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Declaration of Original Content 

The design elements of this project and report are entirely the original work of the authors and have not 
been submitted for credit in any other course except as follows: 

• Integer to std_logic_vector conversion function obtained from Associated Professional Systems. 
Accessed http://users.erols.com/aaps/x84lab/INCLUDE.html on February 17, 2003 

• A64x16.vhd: Modified Cypress Semiconductor Corp. VHDL model for their CY71020CV33 
32k x 16 SRAM.  Modifications include the increasing of the capacity to 64k x 16, addition of 
appropriate timing information, and file name changing. 

• Joystick Circuit based on circuit from Epanorama.net 
Accessed http://www.epanorama.net/documents/joystick/pc_joystick.html. February 18, 2003 

• VGA timing calculator spreadsheet from VESA 
Accessed http://www.vesa.org/public/SMT/SMT640_720x480v1.xls. February 18, 2003 

• VGA timing signal information from EE552 appnote 
Accessed 
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/interfacing/CRT/CRT_App_
Note.html. February 17, 2003 

• Xilinx Spartan II Primitives instantiation templates. 
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Abstract 
 
Imagine being able to sit down for an evening and develop a classic video game with nothing more than 
simple sprites and assembly language.  Imagine being able to play that same game on a common 
computer monitor in resolutions higher than most consoles without fear of losses in frame rates when 
the action heats up.  Imagine sharing your creations with your friends, and going head to head in some 
two player action.  Think this is all too good to be true?  Well, this project is here to prove you wrong. 
 
Gamecore classic is all this and more. It is a custom CPU with an integrated sprite and rectangle 
graphics unit programmed into a Xilinx Spartan II FPGA. The console supports two joysticks and 
displays 60Hz graphics on a standard VGA monitor. And best of all, it ships standard with a powerful 
and flexible assembler for creating your own games using your PC. 
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Achievements 
• Designed and implemented a 16-bit CPU from scratch. 
• Created a powerful assembler for the PIGME CPU. 
• Created a graphics processor unit capable of displaying sprites and rectangles on a VGA 

monitor. 
• Successfully interfaced to a standard PC joystick 
• Produced a printed circuit board for 256KB of external 10ns SRAM. Difficulties in soldering 

the surface mount J-Lead packages prevented the use of this SRAM and internal block ram was 
substituted. 

• Scalable design makes use of many constants and type declarations to allow for increased 
performance in larger FPGAs and for reduced performance in smaller FPGAs. 
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Description of Operation 

System Overview 
 
The main idea for the GAME CORE system was to offer a simple video game system, primarily 
tailored for 2D games like those seen on early gaming consoles of the 1980s. Real time arcade games 
can be written for the system using a straightforward assembly language. 
 
The gamecore system uses two standard PC joysticks for input, and outputs graphics to a standard 
VGA monitor. A set of LEDs and a seven-segment display is available for displaying scores and for 
debugging programs. An RS-232 UART is available to aid in program debugging. A reset button has 
also been included. 
 
The system is composed of the following units: 

• Custom 16-bit Central Processing Unit (CPU). 
• ALU 
• Register File 
• Control Section 

• Custom VGA Graphics Processing Unit (GPU) capable of sprite and rectangle generation. 
• VGA timing generator 

• Memory Unit based on internal SRAM implementing independent memories. 
• Program and data storage 
• Graphics object property storage 
• Sprite graphics data 

• IO Bus 
• Joystick controller 
• LED and 7-Segment Display controller 
• UART for serial communications 
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The gamecore top-level diagram is shown below in figure 1.1. 
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Figure 1.1: Gamecore Top Level 

 
 
The CPU has been designed completely from scratch for use in the Gamecore system. It has the 
following groups of instructions: 

• Integer arithmetic (add, subtract, multiply, divide) 
• Graphic co-processor: Rectangle and Sprite generation and modification 
• I/O Bus: In Port and Out Port to peripheral devices 
• Load, Store 
• Unconditional Branch, Branch on condition 
• Branch to subroutine, return from subroutine 
• Boolean: AND, OR, XOR, NOT, negate (2’s complement) 
• Bit-wise: Arithmetic and Logical Shifting, Rotates 
• No operation (NOP) 
• Stop to halt the CPU 

 
The CPU operates solely on 16 bit quantities, this means that instruction opcodes, SRAM addresses, 
SRAM data are all 16 bit quantities (whether RAM is actually present is another issue). To simplify the 
CPU design, the CPU is not pipelined. A non-pipelined CPU reduces the instructions per clock cycle, 
but since the graphics co-processor performs many of the graphics functions, a high throughput CPU is 
not required. The main task of the CPU will be handling user input and updating graphics objects on 
the graphics co-processor. A branch to subroutine and return from subroutine call is implemented using 
a hardware-based stack for return addresses. It is not possible for the programmer to get or set the value 
of the program counter, so no software stack can be implemented on our CPU. 
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The CPU communicates with the graphics co-processor through a dedicated video bus. The graphics 
co-processor has support for sprites, rectangle objects, and a background color. The sprites and 
rectangles can have their properties updated by the CPU. Their list of properties includes x and y 
coordinates of the left, right, top, and bottom edges, as well as color for rectangles and video memory 
base address for sprites. Sprites and rectangles are assigned to one of 4 graphics layers. Objects in 
higher layers are drawn over top of objects in lower layers. Additionally, one color has been assigned 
as transparent and will allow objects in lower layers to show through. 
 
The graphics controller runs at a fairly high speed compared to the CPU to ensure that the screen gets 
refreshed frequently. A standard 640x480 pixel VGA display is drawn at 60Hz, with each pixel 
encoded as 8 bits. The VGA connector on the Digilent IO board is hard wired with 3 bits of blue, 3 bits 
of green, and 2 bits of red. The graphics controller is a pipelined highly parallel graphics processor. 
 
The CPU communicates with the slower I/O devices through a simple I/O bus. Attached to the IO bus 
is a joystick controller, an RS-232 serial port, and an LED and 7-segment display controller.  I/O is not 
memory mapped.  The I/O bus is accessed using special opcodes: PIN and POUT, which act much like 
load and store, with the exception being that both the address and data bus for the I/O bus are not as 
wide as the SRAM busses. 
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Figure 1.2 shows a high-level internal system block diagram. 
 

 
 

Figure 1.2 – High Level Internal System Block Diagram 
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Instruction Set 
The PIGME instruction set load and store architecture is based on operations with 16 bit, signed 2’s 
compliment quantities.  For this reason, the term “word” will be used to denote a 16 bit quantity for the 
remainder of this specification.  All operations involve register to register transactions except for loads 
and stores, which can involve data memory or immediate values. 
 

Registers 
   There are a total of sixteen 16 bit registers defined by PIGME, with the following mnemonics: 

• r0 through r12 are general purpose registers 
• rt is a temporary general purpose register modified by certain operations 
• rz is a read-only register hard-wired to 0x0000 (decimal 0) 
• rn is a read-only register hard-wired to 0xFFFF (decimal -1) 

 
 The use of rz and rn as hard-wired constants not only allows access to the two most used 
program constants without the overhead of a LOAD immediate beforehand, it also allows the assembler 
to provide a richer assortment of instructions like CLR and INC without the addition of any new op 
codes or hardware.  The savings in op codes is particularly important as instruction words are of limited 
size. 
 

Memory 
 PIGME supplies separate instruction and data memories for both expanded memory space and 
added security.  Instruction fetching and branching automatically refer to instruction memory, while 
load and store operations automatically refer to data memory, preventing a program from modifying its 
own code. 
 Both instruction and data memory consist of 216 = 65536 addressable words.  There is no 
concept of a “byte” or “long word”, since memory quantities are always 16 bit words.  This means that 
PIGME is endian independent. 
 

Instructions 
 Each PIGME instruction word (16 bits) can be divided into four 4 bit fields consisting of: 

• an operation code specifying the instruction or instruction type 
• an instruction defined field 
• a register identifier field 
• another register identifier field, which may or may not be used 

General Instruction Word Format 

 Op codes and the instruction defined fields are listed along with each instruction in the 
instruction reference.  Registers are always encoded in the following manner: 

• r0 through r12 as 0x0 through 0xC (0b0000 through 0b1100) 
• rt as 0xD (0b1101) 

Op Code Register Register Inst. Defined 
0 3 4 7 

 
8 11 
 

12 15 
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• rz as 0xE (0b1110) 
• rn as 0xF (0b1111) 

  
 Only the LOAD and STORE instructions involve effective addressing modes, all other operations 
act on registers.  A list of the effective addressing modes can be found under the descriptions of the 
LOAD and STORE instructions in the instruction reference. 
 

