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Declaration of Original Content
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Joystick Circuit based on circuit from Epanorama.net

Accessed http://ww.epanorama.net/documents/joystick/pc joystick.html. February 18, 2003
VGA timing caculator spreadsheet from VESA
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Abstract

Imagine being able to St down for an evening and develop a classic video game with nothing more than
sample sprites and assembly language. Imagine being able to play that same game on a common
computer monitor in resolutions higher than most consoles without fear of losses in frame rates when
the action heats up. Imagine sharing your creations with your friends, and going head to head in some
two player action. Think thisisal too good to be true? Wdll, this project is here to prove you wrong.

Gamecore dlassicisdl thisand more. It isacustom CPU with an integrated sprite and rectangle
graphics unit programmed into a Xilinx Spartan 11 FPGA. The console supports two joysticks and
displays 60Hz graphics on a standard VGA monitor. And best of dl, it ships standard with a powerful
and flexible assembler for creating your own games using your PC.
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Achievements
Designed and implemented a 16-bit CPU from scratch.
Created a powerful assembler for the PIGME CPU.
Created a graphics processor unit capable of displaying sprites and rectangleson aVGA
monitor.
Successfully interfaced to a stlandard PC joystick
Produced a printed circuit board for 256K B of external 10ns SRAM. Difficultiesin soldering
the surface mount J-Lead packages prevented the use of this SRAM and internd block ram was
ubstituted.
Scaable design makes use of many congtants and type declarations to alow for increased
performance in larger FPGAs and for reduced performance in smaller FPGAS.
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Description of Operation

System Overview

The main ideafor the GAME CORE system was to offer asmple video game system, primarily
tallored for 2D games like those seen on early gaming consoles of the 1980s. Red time arcade games
can be written for the system using a straightforward assembly language.

The gamecore system uses two standard PC joysticks for input, and outputs graphics to a standard
VGA monitor. A set of LEDs and a seven-segment display is available for displaying scores and for
debugging programs. An RS-232 UART is avallabdleto ad in program debugging. A reset button has
also been included.

The system is composed of the following units:

Custom 16-bit Central Processing Unit (CPU).
ALU
Regiger File
Control Section

Custom VGA Graphics Processing Unit (GPU) capable of gprite and rectangle generation.
VGA timing generator

Memory Unit based on internd SRAM implementing independent memories.
Program and data storage
Graphics object property storage
Sprite graphics data

IO Bus
Joystick controller
LED and 7- Segment Display controller
UART for serid communications



Game CoreClassic

The gamecore top-levd diagram is shown below in figure 1.1.
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Figure 1.1: Gamecore Top Level

The CPU has been designed completely from scratch for use in the Gamecore system. It hasthe
followi ng groups of indructions

Integer arithmetic (add, subtract, multiply, divide)

Graphic co-processor: Rectangle and Sprite generation and modification

I/0 Bus: In Port and Out Port to peripherd devices

Load, Store

Unconditiona Branch, Branch on condition

Branch to subroutine, return from subroutine

Boolean: AND, OR, XOR, NOT, negate (2's complement)

Bit-wise: Arithmetic and Logica Shifting, Rotates

No operation (NOP)

Stop to halt the CPU

The CPU operates solely on 16 hit quantities, this means that instruction opcodes, SRAM addresses,
SRAM dataare dl 16 bit quantities (whether RAM is actudly present is another issue). To smplify the
CPU dedign, the CPU is not pipdined. A non-pipelined CPU reduces the ingtructions per clock cycle,
but snce the graphics co-processor performs many of the graphics functions, a high throughput CPU is
not required. The main task of the CPU will be handling user input and updating graphics objects on

the graphics co-processor. A branch to subroutine and return from subroutine cdl isimplemented using

a hardware-based stack for return addresses. It is not possible for the programmer to get or set the value
of the program counter, so no software stack can be implemented on our CPU.
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The CPU communicates with the graphics co- processor through a dedicated video bus. The graphics
co-processor has support for sprites, rectangle objects, and a background color. The sprites and
rectangles can have their properties updated by the CPU. Their list of propertiesincludesx and 'y
coordinates of the left, right, top, and bottom edges, aswell as color for rectangles and video memory
base address for sprites. Sprites and rectangles are assigned to one of 4 graphics layers. Objectsin
higher layers are drawn over top of objectsin lower layers. Additiondly, one color has been assigned
as trangparent and will alow objectsin lower layers to show through.

The graphics controller runs at afairly high speed compared to the CPU to ensure that the screen gets
refreshed frequently. A standard 640x480 pixel VGA display is drawn at 60Hz, with each pixd
encoded as 8 bits. The VGA connector on the Digilent 10 board is hard wired with 3 bits of blue, 3 bits
of green, and 2 bits of red. The graphics controller is a pipeined highly parale graphics processor.

The CPU communicates with the dower 1/0 devices through asmple 1/0 bus. Attached to the 1O bus
isajoystick contraller, an RS-232 serid port, and an LED and 7-segment display controller. 1/O isnot
memory mapped. The I/O busis accessed using specia opcodes. PIN and POUT, which act much like
load and store, with the exception being that both the address and data bus for the 1/0 bus are not as
wide asthe SRAM busses.
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Figure 1.2 shows a high-leve internd system block diagram.
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Figure 1.2 — High Levd Internal System Block Disgram
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Instruction Set

The PIGME ingruction set load and store architecture is based on operations with 16 bit, signed 2's
compliment quantities. For this reason, the term “word” will be used to denote a 16 bit quantity for the
remainder of this specification. All operaionsinvolve register to register transactions except for loads
and stores, which can involve data memory or immediate vaues.

Regigers
There are atota of sixteen 16 hit registers defined by PIGME, with the following mnemonics:

r 0 through r 12 are genera purpose registers

rt isatemporary generd purpose register modified by certain operations
r z isaread-only register hard-wired to 0x0000 (decimd 0)

r n isaread-only register hard-wired to Ox FFFF (decimd - 1)

Theuseof r z andr n as hard-wired congtants not only alows access to the two most used
program constants without the overhead of a LOAD immediate beforehand, it dso dlows the assembler
to provide aricher assortment of ingtructions like CLR and | NC without the addition of any new op
codes or hardware. The savingsin op codesis particularly important as instruction words are of limited
gze

Memory
PIGME supplies separate ingtruction and data memories for both expanded memory space and

added security.  Ingtruction fetching and branching automaticaly refer to instruction memory, while
load and store operations automeaticaly refer to data memory, preventing a program from modifying its
own code.

Both instruction and data memory consist of 2° = 65536 addressable words. Thereisno
concept of a“byte” or “long word”, snce memory quantities are dways 16 bit words. This means that
PIGME is endian independent.

Ingructions
Each PIGME ingtruction word (16 bits) can be divided into four 4 bit fields conssting of:
an operation code specifying the ingtruction or ingruction type
an ingruction defined fidd
aregider identifier field
another register identifier field, which may or may not be used

0 3 4 7 8 11 12 15
Op Code Ingt. Defined Regigter Regigter

General Instruction Word For mat

Op codes and the indruction defined fidlds are listed dong with each indruction in the
indruction reference. Registers are aways encoded in the following manner:
r 0 through r 12 as 0x0 through 0xC (0b0000 through 0b1100)

rt asOxD(0b1101)

-10 -
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rz asOxE (0b1110)
rn asOxF (Ob1111)

Only the LOAD and STORE indructions involve effective addressng modes, al other operations
act onregigers. A lig of the effective addressng modes can be found under the descriptions of the
LQOAD and STORE ingdructionsin the ingruction reference.

Assembly Syntax
A full ligt of every microprocessor ingruction and its assembly syntax can be found in the
ingruction reference. Each indtruction must appear on asingle line by itsdf, prefixed with one or more
optiona labels and optional white space. Labe's can gppear on lines without ingtructions, just as blank
lines consisting of only white space are allowed aswell.  The gpostrophe (*’ ) can gppear anywherein
aline and indicates that the remainder of the line is acomment. Multi-line comments are not
Supported.
An assembly ingruction congts of the ingruction mnemonic followed by zero or more
arguments, with acomma (*, ’), white space or both separating adjacent arguments. Instruction and
register mnemonics are case insengtive. Label names, like dl other placeholders, must consst of a
sequence of dpha-numeric characters ‘A'-Z’, *0’-*9’, * ") beginning with an dphabetic character, and
are aso caseinsengtive. White space and other punctuation characters are not alowed in placeholder
names. Labels, unlike other placeholders, dso must be terminated by acolon (‘: 7).
Asdde from regiser mnemonics, the only other valid arguments to an ingruction are:
- alabel name as an argument to a branch instruction
aregister mnemonic in parenthesis to indicate indirect addressing for a LOAD or STORE ingtruction
an absolute address for a LOAD or STORE instruction specified as a number constant or number
constant placeholder
an immediate value for a LOAD or STORE instruction specified as a number constant, number constant
placeholder, or image placeholder, prefixed by apound sign (‘#’)

Number constants must be prefixed appropriately if in a base other then decima. The prefixes
are;
Ox or $ for ahex number congtant (digits: ‘0’-‘9’, ‘a’-‘f ', ‘A’-'F’)
0 for an octal number constant (digits: ‘0’-'7")
Ob for abinary number constant (digits. ‘0’, ‘1)

Number constant placeholders attach a name to a particular constant or data memory address.
Placeholder definitions are case insengtive and begin with aperiod (*. *) followed by one of the
fallowing:

const <pl acehol der> <nunber constant >
wor d <pl acehol der> [val ue]
array <pl acehol der> <size> [value [...] ]

The. const definition defines a placeholder (name) which is associated to a particular number
condant which is automaticaly subdtituted into ingtructions by the assembler. The . wor d definition
defines a placeholder (name) which is associated to an arbitrary data memory word, whose initia value
can be specified through the optiond val ue parameter. The. ar r ay definition defines a placeholder

-11-
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(name) which is associated to an arbitrary array of si ze data memory words, whose initiad vaues can
be specified through the optional val ue parameters. Both . wor d and . ar r ay definitionsare
automatically mapped to data memory by the assembler, and should be used instead of absolute address
number constantsin LOAD and STORE commands. The optiond val ue parameters follow the same
format as number constants. Data values areinitialized to zero if not specified.

