulation verifies the operation of the RAM loaders used on
the coefficient RAM and the sample RAM. First the coefficient RAM is
loaded with 10 coefficients. Then the sample RAM is initialized by writing
zero to all of the RAM locations. The annotated waveform is included on
the following page.

36

Case 11 - FIR Filter - New Design

The following simulation verifies the operation of the new filter design. Six
audio samples are sent through the filter (three for the left channel and
three for the right). The filter uses the coefficients loaded in the previous
simulation. The annotated waveform is included on the following page.

38

Case 12 - Filter Test Bench

The following simulation verifies the operation of the filter. A test bench is
used that simulates the codec chip. The test bench generates the
appropriate clock signals and sends and recieves audio samples to and from
the filter serially. The input and output samples are stored in an array for
easy comparison. For the purposes of easy comparison the digital filter
coefficients were set such that the output of the filter is equal to the
current input sample. Essentially, the filter acts like a loopback circuit for
the purposes of this test. The simulation waveform is included on the
following page.

42

Case 13 - Temporary Register Test Bench

The waveform on the following page illustrates how the temporary register
at the input to the arithmetic unit functions. When the aload signal goes
high, the gain value from the user interface is loaded in parallel to register.
Otherwise, the data in the register is shifted to the right every rising edge
of the clock cycle by 4 bits (the size of the gain value for each band). The
least significant 4 bits of the register are sent to the output. This value is
equal to the gain of the current band. The band values are therefore
output from lowest band to highest band.

45

Case 14 - Multiplier Test Bench

The test bench for the multiplier simply checks to make sure the output
corresponds to the input values multiplied. It also checks that the output
is truncated to only output 12 bits (the size of our coefficients). The
waveform on the following page shows that the multiplier works porperly.

47

Case 15 - Accumulator Test Bench

The waveform on the next page shows the proper operation of the
accumulator section. The input value is added to the output every rising
edge of the clock. The output asynchronously resets the to zero whenevery
the clear signal goes high.

49

Case 16 - Arithmetic Unit Test Bench

The following simulation waveforms shows the operation of the entire
arithmetic unit. The accumulator adds the values of the outputs from the
multiplier and sends the output to be stored in temporary register every
complete run through all band gains and tap values. This system works
well but could be optimized to reduce the evaluation time of each
coeflicient.

51

Case 17 - Smart Eq Test Bench debugging

The following waveform shows how the smart eq test bench was used to
debug system problems. As shown, the last element of the ceof_register is
not stored. The index element was incremented by one to allow the last
coefficient to be stored. The simulation was rerun and the change managed
to fix the problem. This illustrates that modular design and testing
techniques ease the troubleshooting and debugging steps in the project
development.

53

14 Design Hierarchy

Included on the following page is a diagram of the design hierarchy.

55

15 VHDL Code

Index

accumulator.vhd

arith_unit.vhd

bed_decoder.vhd

channel.vhd
clkgen.vhd
codec.vhd

codec_intfc.vhd

counter.vhd

counterd.vhd

debouncer3.vhd

distram.vhd
eq.vhd

facc.vhd
firfilt.vhd
firpack.vhd
fmult.vhd

fmultacc.vhd
multiplier.vhd

preset_counter.vhd
preset_decoder.vhd
ramload.vhd
ramloadl.vhd
reg_control.vhd
smart_eq.vhd
smart_eq_pack.vhd
temp_reg.vhd
temp_reg2.vhd

user_io.vhd

(simulated)
(simulated)
(simulated)

(simulated)
(simulated)
(compiled)
(simulated)
(simulated)
(simulated)

(simulated)

(compiled)
(simulated)

(compiled)
(simulated)
(compiled)
(simulated)
(compiled)
(simulated)

(simulated)
(simulated)
(simulated)
(simulated)
(simulated)
(simulated)
(compiled)
(simulated)
(simulated)

(simulated)

accumulates multiplier output in arithmetic
unit

logic block used calculate the coefficient val-
ues

converts binary to decimal digit on 7 segment
display

data channel used in codec interface module
clock generator for codec

package used by codec modules

interface module to codec

up counter with definable wrap around value
down counter with definable wrap around
value

uses clock delay to scan inputs and debounce
signals

single port distributed RAM

entity containing filter, codec interface and
control circuitry

signed accumulator

FIR filter

package used by filter module

multiplier: inputs and output variable width
multiplier accumulator for filter

multiplies filter tap by gain value in arith-
metic unit

toggles preset values in user I/O

decodes preset values to filter gain values
RAM loader

RAM loader

controls data flow in arithmetic unit

top level entity for FPGA

top level package file for smart_eq

shift register that holds gain values

register that sends coefficient values to filter
block

user interface module

o7

58

59

61

62
66
68
71
75
7

79

80
81

91
97
92
100
101
103

104
106
107
110
113
115
117
126
127

128

-- EE 552 - Project

-- Dustin Demontigny

—-- March 23, 2003

-- accumulator.vhd

-- used in converting coefficients using gain value

-- Reference design taken from XST User Manual

-- http://toolbox.xilinx.com/docsan/3_1i/data/fise/xst/xst.htm

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity accumulator is
generic(input_size : integer := 12;
output_size : integer := 12);
port(clock, clr, reset : in std_logic;
data : in std_logic_vector(input_size-1 downto 0);
sum : out std_logic_vector(output_size-1 downto 0));
end accumulator;

architecture archi of accumulator is
signal temp: std_logic_vector(output_size-1 downto 0);

begin
process (clock, clr)
begin
if clr = ’1’ or reset = ’0’ then

temp <= (others => ’07’);
elsif (clock’event and clock = ’1’) then
temp <= temp + data;
end if;
end process;
sum <= temp;
end archi;

58

-- EE 552 Project

-- Dustin Demontigny

—-- March 10, 2003

—-— arith_unit.vhd

-- arithmetic unit to calculate filter coefficent values

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity arith_unit is
port(clock, reset : in std_logic;
gain_register : in std_logic_vector(gain_reg—l downto 0);
new_gain, send_coefs : in std_logic;
send_gain, new_coefs : out std_logic;
coef_register : out cramarray);
end arith_unit;

architecture mixed of arith_unit is
--signal tap_number : integer range 0 to taps*bands;
signal load_gain, shift_gain : std_logic;
signal clock_accum, clr_accum : std_logic;
signal load_coef, shift_coefs : std_logic;
signal band_gain : std_logic_vector(gain_length-1 downto 0);
signal mult_out : std_logic_vector(coef_length-1 downto 0);
signal accum_out : std_logic_vector(coef_length-1 downto 0);
signal coef_value : std_logic_vector(coef_length-1 downto 0);
begin

process(shift_gain)

variable tap_number : integer := 0;
begin
if load_gain = ’1’ then
tap_number := 0;
elsif shift_gain’event and shift_gain = ’1’ then
tap_number := tap_number + 1;
if tap_number = 4 then
tap_number := 0;
end if;
end if;

coef_value <= tap_array(tap_number);
end process;

59

controller : reg_control

port map(clock => clock,
reset => reset,
new_gain => new_gain,
new_coefs => new_coefs,
send_gain => send_gain,
send_coefs => send_coefs,
load_gain => load_gain,
shift_gain => shift_gain,
clock_accum => clock_accum,
clr_accum => clr_accum,
load_coef => load_coef,
shift_coefs => shift_coefs);

gain_shifter : temp_reg
generic map(input_size => gain_reg,
output_size => gain_length)
port map(clock => shift_gain,
ALOAD => load_gain,
PI => gain_register,
PO => band_gain);

multiply_coeff : multiplier
port map(A => coef_value,

B => band_gain,
RES => mult_out);

accum_ceof : accumulator
generic map(input_size => coef_length,
output_size => coef_length)
port map(clock => clock_accum,
clr => clr_accum,
reset => reset,
data => mult_out,
sum => accum_out) ;

A_reg : temp_reg?2
port map(clock => shift_coefs,
clr => reset,
ALOAD => load_coef,
PI => accum_out,
PO => coef_register);

end mixed;

60

-- EE 552 - Project

-- Dustin Demontigny

-- February 11, 2003

—-- bcd_decoder.vhd

-- converts binary to 7 segment display

library ieee;
use ieee.std_logic_1164.all;

-- digit values are assigned in package file
use work.smart_eq_pack.all;

entity bcd_decoder is
port(
binary_input : in std_logic_vector(bits-1 downto 0);
segment_output : out std_logic_vector(led_segments-1 downto 0));
end bcd_decoder;

architecture struct of bcd_decoder is
begin
-- select the digit that corresponds to the binary input
with binary_input select

segment_output <=

digit_1 when "0000",

digit_2 when "0001",

digit_3 when "0010",

digit_4 when "0011",

digit_5 when "0100",

digit_6 when "0101",

digit_7 when "0110",

digit_8 when "0111",

digit_9 when "1000",

digit_O when "1001",

digit_A when "1010",

digit_b when "1011",

digit_C when "1100",

digit_d when "1101",

digit_E when "1110",

digit_F when "1111",

digit_e when others; -- displays "e" for error
end struct;

61

library IEEE;

use IEEE.std_logic_1164.all;
use JEEE.std_logic_unsigned.all;

use work.codec.all;

entity channel is
generic
(
DAC_WIDTH
ADC_WIDTH
)
port
(

-- interface I/0 signals

clk
reset
chan_on
bit_cntr

subcycle_cntr :

chan_sel

rd

wr

adc_out
dac_in
adc_out_rdy
adc_overrun
dac_in_rdy
dac_underrun

in
in
in
in
in
in
in
in
: out
: in
: out
: out
: out
: out

-- codec chip I/0 signals

sdin
sdout
);

end channel;

architecture channel_arch

signal dac_shfreg
signal dac_empty
signal dac_wr
signal dac_wr_nxt

: out
in

signal dac_in_rdy_int :

signal adc_shfreg
signal adc_full

signal adc_rd
signal adc_rd_nxt

positive := 20;

positive := 20

std_logic; -- clock input

std_logic; -- synchronous active-high reset
std_logic;

std_logic_vector(5 downto 0);
std_logic_vector(1l downto 0);

std_logic; -- select L/R channel for read/write
std_logic; -- read from the codec ADC

std_logic; -- write to the codec DAC
std_logic_vector (ADC_WIDTH-1 downto 0); -- ADC output
std_logic_vector (DAC_WIDTH-1 downto 0); -- DAC input
std_logic; -- ADC output is ready to be read
std_logic; —-— ADC overwritten before being read
std_logic; -- DAC input is ready to be written
std_logic; -- input to DAC arrived late

std_logic; -- serial output to codec DAC

std_logic -- serial input from codec ADC

of channel is
std_logic_vector (DAC_WIDTH-1 downto 0);

std_logic; —-- DAC shift register is empty
std_logic; -- the DAC channel has been written
std_logic; -- the DAC channel has been written
std_logic; -- internal version of dac_in_rdy
std_logic_vector (ADC_WIDTH-1 downto O0);
std_logic; -— ADC shift register is full

: std_logic; -- the ADC channel has been read

: std_logic; -- the ADC channel has been read

62

signal adc_out_rdy_int : std_logic; -- internal version adc_out_rdy
begin
-- receives data from codec ADC
rcv_adc :
process(clk)--, chan_on, subcycle_cntr, bit_cntr, adc_shfreg, sdout)
begin
if(clk’event and (clk = YES)) then
if(reset = ’1’) then
adc_shfreg <= (others => ’07);
adc_full <= NO;

elsif ((chan_on = YES) and (subcycle_cntr = 2)) then
if (bit_cntr < ADC_WIDTH-1) then
adc_full <= NO;

adc_shfreg <= adc_shfreg(ADC_WIDTH-2 downto 0) & sdout;

elsif(bit_cntr

= ADC_WIDTH-1) then

adc_full <= YES;
adc_shfreg <= adc_shfreg(ADC_WIDTH-2 downto 0) & sdout;
end if;
end if;
end if;
end process;
adc_out <= adc_shfreg;

-- handle reading of ADC data from codec interface
adc_rd_nxt <= YES when (adc_full = YES and chan_sel = YES and rd = YES) or
(adc_full = YES and adc_rd = YES)

else NO;
read_adc :
process(clk)--, adc_rd_nxt)
begin
if(clk’event and clk = ’1’) then
if (reset = YES) then
adc_rd <= NO;
else
adc_rd <= adc_rd_nxt;
end if;
end if;

end process;

