

EE 552 Project Final Report

Game Core Classic

Video Game System

Powered by

PIGME
(Programmable Integrated

Graphics Microprocessor Environment)

Donson Lam donson@ualberta.ca
Jason Klaus jwklaus@ualberta.ca

Leendert Van den Berg leendert@ualberta.ca
Brian Eley beley@ualberta.ca

Game Core Classic

- 2 -

Declaration of Original Content

The design elements of this project and report are entirely the original work of the authors and have not
been submitted for credit in any other course except as follows:

• Integer to std_logic_vector conversion function obtained from Associated Professional Systems.
Accessed http://users.erols.com/aaps/x84lab/INCLUDE.html on February 17, 2003

• A64x16.vhd: Modified Cypress Semiconductor Corp. VHDL model for their CY71020CV33
32k x 16 SRAM. Modifications include the increasing of the capacity to 64k x 16, addition of
appropriate timing information, and file name changing.

• Joystick Circuit based on circuit from Epanorama.net
Accessed http://www.epanorama.net/documents/joystick/pc_joystick.html. February 18, 2003

• VGA timing calculator spreadsheet from VESA
Accessed http://www.vesa.org/public/SMT/SMT640_720x480v1.xls. February 18, 2003

• VGA timing signal information from EE552 appnote
Accessed
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/interfacing/CRT/CRT_App_
Note.html. February 17, 2003

• Xilinx Spartan II Primitives instantiation templates.
Accessed http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0024_8.html March 1, 2003.

Donson Lam

Jason Klaus

Leendert Van den Berg

Brian Eley

Game Core Classic

- 3 -

Abstract

Imagine being able to sit down for an evening and develop a classic video game with nothing more than
simple sprites and assembly language. Imagine being able to play that same game on a common
computer monitor in resolutions higher than most consoles without fear of losses in frame rates when
the action heats up. Imagine sharing your creations with your friends, and going head to head in some
two player action. Think this is all too good to be true? Well, this project is here to prove you wrong.

Gamecore classic is all this and more. It is a custom CPU with an integrated sprite and rectangle
graphics unit programmed into a Xilinx Spartan II FPGA. The console supports two joysticks and
displays 60Hz graphics on a standard VGA monitor. And best of all, it ships standard with a powerful
and flexible assembler for creating your own games using your PC.

Game Core Classic

- 4 -

Table of contents

DECLARATION OF ORIGINAL CONTENT .. 2

ABSTRACT ... 3

ACHIEVEMENTS .. 5

DESCRIPTION OF OPERATION.. 6

System Overview.. 6
Instruction Set.. 10

REGISTERS.. 10
MEMORY.. 10
INSTRUCTIONS .. 10
ASSEMBLY SYNTAX.. 11

CPU Architecture.. 13
Description of GPU (Graphics co-Processor Unit).. 18
Description of Memory.. 24
Description of I/O Bus ... 25
Description of Joystick Controller .. 27
Description of LED Controller.. 28
Description of UART ... 28

GAMECORE DATA SHEET .. 29

IO Pins ... 29

RESOURCE USAGE MEASUREMENTS ... 31

RESULTS OF EXPERIMENTS AND CHARACTERIZATION .. 32

EXTERNALLY PROVIDED HDL COMPONENTS.. 34

DATA SHEETS ... 36

DIAGRAM OF DESIGN HIERARCHY .. 37

Diagram of CPU Hierarchy .. 38
Diagram of Memory Hierarchy ... 39

INDEX TO VHDL PACKAGES AND CODE ... 40

VHDL DESIGN ... 43

TEST BENCH DOCUMENTATION.. 44

SCHEMATICS .. 47

Joystick Schematic... 47

INSTRUCTION SET .. 48

Game Core Classic

- 5 -

Achievements
• Designed and implemented a 16-bit CPU from scratch.
• Created a powerful assembler for the PIGME CPU.
• Created a graphics processor unit capable of displaying sprites and rectangles on a VGA

monitor.
• Successfully interfaced to a standard PC joystick
• Produced a printed circuit board for 256KB of external 10ns SRAM. Difficulties in soldering

the surface mount J-Lead packages prevented the use of this SRAM and internal block ram was
substituted.

• Scalable design makes use of many constants and type declarations to allow for increased
performance in larger FPGAs and for reduced performance in smaller FPGAs.