In addition to data definitions, the. i mage <pl acehol der > <fi | e> definitionloadsfi | e
into video memory, associating its video memory addressto pl acehol der . By using this placeholder,
prefixed by apound sign, as an immediate vaue to aload indruction, this video memory address can
be passed on to a sprite viaavideo indruction. For more information, see the ingtruction reference.

All . const,.word,.array and. i mage placeholder names must be unique irrespective of

case. They can, however, share the same name asalabel. Labe names must aso be unique
irrespective of case.

-12 -
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CPU Architecture

The CPU isdivided into a control section, which will be described behavioraly and data path, which
will for the most part be described at the register transfer level. The data path diagram isavailablein
the gppendix. Currently, the data path is separated into the following sections.

Instruction Fetch — Connected to instruction memory, contains the program counter and the instruction
register as well as an adder that calculates the next increment of the PC every cycle. Also amultiplexer
is present to select between a branch target or the incremented value of the PC. In order to support
subroutine functions, a hardware stack that stores the return address for subroutine calls must be
added. This hardware stack is asmple 16-bit wide bi-directional shift register that smply shiftsin
additiona return addresses when a branch to a subroutine is executed.

Instruction Decode — This unit is aso connected to instruction memory. The instruction fetch stage
contains the two operand registers used by the execution unit, the branch target register and the entire
register file. A set of multiplexers selects what is loaded into the operand registers. Either the next
word from instruction memory is loaded (for immediate value and absol ute addressing modes) or a
value is loaded from the register file (for register direct and register indirect modes) into each of the
operand registers.

Instruction Execute — This unit is connected to data memory, the 1/0 bus and the video unit. Inside the
execute stage there are several sub modules each dedicated to a class of instructions:

ALU — performslogica and arithmetic calculations

Load/Store unit — performs loads and stores to and from data memory

I/O unit — performs loads and stores on the 1/0 bus

Branch unit — performs a comparison on the input operands and returns success

Shift unit — performs rotate, arithmetic shift and logical shift operations

OO0OO0O0O0o

Since saverd of the unitsin the execution stage produce outputs that are destined for genera purpose
registers, amultiplexer is described in the execution stage that selects what unit’ s output is written to
the regider file

The ALU is described behaviourdly, since the addition, subtraction and Boolean logic operations are
most easily expressed in this manner. The multiply unit is generated from a Xilinx coreand is
connected within the ALU. The ALU does not currently register any of itsinputs and outputs, and is
purely combinationd.

The load/store unit is dso described behaviourdly; it Smply routes the incoming operand registersto
data memory address and data buses. The control unit determines when to | for one additiona cycle
for the memory data to become available.

The 1/0 and video ingructions are very smple to implement, as they only route the operand registers
from the instruction decode stages onto the data and address busses of the video and 1/0O devices. The
control section generates the enable signas for the video and data busses.

The branch unit is composed of two comparators: one that compares the operands for equality and one
that comparesif operand one is greater than operand two. From the output of these two comparators
any comparison type can be made using some additional combinationa logic. The result from this
comparison will then determine if the program counter should reload with the branch target address or
if it should continue with the next ingtruction (which is dready stored in the program counter register).

-13-



Game CoreClassic

The shift unit is composed of a barre shifter and some additiona logic before the barrdl shifter to select
the proper input data depending on the type of shift operation. The barrel shifter can rotate its inputs an
arbitrary number of bits to the lft. To rotate the input data to the right, the barrdl shifter smply rotates
itsinput datato the left by (barrd shifter input width — number of places to shift to the right). For
instance, to shift data 3 bits to the right in a 16-bit shifter, the barrd shifter redlly rotatesitsinput 13
bits to the left, which achieves the same effect. To enable arithmetic and logic shift, some additiona
logic is created before the barrd shifter inputs that imitates either zeros shifting in from the left or right
or imitates the MSB shifting in from the left (in case of the arithmetic shift).

For the register file it was decided that the read ports were best implemented using a tri- Sate bus
directly driven by each register. The other option isto creste alarge 256 to 16 multiplexer for each read
port, but thiswould require alarge amount of logic and would probably offer little speed advantages if
any (snce for such alarge multiplexer multiple levels of logic are required). Instead the design uses a
tri-state bus and a set of 4 to 16 decoders that select which register can output its value on the read
ports. The same design for a4 to 16 decoder is used to salect what register is written to on the write
port. A separate write port is required for the temp register which contains an extra 16 bit word output
from either amultiply or divide operation because both the divide and multiply produce a 32 bit result
(erther the upper 16 bits of the multiplication or the remainder of adivide is stored in the temp register)
should be written in the same clock cycle as the other result from the operation. This aso automatically
means that the temp register cannot be addressed from the norma write port select, so that no CPU
operation can explicitly write to the temp regigter.

There is some opportunity in the execution unit of the CPU to use some externaly provided HDL
components. In particular, there are some pipdined divison and multiplication units avalable as IP
cores from Xilinx. Utilizing these cores reduces some of the design that would normally be required on
the fairly involved logic for these operations.

CPU Control Unit

The control unit is described behaviouraly and conssts of one finite state machine that determines
whéat regigers are enabled a what time. The following states are currently present in the finite Sate
mechine

reset_cpu

mem _dable

pc_load

load ir

dall_op2

load_op_exec

load gl

stopped

Because the memory controller’ s inputs are registered, the CPU control unit must ways ensure that

the data on the address bus is valid before the rising edge of the clock, it can then latch the read data
from the memory on the next clock edge.

-14-
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When the asynchronous reset is selected, the CPU dways goes to the reset_cpu state. Sincethisreset is
asynchronous, it can occur right before the clock edge. When a reset occurs, the address lines to
indruction memory may not have been given enough time to stabilize to be guaranteed avaid result

the next clock cycle. Therefore, it progresses to the mem_stable state so that after this cycle the
addresses to the SRAM are stable. This means that after the mem_stable State, the SRAM datalines
contain the next indruction.

From the mem_gtable dtate, the next state is aways pc_load. When the pc_load state is entered, the
ingtruction register is enabled so that at the next clock edge the ingtruction register will hold the
ingtruction to be executed. Also, the program counter register is enabled so that it will load the address
of the next ingtruction on the next clock edge.

After the pc_load dtate, the load_ir sate is entered. When the state becomes ir_|oad, the ingtruction
register has just loaded. Based upon the ingtruction currently loaded, a few things can happen. If an
additiond ingtruction word is required (for example immediate vaues, absolute addresses and branch
targets), the program counter must be incremented again on the next cycle (note that the program
counter always points to the next ingtruction). Also, the operand registers must be enabled to load the
operand vaues (either from memory or the regigter file). If abranch ingtruction is being executed, the
branch target register must also be loaded. When the instruction is aload or store command, an
additional cycleisrequired for the ingruction memory to fetch the extra data, and the next state entered
will be gtal_op2. If the ingtruction isa NOP or STOP, the CPU can fetch the next ingtruction or stop
executing ingtructions al together. In any other case the next state entered will beload_op_exec.

When gtdl_op2 is entered, it means that the current ingtruction is aload or store ingtruction and an
additiona word from instruction memory is required. All that the stal_op2 tate has to do is enable one
of the operand registers so that the operand register loads the additiona word from memory.

When load_op_exec is entered, it means the operand registers have just latched their values. Since the
execution units are directly connected to the operand registers and are purely combinationd, the result
is available as soon as the next clock edge arrives. This means the target result register in the register
file must be enabled so thet it will store the result from the execution unit. The only case in which the
register file write port must not be enabled yet occurs when aload command is executed. A load
ingruction consumes one additiona cycle because it has to wait for the memory data to become
avalable.

With ingructions that do not require access to data memory, the execute cycle completes at thispoint in
time and the next state entered will be pc_load. However, when aload from memory to the regiter file
must be performed an additiond sal cycle is necessary and thus the next sateisload gdl. Alsoa
store operation to data memory requires an additiona stal, since the write result does not latch until at
the end of theload_op_exec cycle and an extra cycleis necessary for the address bus to switch over to
the program counter vaue (since data and instruction memory share their data and address bus).
Therefore the next Sate after a store to memory is mem_stable.

During the load_gtd| cycle the generd- purpose target register to which the loaded memory vaue must

be stored is selected. Also the address busis prepared again to load the next instruction by placing the
program counter value on this bus.

-15-
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Another gtate, the stopped state, exists. Thisisthe state entered when a stop ingtruction is executed or
the stop lineis high. The CPU remainsin the stiop cycle until reset is pressed. During the stop cycle the
CPU issmply inactive and disables al memory and register enables.

Thefollowing are a set of date diagrams for sometypica ingructions:

ALU, Shift, I/0O and video ingtructions (dways take three cycles):

pc_load
load op exec

NOP ingtructions (aways take two cycles) and branch Ingtructions (always take five cycles)

pc_load

-16 -
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Load ingructions (can take anywhere from three to five cycles)
All addressing modes refer to the source operand.

Write ingtructions (can take anywhere from three to five cycles)
All addressing modes refer to the destination operand.