-- ADC data is ready
adc_out_rdy_int <=
adc_out_rdy <=

if register is full and hasn’t been read yet
YES when adc_full = YES and adc_rd = NO else NO;
adc_out_rdy_int;

-- detect and signal
detect_adc_overrun :
begin

overwriting of data from the codec ADC channels
process(clk)--, bit_cntr, chan_on, adc_out_rdy_int)

63

if(clk’event and clk = ’1’) then
if (reset = YES) then
adc_overrun <= NO;
elsif (bit_cntr = 1 and chan_on = YES and adc_out_rdy_int = YES) then
adc_overrun <= YES;
end if;
end if;
end process;

-— transmits data to codec DAC
tx_dac : process(clk)--, chan_on, subcycle_cntr, bit_cntr, dac_shfreg)
begin
if(clk’event and clk = ’1’) then
if(reset = YES) then
dac_shfreg <= (others => ’0’);
dac_empty <= YES;
elsif (chan_sel = YES and wr = YES) then
dac_shfreg <= dac_in;
elsif (chan_on = YES and subcycle_cntr = 2) then
if (bit_cntr < DAC_WIDTH-1) then
dac_empty <= NO;
dac_shfreg <= dac_shfreg(DAC_WIDTH-2 downto 0) & ’0’;
elsif(bit_cntr = DAC_WIDTH-1) then
dac_empty <= YES;
dac_shfreg <= dac_shfreg(DAC_WIDTH-2 downto 0) & ’0’;
end if;
end if;
end if;
end process;

-- output the serial data to the SDIN pin of the codec DAC
sdin <= dac_shfreg(DAC_WIDTH-1) WHEN chan_on = YES ELSE ’0’;

-- handle writing of DAC data from codec interface
dac_wr_nxt <= YES WHEN (dac_empty = YES AND chan_sel = YES AND wr = YES) OR
(dac_empty = YES AND dac_wr = YES) ELSE NO;
write_dac :
PROCESS(clk)--, dac_wr_nxt)
BEGIN
IF(clk’event AND clk = ’1’) THEN
IF(reset = YES) THEN
dac_wr <= NO;
ELSE
dac_wr <= dac_wr_nxt;
END IF;

64

END IF;
END PROCESS;
-- DAC is ready if register is empty and hasn’t been written yet
dac_in_rdy_int <= YES WHEN dac_empty = YES AND dac_wr = NO ELSE NO;
dac_in_rdy <= dac_in_rdy_int;

-- detect and signal underflow of data to the codec DAC channels
detect_dac_underrun :
PROCESS(clk)--, bit_cntr, chan_on, dac_in_rdy_int)
BEGIN
IF(clk’event AND clk = ’1’) THEN
IF(reset = YES) THEN
dac_underrun <= NO;
ELSIF(bit_cntr = 1 AND chan_on = YES AND dac_in_rdy_int = YES) THEN
dac_underrun <= YES;
END IF;
END IF;
END PROCESS;
END channel_arch;

65

library IEEE;
use IEEE.std_logic_1164.all;

use JEEE.std_logic_unsigned.all;

use work.codec.all;

entity clkgen is

generic
(
CHANNEL_DURATION :
);
port
(
-- interface I/0 signals
clk : in
reset : in
-- codec chip clock signals
mclk : out
sclk : out
lrck : out
bit_cntr : out
subcycle_cntr : out
);
end clkgen;

positive := 128 -- must be 128

std_logic; -- clock input

std_logic; -- synchronous active-high reset
std_logic; -- master clock output to codec
std_logic; -- serial data clock to codec
std_logic; -- left/right codec channel select

std_logic_vector(5 downto 0);
std_logic_vector (1l downto 0)

architecture clkgen_arch of clkgen is
signal lrck_int : std_logic;
signal seq : std_logic_vector(7 downto 0);

begin

gen_clock : process(clk)--, seq, lrck_int)

begin

if (clk’event and clk = ’1’) then

if(reset = YES) then

-- synchronous reset

seq <= (others => ’07);

lrck_int <= left;

-- start with left channel of codec

elsif (seq = CHANNEL_DURATION-1) then

seq <= (others => ’0’); -- reset sequencer every channel period
lrck_int <= not(lrck_int); -- toggle channel sel every period
else
seq <= seq+l;
lrck_int <= lrck_int;
END IF;
END IF;
END PROCESS;
1rck <= lrck_int; -- output the channel selector to the codec
mclk <= clk; -- codec master clock equals input clock

66

sclk <= seq(1); -- serial data shift clock = 1/4 master clock
bit_cntr <= seq(7 DOWNTO 2);
subcycle_cntr <= seq(1 DOWNTO 0);

END clkgen_arch;

67

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use JEEE.std_logic_unsigned.all;

package codec is

constant yes : std_logic := ’1’;
constant no : std_logic := ’0’;
constant ready : std_logic := ’1’;
constant overrun : std_logic := ’1’;
constant underrun : std_logic := ’1’;
constant left : std_logic := ’0’;
constant right : std_logic := ’17;

component clkgen

generic
(
CHANNEL_DURATION : positive := 128 -- must be 128
)
port
(
-- interface I/0 signals
clk : in std_logic; -- clock input
reset : in std_logic; -- synchronous active-high reset
-- codec chip clock signals
mclk : out std_logic; -- master clock output to codec
sclk : out std_logic; -- serial data clock to codec
1rck : out std_logic; -- left/right codec channel select
bit_cntr : out std_logic_vector(5 downto 0);
subcycle_cntr : out std_logic_vector(l downto 0)
)

end component;

component channel

generic
(
DAC_WIDTH : positive := 20;
ADC_WIDTH : positive := 20
);
port
(
-- interface I/0 signals
clk : in std_logic; -- clock input
reset : in std_logic; -- synchronous active-high reset
chan_on : in std_logic;
bit_cntr : in std_logic_vector(5 downto 0);

68

subcycle_cntr :

chan_sel

rd

wr

adc_out
dac_in
adc_out_rdy
adc_overrun
dac_in_rdy
dac_underrun

in
in
in
in

: out

in

: out

: out

: out

: out

-- codec chip I/0 signals

sdin
sdout

)

end component;

component codec_intfc

generic

(

port
(

-- interface I/0 signals

DAC_WIDTH
ADC_WIDTH

: out

in

CHANNEL_DURATION :

);

clk

reset

lrsel

rd

wr

ladc_out
radc_out
ldac_in
rdac_in
ladc_out_rdy
radc_out_rdy
adc_overrun
ldac_in_rdy
rdac_in_rdy
dac_underrun
bit_cntr

std_logic_vector(1l downto 0);

std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

std_logic;
std_logic

in
in
in
in
in

: out

: out

IN
IN

: 0UT
: OUT
: OUT
: OUT
: OUT
: 0UT

-- codec chip I/0 signals

mclk
sclk

: out

: 0UT
: 0UT

positive :
positive :
positive :

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

-- select L/R channel for read/write
-- read from the codec ADC
-- write to the codec DAC

std_logic_vector (ADC_WIDTH-1 downto 0);
std_logic_vector (DAC_WIDTH-1 downto 0);
std_logic;

-- ADC output
-- DAC input

ADC output is ready to be read
ADC overwritten before being read
DAC input is ready to be written

input to DAC arrived late

serial output to codec DAC
serial input from codec ADC

20;
20;

128 -- must be 128

clock input

read from the codec ADC
write to the codec DAC

std_logic_vector (ADC_WIDTH-1 downto 0);
std_logic_vector (ADC_WIDTH-1 downto 0);
std_logic_vector (DAC_WIDTH-1 DOWNTO 0);
std_logic_vector (DAC_WIDTH-1 DOWNTO 0);

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;

69

left ADC output ready to

synchronous active-high reset
select L/R channel for read/write

-- L ADC

-—- R ADC

-— left DAC

-- right DAC
read

right ADC output ready to read
ADC overwritten before read
left DAC in ready to be written

--right DAC in ready to be written
-— DAC did not receive data in time
std_logic_vector(5 downto 0);

-- master clock output to codec
—-— serial data clock to codec

lrck : OUT std_logic; -- left/right codec channel select

sdin : OUT std_logic; -- serial output to codec DAC
sdout : IN std_logic -- serial input from codec ADC
);
END COMPONENT;
END codec;

70

library IEEE;

use IEEE.std_logic_1164.all;

use JEEE.std_logic_unsigned.all;
use work.codec.all;

entity codec_intfc is

generic

(
DAC_WIDTH positive := 20;
ADC_WIDTH positive := 20;
CHANNEL_DURATION : positive := 128 -- must be 128
);

port
(
-- interface I/0 signals
clk : in std_logic; -- clock input
reset in std_logic; -- synchronous active-high reset
lrsel in std_logic; -- select L/R channel for read/write
rd in std_logic; -- read from the codec ADC
wr in std_logic; -- write to the codec DAC
ladc_out : out std_logic_vector (ADC_WIDTH-1 downto 0); -- L ADC
radc_out : out std_logic_vector (ADC_WIDTH-1 downto 0); -- R ADC
ldac_in in std_logic_vector (DAC_WIDTH-1 downto 0); -- left DAC
rdac_in in std_logic_vector(DAC_WIDTH-1 downto 0); -- right DAC
ladc_out_rdy : out std_logic; -- left ADC output ready to read
radc_out_rdy : out std_logic; -- right ADC output ready to read
adc_overrun : out std_logic; -- ADC overwritten before read
ldac_in_rdy : out std_logic; -- left DAC in ready to be written
rdac_in_rdy : out std_logic; --right DAC in ready to be written
dac_underrun : out std_logic; -- DAC did not receive data in time
bit_cntr : out std_logic_vector(5 downto 0);
-- codec chip I/0 signal

mclk : out std_logic; -- master clock output to codec
sclk : out std_logic; -- serial data clock to codec
lrck : out std_logic; -- left/right codec channel select
sdin : out std_logic; -- serial output to codec DAC
sdout in std_logic -- serial input from codec ADC
);

end codec_intfc;

architecture codec_intfc_arch of codec_intfc is

signal mclk_int std_logic;
signal lrck_int std_logic;
signal sclk_int std_logic;

signal bit_cntr_int

71

—- internal codec master clock
-- internal L/R codec channel select
-- internal codec data shift clock

std_logic_vector(5 downto 0);

signal subcycle_cntr : std_logic_vector(l downto 0);

signal lsdin : std_logic;
signal rsdin : std_logic;
signal ladc_overrun : std_logic;
signal radc_overrun : std_logic;

signal ldac_underrun : std_logic;
signal rdac_underrun : std_logic;

signal lchan_sel : std_logic;
signal rchan_sel : std_logic;
signal lchan_on : std_logic;
signal rchan_on : std_logic;
begin
u0 : clkgen
generic map
(
CHANNEL_DURATION => CHANNEL_DURATION
)
port map
(
clk => clk,
reset => reset,
mclk => mclk_int,
sclk => sclk_int,
lrck => lrck_int,
bit_cntr => bit_cntr_int,
subcycle_cntr => subcycle_cntr
)3
1lrck <= not (lrck_int); -- invert for inverter in XStend V1.3
mclk <= not(mclk_int);
sclk <= not(sclk_int);

bit_cntr <= bit_cntr_int;

lchan_sel <= YES when lrsel = left else NO;
lchan_on <= YES when lrck_int = left else NO;
u_left : channel

generic map

(
DAC_WIDTH => DAC_WIDTH,
ADC_WIDTH => ADC_WIDTH
)

port map

(
clk => clk,
reset => reset,

72

rchan_sel <=
rchan_on <=

u_right
GENERIC MAP

chan_on
bit_cntr
subcycle_cntr
chan_sel

rd

wr

adc_out
dac_in
adc_out_rdy
adc_overrun
dac_in_rdy
dac_underrun
sdin

sdout

);

channel

DAC_WIDTH
ADC_WIDTH
)

PORT MAP

clk
reset
chan_on
bit_cntr

subcycle_cntr =

chan_sel

rd

wr

adc_out
dac_in
adc_out_rdy
adc_overrun
dac_in_rdy
dac_underrun
sdin

sdout

)

lchan_on,
bit_cntr_int,
subcycle_cntr,
lchan_sel,

rd,

wr,

ladc_out,
ldac_in,
ladc_out_rdy,
ladc_overrun,
ldac_in_rdy,
ldac_underrun,
1sdin,

sdout

YES WHEN lrsel = RIGHT
YES WHEN lrck_int =

DAC_WIDTH,
ADC_WIDTH

clk,

reset,
rchan_on,
bit_cntr_int,

subcycle_cntr,

rchan_sel,

rd,

wr,

radc_out,
rdac_in,
radc_out_rdy,
radc_overrun,
rdac_in_rdy,
rdac_underrun,
rsdin,

sdout

73

ELSE NO;