Game Core Classic

- 6 -

Description of Operation

System Overview

The main idea for the GAME CORE system was to offer a simple video game system, primarily
tailored for 2D games like those seen on early gaming consoles of the 1980s. Real time arcade games
can be written for the system using a straightforward assembly language.

The gamecore system uses two standard PC joysticks for input, and outputs graphics to a standard
VGA monitor. A set of LEDs and a seven-segment display is available for displaying scores and for
debugging programs. An RS-232 UART is available to aid in program debugging. A reset button has
also been included.

The system is composed of the following units:

• Custom 16-bit Central Processing Unit (CPU).
• ALU
• Register File
• Control Section

• Custom VGA Graphics Processing Unit (GPU) capable of sprite and rectangle generation.
• VGA timing generator

• Memory Unit based on internal SRAM implementing independent memories.
• Program and data storage
• Graphics object property storage
• Sprite graphics data

• IO Bus
• Joystick controller
• LED and 7-Segment Display controller
• UART for serial communications

Game Core Classic

- 7 -

The gamecore top-level diagram is shown below in figure 1.1.

GAMECORE
joystickTriggerPin

dio2Address
dio2Data
dio2ClkOut
dio2WE
dio2OE
dio2CSO

clockIn

resetIn

joystickAxisPins

joystickButtonPins

uartRx uartTx

44

44

77

88

vsync

hsync

green
red

blue

22

33

33

Figure 1.1: Gamecore Top Level

The CPU has been designed completely from scratch for use in the Gamecore system. It has the
following groups of instructions:

• Integer arithmetic (add, subtract, multiply, divide)
• Graphic co-processor: Rectangle and Sprite generation and modification
• I/O Bus: In Port and Out Port to peripheral devices
• Load, Store
• Unconditional Branch, Branch on condition
• Branch to subroutine, return from subroutine
• Boolean: AND, OR, XOR, NOT, negate (2’s complement)
• Bit-wise: Arithmetic and Logical Shifting, Rotates
• No operation (NOP)
• Stop to halt the CPU

The CPU operates solely on 16 bit quantities, this means that instruction opcodes, SRAM addresses,
SRAM data are all 16 bit quantities (whether RAM is actually present is another issue). To simplify the
CPU design, the CPU is not pipelined. A non-pipelined CPU reduces the instructions per clock cycle,
but since the graphics co-processor performs many of the graphics functions, a high throughput CPU is
not required. The main task of the CPU will be handling user input and updating graphics objects on
the graphics co-processor. A branch to subroutine and return from subroutine call is implemented using
a hardware-based stack for return addresses. It is not possible for the programmer to get or set the value
of the program counter, so no software stack can be implemented on our CPU.

Game Core Classic

- 8 -

The CPU communicates with the graphics co-processor through a dedicated video bus. The graphics
co-processor has support for sprites, rectangle objects, and a background color. The sprites and
rectangles can have their properties updated by the CPU. Their list of properties includes x and y
coordinates of the left, right, top, and bottom edges, as well as color for rectangles and video memory
base address for sprites. Sprites and rectangles are assigned to one of 4 graphics layers. Objects in
higher layers are drawn over top of objects in lower layers. Additionally, one color has been assigned
as transparent and will allow objects in lower layers to show through.

The graphics controller runs at a fairly high speed compared to the CPU to ensure that the screen gets
refreshed frequently. A standard 640x480 pixel VGA display is drawn at 60Hz, with each pixel
encoded as 8 bits. The VGA connector on the Digilent IO board is hard wired with 3 bits of blue, 3 bits
of green, and 2 bits of red. The graphics controller is a pipelined highly parallel graphics processor.

The CPU communicates with the slower I/O devices through a simple I/O bus. Attached to the IO bus
is a joystick controller, an RS-232 serial port, and an LED and 7-segment display controller. I/O is not
memory mapped. The I/O bus is accessed using special opcodes: PIN and POUT, which act much like
load and store, with the exception being that both the address and data bus for the I/O bus are not as
wide as the SRAM busses.

Game Core Classic

- 9 -

Figure 1.2 shows a high-level internal system block diagram.