Register direct Regigter indirect
mode or absolute
address mode

Register direct or
register indirect
mode

Immediate or absolute
address mode

Regigter direct
or immediate
mode

Regiger indirect
or absolute
address mode

Regigter direct or
register indirect
mode

Immediate or absolute
address mode

-17 -
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Description of GPU (Graphics co-Processor Unit)

Inits current implementation (limited by the Sze of the FPGA and the amount of available interna

block SRAM) the GPU supports 24 independent graphics objects smultaneoudy being displayed
without any lossin performance in 8-bit colour and 640x480 resolution. These graphics objects come
intwo flavors: rectangles, which consst of a single colour, and sprites, which are rectangles where each
individua pixel is mapped to acolour vaue in memory. Sprites can therefore take on any appearance
the programmer wishes, including having transparent pixels to smulate different shapes. In addition to
sprites and rectangles, the GPU supports a solid colour background to provide for a more appeding
gameplay environment.

The GPU contains the following components:

Component Description

CPU Interface Decodes commands from CPU

VGA Timing Generator Generates control signals for other components. Generates
HSYNC & VSYNC for VGA display.

Sprite Layer (x2) Arbitrates Sprite Graphics

Rectangle Layer Arbitrates Rectangle Objects

Background Layer Renders a solid colour under other objects

Graphics objects are divided up into layers. Each layer is guaranteed to render properly underneath any
layers above it, and above any layers below it. Thisincludes any transparent sprite pixels taking on the
colour of the pixel under them. The lower the ID of the layer, the higher it is. Graphics objects within
the same layer, however, overlap imperfectly, with the lower 1D object rendering on top of the higher
ID object. This rendering does not respect transparency.

The various layers supported by the GPU are listed below:

L ayer Index Range Object Type

0 (top) 0-7 Sprites 1

1 0-7 Rectangles

2 0-7 Sorites 2

3 0-0 Background Colour

Each graphics layer isrespongble for deciding whether or not it is rendering agiven VGA pixd, and if
s0, which colour it should have. Arbitration is used to alow the upper layersto override the lower
layers, producing asingle colour vaue at the output for the VGA port. Also, a any time the timing
generator can prevent aparticular pixel from being rendered, whether the requeset originated from the
CPU, or whether it is motivated by preserving the integrity of the VGA sgndling.
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Pipe Dishle| VGA Timing
Dday [&—— Generator

Disble Control
v H9yne| | VSyne
Colour SpritesLayer 1 |¢—<— ¢
v Override
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v Override
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yOverride
Calgur Background Layer |4
Vv Dy, v Display
VGA Port <HS’—”C Pipe Delay
o |

The GPU layers are fully pipelined so that anew pixel’s colour is caculated every clock cycle. Inan
effort to reduce the huge amount of FPGA arearequired for the GPU, many of the more complicated
graphics object control functions are abstracted to the timing generator. This reduces hardware and
routing at the cost of complexity, since each graphics object requires control Sgnalsto operate. This
does however severely increase the complexity of the timing generator, with the current
implementation making use of a seventeen and athree bit sate machine.

CPU Interface

All the properties of a graphics object (position, enable state, colour, sprite address) must be
configurable by the programmer and hence the CPU. Since these properties are dmost alwaysin use, a
copy of them isstored in FPGA block RAM. While the GPU is generating the pixel information for the
current VGA frame, the CPU isfree to modify these vaues using the GPU interface. Then, when the
GPU istrangtioning between VGA frames (there is amandatory amount of time between framesin the
VGA specification), the GPU serialy updates each graphics object’slocal copy of thisinformetion.
During thistime, the CPU cannot update graphics object properties.
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The following graphics commands can be issued from the CPU to the GPU:

Command (4 bits) | Mnemonic | Description

ox0 Row1 Sets object top value

ox1 Row?2 Sets object bottom value

ox2 Coll Sets object |eft value

0x3 Col2 Sets object right value

0x4 Enable Sats object draw enable attribute
x5 Reserved

Ox6 Colour Sets object color value (for non-sprites)
ox7 StartAddr | Setsobject start address (for sprites)
0x8 DispOn Enables VGA output

0x9 DispOff Disables VGA output (black screen)
OXA Reserved

oxB Reserved

oxC Reserved

OxD Reserved

OXE Reserved

OxF Reserved

Thefollowing signas connect the CPU to the GPU

Signal Direction Bits | Description

command CPU -> GPU 4 Command issued to GPU

index CPU -> GPU 6 Index of graphics object

cpuData CPU -> GPU 16 Data bus

latch CPU -> GPU 1 Load cpuData into registers
retrace CPU <- GPU 1 Notifies CPU that vertical retrace

is happening => CPU cannot
update GPU registers.

red CPU <- GPU 2 Red value to monitor

green CPU <- GPU 3 Green value to monitor
blue CPU <- GPU 3 Blue value to monitor
hsync CPU <- GPU 1 Horizontal sync to monitor
vsync CPU <- GPU 1 Vertical sync to monitor

The CPU opcode will determine the command issued to the GPU. Most graphicsingruction will take
two register operands. The first operand (destination) will be the value placed on the ‘index’ lines. The
‘index’ sgnd specifies one of the graphics objects to update. The second operand (value) will contain
the vaue to be sent to the ‘cpuDatal bus. The laich signal is used to synchronize writesto GPU
registers.

The CPU isresponsble for ensuring that it does not update any GPU registers while the GPU isin
between displaying frames. The CPU will only be able to write to the GPU registers when the ‘retrace’
sgnd isde-asserted.

Pipdine Organization

Rectangle and sprite layers will be dmost identica. Both will be divided into blocks of graphics
objects from which they arbitrate a colour vaue for the current pixd, if applicable. Each block that
attempts to render the current pixel will contend to place its colour or image address on the bus, with
the lowest numbered block winning out. Sprites that place their addresses on the bus will be arbitrated
into asingle winning address which will be looked up in memory. If the resultant colour is transparent,
the sprite layer does not render the pixel. Otherwise, the resultant colour is placed on the colour busto
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be passed to the VGA port. In the case of rectangles, the winning colour value is Smply placed on the
colour bus.

A depiction of ablock of graphics objects is shown below:

overrideln
i
1 0 :
1 1
! O A[0.3] 1
: CE-1 1
1
! cs !
! CR 1
! b GPU  Rg '% addr[0..3]
1 — - VAN
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colour/spriteAddr : RR oD ! -t
. D |—4l w A 1
< : \I Q S[O 2] b :
00 A ... |—|
: Q D — reset
1 I_A_l 1
1 |—| 1
: l Q D A b 4 : rowEnable
| o Al0.31 |, b2 !
1 1
1 CS 1
| GPU cR VN |
1 1
' @— C/A  Object ';E '
: RR N '
| W |
1 D 1
: 00 A S0.2] :
| GPU | !
| | \ writeEnable
1 OCk 1
B O Ar0.al !
1 - CEl 1 1
' cs !
| CR \ objectSel[0..1]
! GPU  RE i
, P—{C/A Object - 1— data
R 1
: RR !
1
1 w : propSel[0..2]
! 00 5 S0.2 P !
N S e —— =
| A | |
1 display ol |
: Al0.3 cel 4 '
1 CS :
: TR '
1
RE
| — C/A  Object Re '
| RR |
1
| w |
1 1
1 1
1 1
1 1
1

~ 00, so0.2 P
_______________________________________________________ 1
overrideOut

Each GPU block conssts of four GPU objects that contend for which will draw the current pixd, if any
of them. Control Sgnds are dso needed for the updating of object properties, snce most of the logic
has been abstracted to the timing generator.

Each GPU object congsts of four 12-bit down counters which track that object’s row and column
ranges for which is should display. 1t dso has an “enabled” flag which needsto be set for the object to
display itsdlf. Inaddition, it has either a colour or a sprite address depending on whether itisa
rectangle/background or a sprite. Control signals are used to reset the counters to store the positiona
information, as well as modify the enable state or colour/address of the object.
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A depiction of agraphics object is shown below:

overrideln
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A depiction of a 12 bit down counter is shown below:

enable

O1 4bit Shift 11— 01 4bit Shift 11— 01 4 bit Shift 1
02 Counter 1202 Counter 1202 Counter 12— 1

A S H A S H A S H

. . |

i D S| ( !

zero : Q Fip- D : t
: Flop R - ' ¢ o Se
: ¢ 0 |
| — reset
| . — writeEnable
12 bit 16x1 bit WEJ | ' data
i Down Counter SRAM D [ — addr3
Wi A__A[0.3] ¢ — addr2
| with Memory " addrl
| — addr0

|
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Each down counter is composed of three shift counters and asmal SRAM to store the value it needsto
count to.

A depiction of a4 bit shift counter is shown below:

i 16 bit Sift J
enableOutl <—r—l7Q D

Register
A CE

enablelnl
enableln2
halt

shift

The mativation for this unconventiond counter design istwo-fold. Firg, Xilinx FPGAs dlow afour-
input look-up-table to be converted into either a 16 bit shift register or a 16 bit SRAM, providing far
more logic than asingleflip-flop if it can be exploited in adesign. Second, with the large number of
graphics objects in this design, and hence the large number of counters it makes use of, flip-flops would
run out far faster than look- up-tables if the counters were flip-flop based. In addition, pipelining units
like the divider require very large numbers of flip-flops while only moderate numbers of 1ook- up-
tables, so exchanging one for the other with this design proved to be advantageousin severd ways.
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Description of Memory

Initidly, memory capacity was to come from external SRAM. This solutionwould have provided a
much greater capacity than interna SRAM on the FPGA. There were difficulties with mounting the
external SRAM chipson aPCB. Thisisdiscussed in more detall in the experiments and
characterization section of this report. The end result was that interna block RAM was used asa
subdgtitute to the externa RAM. The Xilinx Core Generator was used to configure the internal

memories. This block memory on the Spartan 2 board is organized in 4096 bit blocks with atotal of 14
blocks on our particular board. The block ram can be configured using Core Generator to various sSizes
and up to dua port reads and writes.