RIGHT ELSE NO;

dac_underrun <= YES WHEN ldac_underrun = YES OR rdac_underrun = YES
ELSE NO;

adc_overrun <= YES WHEN ladc_overrun = YES OR radc_overrun = YES
ELSE NO;

-- generates the serial data output to the SDIN pin of the
-- codec DAC depending on which channel is being loaded

sdin <= NOT(1lsdin) WHEN lrck_int = LEFT ELSE NOT(rsdin);

END codec_intfc_arch;

74

-- Name: counter.vhd

-- Author: David Bull

-- Description:

-- Up counter with definable wrap around value

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is

generic (

width : integer := 4;

wrapval : integer := 2xx*4);
port (

clk : in std_logic;

en : in std_logic;

rst : in std_logic;

count : out std_logic_vector(width-1 downto 0));
end counter;
architecture countarch of counter is
constant wrapvalue : std_logic_vector(width-1 downto 0)
:= conv_std_logic_vector (wrapval,width) ;
signal cnt : std_logic_vector(width-1 downto 0);

begin -- countarch

clockcount: process (clk)

begin -- process clockcount
if clk’event and clk = ’1’ then
if rst = ’1’ then
cnt <= (others => ’07);
elsif en = ’1’ then

if cnt = wrapval then
cnt <= (others => ’07);
else
cnt <= cnt + 1;
end if;
end if;
end if;

75

end process clockcount;
count <= cnt;

end countarch;

76

-- Name: counterd.vhd

-- Author: David Bull

-- Description:

-- Down counter with definable wrap around value.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counterd is

generic (

width : integer := 4;

wrapval : integer := 9);
port (

clk : in std_logic;

en : in std_logic;

rst : in std_logic;

count : out std_logic_vector(width-1 downto 0));
end counterd;
architecture countdarch of counterd is
constant wrapvalue : std_logic_vector(width-1 downto 0)
:= conv_std_logic_vector (wrapval,width) ;
constant zero : std_logic_vector(width-1 downto 0)
:= conv_std_logic_vector(0,width);
signal cnt : std_logic_vector(width-1 downto 0);

begin -- countdarch

clockcount: process (clk)

begin -- process clockcount
if clk’event and clk = ’1’ then
if rst = ’1’ then
cnt <= (others => ’0’);
elsif en = ’1’ then

if cnt = zero then
cnt <= wrapvalue;
else
cnt <= cnt - 1;
end if;

7

end if;
end if;
end process clockcount;

count <= cnt;

end countdarch;

78

-- EE 552 - Project

-- Dustin Demontigny

-- February 11, 2003

—-- debouncer3.vhd

—-- Debounce mechanism for push buttons

-- uses D-flip flop with enable configuration

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity debouncer3 is
port(pb_input : in std_logic_vector (pb_number-1 downto 0);
clock : in std_logic;
db_output : out std_logic_vector (pb_number-1 downto 0));
end debouncer3;

architecture DFF of debouncer3 is

begin
process (clock)
variable count : integer := 0;
begin
if clock’event and clock = ’1’ then
count := count + 1; -- counts the number of clock cycles
if count = debounce_delay then-- when desired delay is reached
db_output <= pb_input; -- inputs are mapped to outputs
count := 0; -— and counting begins from zero
end if;
end if;
end process;
end DFF;

79

-- Name: distram.vhd

-- Author: David Bull

-- Description:

-- Single port distributed RAM

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rambank is

generic (

portwidth : integer := 20;
addwidth : integer := 5);
port (
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(addwidth-1 downto 0);

di : in std_logic_vector(portwidth-1 downto 0);
do : out std_logic_vector(portwidth-1 downto 0));

end rambank;
architecture ramarch of rambank is

type ram_type is array (2**addwidth-1 downto 0) of
std_logic_vector (portwidth-1 downto 0);

signal RAM : ram_type;
begin

process (clk)

begin

if (clk’event and clk = ’1’) then
if (we = ’1’) then
RAM(conv_integer(a)) <= di;
end if;
end if;
end process;
do <= RAM(conv_integer(a));
end ramarch;

80

-- Name: eq.vhd

—-— Author: David Bull

-- Date: March 2003

-- Description:

-- This is the entity containing the digital filter, codec
-- interface, RAM loaders and control circuitry

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.firpack.all;

use work.codec.all;

entity eq is

generic (
cwidth : integer := coeffwidth;
swidth : integer := samplewidth;
caddwidth : integer := coeffaddwidth;
saddwidth : integer := sampleaddwidth;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

sdout : in std_logic;

sdin : out std_logic;

mclk : out std_logic;
sclk : out std_logic;
lrck : out std_logic);

end eq;
architecture eqarch of eq is

signal ladc_out : std_logic_vector(swidth-1 downto 0);
signal radc_out : std_logic_vector(swidth-1 downto 0);
signal ladc_out_rdy : std_logic;
signal radc_out_rdy : std_logic;
signal ldac_in : std_logic_vector(swidth-1 downto 0);
signal rdac_in : std_logic_vector(swidth-1 downto 0);
signal ldac_in_rdy : std_logic;
signal rdac_in_rdy : std_logic;
signal wr : std_logic;
signal adc_overrun : std_logic;
signal dac_underrun : std_logic;

81

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal

signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

coefframin
sampleramin
coeffadden
sampleadden
coeffwe
samplewe
coeffrst
samplerst

sampleramin_int :

coeffadden_int

sampleadden_int :

coeffwe_int
samplewe_int
coeffrst_int
samplerst_int

sampleramin_ext :

coeffadden_ext

sampleadden_ext :

coeffwe_ext
samplewe_ext
coeffrst_ext
samplerst_ext

coeffintext
sampleintext :

clracc : std_lo
accen : std_lo

poscount
poscount_coeff

poscount_sample :

posen
posrst
posen_eq
posrst_eq
posen_coeff
posrst_coeff
posen_sample
posrst_sample
posen_ram
posrst_ram

std_logic_vector(cwidth-1 downto 0);
std_logic_vector(swidth-1 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(swidth-1 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(swidth-1 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;

gic;
gic;

std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

82

signal filtout
signal lrsample
signal lrsample_int
signal lrsample_coef

: std_logic_vector(35 downto 0);
: std_logic;
: std_logic;

f : std_logic;

signal lrsample_sample : std_logic;

signal lrsample_ram
signal lrsell

signal samplepos

: std_logic;
: std_logic;

std_logic_vector(6 downto 0);

signal samplepos_coeff : std_logic_vector(6 downto 0);
signal samplepos_sample : std_logic_vector(6 downto 0);

constant forderpl :

:= conv_std_logic_

constant forderp2 :

:= conv_std_logic_

constant forderp3 :

:= conv_std_logic_
: std_logic_vector(6 downto 0)
:= conv_std_logic_
: std_logic_vector(6 downto 0)

constant zero

constant one

std_logic_vector(6 downto 0)
vector (filtorder+1, 7);
std_logic_vector(6 downto 0)
vector (filtorder+2, 7);
std_logic_vector(6 downto 0)
vector (filtorder+3, 7);

vector (0, 7);

:= conv_std_logic_vector(l, 7);

signal cont_req_coeff : std_logic;
signal cont_rel_coeff : std_logic;
signal cont_ack_coeff : std_logic;
signal cont_req_sample : std_logic;
signal cont_rel_sample : std_logic;
signal cont_ack_sample : std_logic;
signal rambusy : std_logic;
signal coefframidle : std_logic;
signal sampleramidle : std_logic;
signal data_in_coeff cramarray;
signal data_in_rdy_coeff : std_logic;
signal data_in_ack_coeff : std_logic;
signal data_in_sample sramarray;
signal data_in_rdy_sample : std_logic;
signal data_in_ack_sample : std_logic;
signal prev_rst : std_logic;

signal pres_rst : std_logic;

83

begin

-- eqgarch

filter: firfilt
generic map (

cwidth
swidth
caddwidth
saddwidth
filtorder

=>
=>
>
>
>

port map (

codecintfc:

clk
coefframin
sampleramin
coeffadden
sampleadden
coeffwe
samplewe
coeffrst
samplerst
clracc
accen
lrsample
filtout

generic map (

DAC_WIDTH
ADC_WIDTH

cwidth,
swidth,
caddwidth,
saddwidth,

fi

ltorder)

clk,
coefframin,
sampleramin,
coeffadden,
sampleadden,
coeffwe,
samplewe,
coeffrst,
samplerst,
clracc,
accen,
lrsample,
filtout);

codec_intfc

=> swidth,
=> swidth,

CHANNEL_DURATION => 128)
port map (

clk

reset

lrsel

rd

wr

ladc_out
radc_out
ldac_in
rdac_in
ladc_out_rdy
radc_out_rdy
adc_overrun
ldac_in_rdy
rdac_in_rdy
dac_underrun

1l
\%

clk,

rst,
lrsample,
samplewe,
wr,
ladc_out,
radc_out,
ldac_in,
rdac_in,

ladc_out_rdy,
radc_out_rdy,
adc_overrun,
ldac_in_rdy,
rdac_in_rdy,
dac_underrun,

84

mclk => mclk,

sclk => sclk,
lrck => 1rck,
sdin => sdin,
sdout => sdout);

sampleposcounter: counter
generic map (
width => 8,
wrapval => 2%x8)

port map (
clk => clk,
en => posen,
rst => posrst,

count => poscount);

sampleposcounter2: counter
generic map (
width => 8,
wrapval => 2%x8)

port map (
clk => clk,
en => posen_coeff,
rst => posrst_coeff,

count => poscount_coeff);

sampleposcounter3: counter
generic map (

width => 8,
wrapval => 2%x8)
port map (
clk => clk,
en => posen_sample,
rst => posrst_sample,

count => poscount_sample) ;

rload: ramload
generic map (

swidth => cwidth,
filtorder => filtorder)
port map (
clk => clk,
rst => rst,
data_in => data_in_coeff,

data_in_rdy => data_in_rdy_coeff,

85

data_in_ack => data_in_ack_coeff,
data_out => coefframin,
we => coeffwe_ext,
adden => coeffadden_ext,
addrst => coeffrst_ext,
posen => posen_coeff,
posrst => posrst_coeff,
cont_req => cont_req_coeff,
cont_ack => cont_ack_coeff,
cont_rel => cont_rel_coeff,
samplepos => samplepos_coeff);
rloadl: ramloadl

generic map (
swidth => swidth,
filtorder => filtorder)

port map (
clk => clk,
rst => rst,
data_in => data_in_sample,

data_in_rdy =>
data_in_ack =

data_out =>
we =>
adden =>
addrst =>
posen =>
posrst =>
cont_req =>
cont_ack =>
cont_rel =>
lrsample =>
samplepos =>
samplepos <=

samplepos_coeff <=
samplepos_sample <=

coeffadden <= coef
coeffwe <= coef
coeffrst <= coef
coeffwe_int <= ’07;
sampleramin <= samp

data_in_rdy_sample,
data_in_ack_sample,
sampleramin_ext,
samplewe_ext,
sampleadden_ext,
samplerst_ext,
posen_sample,
posrst_sample,
cont_req_sample,
cont_ack_sample,
cont_rel_sample,
lrsample_sample,
samplepos_sample) ;

poscount (6 downto 0);
poscount_coeff (6 downto 0);
poscount_sample(6 downto 0);

fadden_int when coeffintext = ’0°
fwe_int when coeffintext = ’0°’
frst_int when coeffintext = ’0°’
leramin_int when sampleintext = ’0’

86

else
else
else

else

coeffadden_ext;
coeffwe_ext;
coeffrst_ext;

sampleramin_ext;

sampleadden <= sampleadden_int when sampleintext
samplewe <= samplewe_int when sampleintext
samplerst <= samplerst_int when sampleintext
lrsample <= lrsample_int when lrsell = ’1’
posen <= posen_eq;
posrst <= posrst_eq;

changecontrol: process (clk)

begin -- process changecontrol
if clk’event and clk = ’1’ then
if rst = ’1’ then

lrsell <= ’17;
rambusy <= ’07;
cont_ack_coeff <= ’07;
cont_ack_sample <= ’07;
coeffintext <= ’07;
sampleintext <= ’0’;
elsif cont_req_coeff = ’1’ and coefframidle
lrsell <= ’17;
rambusy <= ’17;
cont_ack_coeff <= ’17;
coeffintext <= ’17;
elsif cont_req_sample
1lrsell <= ’07;
rambusy <= ’1’;
cont_ack_sample <= ’1’;
sampleintext <= ’1’;
elsif cont_rel_coeff = ’1’ then
rambusy <= ’07;
coeffintext <= ’07;
elsif cont_rel_sample
lrsell <= ’17;
rambusy <= ’07;
sampleintext <=
else