Assembly Syntax 
 A full list of every microprocessor instruction and its assembly syntax can be found in the 
instruction reference.  Each instruction must appear on a single line by itself, prefixed with one or more 
optional labels and optional white space.  Labels can appear on lines without instructions, just as blank 
lines consisting of only white space are allowed as well.   The apostrophe (‘’’) can appear anywhere in 
a line and indicates that the remainder of the line is a comment.  Multi-line comments are not 
supported. 
 An assembly instruction consists of the instruction mnemonic followed by zero or more 
arguments, with a comma (‘,’), white space or both separating adjacent arguments.  Instruction and 
register mnemonics are case insensitive.  Label names, like all other placeholders, must consist of a 
sequence of alpha-numeric characters (‘A’-‘Z’, ‘0’-‘9’, ‘_’) beginning with an alphabetic character, and 
are also case insensitive.  White space and other punctuation characters are not allowed in placeholder 
names.  Labels, unlike other placeholders, also must be terminated by a colon (‘:’). 
 Aside from register mnemonics, the only other valid arguments to an instruction are: 

• a label name as an argument to a branch instruction 
• a register mnemonic in parenthesis to indicate indirect addressing for a LOAD or STORE instruction 
• an absolute address for a LOAD or STORE instruction specified as a number constant or number 

constant placeholder 
• an immediate value for a LOAD or STORE instruction specified as a number constant, number constant 

placeholder, or image placeholder, prefixed by a pound sign (‘#’) 
 
 Number constants must be prefixed appropriately if in a base other then decimal.  The prefixes 
are: 

• 0x or $ for a hex number constant (digits: ‘0’-‘9’, ‘a’-‘f’, ‘A’-‘F’) 
• 0 for an octal number constant (digits: ‘0’-‘7’) 
• 0b for a binary number constant (digits: ‘0’, ‘1’) 

 
 Number constant placeholders attach a name to a particular constant or data memory address.  
Placeholder definitions are case insensitive and begin with a period (‘.’) followed by one of the 
following: 

• const <placeholder> <number constant> 
• word <placeholder> [value] 
• array <placeholder> <size> [value [...] ] 

 
 The .const definition defines a placeholder (name) which is associated to a particular number 
constant which is automatically substituted into instructions by the assembler.  The .word definition 
defines a placeholder (name) which is associated to an arbitrary data memory word, whose initial value 
can be specified through the optional value parameter.  The .array definition defines a placeholder 
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(name) which is associated to an arbitrary array of size data memory words, whose initial values can 
be specified through the optional value parameters.  Both .word and .array definitions are 
automatically mapped to data memory by the assembler, and should be used instead of absolute address 
number constants in LOAD and STORE commands.  The optional value parameters follow the same 
format as number constants.  Data values are initialized to zero if not specified. 
 
 In addition to data definitions, the .image <placeholder> <file> definition loads file 
into video memory, associating its video memory address to placeholder.  By using this placeholder, 
prefixed by a pound sign, as an immediate value to a load instruction, this video memory address can 
be passed on to a sprite via a video instruction.  For more information, see the instruction reference. 
 
 All .const, .word, .array and .image placeholder names must be unique irrespective of 
case.  They can, however, share the same name as a label.  Label names must also be unique 
irrespective of case.    
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CPU Architecture 
 
The CPU is divided into a control section, which will be described behaviorally and data path, which 
will for the most part be described at the register transfer level. The data path diagram is available in 
the appendix. Currently, the data path is separated into the following sections: 

• Instruction Fetch – Connected to instruction memory, contains the program counter and the instruction 
register as well as an adder that calculates the next increment of the PC every cycle. Also a multiplexer 
is present to select between a branch target or the incremented value of the PC. In order to support 
subroutine functions, a hardware stack that stores the return address for subroutine calls must be 
added. This hardware stack is a simple 16-bit wide bi-directional shift register that simply shifts in 
additional return addresses when a branch to a subroutine is executed. 

• Instruction Decode – This unit is also connected to instruction memory. The instruction fetch stage 
contains the two operand registers used by the execution unit, the branch target register and the entire 
register file. A set of multiplexers selects what is loaded into the operand registers. Either the next 
word from instruction memory is loaded (for immediate value and absolute addressing modes) or a 
value is loaded from the register file (for register direct and register indirect modes) into each of the 
operand registers. 

• Instruction Execute – This unit is connected to data memory, the I/O bus and the video unit. Inside the 
execute stage there are several sub modules each dedicated to a class of instructions: 
o ALU – performs logical and arithmetic calculations 
o Load/Store unit – performs loads and stores to and from data memory 
o I/O unit – performs loads and stores on the I/O bus 
o Branch unit – performs a comparison on the input operands and returns success 
o Shift unit – performs rotate, arithmetic shift and logical shift operations 

 
Since several of the units in the execution stage produce outputs that are destined for general purpose 
registers, a multiplexer is described in the execution stage that selects what unit’s output is written to 
the register file. 
The ALU is described behaviourally, since the addition, subtraction and Boolean logic operations are 
most easily expressed in this manner. The multiply unit is generated from a Xilinx core and is 
connected within the ALU. The ALU does not currently register any of its inputs and outputs, and is 
purely combinational. 
 
The load/store unit is also described behaviourally; it simply routes the incoming operand registers to 
data memory address and data buses. The control unit determines when to stall for one additional cycle 
for the memory data to become available. 
 
The I/O and video instructions are very simple to implement, as they only route the operand registers 
from the instruction decode stages onto the data and address busses of the video and I/O devices. The 
control section generates the enable signals for the video and data busses. 
 
The branch unit is composed of two comparators: one that compares the operands for equality and one 
that compares if operand one is greater than operand two. From the output of these two comparators 
any comparison type can be made using some additional combinational logic. The result from this 
comparison will then determine if the program counter should reload with the branch target address or 
if it should continue with the next instruction (which is already stored in the program counter register). 
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The shift unit is composed of a barrel shifter and some additional logic before the barrel shifter to select 
the proper input data depending on the type of shift operation. The barrel shifter can rotate its inputs an 
arbitrary number of bits to the left. To rotate the input data to the right, the barrel shifter simply rotates 
its input data to the left by (barrel shifter input width – number of places to shift to the right). For 
instance, to shift data 3 bits to the right in a 16-bit shifter, the barrel shifter really rotates its input 13 
bits to the left, which achieves the same effect. To enable arithmetic and logic shift, some additional 
logic is created before the barrel shifter inputs that imitates either zeros shifting in from the left or right 
or imitates the MSB shifting in from the left (in case of the arithmetic shift). 
 
For the register file it was decided that the read ports were best implemented using a tri-state bus 
directly driven by each register. The other option is to create a large 256 to 16 multiplexer for each read 
port, but this would require a large amount of logic and would probably offer little speed advantages if 
any (since for such a large multiplexer multiple levels of logic are required). Instead the design uses a 
tri-state bus and a set of 4 to 16 decoders that select which register can output its value on the read 
ports. The same design for a 4 to 16 decoder is used to select what register is written to on the write 
port. A separate write port is required for the temp register which contains an extra 16 bit word output 
from either a multiply or divide operation because both the divide and multiply produce a 32 bit result 
(either the upper 16 bits of the multiplication or the remainder of a divide is stored in the temp register) 
should be written in the same clock cycle as the other result from the operation. This also automatically 
means that the temp register cannot be addressed from the normal write port select, so that no CPU 
operation can explicitly write to the temp register. 
 
There is some opportunity in the execution unit of the CPU to use some externally provided HDL 
components. In particular, there are some pipelined division and multiplication units available as IP 
cores from Xilinx. Utilizing these cores reduces some of the design that would normally be required on 
the fairly involved logic for these operations. 
 
CPU Control Unit 
 
The control unit is described behaviourally and consists of one finite state machine that determines 
what registers are enabled at what time. The following states are currently present in the finite state 
machine: 
reset_cpu 
mem_stable 
pc_load 
load_ir 
stall_op2 
load_op_exec 
load_stall 
stopped 
 
Because the memory controller’s inputs are registered, the CPU control unit must always ensure that 
the data on the address bus is valid before the rising edge of the clock, it can then latch the read data 
from the memory on the next clock edge. 
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When the asynchronous reset is selected, the CPU always goes to the reset_cpu state. Since this reset is 
asynchronous, it can occur right before the clock edge. When a reset occurs, the address lines to 
instruction memory may not have been given enough time to stabilize to be guaranteed a valid result 
the next clock cycle. Therefore, it progresses to the mem_stable state so that after this cycle the 
addresses to the SRAM are stable. This means that after the mem_stable state, the SRAM data lines 
contain the next instruction. 
 
From the mem_stable state, the next state is always pc_load. When the pc_load state is entered, the 
instruction register is enabled so that at the next clock edge the instruction register will hold the 
instruction to be executed. Also, the program counter register is enabled so that it will load the address 
of the next instruction on the next clock edge. 
 
After the pc_load state, the load_ir state is entered. When the state becomes ir_load, the instruction 
register has just loaded. Based upon the instruction currently loaded, a few things can happen. If an 
additional instruction word is required (for example immediate values, absolute addresses and branch 
targets), the program counter must be incremented again on the next cycle (note that the program 
counter always points to the next instruction). Also, the operand registers must be enabled to load the 
operand values (either from memory or the register file). If a branch instruction is being executed, the 
branch target register must also be loaded. When the instruction is a load or store command, an 
additional cycle is required for the instruction memory to fetch the extra data, and the next state entered 
will be stall_op2. If the instruction is a NOP or STOP, the CPU can fetch the next instruction or stop 
executing instructions all together. In any other case the next state entered will be load_op_exec. 
 