The following memories were created:
- 1536x16-bit CPU memory, logically divided into 1024x16-hit ingtruction memory and a
512x16-hit data memory.
256x16-bit GPU memory for soring graphic object information. This memory iswritable by the
CPU through a 16-hit port, and is readable by the GPU through a 1- bit port.
3072x8-hit GPU sprite memory for storing Sprite data. This memory is readable through two 8-
bit ports.

Six internal block RAMs were assigned to CPU program and data storage. Another six blocks were
used to store sprites graphics. A single block RAM was alocated to the GPU to store graphic object
properties. The CPU memory was configured with asingle 16-bit read/write port. The CPU memory
was configured with a single 16-bit read/write port. The sprite memory was configured with dua 8-bit
read ports so that two layers of sprite data could be read smultaneoudy. The graphic object property
memory congtituted the CPU to GPU interface, and it was configured with a 16-bit write port from the
CPU and a 1-bit read port for the GPU.
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Description of /0 Bus

The 10 busisthe link between the CPU and its peripheras. This bus is completely isolated from the
main memory bus, and is accessed using specid CPU ingtructions: PIN and POUT.

All directions specified in this description are with respect to the CPU (ie. if adataregister isan ‘out’
regider, it isfor vaues coming out of the CPU to the peripherds).

The CPU isthe bus master, and bus transactions only happen when requested by PIN and POUT
ingructions. Origindly abi-directiond tri-state bus was used, but later the bus was converted to a
synchronous bus with separate lines for each direction.

During an PIN operation, the CPU places an address on the bus, setsioRw to 0, and set the ioEnable
signd to 1. The periphera places the requested data on the bus and at the next system clock edge the
dataisread and the ioEnable signd is returned to O.

During an POUT operation, the CPU places an address on the address bus, places data on the data bus,
st ioRw to 1, and setsioEnable to 1. On the next clock edge the periphera is written and the ioEnable
sgnd isreturned to 0.

The following table lists the most important sgnds of the 10 Bus.

Signal Bits Dir (CPU Description
relative)

ioAddressBus 4 Out Address of 16 different ports

ioDataln 8 In 8-bit datainto 10 bus module from CPU going
out to peripheral

ioDataOut 8 Out 8-bit data out of 10 busto CPU from peripheral.

ioRw 1 Out 0for CPU to read from peripheral, 1 for CPU to
write to peripheral

ioEnable 1 Out When enabled, aread or write takes place on the
next system clock edge.
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Address

Device

Read joystick 1 x-axis

Read joystick 1 y-axis

Read joystick 2 x-axis

Read joystick 2 y-axis

Read joystick buttons

unassigned

UART Data Register (writeto TX, read to RX)

UART Status Register

Write LED lower byte

Write LED upper byte

Write 7-segment lower byte

Write 7-segment upper byte

unassigned

unassigned

unassigned

unassigned

CPU

Bus

master

/O Busnode

Node
address

Input
Output
Registers
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Description of Joystick Controller

The joystick controller is configured to collect input from two standard andlog PC joysticks. The
joystick controller uses a 15 hit free-running counter clocked at 1MHz to collect joystick status
information. The counter has arollover frequency of IMHz / 2715 = 30.5 Hz. Each time the counter
rolls over the 4 joystick buttons are latched and the 4 monostable multivibrators are triggered. The 30.5
Hz sampling frequency is dow enough to adequately debounce the joystick button inputs but is fast
enough to keep with even the most avid game player.

A 15 bit regigter is used for each axis to latch the count value when it's multivibrator returnsto its
gable state, and this count value will be afunction of the joystick axis resistance (resistance being
proportional to position). The CPU can read the status of the buttons or any of the 4 axes from the 10
bus. Cdlibration of the joystick position information will be left up to software running on the CPU.

Reading ajoydtick register through the 10 businterface returns an 8-bit value composed of the most
ggnificant 8-bits of the particular 15-bit joystick axis register. Reading the joystick button register
across the 10 bus returns the status of the four buttonsin bits 0..3 of the 8-bit register. A zero indicates
that a button is depressed.

Refer to the joystick circuit in the schematic diagram section of this report to see how the joysticks are
interfaced to the joystick controller.
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Description of LED Controller

The LED controller dlows the CPU to control 16 individua LEDs and to display a data on 4 7-ssgment
displays. The LED controller is connected to the O bus and occupies four registers 8-bit registers. LED
upper byte, LED lower byte, 7-seg upper byte, and 7-seg lower byte.

Description of UART

The UART isimplemented as afull duplex single channd RS-232 UART without hardware flow

control. The bit rate isfixed at 9600 BPS. The UART interfacesto the CPU viathe 10 Bus. The CPU
can read and write the uart data register to read a received byte and to transmit a byte, respectively. The
CPU can read the uart datus register to seeif the uart is ready to transmit and to seeif a character has
been received. A write of any vaue to the uart Satus register clearsthe RX flag bit.

The uart is ussful to the system programmer becauise it can be used to output debugging information,
and to alow datainput that can’t be done efficiently with the joystick. For example, a PC keyboard can
be used for input to the gamecore system if connected to a PC's serid port with acommunications

program open.

The Digilent FPGA board has an on-board MAX chip for conversion between FPGA voltages and
standard RS-232 voltage levels.
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Features

Integrated 16-bit CPU

O OO0 OO

16-bit multiplier

Complete ingtruction set

Specidized video and 1O ingtructions
Dedicated video and 1O buses
Separate data and instruction memories (Harvard architecture)

Integrated sprite and rectangle VGA graphics generator unit
o Layered graphics with support for transparency
0 Hardware sprite and rectangle generators

0 Fully pardld grgphic generation with immunity to flickering
Internal SRAM for program code and data, graphic object properties, and bitmapped sprite
graphics

Support for two standard PC joysticks

VGA monitor output

RS-232 serid port available to user programs
16 individud LEDs and four 7-segment displays available to the programmer

Game CoreClassic

IO Pins
Signal Description Direction | FPGA Pin | Connector | Total I/0
Pin Pins

Colour(0) \VGA BlueBit 0 Output 16 A40
Colour(1) \VGA BlueBit 1 Output 17 A39
Colour(2) \VVGA BlueBit 2 Output 18 A38
Colour(3) VGA Green Bit 0 Output 20 A37
Colour(4) VGA Green Bit 1 Output 21 A36
Colour(5) VGA Green Bit 2 Output 22 A35
Colour(6) VGA Red Bit 0 Output 23 A3
Colour(7) \VGA Red Bit 1 Output 24 A33
Hsync \VGA Horizontd Sync Output 27 A32
\Vsync \VGA Verticd Sync Output 29 A3l
Clockin Clock signd [ nput 80 -
Resetin Reset sgnd Input 77 -
Dio2address(0) DIO2 addressinterface Output 59 Al2
Dio2address(1) DIO2 address interface Output 62 A9
Dio2address(2) DIO2 address interface Output 61 A10
Dio2address(3) DIO2 addressinterface Output 67 A7
Dio2address(4) DIO2 address interface Output 63 A8
Dio2address(5) DIO2 address interface Output 69 A5
Dio2address(6) DIO2 addressinterface Output 68 A6

-29-




Game CoreClassic

Dio2data(0) DIO2 datainterface Output 41 A23
Dio2data(1) DIO2 datainterface Output 37 A24
Dio2data(2) DIO2 datainterface Output 43 A21
Dio2data(3) DIO2 datainterface Output 42 A22
Dio2data(4) DIO2 data interface Output 45 A19
Dio2data(5) DIO2 datainterface Output 44 A20
Dio2data(6) DIO2 datainterface Output 47 Al7
Dio2data(7) DIO2 datainterface Output 46 A18
Dio2clkout DIO2 input clock Output 60 All
Dio2cs0 DIO2 chip sdlect Output 49 A15
Dio20e DIO2 output enable Output 58 A13
Dio2we Dio2 write endble Output 48 Al6
Joysti ckaxisoing(0) Joystick 1, x-axis Input 174 C10
Joystickaxisping(1) Joystick 1, y-axis Input 173 C11
Joystickaxisping(2) Joystick 2, x-axis Input 172 C12
Joysti ckaxioing(3) Joystick 2, y-axis Input 168 C13
Joystickbuttonping(0)  |Joystick 1, button 1 | nput 167 Cl4
Joydtickbuttonping(1) |Joystick 1, button 2 Input 166 C15
Joystickbuttonping(2)  |Joystick 2, button 1 Input 165 C16
Joystickbuttonping(3)  [Joystick 2, button 2 Input 164 C17
Joydticktriggerpin Joystick trigger | nput 163 C18
Total] 40

Maximum Speed

The maximum speed reported by the Xilinx tools was 53MHz. This equates to a minimum clock period

of about 19 ns.
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The resource usage for the completed design as reported by the Xilinx tools was as follows:

Resource Usage Total Per cent Usage
4-input LUTS 3141 4707 67%
Hip-flops 1256 4707 27%
Sices 2350 2352 100%
Tri-State Buffers 864 2464 35%
10 Rins 40 140 29%
Globd Clock Buffers 3 4 75%

The following data was collected by compiling various sub-components independently. Please note that

the numbers are not indicative of the find design.