’1’ and sampleramidl

’1’ then

307;

cont_ack_coeff <= ’07;
cont_ack_sample <= ’07;
end if;
end if;
end process changecontrol;

sampleramin_int <= ladc_out when lrsample = ’0’
filtout (29 downto 10);
filtout (29 downto 10);

ldac_in <=
rdac_in <=

87

’0’ else sampleadden_ext;
’0’ else samplewe_ext;
’0’ else samplerst_ext;

else lrsample_sample;

’1’ and rambusy = ’0’ then

e ’1’ and rambusy = ’0’ then

else radc_out;

countcontrol: process (rst,ladc_out_rdy,radc_out_rdy,samplepos)
begin -- process countcontrol
if rst = ’1’ then
lrsample_int <= ’0’;
samplewe_int <= ’07;
samplerst_int <= ’1’;
coeffrst_int <= ’17;
posen_eq <= ’07;
posrst_eq <= ’17;
coefframidle <= ’17;
sampleramidle <= ’1’;
elsif ladc_out_rdy = ’1’ then
lrsample_int <= ’0’;
samplewe_int <= ’17;
posrst_eq <= ’0’;
posen_eq <= ’17;
coefframidle <= ’07;
elsif radc_out_rdy = ’1’ then
lrsample_int <= ’17;
samplewe_int <= ’17;
posrst_eq <= ’07;
posen_eq <= ’17;
sampleramidle <= ’07;
elsif samplepos = forderp3 then
posrst_eq <= ’17;
posen_eq <= ’07;
coefframidle <= ’17;
sampleramidle <= ’17;
else
samplerst_int <= ’0’;
coeffrst_int <= ’07;
samplewe_int <= ’07;
posrst_eq <= ’07;
end if;
end process countcontrol;

genenable: process (rst,samplepos,lrsample_int)
begin -- process genenable
if rst = ’1’ then
coeffadden_int <= ’0’;
sampleadden_int <= ’0’;
wr <= ’07;
elsif samplepos = one then
coeffadden_int <= ’1’;

88

sampleadden_int <= ’17;
elsif samplepos = forderpl then
if lrsample_int = ’1’ then
sampleadden_int <= ’0’;
end if;
elsif samplepos = forderp2 then
coeffadden_int <= ’0’;
sampleadden_int <= ’0’;
if ldac_in_rdy = ’1’ then
wr <= ’17;
elsif rdac_in_rdy = ’1’ then
wr <= ’17;
end if;
else
wr <= ’07;
end if;
end process genenable;

accen <= coeffadden_int;
clracc <= not(accen);

loadram: process (clk)
begin -- process loadram
if clk’event and clk = ’1’ then
prev_rst <= pres_rst;
pres_rst <= rst;
if pres_rst = ’0’ and prev_rst = ’1’ then
data_in_rdy_coeff <= ’17;
data_in_rdy_sample <= ’1’;
else
data_in_rdy_coeff <= ’07;
data_in_rdy_sample <= ’0’;
end if;
end if;
end process loadram;

data_in_coeff(0) <= (10 => ’1’, others => ’0’);
data_in_coeff(1) <= (others => ’07’);
data_in_coeff(2) <= (others => ’07’);
data_in_coeff(3) <= (others => ’07?);
data_in_coeff(4) <= (others => ’0’);
data_in_coeff(5) <= (others => ’07);
data_in_coeff(6) <= (others => ’07?);
data_in_coeff(7) <= (others => ’07?);
data_in_coeff(8) <= (others => ’07’);

89

data_in_coeff(9) <= (others => ’07’);

data_in_sample(0) <= (others => ’0’);
data_in_sample(1) <= (others => ’0’);
data_in_sample(2) <= (others => ’0’);
data_in_sample(3) <= (others => ’0’);
data_in_sample(4) <= (others => ’0’);
data_in_sample(5) <= (others => ’0’);
data_in_sample(6) <= (others => ’0’);
data_in_sample(7) <= (others => ’0’);
data_in_sample(8) <= (others => ’0’);
data_in_sample(9) <= (others => ’0’);
data_in_sample(10) <= (others => ’07);
data_in_sample(11) <= (others => ’0’);
data_in_sample(12) <= (others => ’0’);
data_in_sample(13) <= (others => ’0’);
data_in_sample(14) <= (others => ’0’);
data_in_sample(15) <= (others => ’0’);
data_in_sample(16) <= (others => ’0’);
data_in_sample(17) <= (others => ’0’);
data_in_sample(18) <= (others => ’0’);
data_in_sample(19) <= (others => ’0’);

end eqarch;

90

-- Name: facc.vhd

-- Author: David Bull
-- Description:

-- Signed accumulator

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity facc is

generic (

inwidth : integer := 32;
outwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
din : in std_logic_vector(inwidth-1 downto 0);

dout : out std_logic_vector(outwidth-1 downto 0));
end facc;
architecture arch_facc of facc is
signal temp : std_logic_vector(outwidth-1 downto 0);
begin

clock: process (clk)

begin -- process clock
if clk’event and clk = ’1’ then
if rst = ’1’ then
temp <= (others => ’0’);
elsif en = ’1’ then
temp <= temp + din;
end if;
end if;

end process clock;
dout <= temp;

end arch_facc;

91

-- Name: firpack.vhd
-- Author: David Bull
-- Description:

library ieee;
use ieee.std_logic_1164.all;

package firpack is

Package containing components used in the filter

-- width of filter coefficients
-- width of audio samples

constant coeffwidth integer := 12;
constant samplewidth integer := 20;
constant coeffaddwidth integer := 4;
constant sampleaddwidth : integer := 5;
constant filterorder integer := 9;
constant adderwidth integer := 36;
constant wrapvalue integer := 9;
type cramarray is array (0 to filterorder)

of

type
of

std_logic_vector(coeffwidth-1 downto 0);
sramarray is array (0 to 2*filterorder+1)
std_logic_vector(samplewidth-1 downto 0);

component rambank

generic (

portwidth : integer := 12;
addwidth integer := 4);
port (
clk : in std_logic;
we in std_logic;
a : in std_logic_vector(addwidth-1 downto 0);
di in std_logic_vector(portwidth-1 downto 0);
do : out std_logic_vector(portwidth-1 downto 0));

end component;
component fadd

generic (

alwidth : integer := 36; -- adder width
a2width : integer := 32);
port (

92

addl :
add?2 :
sum

in std_logic_vector(alwidth-1 downto 0); -- summand
in std_logic_vector(a2width-1 downto 0); -- summand

: out std_logic_vector(alwidth-1 downto 0)); -- sum

end component;

component fmult

generic (

port (
multl :
mult?2 :
prod

end component;

component counter

generic (
width

mlwidth : integer := 20; -- multiplicand width
m2width : integer := 12); -- multiplicand width
in std_logic_vector(miwidth-1 downto 0); -- multiplicand
in std_logic_vector(m2width-1 downto 0); -- multiplicand
: out std_logic_vector(mlwidth+m2width-1 downto 0)); -- product
integer := 4;
integer := 2%x*4);

wrapval :

port (
clk
en
rst
count

in std_logic;
in std_logic;
in std_logic;

: out std_logic_vector(width-1 downto 0));

end component;

component counterd

generic (
width

wrapval :

port (
clk
en
rst
count :

integer := 4;
integer := 9);

in std_logic;
in std_logic;
in std_logic;
out std_logic_vector(width-1 downto 0));

93

end component;
component facc

generic (
inwidth : integer := 32;

outwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
din : in std_logic_vector(inwidth-1 downto 0);

dout : out std_logic_vector(outwidth-1 downto 0));
end component;
component fmultacc
generic (

sampwidth : integer := 20;
coeffwidth : integer := 12;

prodwidth : integer := 32;
sumwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
inl : in std_logic_vector(19 downto 0);

in2 : in std_logic_vector(11l downto 0);
outl : out std_logic_vector(35 downto 0));

end component;
component firfilt

generic (
cwidth : integer := coeffwidth;
swidth : integer := samplewidth;
caddwidth : integer := coeffaddwidth;
saddwidth : integer := sampleaddwidth;

filtorder : integer := filterorder);
port (
clk : in std_logic;

94

coefframin : in std_logic_vector(cwidth-1 downto 0);
sampleramin : in std_logic_vector(swidth-1 downto 0);
coeffadden : in std_logic;
sampleadden : in std_logic;

coeffwe : in std_logic;

samplewe : in std_logic;

coeffrst : in std_logic;

samplerst : in std_logic;

clracc : in std_logic;

accen : in std_logic;

lrsample : in std_logic;

filtout : out std_logic_vector(36-1 downto 0));

end component;
component ramload

generic (

swidth : integer := 20;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

data_in : in cramarray;

data_in_rdy : in std_logic;
data_in_ack : out std_logic;

data_out : out std_logic_vector(swidth-1 downto 0);
we : out std_logic;

adden : out std_logic;

addrst : out std_logic;

posen : out std_logic;

posrst : out std_logic;

cont_req : out std_logic;

cont_ack : in std_logic;

cont_rel : out std_logic;

samplepos : in std_logic_vector(6 downto 0));

end component;
component ramloadl
generic (

swidth : integer := 20;
filtorder : integer := filterorder);

95

port (

clk : in std_logic;
rst : in std_logic;
data_in : in sramarray;

data_in_rdy : in std_logic;
data_in_ack : out std_logic;

data_out : out std_logic_vector(swidth-1 downto 0);
we : out std_logic;

adden : out std_logic;

addrst : out std_logic;

posen : out std_logic;

posrst : out std_logic;

cont_req : out std_logic;

cont_ack : in std_logic;

cont_rel : out std_logic;

lrsample : out std_logic;

samplepos : in std_logic_vector(6 downto 0));

end component;

end firpack;

96

—- Name:

firfilt.vhd
-- Author: David Bull
-- Description:

-- This entity is the FIR filter. It instantiates the RAMs,
-- counters, and multiplier-accumulator.

library ieee;
use ieee.std_logic_1164.all;

use work.

firpack.all;

entity firfilt is

generic (

cwidth integer :
swidth integer :
caddwidth : integer :
saddwidth : integer :=
filtorder : integer :
port (
clk in
coefframin : in std_
sampleramin : in std_
coeffadden : in std_
sampleadden : in std_
coeffwe : in std_
samplewe : in std_
coeffrst : in std_
samplerst : in std_
clracc in
accen in
lrsample in
filtout : out

end firfilt;

coeffwidth;
samplewidth;
coeffaddwidth;
sampleaddwidth;
filterorder) ;

std_logic;

logic_vector(cwidth-1 downto 0);
logic_vector(swidth-1 downto 0);
logic;

logic;

logic;

logic;

logic;

logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(36-1 downto 0));

architecture farch of firfilt is

signal sampleadd_low

signal
signal
signal
signal

coeffadd
sampleadd
coefframout
sampleramout

begin -- farch

std_logic_vector (saddwidth-2 downto 0);
std_logic_vector (caddwidth-1 downto 0);
std_logic_vector (saddwidth-1 downto 0);
std_logic_vector(cwidth-1 downto 0);
std_logic_vector (swidth-1 downto 0);

97

coeffram: rambank
generic map (
portwidth => cwidth,
addwidth => caddwidth)

port map (
clk => clk,
we => coeffwe,
a => coeffadd,

di => coefframin,
do => coefframout);

sampleram: rambank
generic map (
portwidth => swidth,
addwidth => saddwidth)

port map (
clk => clk,
we => samplewe,
a => sampleadd,

di => sampleramin,
do => sampleramout);

coeffaddcounter: counter
generic map (

width => caddwidth,

wrapval => filtorder)

port map (
clk => clk,
en => coeffadden,
rst => coeffrst,

count => coeffadd);

sampleaddcounter: counterd
generic map (
width => saddwidth-1,
wrapval => filtorder)

port map (
clk => clk,
en => sampleadden,
rst => samplerst,

count => sampleadd_low);

sampleadd <= lrsample & sampleadd_low;

98

multacc: fmultacc
generic map (
sampwidth => swidth,
coeffwidth => cwidth,
prodwidth => cwidth+swidth,
sumwidth => 36)

port map (
clk => clk,
en => accen,

rst => clracc,

inl => sampleramout,
in2 => coefframout,
outl => filtout);

end farch;