When stall_op2 is entered, it means that the current instruction is a load or store instruction and an 
additional word from instruction memory is required. All that the stall_op2 state has to do is enable one 
of the operand registers so that the operand register loads the additional word from memory. 
 
When load_op_exec is entered, it means the operand registers have just latched their values. Since the 
execution units are directly connected to the operand registers and are purely combinational, the result 
is available as soon as the next clock edge arrives. This means the target result register in the register 
file must be enabled so that it will store the result from the execution unit. The only case in which the 
register file write port must not be enabled yet occurs when a load command is executed. A load 
instruction consumes one additional cycle because it has to wait for the memory data to become 
available. 
 
With instructions that do not require access to data memory, the execute cycle completes at this point in 
time and the next state entered will be pc_load. However, when a load from memory to the register file 
must be performed an additional stall cycle is necessary and thus the next state is load_stall. Also a 
store operation to data memory requires an additional stall, since the write result does not latch until at 
the end of the load_op_exec cycle and an extra cycle is necessary for the address bus to switch over to 
the program counter value (since data and instruction memory share their data and address bus). 
Therefore the next state after a store to memory is mem_stable. 
 
During the load_stall cycle the general-purpose target register to which the loaded memory value must 
be stored is selected. Also the address bus is prepared again to load the next instruction by placing the 
program counter value on this bus. 
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Another state, the stopped state, exists. This is the state entered when a stop instruction is executed or 
the stop line is high. The CPU remains in the stop cycle until reset is pressed. During the stop cycle the 
CPU is simply inactive and disables all memory and register enables. 
 
The following are a set of state diagrams for some typical instructions: 
 
ALU, Shift, I/O and video instructions (always take three cycles): 

 
NOP instructions (always take two cycles) and branch Instructions (always take five cycles) 
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Load instructions (can take anywhere from three to five cycles) 
All addressing modes refer to the source operand. 
Write instructions (can take anywhere from three to five cycles) 
All addressing modes refer to the destination operand. 
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Description of GPU (Graphics co-Processor Unit) 
 
In its current implementation (limited by the size of the FPGA and the amount of available internal 
block SRAM) the GPU supports 24 independent graphics objects simultaneously being displayed 
without any loss in performance in 8-bit colour and 640x480 resolution.  These graphics objects come 
in two flavors: rectangles, which consist of a single colour, and sprites, which are rectangles where each 
individual pixel is mapped to a colour value in memory.  Sprites can therefore take on any appearance 
the programmer wishes, including having transparent pixels to simulate different shapes.  In addition to 
sprites and rectangles, the GPU supports a solid colour background to provide for a more appealing 
gameplay environment. 
 
The GPU contains the following components: 

Component Description 
CPU Interface Decodes commands from CPU 
VGA Timing Generator Generates control signals for other components. Generates 

HSYNC & VSYNC for VGA display. 
Sprite Layer (x2) Arbitrates Sprite Graphics 
Rectangle Layer Arbitrates Rectangle Objects 
Background Layer Renders a solid colour under other objects 

 
Graphics objects are divided up into layers.  Each layer is guaranteed to render properly underneath any 
layers above it, and above any layers below it.  This includes any transparent sprite pixels taking on the 
colour of the pixel under them.  The lower the ID of the layer, the higher it is.  Graphics objects within 
the same layer, however, overlap imperfectly, with the lower ID object rendering on top of the higher 
ID object.  This rendering does not respect transparency. 
 
The various layers supported by the GPU are listed below: 

Layer Index Range Object Type 
0 (top) 0-7 Sprites 1 
1 0-7 Rectangles 
2 0-7 Sprites 2 
3 0-0 Background Colour 

 
Each graphics layer is responsible for deciding whether or not it is rendering a given VGA pixel, and if 
so, which colour it should have.  Arbitration is used to allow the upper layers to override the lower 
layers, producing a single colour value at the output for the VGA port.  Also, at any time the timing 
generator can prevent a particular pixel from being rendered, whether the requeset originated from the 
CPU, or whether it is motivated by preserving the integrity of the VGA signalling. 
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The GPU layers are fully pipelined so that a new pixel’s colour is calculated every clock cycle.  In an 
effort to reduce the huge amount of FPGA area required for the GPU, many of the more complicated 
graphics object control functions are abstracted to the timing generator.  This reduces hardware and 
routing at the cost of complexity, since each graphics object requires control signals to operate.  This 
does however severely increase the complexity of the timing generator, with the current 
implementation making use of a seventeen and a three bit state machine. 
 

CPU Interface 
 
All the properties of a graphics object (position, enable state, colour, sprite address) must  be 
configurable by the programmer and hence the CPU.  Since these properties are almost always in use, a 
copy of them is stored in FPGA block RAM.  While the GPU is generating the pixel information for the 
current VGA frame, the CPU is free to modify these values using the GPU interface.  Then, when the 
GPU is transitioning between VGA frames (there is a mandatory amount of time between frames in the 
VGA specification), the GPU serially updates each graphics object’s local copy of this information.  
During this time, the CPU cannot update graphics object properties.  
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The following graphics commands can be issued from the CPU to the GPU: 
Command (4 bits) Mnemonic Description 
0x0 Row1 Sets object top value 
0x1 Row2 Sets object bottom value 
0x2 Col1 Sets object left value 
0x3 Col2 Sets object right value 
0x4 Enable Sets object draw enable attribute 
0x5 Reserved  
0x6 Colour Sets object color value (for non-sprites) 
0x7 StartAddr Sets object start address (for sprites) 
0x8 DispOn Enables VGA output 
0x9 DispOff Disables VGA output (black screen) 
0xA Reserved  
0xB Reserved  
0xC Reserved  
0xD Reserved  
0xE Reserved  
0xF Reserved  

 
The following signals connect the CPU to the GPU 

Signal  Direction Bits Description 
command CPU -> GPU 4 Command issued to GPU 
index CPU -> GPU 6 Index of graphics object 
cpuData CPU -> GPU 16 Data bus 
latch CPU -> GPU 1 Load cpuData into registers 
retrace CPU <- GPU 1 Notifies CPU that vertical retrace 

is happening => CPU cannot 
update GPU registers. 

red CPU <- GPU 2 Red value to monitor 
green CPU <- GPU 3 Green value to monitor 
blue CPU <- GPU 3 Blue value to monitor 
hsync CPU <- GPU 1 Horizontal sync to monitor 
vsync CPU <- GPU 1 Vertical sync to monitor 

 
The CPU opcode will determine the command issued to the GPU. Most graphics instruction will take 
two register operands. The first operand (destination) will be the value placed on the ‘index’ lines. The 
‘index’ signal specifies one of the graphics objects to update. The second operand (value) will contain 
the value to be sent to the ‘cpuData’ bus. The latch signal is used to synchronize writes to GPU 
registers. 
 
The CPU is responsible for ensuring that it does not update any GPU registers while the GPU is in 
between displaying frames. The CPU will only be able to write to the GPU registers when the ‘retrace’ 
signal is de-asserted. 
 

Pipeline Organization 
 
Rectangle and sprite layers will be almost identical.  Both will be divided into blocks of graphics 
objects from which they arbitrate a colour value for the current pixel, if applicable.  Each block that 
attempts to render the current pixel will contend to place its colour or image address on the bus, with 
the lowest numbered block winning out.  Sprites that place their addresses on the bus will be arbitrated 
into a single winning address which will be looked up in memory.  If the resultant colour is transparent, 
the sprite layer does not render the pixel.  Otherwise, the resultant colour is placed on the colour bus to 
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be passed to the VGA port.  In the case of rectangles, the winning colour value is simply placed on the 
colour bus. 
 
A depiction of a block of graphics objects is shown below: 

 
Each GPU block consists of four GPU objects that contend for which will draw the current pixel, if any 
of them.  Control signals are also needed for the updating of object properties, since most of the logic 
has been abstracted to the timing generator. 
 
Each GPU object consists of four 12-bit down counters which track that object’s row and column 
ranges for which is should display.  It also has an “enabled” flag which needs to be set for the object to 
display itself.  In addition, it has either a colour or a sprite address depending on whether it is a 
rectangle/background or a sprite.  Control signals are used to reset the counters to store the positional 
information, as well as modify the enable state or colour/address of the object. 
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A depiction of a graphics object is shown below: 
 

 
A depiction of a 12 bit down counter is shown below: 
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Each down counter is composed of three shift counters and a small SRAM to store the value it needs to 
count to. 
 
A depiction of a 4 bit shift counter is shown below: 
 

 
The motivation for this unconventional counter design is two-fold.  First, Xilinx FPGAs allow a four-
input look-up-table to be converted into either a 16 bit shift register or a 16 bit SRAM, providing far 
more logic than a single flip-flop if it can be exploited in a design.  Second, with the large number of 
graphics objects in this design, and hence the large number of counters it makes use of, flip-flops would 
run out far faster than look-up-tables if the counters were flip-flop based.  In addition, pipelining units 
like the divider require very large numbers of flip-flops while only moderate numbers of look-up-
tables, so exchanging one for the other with this design proved to be advantageous in several ways. 
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Description of Memory 
 
Initially, memory capacity was to come from external SRAM.  This solution would have provided a 
much greater capacity than internal SRAM on the FPGA.  There were difficulties with mounting the 
external SRAM chips on a PCB.  This is discussed in more detail in the experiments and 
characterization section of this report. The end result was that internal block RAM was used as a 
substitute to the external RAM. The Xilinx Core Generator was used to configure the internal 
memories. This block memory on the Spartan 2 board is organized in 4096 bit blocks with a total of 14 
blocks on our particular board.  The block ram can be configured using Core Generator to various sizes 
and up to dual port reads and writes. 
 