GPU:
1446 dices
1785 LUTs
645 flip flops
352 tri-gate buffers

ALU:
226 dices
448 4-input LUTS
Oflip flops

UART:
64 dices
84 4-input LUTs
71 flip flops

VGA Timing Generdtor:
43 dices
67 4-input LUTs
26 flip flops

Joystick Controller:
81 dices
23 4-input LUTs
79 flip flops

GPU Block
160 dices
207 4-input LUTs
31flip flops
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Results of Experimentsand Characterization

Throughout the design process, many different things were tried. Some made it into the find design,
while many experiments failed. Below isasummary of experiments conducted.

Graphics Processing Unit
Initialy, the ideafor the GPU was to keep everything as Smple as possible. Each graphics object
would monitor row and column lines, comparing their values againg interna onesin order to decide
whether or not they should render the current pixel. While the straight-forward nature of this approach
was gppedling, afew quick caculations showed that this design would require an exorbitant number of
flip-flopsin order to store al these comparison vaues. While the current design can only practicaly
support 24 graphics objects at once, it was estimated that the former design would support only 12.

While an inefficient design in any norma Stuation would leed to asmdl lossin FPGA resources and is
normally not worth the effort to correct, the specid situation of the GPU magnifies the problem. With
24 graphics objects, there are atotal of 96 down-counters which means atota of 288 shift counters. It
is easy to see that even a single extralook-up-table or flip-flop in any of these sub-component designs
quickly grows to amuch more significant waste when that design eement is replicated.

To that end, agood dedl of thought and crestivity was applied to the problem of designing an efficient
graphics object property storage eement that minimized the number of flip-flops used. The result was
a 12-bit down-counter with its own memory that conssts of 11 look-up tables and one flip-flop. The
cog of thisflip-flop savingsis an increased complexity in the control logic used to contral it, and the
reliance on serid tranamission of dataingtead of parallel. The later does however cause the added
bonus of significant savings on routing resources as fewer sgnals need to read each object. Overal,
this desgn was chosen 0 as to maximize the number of graphics objects that could fit in the FPGA
while minimizing the number of flip-flops required for each.

External SRAM
Externd SRAM was afundamentd part of theinitidl Gamecore design. It was recognized that large
amounts of memory would be desired for user program and data storage, and more importantly for
storing large sprite graphics. Theinitia design included 256 KB of fast 10ns SRAM divided into two
independent 16-bit wide memories of 128KB each. One memory was to be used for program and data
storage, and the second was to be used for sprite video memory.

SRAM chips were selected and ordered, and PC boards were manufactured through Alberta PC Board.
Each board could handle two 44-pin J-Lead surface mount SRAM chips from Cypress Semiconductors.
Each board interfaced to the Digilent FPGA board through a 40-pin header. The SRAM chips were
very difficult to solder onto the boards because of their smal pin pitch and the fact that the pads were
small and could not be reached by the soldering iron because the leads of a J-Lead package curl under
the chip.

During testing of the RAM, it was discovered that one board had a short between power and ground
that could not easily be repaired. The second board worked better, but only about haf of it's data pins
functioned correctly. While alarge supply of extra boards, chips, and headers was purchased, time did
not permit more boards to be assembled, and redesign with interna FPGA block RAM’ swas
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necessary. This action limiting the available RAM to 7KB, and somewhat crippled the Gamecore
design since 256 KB was origindly planned for.

Internal Block RAM
The Xilinx Core Generator was a useful tool in configuring internd block RAM. Once the SRAM Sze,
data width, and read/write capabilities was determined, generating a chuck of SRAM could be
performed in less than aminute. An option to initidize the memory was dso provided. The function
does experience a limitation, however. The initidization data thet is provide in the * .coe file must be
the same sze as the data width of port A. Otherwise, the memory will ether fail to generate or the
initidization file cannot be read.

The process of configuring block memory creete quite afew filesin the project directory. As part of
good housekeeping, moving these files to a subdirectory was tried, but the block memory faled to
regenerate in the project. Configuring block memory is separate projects was aso tried, but aso failed
when added to the top leve project. Disadvantage of using block memory is therefore reduced capacity
when compared to most externally connected SRAM and alarge project directory that can easily wreak
havoc on organization.

Gray Code Counters
Gray code was investigated with the god of reducing signa lines between afew devices. Since gray
code changes only one bit for each consecutive count, perhaps a single bit could be transmitted as
opposed to many bitsfor acount. The savingsin bits could be quite significant with alarge count.
Methods to convert between Gray code and binary were found and proved to execute correctly. A
method to determine the bit that changed for a count could not be found. There did not seemto bea
deterministic pattern to the way the gray code bits changed. Efforts were abandoned in thisarea as it
proved too difficult.

Joystick Char acterization and Calibration
Thejoystick circuit was originaly tested with a function generator and an oscilloscope before
connecting to the FPGA. The function generator was set to supply a 30.5 Hz square wave to the trigger
inputs of the monostable multivibrators, and the output pulse width was measured with respect to the
joystick position. The 30.5 Hz trigger frequency mimicked the joystick controller which uses the same

triggering and sampling frequency.

The capacitor values were adjusted until a good range of output pulse widths was obtained. A duty-
cycle swing of about 0% to 80% was set. Once the circuit was thus calibrated, measurements were
taken which showed that the pulse width was indeed directly proportiond to the joystick position.

Some nortideal behaviours of the joystick circuit were discovered. One of these non-ided behaviours
was the jittering of the measured values. Thisjittering can at least in part be due to the mechanica
nature of the joystick potentiometer. Another non-ided behaviour was that the resistance of the joystick
dropped off to zero for the last 10% of motion. Since precise analog control of the joystick positionis
not needed, the joystick input can be cleaned up in software by quantizing to asmal set of possble
input vaues.
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Externally provided HDL components

Xilinx Cores were used to implement the multiplier, divider, and the block RAMs. A 16-bit
combinational multiplier has been added to the CPU, and it has been verified to work properly at
25MHz (our system clock frequency) by having the CPU multiply a series of numbers an then display
the results on the saven segment displays. The RAMs were tested independently in hardware, and aso
during the tet of the multiplier since, in the process, the CPU was reading ingructions out of RAM.

These components have been verified, and it is easly concluded that these components are suitable for
the design. Xilinx Cores were used partly to save time, and partly to meet the requirement of usng
externdly provided HDL components.
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Data Sheets

The only externd integrated circuit used was a 74L S123 retrigerable monostable multivibrator. This
chip was used in the joystick circuit to convert the joystick position (resistance) into a pulse width.
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Diagram of Design Hierarchy

Game Core
CPU Graphics co- Memory 1/O Bus
Processor Unit (Compiled - Tested)
(Compiled — Simulated) ¢
¢ (See Next Page)
UART
(See Next Page) ——» (Compiled -
¢ Simulated)
VGA Timing VGA Port Pipeine Reg .
Generator (Compiled — Tested) (Compiled — Tested) — Joydti ck
(Compiled — Simulated) (Compiled - Tested)
4 R ReLCtmg'e Backgound | | [ LEDe
CPU Smulated) (Con?gi/ gd _ (Ckn?}i/gd ) (Compiled - Tested)
Interface Simulated) SimuFI)ated)
(Compiled —
Tested) ¢ ¢
Gpu Layer
(Compiled — Tested)
v
Gpu Block
(Compiled — Tested)
Gpu Object
(Compiled — Smulated)
12 Bit Down
Counter With Counter Sin[ | Shift Sin
Memory Pout Pout
(Compiled — (Compiled — (Compiled —
Simulated) Simulated) Simulated)
4 Bit Shift Adder
Note: Counter (Si(:l:rlljll);ted)_
The Simulated (Compiled —
designation is considered Simulated)
as superset of tested.

-37-



Game CoreClassic

Diagram of CPU Hierarchy
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(Simulated) (Simulated) (Simulated)
PC Mux. p Move Unit
(Simulated) BTR (Simulated)
—  (Incomplete)
i : Video Unit
IR Regigter File —»  (Compiled)
—»  (Smulated) —» (Simul ated)
Devicel/O
—»  Unit
L L L (Compiled)
Register Register (Simulated) 4J Unit Logic
(Simulated) (Simulated) ” i
(Compiled) Unit
(Simulated)
—> ALU
(Simulated) Arithmetic
Unit
(Simulated)
L egend

PC = Program Counter

IR = Ingruction Regigter

OPR1 & OPR2 = Operand Register 1 and Operand Register 2
BTR = Branch Target Register

ALU = Arithmetic-Logic Unit

Temp Reg= Temporary register where an operand from the 1/0
bus or memory is stored before being written to the register file
GPR = Genera Purpose Register

Congtant Regigter = dl zeros or dl onesregister

ALU Temp Register = remainder from division operation or
upper 16 bits from multiplication storage
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Diagram of Memory Hierarchy

Memory
(Compiled — Tested)

CPU_mem type
(Compiled — Tested)

GPU_mem_wrp
(Compiled — Tested)

v

GPU_mem _type
(Compiled — Tested)

GPU_mem type
(Compiled — Tested)
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PACKAGE / COMPONENT and DESCRIPTION

STATUS

Package pigme_types
Package containing common data types and constants

Compiled — No errors (types

and constants package)

Component pipeline_reg
Pipeline registers

Compiled — Tested

Component Gamecore
Gamecore project top-level

Compiled — Tested

Package memory_pkg Compiled — No errors
Package of block ram components

Component Adder Compiled — Tested
N-bit adder

Package dio2_pkg Compiled — No errors

Package with body to connect to IO Board LEDs

Packageio_bus pkg
Package of al 10 bus components

Compiled — No errors

Component io_bus
IO bus components

Compiled — Tested

Package joystick_pkg Compiled — No errors
Package and body of joystick controller
Package uart_pkg Compiled — No errors