99

-- Name: fmult.vhd
-- Author: David Bull
-- Description:

-- signed multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity fmult is

generic (

miwidth : integer := 20; -- multiplicand width
m2width : integer := 12); -- multiplicand width
port (
multl : in std_logic_vector(miwidth-1 downto 0); -- multiplicand
mult2 : in std_logic_vector (m2width-1 downto 0); -- multiplicand
prod : out std_logic_vector(mlwidth+m2width-1 downto 0)); -- product
end fmult;

architecture arch_fmult of fmult is
begin -- arch_fmult
prod <= multl * mult2;

end arch_fmult;

100

-- Name: fmultacc.vhd

-- Author: David Bull

-- Description:

-- multiplier accumulator for filter

library ieee;
use ieee.std_logic_1164.all;
use work.firpack.all;

entity fmultacc is

generic (
sampwidth : integer := 20;
coeffwidth : integer := 12;
prodwidth : integer := 32;

sumwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
inl : in std_logic_vector(19 downto 0);
in2 : in std_logic_vector(11l downto 0);

outl : out std_logic_vector(35 downto 0));
end fmultacc;
architecture arhc of fmultacc is
signal multout : std_logic_vector(31 downto 0);
begin -- arhc

mult: fmult
generic map (
mlwidth => sampwidth,
m2width => coeffwidth)
port map (
multl => inil,
mult2 => in2,
prod => multout);

acc: facc
generic map (
inwidth => prodwidth,
outwidth => sumwidth)

101

port map (
clk => clk,

en => en,
rst => rst,
din => multout,

dout => outl);

end arhc;

102

-- EE 552 - Project

-- Dustin Demontigny

—-- March 18, 2003

-- multiplier.vhd

-- used in converting coefficients using gain value

-- Reference design taken from XST User Manual

-- http://toolbox.xilinx.com/docsan/3_1i/data/fise/xst/xst.htm

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity multiplier is
port(A : in std_logic_vector(coef_length-1 downto 0);
B : in std_logic_vector(gain_length-1 downto 0);
RES : out std_logic_vector(coef_length-1 downto 0));
end multiplier;

architecture archi of multiplier is

signal hold : std_logic_vector(coef_length+gain_length-1 downto 0);
begin

hold <= A * B;

RES <= hold(coef_length+gain_length-1 downto gain_length);
end archi;

103

-- EE 552 Project

-- Dustin Demontigny

—-- March 10, 2003

-- preset_counter.vhd

-- toggles between preset values for user interface

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity preset_counter is
port(clock : in std_logic;
reset : in std_logic;
incr : in std_logic;
decr : in std_logic;
preset_value : out std_logic_vector(bits-1 downto 0));
end preset_counter;

architecture mixed of preset_counter is

signal hold : std_logic_vector(bits-1 downto 0);
begin

toggle_presets : process(clock)
—-- push button flags

variable incr_pressed : integer := 0;
variable decr_pressed : integer := 0;
begin
if clock’event and clock = ’1’ then
-- reset to preset 0
if reset = ’0’ then

hold <= "0000";
-- if either pushbutton is pressed, set the flag

elsif incr = ’0’ then
incr_pressed := 1;

elsif decr = ’0’ then
decr_pressed := 1;

-- if pushbuttons are not pressed check for flag
-- and increment or decrement preset value accordingly
elsif incr_pressed = 1 then
hold <= hold + "0001";
incr_pressed := 0;
elsif decr_pressed = 1 then
hold <= hold - "0001";

104

decr_pressed := 0;
end if;
-- send the hold value to the output every rising clock edge
preset_value <= hold;
end if;
end process;

end mixed;

105

-- EE 552 - Project

-- Dustin Demontigny

-- February 11, 2003

-- preset_decoder.vhd

-- converts preset value to gain/coefficient values

library ieee;
use ieee.std_logic_1164.all;

use work.smart_eq_pack.all;

entity preset_decoder is
port(preset_value: in std_logic_vector(bits-1 downto 0);
gain_register : out std_logic_vector(gain_reg-1 downto 0));
end preset_decoder;

architecture struct of preset_decoder is
begin
with preset_value select
gain_register <=

unity when "0000", -- base value
daves when "0001", -- dave’s preset
dustins when "0010", -- dustin’s preset
unity when others;

end struct;

106

—- Name: ramload.vhd
—- Author: David Bull
-- Description:

- RAM loader

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.firpack.all;

entity ramload is

generic (
swidth : integer := 20;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

data_in : in cramarray;

data_in_rdy : in std_logic;
data_in_ack : out std_logic;

data_out : out std_logic_vector(swidth-1 downto 0);
we : out std_logic;

adden : out std_logic;

addrst : out std_logic;

posen : out std_logic;

posrst : out std_logic;

cont_req : out std_logic;

cont_ack : in std_logic;

cont_rel : out std_logic;

samplepos : in std_logic_vector(6 downto 0));

end ramload;
architecture loadarch of ramload is
signal data_rdy_int : std_logic;
signal data_in_rdy_old : std_logic;
signal data_in_rdy_new : std_logic;
constant forder : std_logic_vector(6 downto 0)

:= conv_std_logic_vector(filtorder, 7);
constant forderpl : std_logic_vector(6 downto 0)

107

:= conv_std_logic_vector(filtorder+1, 7);
begin -- loadarch

genreq: process (clk)
begin -- process genreq
if clk’event and clk = ’1’ then
if rst = ’1’ then
cont_req <= ’0’;
data_in_rdy_old <= ’0’;
data_in_rdy_new <= ’0’;
else
data_in_rdy_old <= data_in_rdy_new;
data_in_rdy_new <= data_in_rdy;
if data_in_rdy_new = ’1’ and data_in_rdy_old = ’0’ then
cont_req <= ’17;
elsif cont_ack = ’1’ then
cont_req <= ’07;
end if;
end if;
end if;
end process genreq;

timer: process (rst,cont_ack,samplepos)
begin -- process timer
if rst = ’1’ then

we <= ’07;

addrst <= ’1’;

adden <= ’0’;

posrst <= ’17;

posen <= ’07;

data_in_ack <= ’0’;

cont_rel <= ’0’;

elsif cont_ack = ’1’ then
we <= ’17;
addrst <= ’07;
adden <= ’1’;

posrst <= ’07;
posen <= ’17;
elsif samplepos = forder then
addrst <= ’17;
adden <= ’0’;
data_in_ack <= ’1’;
cont_rel <= ’17;
elsif samplepos = forderpl then

108

we <= ’07;
posrst <= ’1°;
posen <= ’0’;
addrst <= ’07;
data_in_ack <= ’0’;
cont_rel <= ’0’;

else
data_in_ack <= ’0’;
cont_rel <= ’0’;
addrst <= ’0’;
posrst <= ’0’;

end if;

end process timer;

output: process (samplepos)
begin -- process output
if samplepos < forderpl then
data_out <= data_in(conv_integer (samplepos));
end if;
end process output;

end loadarch;

109

—- Name:

RAM

ramloadl.vhd
—- Author: David Bull
-- Description:

loader

library ieee;
.std_logic_1164.all;
.std_logic_arith.all;
.std_logic_unsigned.all;

use
use
use
use

ieee
ieee
ieee
work

.firpack.all;

entity ramloadl is

generic (

swidth integer := 20;
filtorder : integer := filterorder);
port (
clk in std_logic;
rst in std_logic;
data_in : in sramarray;
data_in_rdy : in std_logic;
data_in_ack : out std_logic;
data_out : out std_logic_vector(swidth-1 downto 0);
we : out std_logic;
adden : out std_logic;
addrst : out std_logic;
posen : out std_logic;
posrst : out std_logic;
cont_req : out std_logic;
cont_ack : in std_logic;
cont_rel : out std_logic;
lrsample : out std_logic;
samplepos : in std_logic_vector(6 downto 0));

end ramloadl;

architecture loadarch

signal data_rdy_int

of ramloadl is

std_logic;

signal data_in_rdy_old : std_logic;
signal data_in_rdy_new : std_logic;

constant forder

std_logic_vector (6 downto 0)

:= conv_std_logic_vector(filtorder, 7);

110

constant forderpl : std_logic_vector(6 downto 0)
:= conv_std_logic_vector(filtorder+1, 7);

constant fordert2 : std_logic_vector(6 downto 0)
:= conv_std_logic_vector(2xfiltorder, 7);

constant fordert2pl : std_logic_vector(6 downto 0)
:= conv_std_logic_vector(2xfiltorder+1, 7);

constant fordert2p2 : std_logic_vector(6 downto 0)
:= conv_std_logic_vector(2xfiltorder+2, 7);

begin -- loadarch

genreq: process (clk)
begin -- process genreq
if clk’event and clk = ’1’ then
if rst = ’1’ then
cont_req <= ’0’;
data_in_rdy_old <= ’0’;
data_in_rdy_new <= ’0’;
else
data_in_rdy_old <= data_in_rdy_new;
data_in_rdy_new <= data_in_rdy;
if data_in_rdy_new = ’1’ and data_in_rdy_old = ’0’ then
cont_req <= ’17;
elsif cont_ack = ’1’ then
cont_req <= ’0’;
end if;
end if;
end if;
end process genreq;

timer: process (rst,cont_ack,samplepos)
begin -- process timer
if rst = ’1’ then
lrsample <= ’0’;
we <= ’07;
addrst <= ’1’;
adden <= ’0’;
posrst <= ’17;
posen <= ’07;
data_in_ack <= ’0’;
cont_rel <= ’0’;
elsif cont_ack = ’1’ then
lrsample <= ’0’;
we <= ’17;
addrst <= ’07;

111

adden <= ’1°;
posrst <= ’07;
posen <= ’1°;

elsif samplepos = forderpl then
lrsample <= ’1’;

elsif samplepos = fordert2pl then
addrst <= ’17;
adden <= ’0’;
data_in_ack <= ’1’;
cont_rel <= ’1’;

elsif samplepos = fordert2p2 then
we <= ’07;
posrst <= ’17;
posen <= ’07;
addrst <= ’0’;
data_in_ack <= ’0’;
cont_rel <= ’0’;

else
data_in_ack <= ’0’;
cont_rel <= ’0’;
addrst <= ’07;
posrst <= ’07;

end if;

end process timer;

output: process (samplepos)
begin -- process output
if samplepos < fordert2p2 then
data_out <= data_in(conv_integer (samplepos));
end if;
end process output;

end loadarch;

112

-- EE 552 Project

-- Dustin Demontigny

-- March 21, 2003

-- reg_control.vhd

-- control the data flow to and from registers

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity reg_control is
port(clock, reset : in std_logic;

new_gain, send_coefs : in std_logic;
new_coefs, send_gain : out std_logic;
load_gain, shift_gain : out std_logic;
clock_accum, clr_accum : out std_logic;
load_coef, shift_coefs : out std_logic);

end reg_control;

architecture mixed of reg_control is
type state_type is (load, accum, shift, next_coef, pause);
signal state: state_type ;

begin
contol : process (clock,reset)

variable bandcount : integer := 0;
variable tapcount: integer := 0;
begin

if (reset =’0’) then
state <= load;
elsif (clock = ’1’ and clock’event) then
case state is
when load =>
new_coefs <= ’17;
load_gain <= ’1’;
clr_accum <= ’07;
state <= accum;
when accum =>
new_coefs <= ’07;
shift_coefs <= ’07;
clock_accum <= ’1’;
shift_gain <= ’0’;
load_gain <= ’0’;

113

clr_accum <= ’0’;
state <= shift;
when shift =>
clock_accum <= ’0Q’;
shift_gain <= ’17;

bandcount := bandcount + 1;
if bandcount = bands then
bandcount := 0;

load_coef <= ’17;
state <= next_coef;
else
state <= accum;
end if;
when next_coef =>
tapcount := tapcount + 1;
load_coef <= ’07;
shift_coefs <= ’1’;
state <= pause;
when pause =>
clr_accum <= ’17;
shift_coefs <= ’0’;
if tapcount = taps then

tapcount := 0; --coefs are ready here
state <= load;
else

state <= accum;
end if;
when others =>
state <= load;
end case;
end if;
end process;
end mixed;