The following memories were created: 

• 1536x16-bit CPU memory, logically divided into 1024x16-bit instruction memory and a 
512x16-bit data memory. 

• 256x16-bit GPU memory for storing graphic object information. This memory is writable by the 
CPU through a 16-bit port, and is readable by the GPU through a 1-bit port. 

• 3072x8-bit GPU sprite memory for storing sprite data. This memory is readable through two 8-
bit ports. 

 
Six internal block RAMs were assigned to CPU program and data storage. Another six blocks were 
used to store sprites graphics. A single block RAM was allocated to the GPU to store graphic object 
properties. The CPU memory was configured with a single 16-bit read/write port.  The CPU memory 
was configured with a single 16-bit read/write port. The sprite memory was configured with dual 8-bit 
read ports so that two layers of sprite data could be read simultaneously. The graphic object property 
memory constituted the CPU to GPU interface, and it was configured with a 16-bit write port from the 
CPU and a 1-bit read port for the GPU. 
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Description of I/O Bus 
 
The IO bus is the link between the CPU and its peripherals. This bus is completely isolated from the 
main memory bus, and is accessed using special CPU instructions: PIN and POUT. 
 
All directions specified in this description are with respect to the CPU (ie. if a data register is an ‘out’ 
register, it is for values coming out of the CPU to the peripherals). 
  
The CPU is the bus master, and bus transactions only happen when requested by PIN and POUT 
instructions. Originally a bi-directional tri-state bus was used, but later the bus was converted to a 
synchronous bus with separate lines for each direction. 
 
During an PIN operation, the CPU places an address on the bus, sets ioRw to 0, and set the ioEnable 
signal to 1. The peripheral places the requested data on the bus and at the next system clock edge the 
data is read and the ioEnable signal is returned to 0. 
 
During an POUT operation, the CPU places an address on the address bus, places data on the data bus, 
set ioRw to 1, and sets ioEnable to 1. On the next clock edge the peripheral is written and the ioEnable 
signal is returned to 0. 
 
The following table lists the most important signals of the IO Bus: 

Signal Bits Dir (CPU 
relative) 

Description 

ioAddressBus 4 Out Address of 16 different ports 
ioDataIn 8 In 8-bit data into IO bus module from CPU going 

out to peripheral 
ioDataOut 8 Out 8-bit data out of IO bus to CPU from peripheral. 
ioRw 1 Out 0 for CPU to read from peripheral, 1 for CPU to 

write to peripheral 
ioEnable 1 Out When enabled, a read or write takes place on the 

next system clock edge. 
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The following table shows the IO Bus address assignments: 
Address Device 
0 Read joystick 1 x-axis  
1 Read joystick 1 y-axis  
2 Read joystick 2 x-axis  
3 Read joystick 2 y-axis  
4 Read joystick buttons 
5 unassigned 
6 UART Data Register (write to TX, read to RX) 
7 UART Status Register 
8 Write LED lower byte 
9 Write LED upper byte 
10 Write 7-segment lower byte 
11 Write 7-segment upper byte 
12 unassigned 
13 unassigned 
14 unassigned 
15 unassigned 
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Description of Joystick Controller 
 
The joystick controller is configured to collect input from two standard analog PC joysticks. The 
joystick controller uses a 15 bit free-running counter clocked at 1MHz to collect joystick status 
information. The counter has a rollover frequency of 1MHz / 2^15 = 30.5 Hz. Each time the counter 
rolls over the 4 joystick buttons are latched and the 4 monostable multivibrators are triggered. The 30.5 
Hz sampling frequency is slow enough to adequately debounce the joystick button inputs but is fast 
enough to keep with even the most avid game player.  
 
A 15 bit register is used for each axis to latch the count value when it’s  multivibrator returns to its 
stable state, and this count value will be a function of the joystick axis resistance (resistance being 
proportional to position). The CPU can read the status of the buttons or any of the 4 axes from the IO 
bus. Calibration of the joystick position information will be left up to software running on the CPU. 
 
Reading a joystick register through the IO bus interface returns an 8-bit value composed of the most 
significant 8-bits of the particular 15-bit joystick axis register. Reading the joystick button register 
across the IO bus returns the status of the four buttons in bits 0..3 of the 8-bit register. A zero indicates 
that a button is depressed. 
 
Refer to the joystick circuit in the schematic diagram section of this report to see how the joysticks are 
interfaced to the joystick controller. 
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Description of LED Controller 
 
The LED controller allows the CPU to control 16 individual LEDs and to display a data on 4 7-segment 
displays. The LED controller is connected to the IO bus and occupies four registers 8-bit registers: LED 
upper byte, LED lower byte, 7-seg upper byte, and 7-seg lower byte. 
 

Description of UART 
 
The UART is implemented as a full duplex single channel RS-232 UART without hardware flow 
control. The bit rate is fixed at 9600 BPS. The UART interfaces to the CPU via the IO Bus. The CPU 
can read and write the uart data register to read a received byte and to transmit a byte, respectively. The 
CPU can read the uart status register to see if the uart is ready to transmit and to see if a character has 
been received. A write of any value to the uart status register clears the RX flag bit. 
 
The uart is useful to the system programmer because it can be used to output debugging information, 
and to allow data input that can’t be done efficiently with the joystick. For example, a PC keyboard can 
be used for input to the gamecore system if connected to a PC’s serial port with a communications 
program open. 
 
The Digilent FPGA board has an on-board MAX chip for conversion between FPGA voltages and 
standard RS-232 voltage levels. 
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Gamecore Data Sheet 
 
 
Features 
 

• Integrated 16-bit CPU 
o 16-bit multiplier 
o Complete instruction set 
o Specialized video and IO instructions 
o Dedicated video and IO buses 
o Separate data and instruction memories (Harvard architecture) 

• Integrated sprite and rectangle VGA graphics generator unit 
o Layered graphics with support for transparency 
o Hardware sprite and rectangle generators 
o Fully parallel graphic generation with immunity to flickering 

• Internal SRAM for program code and data, graphic object properties, and bitmapped sprite 
graphics 

• Support for two standard PC joysticks 
• VGA monitor output 
• RS-232 serial port available to user programs 
• 16 individual LEDs and four 7-segment displays available to the programmer 

 

IO Pins 
 

Signal Description Direction FPGA Pin Connector 
Pin 

Total I/O 
Pins 

Colour(0) VGA Blue Bit 0 Output 16 A40  
Colour(1) VGA Blue Bit 1 Output 17 A39  
Colour(2) VGA Blue Bit 2 Output 18 A38  
Colour(3) VGA Green Bit 0 Output 20 A37  
Colour(4) VGA Green Bit 1 Output 21 A36  
Colour(5) VGA Green Bit 2 Output 22 A35  
Colour(6) VGA Red Bit 0 Output 23 A34  
Colour(7) VGA Red Bit 1 Output 24 A33  
Hsync VGA Horizontal Sync Output 27 A32  
Vsync VGA Vertical Sync Output 29 A31  
Clockin Clock signal Input 80 -  
Resetin Reset signal Input 77 -  
Dio2address(0) DIO2 address interface Output 59 A12  
Dio2address(1) DIO2 address interface Output 62 A9  
Dio2address(2) DIO2 address interface Output 61 A10  
Dio2address(3) DIO2 address interface Output 67 A7  
Dio2address(4) DIO2 address interface Output 63 A8  
Dio2address(5) DIO2 address interface Output 69 A5  
Dio2address(6) DIO2 address interface Output 68 A6  
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Dio2data(0) DIO2 data interface Output 41 A23  
Dio2data(1) DIO2 data interface Output 37 A24  
Dio2data(2) DIO2 data interface Output 43 A21  
Dio2data(3) DIO2 data interface Output 42 A22  
Dio2data(4) DIO2 data interface Output 45 A19  
Dio2data(5) DIO2 data interface Output 44 A20  
Dio2data(6) DIO2 data interface Output 47 A17  
Dio2data(7) DIO2 data interface Output 46 A18  
Dio2clkout DIO2 input clock Output 60 A11  
Dio2cs0 DIO2 chip select Output 49 A15  
Dio2oe DIO2 output enable Output 58 A13  
Dio2we Dio2 write enable Output 48 A16  
Joystickaxispins(0) Joystick 1, x-axis Input 174 C10  
Joystickaxispins(1) Joystick 1, y-axis Input 173 C11  
Joystickaxispins(2) Joystick 2, x-axis Input 172 C12  
Joystickaxispins(3) Joystick 2, y-axis Input 168 C13  
Joystickbuttonpins(0) Joystick 1, button 1 Input 167 C14  
Joystickbuttonpins(1) Joystick 1, button 2 Input 166 C15  
Joystickbuttonpins(2) Joystick 2, button 1 Input 165 C16  
Joystickbuttonpins(3) Joystick 2, button 2 Input 164 C17  
Joysticktriggerpin Joystick trigger Input 163 C18  

Total: 40 
 
 
Maximum Speed 
 
The maximum speed reported by the Xilinx tools was 53MHz. This equates to a minimum clock period 
of about 19 ns. 
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Resource Usage Measurements 
 
The resource usage for the completed design as reported by the Xilinx tools was as follows: 
 

Resource Usage Total Percent Usage 
4-input LUTS 3141 4707 67% 
Flip-flops 1256 4707 27% 
Slices 2350 2352 100% 
Tri-state Buffers 864 2464 35% 
IO Pins 40 140 29% 
Global Clock Buffers 3 4 75% 

 
The following data was collected by compiling various sub-components independently. Please note that 
the numbers are not indicative of the final design. 
  