Package and body of serial port

Package barrel_shift_pkg
Barrel Shifter package

Compiled — No errors

Component barrel_shift

Compiled — Tested

Barrel Shifter

Package branch_unit_pkg Compiled — No errors
Branch unit package

Component branch_unit Compiled — Tested
Branch unit

Package cpu_controlsection_pkg
CPU control path package

Compiled — No Errors

Component cpu_controlsection
CPU control path definition

Compiled — Tested

Package cpu_pkg Compiled — No errors
CPU architecture interface
Component cpu Compiled — Tested

CPU architecture

Package decoder4 16 pkg

Four to 16 bit address decoder, recognized and optimized

by the Xilinx tools

Compiled — No Errors

Package inst_decode pkg
CPU instruction decoder package

Compiled — No errors

Component inst_decode
CPU ingtruction decoder

Compiled — Tested

Package inst_exec_pkg
CPU ingtruction execution package

Compiled — No errors
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Component inst_exec
CPU instruction execution

Compiled — Tested

Package inst_fetch_pkg
CPU ingtruction fetch package

Compiled — No errors

Component inst_fetch
CPU instruction fetch

Compiled — Tested

Packageio_unit_pkg
Handler of reads and writesto 1/0O bus

Compiled — No errors

Component io_unit
Handler of reads and writesto 1/O bus

Compiled — Tested

Package load_store pkg
CPU reads/writes to memory package

Compiled — No errors

Component load_store
CPU reads/writes to memory

Compiled — Tested

Package register_file_pkg
CPU Register File package

Compiled — No errors

Component register_file
CPU Regigter File

Compiled — Tested

Package register_pkg Compiled — No errors
Various CPU register types
Component register Compiled — Tested

Various CPU register types

Package shift_unit_pkg

Compiled — No errors

Shift unit package

Component shift_unit Compiled — Tested
Shift unit package

Package au_pkg Compiled — No errors

ALU for PIGME CPU

Component back_layer
Background generator

Compiled — Tested

Component counter_sin_pout
N-bit counter with seria input and parallel output

Compiled — Tested

Component down_counter
12 bit down counter

Compiled — Tested

Component gpu_block
Block of GPU objects

Compiled — Tested

Component gpu_layer
Layer of GPU blocks

Compiled — Tested

Component gpu_object
GPU Graphics Object

Compiled — Tested

Component gpu
GPU top leve

Compiled — Tested

Component joystick
Joystick interface

Compiled — Tested

Component rect_layer
Layer of Rectangle Generators

Compiled — Tested

Component shift_counter
4-bit shift counter

Compiled — Tested

Component sprite_layer
Layer of sprite generators

Compiled — Tested
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Component vga_port Compiled — Tested
VGA port

Component vgaTimeGen Compiled — Tested
Provides VGA timing sSignas.
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VHDL Design

VHDL Code not available in the dectronic version of this report.
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Test Bench Documentation

Test Bench / Simulation index
Pipdine reg tb

Test pipeline for correct delay
lo_bus tb

Test register file registers and verifies correctness
Barrel_shift_tb

Verifies correct rotation of bits
Cpu_controlsection tb

Test the proper operation of the cpu control section in
conjunction with the instruction fetch and decode stages as well
asthe ALU and move unit.
Cpu_tb

Test the top level CPU interface by reading in an assembly
program and verifying that the CPU writes the correct data back
to the register file and data memory.
Inst_decode th

Test the proper loading of the operand 1 and operand 2
registers from either the register file or memory. Also the
loading of the branch target register is tested.
Inst_fetch_tb

Test the PC, PC incrementer, and instruction register (IR)
Register file tb

Test the register file reads and writes
Shift_unit_tb

Test the various types of shift operations in both
directions.
Down_counter_tb

12-bit down counter test bench
Gpu_object tb

Test agpu object’s ability to draw itsdlf
Shift_counter tb

Shift counter test bench
Vga time_gen _tb

Test VGA timing generation of signals

For the regigter file (register_file_tb.vhd) the following scenarios were tested:

Each regiger’ sindex vaue (or register address) will be written to that register, than some smal amount
of timelater it is verified that the register does indeed contain the correct vaue. Thisvaue is output on
both read ports of the register vaue. Of course, the congtant registers cannot be written to and will
aways output dl onesor dl zeros. A specid signal must be asserted for the temp regigter, sncethis
temp register will be written to in parald with another 16-bit ALU outpuit.

Then to verify that two different registers can each write to one of the read ports, another loop is
executed in which the register at index and index+1 each output their index vaue on one of the read
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ports. Findly the functiondity of the temp register is verified by writing to the temp register at the

same time as one of the other genera- purpose registersis written to.

Theworst dday in the register counter is 12.166 ns between the register select value change and the
congtant register 0. To reduce the delay it is possible to exchange the tri- sate output but for apair of
256 to 16 multiplexers for the read ports, however this would increase the area used tremendoudy and
likdy yidds only smdl timing gans if any.

For the ingtruction fetch unit another test bench iswritten (ingt_fetch_th.vhd).

In this test bench alimited number of CPU fetch cycles are smulated. Initidly, areset Sgnd is sent

and it is verified that the PC and IR reset properly.

After thereset, afew CPU fetch cycles are smulated in which the PC is incremented and sent down the
address bus to the ingtruction memory to fetch an ingtruction. After the address has been put on the
memory address bus, avaue is put on the data bus and this is latched into the ingtruction regigter. It is
then verified that the value put on the data bus matches the vaue in the ingtruction register.

Finaly, it is verified that when abranch succeeds, the branch target register value is loaded into the PC
ingtead of an increment of the previous address.

Ingde the ingruction fetch unit, the critical path lies between the PC output and the PC input through
the adder and muiltiplexer. However, once the unit is connected to the memory controller, the time
between putting the PC vaue on the address bus and waiting for the result will likely be the path of
longest dlay as the ingruction fetch unit must wait for the memory controller data bus sgnd to
dabilize.

Theinstruction decode unit contains the register file. A test bench (inst_decode tb) somewhat smilar

to the register file test bench was created, in that the operand registers are each loaded from each
register from thefile register. Also, loading from the instruction bus into the operand register is tested.

It isdso verified that the branch target register properly loads when it is enabled.

The worgt dlay in the ingtruction decode is 16.696 ns; the critica path lies between the register select
vaue change and the corresponding change in the register read port. There is little one can do to speed
this up, snce most of the delay is due to the regigter file. The change from aftri-state bus to the
multiplexer based approach to speed up the register file read cycles can be used to increase the speed of
this part of the circuit. However, since our clock period is 40ns, there is no real need to speed up this
circuit, and area condraints are a bigger concern than speed concerns.

Because amulating the control unit separately takes more effort than smulating it as part of the CPU, it
was decided to connect the ingtruction decode, indruction fetch, ALU and move unit al in one test
bench. This has the added bonus that dl the signas between the units are clearly visible and can be
inspected. A sample ingruction stream is provided to verify that the control section advances from date
to sate properly. Meanwhile, the functiondity of the CPU as awhole is a0 tested. The interaction
between the different components of the CPU is aso confirmed when testing in this manner. The
ingtructions supplied to the CPU can be found in the test bench file cpu_controlsection_th.vhd.

To verify that the barrel shifter operated correctly, an input bit vector was generated and shifted from O
through 15 bitsto the left in atest bench (barrd_shift_tb.vhd). The barrd shifter’s output is compared
with the VHDL ROL operator some time after new inputs have been gpplied. The criticd path in the
barrd shifter isfrom a change in the most sgnificant bit in the bit vector specifying the number of bits
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to be shifted to the least significant bit in the shifter’s output. The critical path delay is 17.063 ns, but
cannot be improved upon. The generic barrel shifter was compared to a design that the Xilinx tools
recognize and optimize, and their logic and delay characteristics are identical.

To verify that the shift unit operates correctly, al possible shift and rotate instructions are tested in both
directions. All the different shift ingtructions are put through atest in which their inputs are shifted

from 0 to 15 hits. The output for each shift and rotate instruction is then compared to the corresponding
VHDL operator’s output for the same input data (shift_unit_tb.vhd).

The mogt important part of the smulation is the verification of the top level CPU entity. In order to
facilitate proper testing of the CPU, the following signals are passed through the top-leve entity for
testing purposes only: temp register data and enable, general purpose register select and data and the
current instruction register vaue. The test bench starts out by reading in the ASCII ingtruction and data
memory files. It parses the ingtruction streams and stores them in interna arrays for ingtruction and data
memory. After completing reading in the program, it asserts the reset sgnd for afew clock cycles, and
then commences smulating the program. To verify that the CPU is operating correctly, the test bench
smulates the CPU ingructions itsdf. The test bench contains a smulated regigter file, aswell asthe
smulated ingtruction and data memory vaues read in at the gart of the smulaion. Asthe CPU
executes ingtructions and writes them to the register file and data memory, the test bench monitorsthe
outputs, and catches any errorsin the address and data busses to the register file and data memory. This
approach to testing the CPU dlows for thorough verification of the CPU’ s operation. An added
advantage is that the programmer can debug their programin hardware smulaion and determine
whether the problem they are debugging is due to faulty hardware or afault in their software (this
becomes problematic, however, for programs that execute for more than afew hundred cycles
however). There are two sets of waveformsincluded for this test bench, one smulating the video
ingructions and one smuléing a variety of indructions.