114

-- EE 552 Project

-- Dustin Demontigny

—-- Dave Bull

-- February 28, 2003

-- smart_eq.vhd

-- Top Level of FPGA for Smart Equalizer project

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity smart_eq is

port (clock,reset: in std_logic; -- clock input to FPGA
pb_1, pb_2 : in std_logic; -- 2 pushbuttons from XSA and XStend boards
sdout : in std_logic; -- serial data from codec
preset_number : out std_logic_vector(led_segments-1 downto 0);
sdin : out std_logic);-- serial data sent to codec

end smart_eq;

architecture struct of smart_eq is
signal gain_register : std_logic_vector(gain_reg-1 downto 0);
signal send_gain, new_gain : std_logic;
signal mclk, sclk, lrck : std_logic;-- output clocks to codec
signal send_coefs, new_coefs : std_logic;
signal coef_register : cramarray;
signal notreset : std_logic;

begin

notreset <= not reset;

user_int : user_io

port map(clock => clock,
reset => reset,
incr => pb_1,
decr => pb_2,
send_gain => send_gain,
new_gain => new_gain,
preset_number => preset_number,
gain_register => gain_register);

calculate_coefs : arith_unit
port map(clock => clock,

115

reset => reset,

gain_register => gain_register,
new_gain => new_gain,

send_coefs => send_coefs,
send_gain => send_gain,
new_coefs => new_coefs,
coef_register => coef_register);

filter_block : eq

port map(clk => clock,
rst => notreset,
mclk =>mclk,
lrck =>1rck,
sclk =>sclk,
sdout =>sdout,
sdin =>sdin,
data_in_rdy_coeff => new_coefs,
data_in_ack_coeff => send_coefs,
data_in_coeff => coef_register);

end struct;

116

-- EE 552 Project

-- Dustin Demontigny

—-- Dave Bull

—-- March 10, 2003

-- smart_eq_pack.vhd

-- Package file for entire Smart EQ system

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

package smart_eq_pack is

-- declare dustin’s multipurpose constants
constant taps : integer := 4;
constant bands : integer := 10;
constant bits : integer := 4;
constant pb_number : integer := 2;
constant debounce_delay : integer := 7;
constant coef_length : integer := 12;
constant gain_reg : integer := 40;
constant gain_length : integer := 4;

-- declare dave’s multipurpose constants

constant coeffwidth : integer := coef_length; -- width of coefficients
constant samplewidth : integer := 20; -- width of audio samples
constant coeffaddwidth : integer := 4;

constant sampleaddwidth : integer := 5;

constant filterorder : integer := taps;

constant adderwidth : integer := 36;

constant wrapvalue : integer := taps;

type cramarray is array (0 to filterorder) of
std_logic_vector(coeffwidth-1 downto 0);

type sramarray is array (0 to 2xfilterorder+1) of
std_logic_vector(samplewidth-1 downto 0);

-- declare digit constants for 7 segment display using following pattern
-- ---s6

-- |sb |s4

-- —---s3

-- |s2 |s1

-- ---s0

-- which is the configuration for the XSA v1.1, v1.2 and Xstend v1.3.2
-— * see page 28 in XSA v1.1, 1.2 User Manual

117

constant led_segments : integer := 7;

constant digit_1 : std_logic_vector(led_segments—i downto 0) := "1101101";
constant digit_2 : std_logic_vector(led_segments-1 downto 0) := "0010100";
constant digit_3 : std_logic_vector(led_segments-1 downto 0) := "0100100";
constant digit_4 : std_logic_vector(led_segments—l downto 0) := "1000101";
constant digit_5 : std_logic_vector(led_segments—l downto 0) := "0010010";
constant digit_6 : std_logic_vector(led_segments—l downto 0) := "0010000";
constant digit_7 : std_logic_vector(led_segments-1 downto 0) := "0101101";
constant digit_8 : std_logic_vector(led_segments-1 downto 0) := "0000000";
constant digit_9 : std_logic_vector(led_segments-1 downto 0) := "0000101";
constant digit_0 : std_logic_vector(led_segments-1 downto 0) := "0001000";
constant digit_A : std_logic_vector(led_segments-1 downto 0) := "0000001";
constant digit_b : std_logic_vector(led_segments-1 downto 0) := "1010000";
constant digit_C : std_logic_vector(led_segments-1 downto 0) := "0010010";
constant digit_d : std_logic_vector(led_segments-1 downto 0) := "1100000";
constant digit_E : std_logic_ vector (led_ segments-1 downto 0) := "0010010";
constant digit_F : std_logic_vector(led_segments-1 downto 0) := "0000011";
constant digit_error : std_logic_vector(led_segments-1 downto 0) := "0000010";

-- define preset gain values

constant unity : std_logic_vector(gain_reg-1 downto 0)
:= "1000100010001000100010001000100010001000" ;
constant daves : std_logic_vector(gain_reg-1 downto 0)

:= "1011100101110101001100110101011110011011";
constant dustins : std_logic_vector(gain_reg-1 downto 0)
:= "0011010101111001101110111001011101010011";
-- others added as needed

-- define tap array
subtype tap_type is std_logic_vector(coef_length-1 downto 0);
type tap_array_type is array (0 to taps*bands-1) of tap_type;
constant tap_array : tap_array_type := tap_array_type’ (
tap_type’ ("000000010000"),
tap_type’ ("000000100000"),
tap_type’ ("000000110000"),
tap_type’ ("000001000000"),
tap_type’ ("000000010000"),
tap_type’ ("000000100000"),
tap_type’ ("000000110000"),
tap_type’ ("000001000000"),
tap_type’ ("000000010000"),
tap_type’ ("000000100000"),
tap_type’ ("000000110000"),
tap_type’ ("000001000000"),
tap_type’ ("000000010000"),

118

tap_type’ ("000000100000") ,
tap_type’ ("000000110000") ,
tap_type’ ("000001000000") ,
tap_type’ ("000000010000") ,
tap_type’ ("000000100000") ,
tap_type’ ("000000110000")
tap_type’ ("000001000000")
tap_type’ ("000000010000") ,
tap_type’ ("000000100000") ,
tap_type’ ("000000110000") ,
tap_type’ ("000001000000")
tap_type’ ("000000010000")
tap_type’ ("000000100000") ,
tap_type’ ("000000110000") ,
tap_type’ ("000001000000") ,
tap_type’ ("000000010000")
tap_type’ ("000000100000") ,
tap_type’ ("000000110000")
tap_type’ ("000001000000")
tap_type’ ("000000010000") ,
tap_type’ ("000000100000")
tap_type’ ("000000110000") ,
tap_type’ ("000001000000") ,
tap_type’ ("000000010000")
tap_type’ ("000000100000")
tap_type’ ("000000110000") ,
tap_type’ ("000001000000")) ;

—- define test bench constants

constant reset_delay : time := 200 ns;
constant clock_period: time := 80 ns;

constant bounce_delay : time := 18 mns;
constant press_delay : time := 1000 ns;
constant bounce_number : integer := 20;

-- declare user_io components
component debouncer3
port(pb_input : in std_logic_vector (pb_number-1 downto 0);
clock : in std_logic;
db_output: out std_logic_vector(pb_number-1 downto 0));
end component;

component preset_counter

119

port(clock : in std_logic;
reset : in std_logic;
incr : in std_logic;
decr : in std_logic;
preset_value : out std_logic_vector(bits-1 downto 0));
end component;

component preset_decoder
port(preset_value: in std_logic_vector(bits-1 downto 0);
gain_register : out std_logic_vector(gain_reg-1 downto 0));
end component;

component BCD_decoder
port(binary_input : in std_logic_vector(bits-1 downto 0);
segment_output : out std_logic_vector(led_segments-1 downto 0));
end component;
-- end user_io components

-- begin arith_unit components
component temp_reg
generic(input_size : integer := 40;
output_size : integer := 4);
port(clock, aload : in std_logic;
PI : in std_logic_vector(input_size-1 downto 0);
PO : out std_logic_vector(output_size-1 downto 0));
end component;

component temp_reg?2
port(clock, clr, aload : in std_logic;
PI : in std_logic_vector(coef_length-1 downto 0);
PO : out cramarray) ;
end component;

component multiplier
port(A : in std_logic_vector(coef_length-1 downto 0);
B : in std_logic_vector(gain_length-1 downto 0);
RES : out std_logic_vector(coef_length-1 downto 0));
end component;

component accumulator
generic(input_size : integer := 12;
output_size : integer := 12);
port(clock, clr, reset : in std_logic;
data : in std_logic_vector(input_size-1 downto 0);
sum : out std_logic_vector(output_size-1 downto 0));

120

end component;

component reg_control
port(clock, reset : in std_logic;

new_gain, send_coefs : in std_logic;
new_coefs, send_gain : out std_logic;
load_gain, shift_gain : out std_logic;
clock_accum, clr_accum : out std_logic;
load_coef, shift_coefs : out std_logic);

end component;

-- end arith_unit components

-- declare filter block components
component rambank
generic (

portwidth : integer := 12;
addwidth : integer := 4);
port (
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(addwidth-1 downto 0);
di : in std_logic_vector(portwidth-1 downto 0);

do : out std_logic_vector(portwidth-1 downto 0));
end component;

component fadd
generic (

alwidth : integer := 36; -- adder width
a2width : integer := 32);
port (
addl : in std_logic_vector(alwidth-1 downto 0); -- summand
add2 : in std_logic_vector(a2width-1 downto 0); -- summand
sum : out std_logic_vector(alwidth-1 downto 0)); -- sum
end component;
component fmult
generic (
mlwidth : integer := 20; -- multiplicand width
m2width : integer := 12); -- multiplicand width
port (
multl : in std_logic_vector(mlwidth-1 downto 0); -- multiplicand
mult2 : in std_logic_vector(m2width-1 downto 0); -- multiplicand
prod : out std_logic_vector(miwidth+m2width-1 downto 0)); -- product

end component;

121

component counter
generic (

width : integer := 4;

wrapval : integer := 2x%%4);
port (

clk : in std_logic;

en : in std_logic;

rst : in std_logic;

count : out std_logic_vector(width-1 downto 0));
end component;

component counterd
generic (

width : integer := 4;

wrapval : integer := 9);
port (

clk : in std_logic;

en : in std_logic;

rst : in std_logic;

count : out std_logic_vector(width-1 downto 0));
end component;

component facc
generic (

inwidth : integer := 32;
outwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
din : in std_logic_vector(inwidth-1 downto 0);

dout : out std_logic_vector(outwidth-1 downto 0));
end component;

component fmultacc
generic (
sampwidth : integer := 20;
coeffwidth : integer := 12;
prodwidth : integer := 32;

sumwidth : integer := 36);
port (
clk : in std_logic;
en : in std_logic;
rst : in std_logic;
inl : in std_logic_vector(19 downto 0);

122

in2 : in std_logic_vector(11l downto 0);
outl : out std_logic_vector(35 downto 0));
end component;

component firfilt
generic (
cwidth : integer := coeffwidth;
swidth : integer := samplewidth;
caddwidth : integer := coeffaddwidth;
saddwidth : integer := sampleaddwidth;

filtorder : integer := filterorder);
port (
clk : in std_logic;
coefframin : in std_logic_vector(cwidth-1 downto 0);
sampleramin : in std_logic_vector(swidth-1 downto 0);
coeffadden : in std_logic;
sampleadden : in std_logic;
coeffwe : in std_logic;
samplewe : in std_logic;
coeffrst : in std_logic;
samplerst : in std_logic;
clracc : in std_logic;
accen : in std_logic;
lrsample : in std_logic;
filtout : out std_logic_vector(36-1 downto 0));

end component;

component ramload
generic (

swidth : integer := 20;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

data_in : in cramarray;

data_in_rdy : in std_logic;
data_in_ack : out std_logic;

data_out : out std_logic_vector(swidth-1 downto 0);
we : out std_logic;
adden : out std_logic;
addrst : out std_logic;
posen : out std_logic;
posrst : out std_logic;
cont_req : out std_logic;
cont_ack : in std_logic;

123

cont_rel

- lrsample
samplepos
end component;

component ramloadil
generic (

out
out
in

std_logic;
std_logic;
std_logic_vector(6 downto 0));

swidth : integer := 20;
filtorder : integer := filterorder);
port (
clk in std_logic;
rst in std_logic;
data_in in sramarray;
data_in_rdy : in std_logic;
data_in_ack : out std_logic;
data_out out std_logic_vector(swidth-1 downto 0);
we out std_logic;
adden out std_logic;
addrst out std_logic;
posen out std_logic;
posrst out std_logic;
cont_req out std_logic;
cont_ack in std_logic;
cont_rel out std_logic;
lrsample out std_logic;
samplepos in std_logic_vector(6 downto 0));

end component;