GPU: 
 1446 slices 
 1785 LUTs 
 645 flip flops 
 352 tri-state buffers 
 
ALU: 
 226 slices 
 448 4-input LUTs 
 0 flip flops 
 
UART: 
 64 slices 
 84 4-input LUTs 
 71 flip flops 
 
VGA Timing Generator: 
 43 slices 
 67 4-input LUTs 
 26 flip flops 
 
Joystick Controller: 
 81 slices 
 23 4-input LUTs 
 79 flip flops 
 
GPU Block 
 160 slices 
 207 4-input LUTs 
 31 flip flops 
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Results of Experiments and Characterization 
 
Throughout the design process, many different things were tried. Some made it into the final design, 
while many experiments failed. Below is a summary of experiments conducted. 

 
Graphics Processing Unit 

Initially, the idea for the GPU was to keep everything as simple as possible.  Each graphics object 
would monitor row and column lines, comparing their values against internal ones in order to decide 
whether or not they should render the current pixel.  While the straight-forward nature of this approach 
was appealing, a few quick calculations showed that this design would require an exorbitant number of 
flip-flops in order to store all these comparison values.  While the current design can only practically 
support 24 graphics objects at once, it was estimated that the former design would support only 12. 
 
While an inefficient design in any normal situation would lead to a small loss in FPGA resources and is 
normally not worth the effort to correct, the special situation of the GPU magnifies the problem.  With 
24 graphics objects, there are a total of 96 down-counters which means a total of 288 shift counters.  It 
is easy to see that even a single extra look-up-table or flip-flop in any of these sub-component designs 
quickly grows to a much more significant waste when that design element is replicated. 
 
To that end, a good deal of thought and creativity was applied to the problem of designing an efficient 
graphics object property storage element that minimized the number of flip-flops used.  The result was 
a 12-bit down-counter with its own memory that consists of 11 look-up tables and one flip-flop.  The 
cost of this flip-flop savings is an increased complexity in the control logic used to control it, and the 
reliance on serial transmission of data instead of parallel.  The later does however cause the added 
bonus of significant savings on routing resources as fewer signals need to read each object.  Overall, 
this design was chosen so as to maximize the number of graphics objects that could fit in the FPGA 
while minimizing the number of flip-flops required for each. 
 

External SRAM 
External SRAM was a fundamental part of the initial Gamecore design. It was recognized that large 
amounts of memory would be desired for user program and data storage, and more importantly for 
storing large sprite graphics. The initial design included 256 KB of fast 10ns SRAM divided into two 
independent 16-bit wide memories of 128KB each. One memory was to be used for program and data 
storage, and the second was to be used for sprite video memory. 
 
SRAM chips were selected and ordered, and PC boards were manufactured through Alberta PC Board. 
Each board could handle two 44-pin J-Lead surface mount SRAM chips from Cypress Semiconductors. 
Each board interfaced to the Digilent FPGA board through a 40-pin header. The SRAM chips were 
very difficult to solder onto the boards because of their small pin pitch and the fact that the pads were 
small and could not be reached by the soldering iron because the leads of a J-Lead package curl under 
the chip. 
 
During testing of the RAM, it was discovered that one board had a short between power and ground 
that could not easily be repaired. The second board worked better, but only about half of it’s data pins 
functioned correctly. While a large supply of extra boards, chips, and headers was purchased, time did 
not permit more boards to be assembled, and redesign with internal FPGA block RAM’s was 
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necessary. This action limiting the available RAM to 7KB, and somewhat crippled the Gamecore 
design since 256 KB was originally planned for. 
 

Internal Block RAM 
The Xilinx Core Generator was a useful tool in configuring internal block RAM.  Once the SRAM size,  
data width, and read/write capabilities was determined, generating a chuck of SRAM could be 
performed in less than a minute.  An option to initialize the memory was also provided.  The function 
does experience a limitation, however.  The initialization data that is provide in the *.coe file must be 
the same size as the data width of port A.  Otherwise, the memory will either fail to generate or the 
initialization file cannot be read. 
 
The process of configuring block memory create quite a few files in the project directory.  As part of 
good housekeeping, moving these files to a subdirectory was tried, but the block memory failed to 
regenerate in the project.  Configuring block memory is separate projects was also tried, but also failed 
when added to the top level project.  Disadvantage of using block memory is therefore reduced capacity 
when compared to most externally connected SRAM and a large project directory that can easily wreak 
havoc on organization. 
 

Gray Code Counters  
Gray code was investigated with the goal of reducing signal lines between a few devices.  Since gray 
code changes only one bit for each consecutive count, perhaps a single bit could be transmitted as 
opposed to many bits for a count.  The savings in bits could be quite significant with a large count.  
Methods to convert between Gray code and binary were found and proved to execute correctly.  A 
method to determine the bit that changed for a count could not be found.  There did not seem to be a 
deterministic pattern to the way the gray code bits changed.  Efforts were abandoned in this area as it 
proved too difficult.  
 

Joystick Characterization and Calibration 
The joystick circuit was originally tested with a function generator and an oscilloscope before 
connecting to the FPGA. The function generator was set to supply a 30.5 Hz square wave to the trigger 
inputs of the monostable multivibrators, and the output pulse width was measured with respect to the 
joystick position. The 30.5 Hz trigger frequency mimicked the joystick controller which uses the same 
triggering and sampling frequency. 
 
The capacitor values were adjusted until a good range of output pulse widths was obtained. A duty-
cycle swing of about 0% to 80% was set. Once the circuit was thus calibrated, measurements were 
taken which showed that the pulse width was indeed directly proportional to the joystick position. 
 
Some non-ideal behaviours of the joystick circuit were discovered. One of these non-ideal behaviours 
was the jittering of the measured values. This jittering can at least in part be due to the mechanical 
nature of the joystick potentiometer. Another non-ideal behaviour was that the resistance of the joystick 
dropped off to zero for the last 10% of motion. Since precise analog control of the joystick position is 
not needed, the joystick input can be cleaned up in software by quantizing to a small set of possible 
input values. 
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Externally provided HDL components 
 
Xilinx Cores were used to implement the multiplier, divider, and the block RAMs. A 16-bit 
combinational multiplier has been added to the CPU, and it has been verified to work properly at 
25MHz (our system clock frequency) by having the CPU multiply a series of numbers an then display 
the results on the seven segment displays. The RAMs were tested independently in hardware, and also 
during the test of the multiplier since, in the process, the CPU was reading instructions out of RAM.  
 
These components have been verified, and it is easily concluded that these components are suitable for 
the design. Xilinx Cores were used partly to save time, and partly to meet the requirement of using 
externally provided HDL components. 
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Data Sheets 
 
The only external integrated circuit used was a 74LS123 retrigerable monostable multivibrator. This 
chip was used in the joystick circuit to convert the joystick position (resistance) into a pulse width. 
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 Diagram of Design Hierarchy 
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Diagram of CPU Hierarchy 
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Diagram of Memory Hierarchy 
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Index to VHDL packages and code 
 
 

PACKAGE / COMPONENT and DESCRIPTION STATUS 
Package pigme_types 
 Package containing common data types and constants 

Compiled – No errors (types 
and constants package) 

Component pipeline_reg 
 Pipeline registers 

Compiled – Tested 

Component Gamecore 
 Gamecore project top-level 

Compiled – Tested 

Package memory_pkg 
 Package of block ram components 

Compiled – No errors 

Component Adder 
 N-bit adder 

Compiled – Tested 

Package dio2_pkg 
 Package with  body to connect to IO Board LEDs 

Compiled – No errors 

Package io_bus_pkg 
 Package of all IO bus components 

Compiled – No errors 

Component io_bus 
 IO bus components 

Compiled – Tested 

Package joystick_pkg 
 Package and body of joystick controller 

Compiled – No errors 

Package uart_pkg 
 Package and body of serial port 

Compiled – No errors 

Package barrel_shift_pkg 
 Barrel Shifter package 

Compiled – No errors 

Component barrel_shift 
 Barrel Shifter 

Compiled – Tested 

Package branch_unit_pkg 
 Branch unit package 

Compiled – No errors 

Component branch_unit 
 Branch unit 

Compiled – Tested 

Package cpu_controlsection_pkg 
 CPU control path package 

Compiled  – No Errors 

Component cpu_controlsection 
 CPU control path definition 

Compiled – Tested 

Package cpu_pkg 
 CPU architecture interface 

Compiled – No errors 

Component cpu 
 CPU architecture 

Compiled – Tested 

Package decoder4_16_pkg 
 Four to 16 bit address decoder, recognized and optimized 
 by the Xilinx tools 