For the GPU object testbench (gpu_object_tb.vhd), the main testing strategy consisted of loading a set
of properties into the object using the timing generator’ s protocol, then observing whether or not it
behaved correctly. Namely, the object should not display itself when it is not supposed to, it should
adways digplay itself when it is supposed to, and it should aways display itsdf correctly. By
positioning the object in the center of asmal rectangular smulated screen, the object’ s ability to
identify when it should render itself and in what colour was verified.

For the VGA timing generator testbench, (vga time_gen tb.vhd), the main drategy was smulate
memory vaues for the generator’ s serid read requests of bits, then observe that al the correct timing
and control sgnaswere generated. While this approach is very thorough, it does take an extremely
large amount of time to smulate aframe of video elgpsing. However, after much waiting, it was
observed that not only did the timing generator produce the appropriate sync and disable signas for
VGA, it dso effectively made use of dead-timesin between retracesin order to update the memory
vaues of every graphics object.
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Joystick Schematic

Joystick Schematic

Game CoreClassic

+5v
10k 10k 10k 10k
Button 0 Button 1 Button 2 Button 3
) It 1 1 T
B0 O - - - -
Bl O
B2 O
JB3 ©
+bv
5k
Monostable Axis
AXO0 H Q 0 +5v
-1 Trig
| I ok
Trigger Qm—— -
Monostable Axis
AL O 0 Sy
— -1 T 1 1) I
- 5k
Monostable Axis
AX2 O Q 2
———PTrig I +5v
- 5k
Monostable Axis
AXG O Q 3
P Trig

- 47 -



Game CoreClassic

I nstruction Set
Signed Addition
Operation: rd - rsl + rs2
Syntax: ADD rd, rsl1, rs2
Description: Addsrs2 torsl and sorestheresultinr d.
Notes: Overflow and Borrow areignored.
15 12 11 8 7 4 3 0
1000 rd rsil rs2
Bitwise AND
Operation: rd = rsl & rs2
Syntax: AND rd, rsl, rs2
Description: StoresthebitwissAND of rs1 andrs2inrd.
Notes: none
15 12 11 8 7 4 3 0
1100 rd rsi rs2
Arithmetic Shift L eft
Operation: rd - rd << rs 15 14 1 0
<+ rd < 0
Syntax: ASL rd, rs
Description:  Bit shiftsr d to theleft by the number of bitsinr s, soring theresultinr d. Each most
sgnificant bit shifted out of r d dides the remaining hits to the lft by one, replacing the
least Sgnificant bit with 0.
Notes: Oveflow isignored. r d isundefinedif [ r s] isnegative.

15

12

11

8 7

4

3

0111

0010

rd

rs

- 48 -



Game CoreClassic

ASR
Arithmetic Shift Right
Operation: rd - rd >>rs 15 14 1 0
Syntax: ASR rd, rs L d >
Description:  Bit shiftsr d to the right by the number of bitsin r s, storing theresultin r d. Each least
sgnificant bit shifted out of r d didesthe remaining bits to the right by one, leaving a
copy of the mogt significant bit in place.
Notes: Borrow isignored. r d isundefinedif [ r s] isnegdive.
15 12 11 8 7 4 3 0
0111 0011 rd rs
BEQ
Branch On Equal
Operation: if rsl = rs2 then pc - addr
Syntax: BEQ rsl1, rs2, addr
Description:  Branches to the address specified in the next word following the current ingtruction if
rsl andr s2 areboth the samevaue.
Notes: addr ispecified asalabe whichisresolved by the assembler.
15 12 11 8 7 4 3 0
0100 0010 rsi rs2
BG
Branch On Greater Than
Operation: if rsl > rs2 then pc = addr
Syntax: BG rsl, rs2, addr
Description:  Branches to the address specified in the next word following the current ingtruction if
rslisgreaerthanrs2.
Notes: addr ispecified asalabe whichisresolved by the assembler.

15

12

11

8 7

4

3

0100

0111

rsi

rs2
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Description:

Notes:
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BGE

Branch On Greater Than Or Equal To

if rsl >=rs2 then pc - addr
BGE rsl, rs2, addr

Branches to the address specified in the next word following the current ingtruction if
r sl isgreater than or equd tor s2.

addr isspecified asalabd which is resolved by the assembler.

15 12 11 8 7 4 3 0

0100 0101 rsi rs2

Operation:
Syntax:

Description:

Notes:

BL

Branch On Less Than

if rsl <rs2 then pc - addr
BL rsl, rs2, addr

Branches to the address specified in the next word following the current ingtruction if
rslislesthanrs2.

addr is specified as alabe which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0110 rsi rs2

Operation:
Syntax:

Description:

Notes:

BLE

Branch On Less Than Or Equal To

if rsl <= rs2 then pc - addr

BLE rsl1, rs2, addr

Branches to the address specified in the next word following the current instruction if
rslislessthanorequa tors2.

addr isspecified asalabd which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0100 rsi rs2
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Description:

Notes:
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BN

Branch On Negative

if rs <0 then pc - addr
BN rs, addr

Branches to the address specified in the next word following the current ingtruction if r s
IS negative.

addr isspecified asalabe which isresolved by the assembler.
15 12 11 8 7 4 3 0

0100 0110 rs rz

Operation:
Syntax:

Description:

Notes:

BNE

Branch On Not Equal

if rsl !=rs2 then pc - addr

BNE rs1, rs2, addr

Branches to the address specified in the next word following the current ingtruction if
rsl andrs2 aredifferent vaues.

addr isspecified asalabd which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0011 rsi rs2

Operation:
Syntax:

Description:

Notes:

BNN

Branch On Not Negative

if rs >= 0 then pc - addr
BNN rs, addr

Branches to the address specified in the next word following the current ingtruction if r s
IS not negetive.

addr ispecified asalabe whichisresolved by the assembler.
15 12 11 8 7 4 3 0

0100 0101 rs rz
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Description:

Notes:
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BNP

Branch On Not Poditive

if rs <= 0 then pc - addr

BNP rs, addr

Branches to the address specified in the next word following the current ingtruction if r s
isnot positive.

addr isspecified asalabe which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0100 rs rz

Operation:
Syntax:

Description:

Notes:

BNZ

Branch On Non Zero

if rs =0 then pc - addr
BNZ rs, addr

Branches to the address specified in the next word following the current ingtruction if r s
IS non zero.

addr isspecified asalabd which isresolved by the assembler.
15 12 11 8 7 4 3 0

0100 0011 rs rz

Operation:
Syntax:

Description:

Notes:

BP

Branch On Postive

if rs >0 then pc - addr

BP rs, addr

Branches to the address specified in the next word following the current indruction if r s
is pogtive.

addr isspecified asalabe which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0111 rs rz
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Operation:
Syntax:

Description:

Notes:
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BR

Unconditional Branch

pc - addr
BR addr

Unconditionally branches to the address specified in the next word following the current
indruction.

addr isspecified asalabe which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0000

Operation:
Syntax:

Description:

Notes:

BSR

Branch to Subroutine

(sp) ++ = addr
BSR addr

Unconditionally branches to the address specified in the next word following the current
indruction. A subsequent RTS ingtruction returns execution to the ingtruction following
the BSR.

addr isspecified asalabe whichisresolved by the assembler.

pc; pc =

15 12 11 8 7 4 3 0

0100 1000

Operation:
Syntax:

Description:

Notes:

BVD

Branch On Video Drawing

if ‘video is draw ng’ addr
BVD addr

Branches to the address specified in the next word following the current instruction if the
video unit is busy redrawing the screen and cannot accept new parameters.

then pc -

addr isspecified asalabe which isresolved by the assembler. Video object properties
should only be changed when the video is not drawing.

15

1z

11

8 7

0100

1100
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Operation:
Syntax:

Description:

Notes:
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BZ

Branch On Zero

if rs =0 then pc - addr
BZ rs, addr

Branches to the address specified in the next word following the current ingtruction if r s
IS zero.

addr isspecified asalabe which isresolved by the assembler.

15 12 11 8 7 4 3 0

0100 0010 rs rz

Operation:
Syntax:

Description:

Notes:

CLR

Clear All Register Bits

r - 0x0000
CLR r
Clearsdl of the specified register’ s bits (sets the register to zero).

none

15 12 11 10 8 7 4 3 0

0101 0 000 r rz

Operation:
Syntax:

Description:

Notes:

DEC

Signed Decrement By 1

DEC r
Decrementsr by 1 and stores the result back intor .
Borrow isignored.
15 12 11 8 7 4 3 0

1000 r r rn




Operation:
Syntax:

Description:

Notes:
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Signed Division
rd = rsl / rs2 rt = rsl %rs2
DIV rd, rsl, rs2

Dividesr s2 intor s1, placing the 16 bitsresult in r d. The 16 bit remainder is placed in
the temporary regiderrt .

Thisingruction modifiesrt . Thereforer d cannot ber t .
15 12 11 8 7 4 3 0

1011 rd rsi rs2

Operation:
Syntax:

Description:

Notes:

INC

Signed Increment By 1

I NC r
Incrementsr by 1 and stores the result back intor .
Overflow isignored.