-- end filter block components

-- begin smart_eq components

component user_io

port(clock, reset

incr, decr
send_gain :
new_gain :

preset_number :
gain_register :

end component;

in std_logic;
in std_logic;

in std_logic;

out

component arith_unit
port(clock, reset

gain_register :

std_logic;
out std_logic_vector(led_segments-1 downto 0);
out std_logic_vector(gain_reg-1 downto 0));

in std_logic;
in std_logic_vector(gain_reg-1 downto 0);

new_gain, send_coefs : in std_logic;
send_gain, new_coefs : out std_logic;

coef_register :

out cramarray);

124

end component;

component eq
generic (
cwidth : integer := coeffwidth;
swidth : integer := samplewidth;
caddwidth : integer := coeffaddwidth;
saddwidth : integer := sampleaddwidth;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

sdout : in std_logic;

sdin : out std_logic;

mclk : out std_logic;

sclk : out std_logic;

lrck : out std_logic;
data_in_rdy_coeff : in std_logic;
data_in_ack_coeff : out std_logic;
data_in_coeff : in cramarray);

end component;
-- end smart_eq components

-— declare top level of smart_eq
component smart_eq

port (clock,reset : in std_logic; -- clock input to FPGA
pb_1, pb_2 : in std_logic; -- 2 pushbuttons from XSA and XStend boards
sdout : in std_logic;
preset_number : out std_logic_vector(led_segments-1 downto 0);
sdin : out std_logic);-- serial data sent to codec

end component;
-- end top level of smart_eq

end smart_eq_pack;

125

-- EE 552 - Project

-- Dustin Demontigny

—-- March 18, 2003

-- temp_reg.vhd

-- temporarily stores the gain value of each band
-- referenced from XST User Manual

library ieee;
use ieee.std_logic_1164.all;
use work.smart_eq_pack.all;

entity temp_reg is
generic(input_size : integer := 40;
output_size : integer := 4);
port(clock, aload : in std_logic;
PI : in std_logic_vector(input_size-1 downto 0);
PO : out std_logic_vector(output_size-1 downto 0));
end temp_reg;

architecture archi of temp_reg is
signal temp: std_logic_vector(input_size-1 downto 0);

begin
process (clock, aload)
begin
if (aload = ’1’) then
temp <= PI;

elsif (clock’event and clock=’1’) then
temp <= temp(output_size-1 downto 0) &
temp (input_size-1 downto output_size);
end if;
end process;
PO <= temp(output_size-1 downto 0);
end archi;

126

-- EE 552 - Project

-- Dustin Demontigny

—-- March 18, 2003

-- temp_reg2.vhd

-- stores the calculated coefficient values in a cramarray

library ieee;
use ieee.std_logic_1164.all;
use work.smart_eq_pack.all;

entity temp_reg?2 is
port(clock, clr, aload : in std_logic;
PI : in std_logic_vector(coef_length-1 downto 0);
PO : out cramarray);
end temp_reg?2;

architecture archi of temp_reg?2 is
signal temp: cramarray;

begin
process (clock, aload, clr)
variable coef_count : integer := 0;
begin
if clr = ’0’ then

coef_count := 0;
elsif (aload = ’1’) then
if coef_count < taps+1l then
temp(coef_count) <= PI;
end if;
elsif clock’event and clock = ’1’ then
coef_count := coef_count + 1;
end if;
end process;
PO <= temp;
end archi;

127

-- EE 552 Project

-- Dustin Demontigny

—-- March 10, 2003

-- user_io.vhd

-- user interface using preset values

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity user_io is
port(clock, reset : in std_logic;
incr, decr : in std_logic;
send_gain : in std_logic;
new_gain : out std_logic;
preset_number : out std_logic_vector(led_segments-1 downto 0);
gain_register : out std_logic_vector(gain_reg-1 downto 0));
end user_io;

architecture mixed of user_io is

signal db_incr, db_decr : std_logic;

signal preset_value : std_logic_vector(bits-1 downto 0);
begin

debounce_pbs : debouncer3
port map(pb_input(0) => incr,
pb_input(1) => decr,
clock => clock,
db_output (0) => db_incr,
db_output (1) => db_decr);

select_preset : preset_counter
port map(clock => clock,
reset => reset,
incr => db_incr,
decr => db_decr,
preset_value => preset_value);

decode_gains : preset_decoder

port map(preset_value => preset_value,
gain_register => gain_register);

128

decode_preset : bcd_decoder
port map(binary_input => preset_value,
segment_output => preset_number) ;

gain_change : process(clock)

variable new_gain_flag : integer := 0;
begin
if clock’event and clock = ’1’ then
if db_incr = ’0’ or db_decr = ’0’ then
new_gain_flag := 1;
new_gain <= ’07;
elsif new_gain_flag = 1 and send_gain = ’1’ then

new_gain_flag := 0;
new_gain <= ’17;
end if;
end if;
end process;

end mixed;

129

16 Test Benches

Index
filt_testbench.vhd

test_accum.vhd
test_arith_unit.vhd
test_db.vhd
test_io.vhd

test_mult.vhd
test_preset_counter.vhd

test_reg_control.vhd
test_smart_eq.vhd
test_temp_reg.vhd

test_temp_reg2.vhd

(simulated)

(simulated)
(simulated)
(simulated)

(simulated)

(simulated)
(simulated)

(simulated)
(simulated)
(simulated)

(simulated)

130

generates master clock and global
reset and simulates the codec chip to
test the bandpass filter (firfilt.vhd)
tests function of accumulator
simulates the arithmetic unit

used to test the debouncer3d.vhd
component

tests and simulates the user inter-
face

simulates the multiplier ALU

tests the functionality of the preset
counter

simulates the arithmetic unit con-
troller

tests the operation of the whole
smart equalizer system

simulates the operation of temp reg-
ister

simulates the operation of temp reg-
ister2

131

137
138
139
141

144
146

148

150

152

153

-- Testbench for bandpass filter (eq.vhd)

-- Emulates the stereo audio codec

-- Supplies master clock (12.5 MHz) and global reset
-- Author: David Bull

-— Date: March 11, 2003

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.firpack.all;

entity filt_testbench is
end filt_testbench;

architecture testarch of filt_testbench is
component eq

generic (
cwidth : integer := coeffwidth;
swidth : integer := samplewidth;
caddwidth : integer := coeffaddwidth;
saddwidth : integer := sampleaddwidth;

filtorder : integer := filterorder);
port (

clk : in std_logic;

rst : in std_logic;

sdout : in std_logic;
sdin : out std_logic;
mclk : out std_logic;
sclk : out std_logic;
lrck : out std_logic);

end component;

constant dwidth : integer := 20; -- sample width into filter
constant bwidth : integer := 12; -- coefficient width
constant xwidth : integer := 20; -- codec sample width
constant clk_period : time := 80 ns; -- master clock
constant clk_half_period : time := 40 ns;

constant tsclk : time := 100 ns; -- propogation delay
constant filton : std_logic := ’0’;

131

constant filtoff : std_logic := ’1’;

-- these constants are the samples that will be fed into the filter starting
-- with sample_inl

constant sample_inl : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(816, 20);

constant sample_in2 : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(760, 20);

constant sample_in3 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-352256, 20);

constant sample_in4 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector (409600, 20);

constant sample_in5 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-98304, 20);

constant sample_in6 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(90112, 20);

constant sample_in7 : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(57344, 20);

constant sample_in8 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(487424, 20);

constant sample_in9 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(335872, 20);

constant sample_inl0 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(0, 20);

constant sample_inll : std_logic_vector(xwidth-1 downto 0)
1= conv_std_logic_vector(172032, 20);

constant sample_inl2 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(241664, 20);

constant sample_inl3 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(24576, 20);

constant sample_inl4 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-311296, 20);

constant sample_inilb : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(454656, 20);

constant sample_inl6 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-270336, 20);

constant sample_inl7 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(=-4096, 20);

constant sample_inl8 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(126976, 20);

constant sample_inl9 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-479232, 20);

constant sample_in20 : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(159744, 20);

constant sample_in21 : std_logic_vector(xwidth-1 downto 0)

132

:= conv_std_logic_vector(-90112, 20);

constant sample_in22 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(-212992, 20);

constant sample_in23 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(516096, 20);

constant sample_in24 : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(405504, 20);

constant sample_in25 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(430080, 20);

constant sample_in26 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(495616, 20);

constant sample_in27 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(290816, 20);

constant sample_in28 : std_logic_vector(xwidth-1 downto 0)
:= conv_std_logic_vector(376832, 20);

constant sample_in29 : std_logic_vector(xwidth—l downto 0)
:= conv_std_logic_vector(-114688, 20);

constant sample_in30 : std_logic_vector(xwidth—l downto 0)
1= conv_std_logic_vector(114688, 20);

signal clk_tb : std_logic :
signal rst_tb : std_logic :
signal mclk_tb : std_logic;
signal lrck_tb : std_logic;
signal sclk_tb : std_logic;
signal sdout_tb : std_logic;
signal sdin_tb : std_logic;
-- signal onoff_tb : std_logic;

’07; -- internal signals
Jl).
’

-- input and output samples will be serially shifted to/from codec
-- via the two following vectors
signal data_in_vector : std_logic_vector(xwidth—l downto 0);
signal data_out_vector : std_logic_vector(xwidth—l downto 0);

-- array of input samples

type samplearray is array (0 to 29) of std_logic_vector(xwidth-1 downto 0);

signal in_array : samplearray := (0 => sample_ini,
sample_in2,
=> sample_in3,
=> sample_in4,
=> sample_inb,
sample_in6,
=> sample_in7,
=> sample_in8,
=> sample_in9,

[
I
v

O ~NO O WN
I
\4

133

9 => sample_inlO0,
10 => sample_inll,
11 => sample_inl2,
12 => sample_inl13,
13 => sample_ini4,
14 => sample_inlb,
15 => sample_inli6,
16 => sample_inl7,
17 => sample_inl8,
18 => sample_inl9,
19 => sample_in20,
20 => sample_in21,
21 => sample_in22,
22 => sample_in23,
23 => sample_in24,
24 => sample_in25,
25 => sample_in26,
26 => sample_in27,
27 => sample_in28,
28 => sample_in29,
29 => sample_in30);

-- output samples will be read into an array
signal out_array : samplearray;

begin -- testarch

-- instantiate the filter
filter : eq
port map (
clk => clk_tb,
rst => rst_tb,
sdout => sdout_tb,
sdin => sdin_tb,
mclk => mclk_tb,
lrck => lrck_tb,
sclk => sclk_tb);

rst_tb <= ’0’ after clk_period; -- reset deasserted after 80mns
clk_tb <= not(clk_tb) after clk_half_period; -- master clock = 12.5 MHz

-- the following process clocks data serially into the filter.

-- samples from in_array are loaded one-by-one into sample_vector
-- then serially shifted into the filter through sdout_tb

-- new samples are loaded from in_array to sample_vector on the

134

-- rising edge of lrck_tb
-- data is shifted out through sdout_tb on the rising edge of sclk_tb.
inputaudio: process

variable sample_vector : std_logic_vector(xwidth—l downto 0);

variable bit_count : integer := 19;
variable sample_count : integer := 0;
begin -- process inputdata
wait until sclk_tb’event and sclk_tb = ’1’;
if rst_tb = ’1’ then
sample_count := 0;
bit_count := 19;
sample_vector := in_array(sample_count) ;

data_out_vector <= in_array(sample_count);
sdout_tb <= in_array(sample_count) (bit_count);

bit_count := bit_count - 1;
else
if lrck_tb’event then
sample_vector := in_array(sample_count);

data_out_vector <= in_array(sample_count) ;
bit_count := 19;
if lrck_tb = ’0’ then
sample_count := sample_count + 1;
end if;
end if;
if bit_count < 0 then
sdout_tb <= ’0’ after tsclk;

else
sdout_tb <= sample_vector(bit_count) after tsclk;
bit_count := bit_count - 1;
end if;
end if;

end process inputaudio;

-- the following process clocks data serially out of the filter.