Compiled – No Errors 

Package inst_decode_pkg 
 CPU instruction decoder package 

Compiled – No errors 

Component inst_decode 
 CPU instruction decoder 

Compiled – Tested 

Package inst_exec_pkg 
 CPU instruction execution package 

Compiled – No errors 
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Component inst_exec 
 CPU instruction execution 

Compiled – Tested 

Package inst_fetch_pkg 
 CPU instruction fetch package 

Compiled – No errors  

Component inst_fetch 
 CPU instruction fetch 

Compiled – Tested 

Package io_unit_pkg 
 Handler of reads and writes to I/O bus 

Compiled – No errors 

Component io_unit 
 Handler of reads and writes to I/O bus 

Compiled – Tested 

Package load_store_pkg 
 CPU reads/writes to memory  package 

Compiled – No errors 

Component load_store 
 CPU reads/writes to memory 

Compiled – Tested 

Package register_file_pkg 
 CPU Register File package 

Compiled – No errors 

Component register_file  
 CPU Register File  

Compiled – Tested 

Package register_pkg 
 Various CPU register types 

Compiled – No errors 

Component register 
 Various CPU register types 

Compiled – Tested 

Package shift_unit_pkg 
 Shift unit package 

Compiled – No errors 

Component shift_unit 
 Shift unit package 

Compiled – Tested 

Package alu_pkg 
 ALU for PIGME CPU 

Compiled – No errors 

Component back_layer 
 Background generator 

Compiled – Tested 

Component counter_sin_pout 
 N-bit counter with serial input and parallel output 

Compiled – Tested 

Component down_counter 
 12 bit down counter 

Compiled – Tested 

Component gpu_block 
 Block of GPU objects 

Compiled – Tested 

Component gpu_layer 
 Layer of GPU blocks 

Compiled – Tested 

Component gpu_object 
 GPU Graphics Object 

Compiled – Tested 

Component gpu 
 GPU top level 

Compiled – Tested 

Component joystick 
 Joystick interface 

Compiled – Tested 

Component rect_layer 
 Layer of Rectangle Generators 

Compiled – Tested 

Component shift_counter 
 4-bit shift counter 

Compiled – Tested 

Component sprite_layer 
 Layer of sprite generators 

Compiled – Tested 
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Component vga_port 
 VGA port 

Compiled – Tested 

Component vgaTimeGen 
 Provides VGA timing signals. 

Compiled – Tested 
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VHDL Design 
 
 
VHDL Code not available in the electronic version of this report. 
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Test Bench Documentation 
 
 

Test Bench / Simulation index 
Pipeline_reg_tb 
 Test pipeline for correct delay 
Io_bus_tb 
 Test register file registers and verifies correctness 
Barrel_shift_tb 
 Verifies correct rotation of bits 
Cpu_controlsection_tb 
 Test the proper operation of the cpu control section in 
conjunction with the instruction fetch and decode stages as well 
as the ALU and move unit. 
Cpu_tb 
 Test the top level CPU interface by reading in an assembly 
program and verifying that the CPU writes the correct data back 
to the register file and data memory. 
Inst_decode_tb 
 Test the proper loading of the operand 1 and operand 2 
registers from either the register file or memory. Also the 
loading of the branch target register is tested. 
Inst_fetch_tb 
 Test the PC, PC incrementer, and instruction register (IR) 
Register_file_tb 
 Test the register file reads and writes 
Shift_unit_tb 
 Test the various types of shift operations in both 
directions. 
Down_counter_tb 
 12-bit down counter test bench 
Gpu_object_tb 
 Test a gpu object’s ability to draw itself 
Shift_counter_tb 
 Shift counter test bench 
Vga_time_gen_tb 
 Test VGA timing generation of signals 

 
 
For the register file (register_file_tb.vhd) the following scenarios were tested: 
Each register’s index value (or register address) will be written to that register, than some small amount 
of time later it is verified that the register does indeed contain the correct value. This value is output on 
both read ports of the register value. Of course, the constant registers cannot be written to and will 
always output all ones or all zeros. A special signal must be asserted for the temp register, since this 
temp register will be written to in parallel with another 16-bit ALU output. 
Then to verify that two different registers can each write to one of the read ports, another loop is 
executed in which the register at index and index+1 each output their index value on one of the read 
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ports. Finally the functionality of the temp register is verified by writing to the temp register at the 
same time as one of the other general-purpose registers is written to. 
The worst delay in the register counter is 12.166 ns between the register select value change and the 
constant register 0. To reduce the delay it is possible to exchange the tri-state output but for a pair of 
256 to 16 multiplexers for the read ports, however this would increase the area used tremendously and 
likely yields only small timing gains, if any. 
 
 
For the instruction fetch unit another test bench is written (inst_fetch_tb.vhd). 
In this test bench a limited number of CPU fetch cycles are simulated. Initially, a reset signal is sent 
and it is verified that the PC and IR reset properly. 
After the reset, a few CPU fetch cycles are simulated in which the PC is incremented and sent down the 
address bus to the instruction memory to fetch an instruction. After the address has been put on the 
memory address bus, a value is put on the data bus and this is latched into the instruction register. It is 
then verified that the value put on the data bus matches the value in the instruction register. 
Finally, it is verified that when a branch succeeds, the branch target register value is loaded into the PC 
instead of an increment of the previous address. 
Inside the instruction fetch unit, the critical path lies between the PC output and the PC input through 
the adder and multiplexer. However, once the unit is connected to the memory controller, the time 
between putting the PC value on the address bus and waiting for the result will likely be the path of 
longest delay as the instruction fetch unit must wait for the memory controller data bus signal to 
stabilize. 
 
The instruction decode unit contains the register file. A test bench (inst_decode_tb) somewhat similar 
to the register file test bench was created, in that the operand registers are each loaded from each 
register from the file register. Also, loading from the instruction bus into the operand register is tested. 
It is also verified that the branch target register properly loads when it is enabled. 
The worst delay in the instruction decode is 16.696 ns; the critical path lies between the register select 
value change and the corresponding change in the register read port. There is little one can do to speed 
this up, since most of the delay is due to the register file. The change from a tri-state bus to the 
multiplexer based approach to speed up the register file read cycles can be used to increase the speed of 
this part of the circuit. However, since our clock period is 40ns, there is no real need to speed up this 
circuit, and area constraints are a bigger concern than speed concerns. 
 
Because simulating the control unit separately takes more effort than simulating it as part of the CPU, it 
was decided to connect the instruction decode, instruction fetch, ALU and move unit all in one test 
bench. This has the added bonus that all the signals between the units are clearly visible and can be 
inspected. A sample instruction stream is provided to verify that the control section advances from state 
to state properly. Meanwhile, the functionality of the CPU as a whole is also tested. The interaction 
between the different components of the CPU is also confirmed when testing in this manner. The 
instructions supplied to the CPU can be found in the test bench file cpu_controlsection_tb.vhd. 
 
To verify that the barrel shifter operated correctly, an input bit vector was generated and shifted from 0 
through 15 bits to the left in a test bench (barrel_shift_tb.vhd). The barrel shifter’s output is compared 
with the VHDL ROL operator some time after new inputs have been applied. The critical path in the 
barrel shifter is from a change in the most significant bit in the bit vector specifying the number of bits 
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to be shifted to the least significant bit in the shifter’s output. The critical path delay is 17.063 ns, but 
cannot be improved upon. The generic barrel shifter was compared to a design that the Xilinx tools 
recognize and optimize, and their logic and delay characteristics are identical. 
 
To verify that the shift unit operates correctly, all possible shift and rotate instructions are tested in both 
directions. All the different shift instructions are put through a test in which their inputs are shifted 
from 0 to 15 bits. The output for each shift and rotate instruction is then compared to the corresponding 
VHDL operator’s output for the same input data (shift_unit_tb.vhd). 
 
The most important part of the simulation is the verification of the top level CPU entity. In order to 
facilitate proper testing of the CPU, the following signals are passed through the top-level entity for 
testing purposes only: temp register data and enable, general purpose register select and data and the 
current instruction register value. The test bench starts out by reading in the ASCII instruction and data 
memory files. It parses the instruction streams and stores them in internal arrays for instruction and data 
memory. After completing reading in the program, it asserts the reset signal for a few clock cycles, and 
then commences simulating the program. To verify that the CPU is operating correctly, the test bench 
simulates the CPU instructions itself. The test bench contains a simulated register file, as well as the 
simulated instruction and data memory values read in at the start of the simulation. As the CPU 
executes instructions and writes them to the register file and data memory, the test bench monitors the 
outputs, and catches any errors in the address and data busses to the register file and data memory. This 
approach to testing the CPU allows for thorough verification of the CPU’s operation. An added 
advantage is that the programmer can debug their program in hardware simulation and determine 
whether the problem they are debugging is due to faulty hardware or a fault in their software (this 
becomes problematic, however, for programs that execute for more than a few hundred cycles 
however). There are two sets of waveforms included for this test bench, one simulating the video 
instructions and one simulating a variety of instructions. 
 