Figure 1.2 – High Level Internal System Block Diagram

CPU videoDataOut

sramDataIn
sramDataOut
sramEnable
sramRw
sramSelect
sramAddrBus

16

16

IO
BUS

ioDataOut
ioDataIn
ioAddrBus
ioRw
ioEnable

88

88

44

CPU
MEM

GPU
MEM
(2 port)

GPU
MEM
(2 port)

GPU

To Joystick

To LEDs 19

44

To VGA 10

To Serial Port 22

16

11

videoAddrBus
videoCmdBus
videoEnable

88

44

videoRetrace
memAddr12
memEnable
memData

videoDisable
11

spriteAddr112

spriteEnable1
spriteData1 88

spriteAddr212
spriteEnable2
spriteData2 88

10

Game Core Classic

- 10 -

Instruction Set
The PIGME instruction set load and store architecture is based on operations with 16 bit, signed 2’s
compliment quantities. For this reason, the term “word” will be used to denote a 16 bit quantity for the
remainder of this specification. All operations involve register to register transactions except for loads
and stores, which can involve data memory or immediate values.

Registers
 There are a total of sixteen 16 bit registers defined by PIGME, with the following mnemonics:

• r0 through r12 are general purpose registers
• rt is a temporary general purpose register modified by certain operations
• rz is a read-only register hard-wired to 0x0000 (decimal 0)
• rn is a read-only register hard-wired to 0xFFFF (decimal -1)

 The use of rz and rn as hard-wired constants not only allows access to the two most used
program constants without the overhead of a LOAD immediate beforehand, it also allows the assembler
to provide a richer assortment of instructions like CLR and INC without the addition of any new op
codes or hardware. The savings in op codes is particularly important as instruction words are of limited
size.

Memory
 PIGME supplies separate instruction and data memories for both expanded memory space and
added security. Instruction fetching and branching automatically refer to instruction memory, while
load and store operations automatically refer to data memory, preventing a program from modifying its
own code.
 Both instruction and data memory consist of 216 = 65536 addressable words. There is no
concept of a “byte” or “long word”, since memory quantities are always 16 bit words. This means that
PIGME is endian independent.

Instructions
 Each PIGME instruction word (16 bits) can be divided into four 4 bit fields consisting of:

• an operation code specifying the instruction or instruction type
• an instruction defined field
• a register identifier field
• another register identifier field, which may or may not be used

General Instruction Word Format

 Op codes and the instruction defined fields are listed along with each instruction in the
instruction reference. Registers are always encoded in the following manner:

• r0 through r12 as 0x0 through 0xC (0b0000 through 0b1100)
• rt as 0xD (0b1101)

Op Code Register Register Inst. Defined
0 3 4 7

8 11

12 15

Game Core Classic

- 11 -

• rz as 0xE (0b1110)
• rn as 0xF (0b1111)

 Only the LOAD and STORE instructions involve effective addressing modes, all other operations
act on registers. A list of the effective addressing modes can be found under the descriptions of the
LOAD and STORE instructions in the instruction reference.

Assembly Syntax
 A full list of every microprocessor instruction and its assembly syntax can be found in the
instruction reference. Each instruction must appear on a single line by itself, prefixed with one or more
optional labels and optional white space. Labels can appear on lines without instructions, just as blank
lines consisting of only white space are allowed as well. The apostrophe (‘’’) can appear anywhere in
a line and indicates that the remainder of the line is a comment. Multi-line comments are not
supported.
 An assembly instruction consists of the instruction mnemonic followed by zero or more
arguments, with a comma (‘,’), white space or both separating adjacent arguments. Instruction and
register mnemonics are case insensitive. Label names, like all other placeholders, must consist of a
sequence of alpha-numeric characters (‘A’-‘Z’, ‘0’-‘9’, ‘_’) beginning with an alphabetic character, and
are also case insensitive. White space and other punctuation characters are not allowed in placeholder
names. Labels, unlike other placeholders, also must be terminated by a colon (‘:’).
 Aside from register mnemonics, the only other valid arguments to an instruction are:

• a label name as an argument to a branch instruction
• a register mnemonic in parenthesis to indicate indirect addressing for a LOAD or STORE instruction
• an absolute address for a LOAD or STORE instruction specified as a number constant or number

constant placeholder
• an immediate value for a LOAD or STORE instruction specified as a number constant, number constant

placeholder, or image placeholder, prefixed by a pound sign (‘#’)

 Number constants must be prefixed appropriately if in a base other then decimal. The prefixes
are:

• 0x or $ for a hex number constant (digits: ‘0’-‘9’, ‘a’-‘f’, ‘A’-‘F’)
• 0 for an octal number constant (digits: ‘0’-‘7’)
• 0b for a binary number constant (digits: ‘0’, ‘1’)

 Number constant placeholders attach a name to a particular constant or data memory address.
Placeholder definitions are case insensitive and begin with a period (‘.’) followed by one of the
following:

• const <placeholder> <number constant>
• word <placeholder> [value]
• array <placeholder> <size> [value [...]]