-- the filtered samples are input serially through sdin_tb and read

-- into sample_vector

-- sample_vector is read into out_array on the falling edge of lrck_tb
outputaudio: process (sclk_tb,lrck_tb)

variable sample_vector : std_logic_vector(xwidth-1 downto 0);

variable bit_count : integer := 19;
variable sample_count : integer := 0;

135

begin -- process outputaudio
if rst_tb = ’1’ then
sample_count := 0;
bit_count := 19;
elsif lrck_tb’event then
sample_vector := data_in_vector;
out_array(sample_count) <= data_in_vector;
bit_count := 19;
if lrck_tb = ’1’ then
sample_count := sample_count + 1;
end if;
elsif sclk_tb’event and sclk_tb = ’0’ and bit_count >= 0 then
data_in_vector(bit_count) <= not(sdin_tb);
bit_count := bit_count - 1;
end if;
end process outputaudio;
end testarch;

136

-- EE 552 Project

-- Dustin Demontigny

-- March 22, 2003

-- test_accum.vhd

-- Behavioral

-- test bench for accumulator

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.user_io_pack.all;

entity test_accum is
end test_accum;

architecture behav of test_accum is
signal clock, clr, reset : std_logic := ’0’;
signal data : std_logic_vector(coef_length-1 downto 0);
signal sum : std_logic_vector(coef_length-1 downto 0);
begin

dut : accumulator
port map(clock => clock,
clr => clr,
reset => reset,
data => data,
sum => sum) ;

clock <= not clock after clock_period/2;

stimulus : process
begin
clr <= 17,
data <= "000000000010";
wait for 200 ns;
clr <= ’07;
wait;
end process;

end behav;

137

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_arith_unit.vhd

-- Behavioral

-- test bench for arithmetic unit

library ieee;
use ieee.std_logic_1164.all;

-- timing constants are located in package file
use work.smart_eq_pack.all;

entity test_arith_unit is
end test_arith_unit;

architecture behav of test_arith_unit is
signal clock, reset : std_logic := ’07;
signal gain_register : std_logic_vector(gain_reg-1 downto 0)
signal new_gain, send_coefs : std_logic;
signal send_gain, new_coefs : std_logic;
signal coef_register ! cramarray;
begin

dut : arith_unit

port map(clock => clock,
reset => reset,
gain_register => gain_register,
new_gain => new_gain,
send_coefs => send_coefs,
send_gain => send_gain,
new_coefs => new_coefs,
coef_register => coef_register);

gain_register <= dustins;
clock <= not clock after clock_period/2;

stimulus: process

begin
reset <= ’07;
wait for 200 ns;
reset <= ’17;
wait;

end process;

end behav;

138

:= (others =>

707);

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_db.vhd

-- Behavioral

-- test bench for debouncer3

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.user_io_pack.all;

entity test_db is
end test_db;

architecture behav of test_db is
-- declare inputs
signal pb_input: std_logic_vector(pb_number-1 downto 0);

signal clock : std_logic := ’0’;
signal db_output : std_logic_vector (pb_number-1 downto 0);
begin

dut : debouncer3
port map(pb_input => pb_input,
clock => clock,
db_output => db_output);

clock <= not clock after clock_period/2;

stimulus : process

begin
pb_input <= "11";
wait for 400 ns;
pb_input <= "10";
wait for 400 ns;
pb_input <= "11";
wait for 400 ns;
pb_input <= "10";
wait for 400 ns;
pb_input <= "11";
wait for 400 ns;
pb_input <= "01";
wait for 400 ns;
pb_input <= "11";

139

wait for 400 ns;
pb_input <= "01";
wait for 400 ns;
pb_input <= "11";
wait;

end process;

end behav;

140

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_io.vhd

-- Behavioral

-- test bench for user I/0

library ieee;
use ieee.std_logic_1164.all;

-- timing constants are located in package file
use work.smart_eq_pack.all;

entity test_io is
end test_io;

architecture behav of test_io is
-- declare inputs
signal reset, incr, decr : std_logic;
signal clock : std_logic := ’0’;
signal send_gain : std_logic;
-- declare outputs
signal new_gain : std_logic;
signal preset_number : std_logic_vector(led_segments-1 downto O0);
signal gain_register : std_logic_vector(gain_reg-1 downto 0);
begin
dut : user_io
port map(reset => reset,
incr => incr,
decr => decr,
clock => clock,
send_gain => send_gain,
new_gain => new_gain,
preset_number => preset_number,
gain_register => gain_register);

-- generate clock signal
clock <= not clock after clock_period/2;

-- generate 2 push button stimulus
push_buttons : process

begin

-- initialize inputs
reset <= ’07;

141

incr <= ’17;
decr <= ’17;
send_gain <= ’0’;

—-- reset system
wait for reset_delay;
reset <= ’17;
wait for reset_delay;

-- generate two incr button presses
for i in 0 to 1 loop
for i in O to bounce_number loop
incr <= not incr;
wait for bounce_delay;
end loop;
incr <= ’0’;
wait for press_delay;
for i in 0 to bounce_number loop
incr <= not incr;
wait for bounce_delay;
end loop;
incr <= ’1’;
wait for press_delay;
end loop;

wait for 200 ns;
send_gain <= ’17;
wait for 400 ns;
send_gain <= ’0’;
wait for 200 ns;

-- generate two decr button presses
for i in 0 to 1 loop
for i in 0 to bounce_number loop
decr <= not decr;
wait for bounce_delay;
end loop;
decr <= ’07;
wait for press_delay;
for i in O to bounce_number loop
decr <= not decr;
wait for bounce_delay;
end loop;
decr <= ’17;
wait for press_delay;
end loop;

142

wait for 200 ns;

send_gain <= ’17;
wait for 400 ns;

send_gain <= ’0’;
wait;

end process;

end behav;

143

-- EE 552 Project

-- Dustin Demontigny

-- March 22, 2003

-- test_mult.vhd

-- Behavioral

-- test bench for multiplier

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.user_io_pack.all;

entity test_mult is
end test_mult;

architecture behav of test_mult is
signal A : std_logic_vector(coef_length-1 downto 0);
signal B : std_logic_vector(gain_length-1 downto 0);
signal RES : std_logic_vector(coef_length-1 downto 0);
begin

dut : multiplier
port map(A => A,
B => B,
RES => RES);

stimulus : process

begin
A <= "000011110000";
B <= "0001";
wait for 200 ns;
B <= "0010";
wait for 200 ns;
B <= "0011";
wait for 200 ns;
B <= "0100";
wait for 20 ns;
B <= "0101";
wait for 200 ns;
B <= "0110";
wait for 20 ns;
B <= "0111";
wait;

144

end process;

end behav;

145

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_preset_counter.vhd

-- Behavioral

-- test bench for preset counter

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.user_io_pack.all;

entity test_preset_counter is
end test_preset_counter;

architecture behav of test_preset_counter is

signal clock : std_logic := ’0’;

signal reset : std_logic;

signal incr : std_logic;

signal decr : std_logic;

signal preset_value : std_logic_vector(bits-1 downto
begin

dut : preset_counter
port map(clock => clock,
reset => reset,

incr => incr,
decr => decr,
preset_value => preset_value);

clock <= not clock after clock_period/2;

stimulus : process

begin
reset <= ’07;
incr <= ’17;
decr <= ’17;
wait for 200 ns;
reset <= ’17;
wait for 200 ns;
incr <= ’07;
wait for 300 ns;
incr <= ’17;
wait for 200 ns;

146

incr <= ’0’;
wait for 700
incr <= ’17;
wait for 200
decr <= ’07;
wait for 900
decr <= ’17;
wait for 200
decr <= ’0’;
wait for 600
decr <= ’17;
wait;
end process;

end behav;

ns;

ns;

ns;

147

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_reg_control.vhd

-- Behavioral

-- test bench for register controller

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity test_reg_control is
end test_reg_control;

architecture behav of test_reg_control is
signal clock, reset : std_logic := ’07;
signal new_gain, send_coefs : std_logic;
signal load_gain, shift_gain : std_logic;
signal clock_accum, clr_accum : std_logic;
signal load_coef, shift_coefs : std_logic;
signal coef_ready, send_gain : std_logic;
begin
dut : reg_control
port map(clock => clock,
reset => reset,
new_gain => new_gain,
send_coefs => send_gain,
load_gain => load_gain,
shift_gain => shift_gain,
clock_accum => clock_accum,

clr_accum => clr_accum,
load_coef => load_coef,
shift_coefs => shift_coefs,
send_gain => send_gain);

clock <= not clock after clock_period/2;

stimulus : process
begin
reset <= ’07;
wait for 200 ns;
reset <= ’1’;

148

wait;
end process;

end behav;

149

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_smart_eq.vhd

-- Behavioral

-- test bench for top level smar_eq

library ieee;
use ieee.std_logic_1164.all;

-- timing constants are located in package file
use work.smart_eq_pack.all;

entity test_smart_eq is
end test_smart_eq;

architecture behav of test_smart_eq is

signal clock,reset : std_logic := ’0’; -- clock input to FPGA
signal pb_1, pb_2 : std_logic; -- 2 pushbuttons from XSA and XStend boards
signal sdout : std_logic := ’0’;
signal preset_number: std_logic_vector(led_segments-1 downto 0);
signal sdin : std_logic;-- serial data sent to codec
begin

dut : smart_eq

port map(clock => clock,
reset => reset,
pb_1 => pb_1,
pb_2 => pb_2,
sdout => sdout,
preset_number => preset_number,
sdin => sdin);

-- generate clock signal
clock <= not clock after clock_period/2;

sdout <= not sdout after bounce_delay*31;

process
begin
-- initialize inputs
reset <= ’07;
pb_1 <= ’17;
pb_2 <= ’17;
—-— reset system

150

wait for reset_delay;
reset <= ’17;
wait for reset_delay;

-- generate two incr button presses
for i in 0 to 1 loop
for i in 0 to bounce_number loop
pb_1 <= not pb_1;
wait for bounce_delay;
end loop;
pb_1 <= ’0°;
wait for press_delay;
for i in O to bounce_number loop
pb_1 <= not pb_1;
wait for bounce_delay;
end loop;
pb_1 <= ’17;
wait for press_delay;
end loop;

-- generate two decr button presses
for i in 0 to 1 loop
for i in O to bounce_number loop
pb_2 <= not pb_2;
wait for bounce_delay;
end loop;
pb_2 <= ’07;
wait for press_delay;
for i in O to bounce_number loop
pb_2 <= not pb_2;
wait for bounce_delay;
end loop;
pb_2 <= ’17;
wait for press_delay;
end loop;

wait;
end process;

end behav;

151

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_temp_reg.vhd

-- Behavioral

-- test bench for temporary register

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.user_io_pack.all;

entity test_temp_reg is
end test_temp_reg;

architecture behav of test_temp_reg is
signal clock, ALOAD : std_logic := ’07;

signal PI : std_logic_vector(gain_reg-1 downto 0) := (others => ’0’);
signal PO : std_logic_vector(gain_length-1 downto 0) := (others => ’0’);
begin

dut : temp_reg
port map(clock => clock,
ALOAD => ALOAD,
PI => PI,
PO => P0);

clock <= not clock after clock_period/2;

stimulus : process

begin
PI <= dustins;
ALOAD <= ’07;
wait for 200 ns;
ALOAD <= ’17;
wait for 210 ns;
ALOAD <= ’07;
wait;

end process;

end behav;

152

-- EE 552 Project

-- Dustin Demontigny

-- March 8, 2003

-- test_temp2_reg.vhd

-- Behavioral

-- test bench for temporary register2

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.smart_eq_pack.all;

entity test_temp_reg?2 is
end test_temp_reg?2;

architecture behav of test_temp_reg?2 is
signal clock, clr, ALOAD : std_logic := ’0’;
signal PI : std_logic_vector(coef_length-1 downto 0)
signal PO : cramarray;

begin

dut : temp_reg?2
port map(clock => clock,
clr => clr,
ALOAD => ALOAD,
PI => PI,
PO => P0);

clock <= not clock after clock_period/2;

stimulus : process

begin
PI <= "000001100000";
clr <= ’07;
wait for 200 ns;
clr <= ’17;

wait for 200 ns;
aload <= ’1’;
wait for 200 ns;
aload <= ’07;
wait for 400 ns;
aload <= ’17;
wait for 200 ns;

153

:= (others => ’0’);

aload <= ’07;
wait for 800 ns;
clr <= ’07;
wait;

end process;

end behav;

154

17 Schematics

The following page includes a schematic detailing the ciruitry associated
with the on-board stereo audio codec. The codec is the only device used
that is peripheral to the FPGA.

155

18 Inputting/Outputting Stereo Signals Through

the Codec
The following document is taken from the XStend Board V1.3.2 User
Manual[5]. It includes an example design using the stereo audio codec on

the XStend board. We will be incorporating the codec_intfc module in our
system, making modifications to the sample code as necessary.

158