 
For the GPU object testbench (gpu_object_tb.vhd), the main testing strategy consisted of loading a set 
of properties into the object using the timing generator’s protocol, then observing whether or not it 
behaved correctly.  Namely, the object should not display itself when it is not supposed to, it should 
always display itself when it is supposed to, and it should always display itself correctly.  By 
positioning the object in the center of a small rectangular simulated screen, the object’s ability to 
identify when it should render itself and in what colour was verified. 
 
 
For the VGA timing generator testbench, (vga_time_gen_tb.vhd), the main strategy was simulate 
memory values for the generator’s serial read requests of bits, then observe that all the correct timing 
and control signals were generated.  While this approach is very thorough, it does take an extremely 
large amount of time to simulate a frame of video elapsing.  However, after much waiting, it was 
observed that not only did the timing generator produce the appropriate sync and disable signals for 
VGA, it also effectively made use of dead-times in between retraces in order to update the memory 
values of every graphics object. 
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Schematics 
 

Joystick Schematic 
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 Instruction Set 
ADD 

Signed Addition 

Operation: rd ← rs1 + rs2 

Syntax: ADD rd, rs1, rs2 

Description: Adds rs2 to rs1 and stores the result in rd. 

Notes: Overflow and Borrow are ignored. 

AND 
Bitwise AND 

Operation: rd ← rs1 & rs2 

Syntax: AND rd, rs1, rs2 

Description: Stores the bitwise AND of rs1 and rs2 in rd. 

Notes: none 

ASL 
Arithmetic Shift Left 

Operation: rd ← rd << rs 

Syntax: ASL rd, rs 

Description: Bit shifts rd to the left by the number of bits in rs, storing the result in rd.  Each most 
significant bit shifted out of rd slides the remaining bits to the left by one, replacing the 
least significant bit with 0. 

Notes: Overflow is ignored.  rd is undefined if [rs] is negative. 

1000 rs2 rs1 rd 
15 12 11 8 7 4 3 0

0111 rs rd 0010 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0 

1100 rs2 rs1 rd 
15 12 11 8 7 4 3 0
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ASR 
Arithmetic Shift Right 

Operation: rd ← rd >> rs 

Syntax: ASR rd, rs 

Description: Bit shifts rd to the right by the number of bits in rs, storing the result in rd.  Each least 
significant bit shifted out of rd slides the remaining bits to the right by one, leaving a 
copy of the most significant bit in place. 

Notes: Borrow is ignored.  rd is undefined if [rs] is negative. 

BEQ 
Branch On Equal 

Operation: if rs1 = rs2 then pc ← addr 

Syntax: BEQ rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 and rs2 are both the same value. 

Notes: addr is specified as a label which is resolved by the assembler. 

BG 
Branch On Greater Than 

Operation: if rs1 > rs2 then pc ← addr 

Syntax: BG rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 is greater than rs2.   

Notes: addr is specified as a label which is resolved by the assembler. 

0111 rs rd 0011 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0100 rs2 rs1 0010 
15 12 11 8 7 4 3 0

0100 rs2 rs1 0111 
15 12 11 8 7 4 3 0
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BGE 
Branch On Greater Than Or Equal To 

Operation: if rs1 >= rs2 then pc ← addr 

Syntax: BGE rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 is greater than or equal to rs2.   

Notes: addr is specified as a label which is resolved by the assembler. 

BL 
Branch On Less Than 

Operation: if rs1 < rs2 then pc ← addr 

Syntax: BL rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 is less than rs2.   

Notes: addr is specified as a label which is resolved by the assembler. 

BLE 
Branch On Less Than Or Equal To 

Operation: if rs1 <= rs2 then pc ← addr 

Syntax: BLE rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 is less than or equal to rs2.   

Notes: addr is specified as a label which is resolved by the assembler. 

0100 rs2 rs1 0100 
15 12 11 8 7 4 3 0

0100 rs2 rs1 0101 
15 12 11 8 7 4 3 0

0100 rs2 rs1 0110 
15 12 11 8 7 4 3 0
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BN 
Branch On Negative 

Operation: if rs < 0 then pc ← addr 

Syntax: BN rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is negative. 

Notes: addr is specified as a label which is resolved by the assembler. 

BNE 
Branch On Not Equal 

Operation: if rs1 != rs2 then pc ← addr 

Syntax: BNE rs1, rs2, addr 

Description: Branches to the address specified in the next word following the current instruction if 
rs1 and rs2 are different values. 

Notes: addr is specified as a label which is resolved by the assembler. 

BNN 
Branch On Not Negative 

Operation: if rs >= 0 then pc ← addr 

Syntax: BNN rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is not negative. 

Notes: addr is specified as a label which is resolved by the assembler. 

0100 rs2 rs1 0011 
15 12 11 8 7 4 3 0

0100 rz rs 0110 
15 12 11 8 7 4 3 0

0100 rz rs 0101 
15 12 11 8 7 4 3 0
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BNP 
Branch On Not Positive 

Operation: if rs <= 0 then pc ← addr 

Syntax: BNP rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is not positive. 

Notes: addr is specified as a label which is resolved by the assembler. 

BNZ 
Branch On Non Zero 

Operation: if rs != 0 then pc ← addr 

Syntax: BNZ rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is non zero. 

Notes: addr is specified as a label which is resolved by the assembler. 

BP 
Branch On Positive 

Operation: if rs > 0 then pc ← addr 

Syntax: BP rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is positive. 

Notes: addr is specified as a label which is resolved by the assembler. 

0100 rz rs 0011 
15 12 11 8 7 4 3 0

0100 rz rs 0111 
15 12 11 8 7 4 3 0

0100 rz rs 0100 
15 12 11 8 7 4 3 0
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BR 
Unconditional Branch 

Operation: pc ← addr 

Syntax: BR addr 

Description: Unconditionally branches to the address specified in the next word following the current 
instruction. 

Notes: addr is specified as a label which is resolved by the assembler. 

BSR 
Branch to Subroutine 

Operation: (sp)++ ← pc; pc ← addr 

Syntax: BSR addr 

Description: Unconditionally branches to the address specified in the next word following the current 
instruction.  A subsequent RTS instruction returns execution to the instruction following 
the BSR. 

Notes: addr is specified as a label which is resolved by the assembler. 

BVD 
Branch On Video Drawing 

Operation: if ‘video is drawing’ then pc ← addr 

Syntax: BVD addr 

Description: Branches to the address specified in the next word following the current instruction if the 
video unit is busy redrawing the screen and cannot accept new parameters. 

Notes: addr is specified as a label which is resolved by the assembler.  Video object properties 
should only be changed when the video is not drawing. 

0100 ---- ---- 0000 
15 12 11 8 7 4 3 0

0100 ---- ---- 1000 
15 12 11 8 7 4 3 0

0100 ---- ---- 1100 
15 12 11 8 7 4 3 0
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BZ 
Branch On Zero 

Operation: if rs = 0 then pc ← addr 

Syntax: BZ rs, addr 

Description: Branches to the address specified in the next word following the current instruction if rs 
is zero. 

Notes: addr is specified as a label which is resolved by the assembler. 

CLR 
Clear All Register Bits 

Operation: r ← 0x0000 

Syntax: CLR r 

Description: Clears all of the specified register’s bits (sets the register to zero). 

Notes: none 

DEC 
Signed Decrement By 1 

Operation: r ← r - 1 

Syntax: DEC r 

Description: Decrements r by 1 and stores the result back into r. 

Notes: Borrow is ignored. 

1000 rn r r 
15 12 11 8 7 4 3 0

0100 rz rs 0010 
15 12 11 8 7 4 3 0

0101 rz r 0 
15 12 11 7 4 3 0

000 
10 8 
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DIV 
Signed Division 

Operation: rd ← rs1 / rs2 rt ← rs1 % rs2 

Syntax: DIV rd, rs1, rs2 

Description: Divides rs2 into rs1, placing the 16 bits result in rd.  The 16 bit remainder is placed in 
the temporary register rt. 

Notes: This instruction modifies rt.  Therefore rd cannot be rt. 

INC 
Signed Increment By 1 

Operation: r ← r + 1 

Syntax: INC r 

Description: Increments r by 1 and stores the result back into r. 

Notes: Overflow is ignored. 

1011 rs2 rs1 rd 
15 12 11 8 7 4 3 0

1001 rn r r 
15 12 11 8 7 4 3 0
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LOAD 
Register or Memory Transfer to Register 

Operation: rd ← rs rd ← (rs) rd ← as rd ← #is 

Syntax: LOAD rd, rs LOAD rd, as 

 LOAD rd, (rs) LOAD rd, #is 

Description: Moves a 16 bit value from source to the destination register using one of the following 
effective addressing modes: 

Code Mnemonic Name Description 

0b000 rs Register Direct Source is the register specified by rs. 