15 12 11 8 7 4 3 0

1001 r r rn
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Register or Memory Transfer to Register
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Operation: rd - rs rd = (rs) rd - as rd -
Syntax: LOAD rd, rs LOAD rd, as
LOAD rd, (rs) LOAD rd, #is
Description:  Movesa 16 bit vaue from source to the destination register using one of the following
effective addressng modes:
Code | Mnemonic Name Description
0b00O0 rs Register Direct Sourceisthe register specified by r s.
0b001| (rs) Regigter Indirect | Sourceis a the memory address contained in the register
specifiedby r s.
0b010 as Absolute Address | Source is the memory address specified in the syntax
ingtead of aregider.
0b011 #l's Immediate Vaue | Sourceisthe immediate 16 bit constant specified in the
syntax instead of aregider, prefixed by a‘#’.
0b17?7? n/a Reserved Reserved for future implementation
Sour ce Effective Addressing M odes
If absolute addressing or immediate vaue is used, the next word following the current
indruction is that absolute memory address or immediate value. Whenever an
addressing mode requiring an additional 16 bit argument is used, the contents of ther s
regiger fidd is undefined.
Notes: none
15 1z 11 10 8 7 4 3 0
0101 0 sea rd rs
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L SL
Logical Shift Left
Operation: rd - rd << rs 15 14 1 0
< rd < O
Syntax: LSL rd, rs
Description:  Bit shiftsr d to the left by the number of bitsin r s, soring theresultin r d. Each most
Sgnificant bit shifted out of r d dides the remaining bits to the | eft by one, replacing the
least Sgnificant bit with 0.
Notes. Overflow isignored. r d isundefinedif [ r s] isnegative.
15 12 11 8 7 4 3
0111 0000 rd rs
L SR
L ogical Shift Right
Operation: rd = rd >>rs 15 14 1 0
0 —p rd -
Syntax: LSR rd, rs
Description:  Bit shiftsr d to the right by the number of bitsin r s, soring theresultin r d. Each least
sgnificant bit shifted out of r d dides the remaining bits to the right by one, replacing
the most Sgnificant bit with 0.
Notes: Borrow isignored. r d isundefined if [ r s] is negative.
15 12 11 8 7 4 3 0
0111 0001 rd rs
MULT
Signed Multiplication
Operation:  rt:rd = rsl * rs2
Syntax: MJULT rd, rsl, rs2
Description:  Multipliesr s2 andr s1, placing the lower 16 bits of theresultin r d. The upper 16 bits
of the result are placed in the temporary register r t .
Notes: Thisingruction modifiesr t . Thereforer d cannot bert .

15

12

11

8

7

4

3

1010

rd

rsi

rs2
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2's Compliment Negation

Game CoreClassic

Operation: rd - -rs
Syntax: NEG rd, rs
Description:  Storesthe 2's compliment negation of r s inr d.
Notes: none
15 12 11 8 7 0
1001 rd rz rs
No Operation
Operation:  none
Syntax: NOP
Description:  Causes the microprocessor to wait for one clock cycle.
Notes: none
15 12 11 8 7 0
0000 0000
Bitwise NOT
Operation: rd = ~rs
Syntax: NOT rd, rs
Description:  Storesthe bitwise NOT of rs inr d.
Notes: none
15 12 11 8 7 0
1110 rd rs rn
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OR

Bitwise OR

Operation: rd - rsl | rs2
Syntax: ORrd, rsl, rs2
Description:  StoresthebitwisesOR of rs1 andrs2inrd.
Notes: none
15 12 11 8 7 4 3 0
1101 rd rsl rs2
PIN
I/O BusPort Input
Operation: rd = port(rp)
Syntax: PIN rp, rd
Description: Readsaword from the 1/O port whoseid isin r p, goringitinr d.
Notes: Undefined if r p containsan invaid 1/0 port id.
15 12 11 8 7 4 3 0
0010 0000 rp rd
POUT
1/O Bus Port Output

Operation: port(rp) = rs
Syntax: POUT rp, rs
Description:  Writestheword stored in r s to the I/O port whoseid isinr p.
Notes: Undefined if r p contains an invaid 1/0 port id.

15 12 11 8 7 4 3 0

0010 0001 rp rs
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ROTL
Rotate L eft
Operation: rd - rd O rs 15 14 1 0
rd
Syntax: ROTL rd, rs : ﬂ
Description:  Bit rotatesr d to the left by the number of bitsin r s, storing theresult inr d. Each most
sgnificant bit rotated out of r d dides the remaining bits to the left by one, and is put
back into the least Significant bit.
Notes: Overflow isignored. rd isundefinedif [ r s] isnegative.
15 12 11 8 7 4 3
0111 0100 rd rs
ROTR
Rotate Right
Operation: rd - rd O rs 15 14 1 0
rd
Syntax: ROTR rd, rs r’ |
Description:  Bit rotatesr d to the right by the number of bitsinr s, soring theresultinr d. Each
least significant bit rotated out of r d dides the remaining bitsto the right by one, and is
put back into the most significant bit.
Notes: Borrow isignored. r d isundefinedif [ r s] isnegdive.
15 12 11 8 7 4 3
0111 0101 rd rs
RTS
Return from Subroutine
Operation: pc = --(sp)
Syntax: RTS
Description:  Returns execution to the ingtruction following the last BSR ingtruction.
Notes: addr ispecified asalabd which isresolved by the assembler. Undefined behaviour if

there was no matching BSR ingruction.

15

12

11

8

7

0100

1001
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STOP

Stop Program Execution

Operation:  halt processor
Syntax: STOP
Description:  Causes the microprocessor to stop executing ingructions. This the norma method for

terminating a program cleanly
Notes: Any indructions after a STOP ingruction will not be executed.

15 12 11 8 7 4 3 0
0000 0001
Register Transfer to Register or Memory

Operation: rd = rs (rd) = rs ad - rs
Syntax: STORE rd, rs STORE (rd), rs STORE ad, rs
Description:  Movesa 16 bit vaue from the source register to the destination using one of the

following effective addressng modes:
Code | Mnemonic Name Description
0b000 rd Register Direct Degtination is the register specified by r d respectively.
0b001| (rd) Register Indirect Degtination is the memory address contained in the

register specified by r d.
0b010 ad Absolute Address Detination is the memory address specified in the syntax
instead of aregider.
0b011 n/a Invalid Invalid addressing mode
0b17?7? n/a Reserved Reserved for future implementation
Destination Effective Addressing Modes

If absolute addressing is used, the next word following the current instruction is that

absolute memory address. Whenever an addressing mode requiring an additiona 16 bit

argument is used, the contents of ther d regigter field is undefined.
Notes: none

15 12 11 10 8 7 4 3 0
0101 1 dea rd rs
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Operation:
Syntax:

Description:

Notes:
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SUB

Signed Subtraction

rd = rsl -

SUB rd,

rs2
rsl, rs2

Subtractsr s2 fromr s1 and Sorestheresultin r d.
Overflow and Borrow are ignored.

15 12 11 8 7 4 3 0
1001 rd rsi rs2

Operation:
Syntax:

Description:

Notes:

VBP

Set Video Object Bottom Position

vi deo(rv).bottom- rs

VBP rv, rs

Sets the bottom position of the video object, whoseidisinr v, tothevaduesoredinr s.

Undefined if r v contains an invalid video object id, if the target object is not a prite or
shape, or if thevaue of r s isoutsde the vaid range of the screen.

15 12 11 8 7 4 3 0
0011 0011 rv rs

Operation:
Syntax:
Description:

Notes:

VC

Set Video Object Colour

video(rv).colour = rs
VCrv, rs
Setsthe color of the video object, whoseidisinr v, tothevduesoredinr s.

Undefined if r v contains an invaid video object id, if thevadueof r s isoutsde the vdid
range of colours, or if the target object is not a shape or the background.

15

12

11

0011

0100

rv

rs
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Operation:
Syntax:

Description:

Notes:
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VD

Disable Video Object

vi deo(rv) . disabl e()
VD rv
Disables the video object whoseidisinr v.

Undefined if r v contains an invaid video object id, or if the target object is not a grite
or shape.

15 12 11 8 7 4 3 0
0011 1001 rv

Operation:
Syntax:

Description:

Notes:

VE

Enable Video Object

vi deo(rv). enabl e()
VE rv
Enables the video object whoseidisinr v.

Undefined if r v contains an invalid video object id, or if the target object is not a rite
or shape.

15 12 11 8 7 4 3 0
0011 1000 rv

Operation:
Syntax:
Description:
Notes:

VI

Set Video Object Image Address
video(rv).imge - rs
VI rv, rs

Sets the image address of the video object, whoseidisinr v, tothevaduesoredinr s.
Undefined if r v contains an invalid video object id, or if the target object is not a rite.

15

12

11

8

7

4

3

0

0011

0101

rv

rs
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VLP

Set Video Object L eft Position

Operation: video(rv).left = rs
Syntax: VLP rv, rs
Description:  Setsthe left position of the video object, whoseidisinr v, tothevaduesoredinr s.
Notes: Undefined if r v contains an invalid video object id, if the target object is not a prite or
shape, or if thevaue of r s isoutsde the vaid range of the screen.
15 12 11 8 7 4 3
0011 0000 rv rs
VRP
Set Video Object Right Position
Operation:  video(rv).right = rs
Syntax: VRP rv, rs
Description:  Setstheright pogtion of the video object, whoseidisin r v, to thevaue sored inr s.
Notes: Undefined if r v contains an invaid video object id, if the target object is not a sprite or
shape, or if thevaue of r s isoutsde the vaid range of the screen.
15 12 11 8 7 4 3 0
0011 0001 rv rs
VTP
Set Video Object Top Position
Operation:  video(rv).top = rs
Syntax: VIP rv, rs
Description:  Setsthe top position of the video object, whoseidisinr v, tothevaluestored inr s.
Notes:

Undefined if r v contains an invalid video object id, if the target object is not a sprite or
shape, or if thevaue of r s isoutsde the vaid range of the screen.

15 12 11 8 7 4 3 0

0011 0010 rv

rs




Operation:
Syntax:
Description:

Notes:

XOR

Bitwise XOR

rd = rsl1 A rs2
XOR rd, rsl, rs2

Storesthe bitwise XORof rs1 andrs2inrd.

none
15 12 11 8 7
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1110 rd

rsi

rs2
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