0b001 (rs) Register Indirect Source is at the memory address contained in the register 
specified by rs. 

0b010 as Absolute Address Source is the memory address specified in the syntax 
instead of a register. 

0b011 #is Immediate Value Source is the immediate 16 bit constant specified in the 
syntax instead of a register, prefixed by a ‘#’. 

0b1?? n/a Reserved Reserved for future implementation 

Source Effective Addressing Modes 

 If absolute addressing or immediate value is used, the next word following the current 
instruction is that absolute memory address or immediate value.  Whenever an 
addressing mode requiring an additional 16 bit argument is used, the contents of the rs 
register field is undefined. 

Notes: none 

0101 rs rd 0 
15 12 11 7 4 3 0

sea 
10 8 
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LSL 
Logical Shift Left 

Operation: rd ← rd << rs 

Syntax: LSL rd, rs 

Description: Bit shifts rd to the left by the number of bits in rs, storing the result in rd.  Each most 
significant bit shifted out of rd slides the remaining bits to the left by one, replacing the 
least significant bit with 0. 

Notes: Overflow is ignored.  rd is undefined if [rs] is negative. 

LSR 
Logical Shift Right 

Operation: rd ← rd >> rs 

Syntax: LSR rd, rs 

Description: Bit shifts rd to the right by the number of bits in rs, storing the result in rd.  Each least 
significant bit shifted out of rd slides the remaining bits to the right by one, replacing 
the most significant bit with 0. 

Notes: Borrow is ignored.  rd is undefined if [rs] is negative. 

MULT 
Signed Multiplication 

Operation: rt:rd ← rs1 * rs2 

Syntax: MULT rd, rs1, rs2 

Description: Multiplies rs2 and rs1, placing the lower 16 bits of the result in rd.  The upper 16 bits 
of the result are placed in the temporary register rt. 

Notes: This instruction modifies rt.  Therefore rd cannot be rt. 

1010 rs2 rs1 rd 
15 12 11 8 7 4 3 0

0111 rs rd 0000 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0 

0111 rs rd 0001 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0 
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NEG 
2’s Compliment Negation 

Operation: rd ← -rs 

Syntax: NEG rd, rs 

Description: Stores the 2’s compliment negation of rs in rd. 

Notes: none 

NOP 
No Operation 

Operation: none 

Syntax: NOP 

Description: Causes the microprocessor to wait for one clock cycle. 

Notes: none 

NOT 
Bitwise NOT 

Operation: rd ← ~rs 

Syntax: NOT rd, rs 

Description: Stores the bitwise NOT of rs in rd. 

Notes: none 

 

0000 ---- ---- 0000 
15 12 11 8 7 4 3 0

1110 rn rs rd 
15 12 11 8 7 4 3 0

1001 rs rz rd 
15 12 11 8 7 4 3 0
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OR 
Bitwise OR 

Operation: rd ← rs1 | rs2 

Syntax: OR rd, rs1, rs2 

Description: Stores the bitwise OR of rs1 and rs2 in rd. 

Notes: none 

PIN 
I/O Bus Port Input 

Operation: rd ← port(rp) 

Syntax: PIN rp, rd 

Description: Reads a word from the I/O port whose id is in rp, storing it in rd. 

Notes: Undefined if rp contains an invalid I/O port id. 

POUT 
I/O Bus Port Output 

Operation: port(rp) ← rs 

Syntax: POUT rp, rs 

Description: Writes the word stored in rs to the I/O port whose id is in rp. 

Notes: Undefined if rp contains an invalid I/O port id. 

1101 rs2 rs1 rd 
15 12 11 8 7 4 3 0

0010 rd rp 0000 
15 12 11 8 7 4 3 0

0010 rs rp 0001 
15 12 11 8 7 4 3 0
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ROTL 
Rotate Left 

Operation: rd ← rd Q rs 

Syntax: ROTL rd, rs 

Description: Bit rotates rd to the left by the number of bits in rs, storing the result in rd.  Each most 
significant bit rotated out of rd slides the remaining bits to the left by one, and is put 
back into the least significant bit. 

Notes: Overflow is ignored.  rd is undefined if [rs] is negative. 

ROTR 
Rotate Right 

Operation: rd ← rd P rs 

Syntax: ROTR rd, rs 

Description: Bit rotates rd to the right by the number of bits in rs, storing the result in rd.  Each 
least significant bit rotated out of rd slides the remaining bits to the right by one, and is 
put back into the most significant bit. 

Notes: Borrow is ignored.  rd is undefined if [rs] is negative. 

RTS 
Return from Subroutine 

Operation: pc ← --(sp) 

Syntax: RTS 

Description: Returns execution to the instruction following the last BSR instruction. 

Notes: addr is specified as a label which is resolved by the assembler.  Undefined behaviour if 
there was no matching BSR instruction. 

0111 rs rd 0100 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0111 rs rd 0101 
15 12 11 8 7 4 3 0

rd 
14 1 15 0 

0100 ---- ---- 1001 
15 12 11 8 7 4 3 0
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STOP 
Stop Program Execution 

Operation: halt processor 

Syntax: STOP 

Description: Causes the microprocessor to stop executing instructions.  This the normal method for 
terminating a program cleanly 

Notes: Any instructions after a STOP instruction will not be executed. 

STORE 
Register Transfer to Register or Memory 

Operation: rd ← rs (rd) ← rs ad ← rs 

Syntax: STORE rd, rs STORE (rd), rs STORE ad, rs 

Description: Moves a 16 bit value from the source register to the destination using one of the 
following effective addressing modes: 

Code Mnemonic Name Description 

0b000 rd Register Direct Destination is the register specified by rd respectively. 

0b001 (rd) Register Indirect Destination is the memory address contained in the 
register specified by rd. 

0b010 ad Absolute Address Destination is the memory address specified in the syntax 
instead of a register. 

0b011 n/a Invalid Invalid addressing mode 
0b1?? n/a Reserved Reserved for future implementation 

Destination Effective Addressing Modes 

 If absolute addressing is used, the next word following the current instruction is that 
absolute memory address.  Whenever an addressing mode requiring an additional 16 bit 
argument is used, the contents of the rd register field is undefined. 

Notes: none 

0000 ---- ---- 0001 
15 12 11 8 7 4 3 0

0101 rs rd 1 
15 12 11 7 4 3 0

dea 
10 8 
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SUB 
Signed Subtraction 

Operation: rd ← rs1 - rs2 

Syntax: SUB rd, rs1, rs2 

Description: Subtracts rs2 from rs1 and stores the result in rd. 

Notes: Overflow and Borrow are ignored. 

VBP 
Set Video Object Bottom Position 

Operation: video(rv).bottom ← rs 

Syntax: VBP rv, rs 

Description: Sets the bottom position of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or 
shape, or if the value of rs is outside the valid range of the screen. 

VC 
Set Video Object Colour 

Operation: video(rv).colour ← rs 

Syntax: VC rv, rs 

Description: Sets the color of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, if the value of rs is outside the valid 
range of colours, or if the target object is not a shape or the background. 

1001 rs2 rs1 rd 
15 12 11 8 7 4 3 0

0011 rs rv 0011 
15 12 11 8 7 4 3 0

0011 rs rv 0100 
15 12 11 8 7 4 3 0
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VD 
Disable Video Object 

Operation: video(rv).disable() 

Syntax: VD rv 

Description: Disables the video object whose id is in rv. 

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite 
or shape. 

VE 
Enable Video Object 

Operation: video(rv).enable() 

Syntax: VE rv 

Description: Enables the video object whose id is in rv. 

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite 
or shape. 

VI 
Set Video Object Image Address 

Operation: video(rv).image ← rs 

Syntax: VI rv, rs 

Description: Sets the image address of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite. 

0011 rs rv 0101 
15 12 11 8 7 4 3 0

0011 ---- rv 1000 
15 12 11 8 7 4 3 0

0011 ---- rv 1001 
15 12 11 8 7 4 3 0
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VLP 
Set Video Object Left Position 

Operation: video(rv).left ← rs 

Syntax: VLP rv, rs 

Description: Sets the left position of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or 
shape, or if the value of rs is outside the valid range of the screen. 

VRP 
Set Video Object Right Position 

Operation: video(rv).right ← rs 

Syntax: VRP rv, rs 

Description: Sets the right position of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or 
shape, or if the value of rs is outside the valid range of the screen. 

VTP 
Set Video Object Top Position 

Operation: video(rv).top ← rs 

Syntax: VTP rv, rs 

Description: Sets the top position of the video object, whose id is in rv, to the value stored in rs. 

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or 
shape, or if the value of rs is outside the valid range of the screen. 

0011 rs rv 0000 
15 12 11 8 7 4 3 0

0011 rs rv 0001 
15 12 11 8 7 4 3 0

0011 rs rv 0010 
15 12 11 8 7 4 3 0
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XOR 
Bitwise XOR 

Operation: rd ← rs1 ⊕  rs2 

Syntax: XOR rd, rs1, rs2 

Description: Stores the bitwise XOR of rs1 and rs2 in rd. 

Notes: none 

1110 rs2 rs1 rd 
15 12 11 8 7 4 3 0