 The .const definition defines a placeholder (name) which is associated to a particular number
constant which is automatically substituted into instructions by the assembler. The .word definition
defines a placeholder (name) which is associated to an arbitrary data memory word, whose initial value
can be specified through the optional value parameter. The .array definition defines a placeholder

Game Core Classic

- 12 -

(name) which is associated to an arbitrary array of size data memory words, whose initial values can
be specified through the optional value parameters. Both .word and .array definitions are
automatically mapped to data memory by the assembler, and should be used instead of absolute address
number constants in LOAD and STORE commands. The optional value parameters follow the same
format as number constants. Data values are initialized to zero if not specified.

 In addition to data definitions, the .image <placeholder> <file> definition loads file
into video memory, associating its video memory address to placeholder. By using this placeholder,
prefixed by a pound sign, as an immediate value to a load instruction, this video memory address can
be passed on to a sprite via a video instruction. For more information, see the instruction reference.

 All .const, .word, .array and .image placeholder names must be unique irrespective of
case. They can, however, share the same name as a label. Label names must also be unique
irrespective of case.

Game Core Classic

- 13 -

CPU Architecture

The CPU is divided into a control section, which will be described behaviorally and data path, which
will for the most part be described at the register transfer level. The data path diagram is available in
the appendix. Currently, the data path is separated into the following sections:

• Instruction Fetch – Connected to instruction memory, contains the program counter and the instruction
register as well as an adder that calculates the next increment of the PC every cycle. Also a multiplexer
is present to select between a branch target or the incremented value of the PC. In order to support
subroutine functions, a hardware stack that stores the return address for subroutine calls must be
added. This hardware stack is a simple 16-bit wide bi-directional shift register that simply shifts in
additional return addresses when a branch to a subroutine is executed.

• Instruction Decode – This unit is also connected to instruction memory. The instruction fetch stage
contains the two operand registers used by the execution unit, the branch target register and the entire
register file. A set of multiplexers selects what is loaded into the operand registers. Either the next
word from instruction memory is loaded (for immediate value and absolute addressing modes) or a
value is loaded from the register file (for register direct and register indirect modes) into each of the
operand registers.

• Instruction Execute – This unit is connected to data memory, the I/O bus and the video unit. Inside the
execute stage there are several sub modules each dedicated to a class of instructions:
o ALU – performs logical and arithmetic calculations
o Load/Store unit – performs loads and stores to and from data memory
o I/O unit – performs loads and stores on the I/O bus
o Branch unit – performs a comparison on the input operands and returns success
o Shift unit – performs rotate, arithmetic shift and logical shift operations

Since several of the units in the execution stage produce outputs that are destined for general purpose
registers, a multiplexer is described in the execution stage that selects what unit’s output is written to
the register file.
The ALU is described behaviourally, since the addition, subtraction and Boolean logic operations are
most easily expressed in this manner. The multiply unit is generated from a Xilinx core and is
connected within the ALU. The ALU does not currently register any of its inputs and outputs, and is
purely combinational.

The load/store unit is also described behaviourally; it simply routes the incoming operand registers to
data memory address and data buses. The control unit determines when to stall for one additional cycle
for the memory data to become available.

The I/O and video instructions are very simple to implement, as they only route the operand registers
from the instruction decode stages onto the data and address busses of the video and I/O devices. The
control section generates the enable signals for the video and data busses.

The branch unit is composed of two comparators: one that compares the operands for equality and one
that compares if operand one is greater than operand two. From the output of these two comparators
any comparison type can be made using some additional combinational logic. The result from this
comparison will then determine if the program counter should reload with the branch target address or
if it should continue with the next instruction (which is already stored in the program counter register).

Game Core Classic

- 14 -

The shift unit is composed of a barrel shifter and some additional logic before the barrel shifter to select
the proper input data depending on the type of shift operation. The barrel shifter can rotate its inputs an
arbitrary number of bits to the left. To rotate the input data to the right, the barrel shifter simply rotates
its input data to the left by (barrel shifter input width – number of places to shift to the right). For
instance, to shift data 3 bits to the right in a 16-bit shifter, the barrel shifter really rotates its input 13
bits to the left, which achieves the same effect. To enable arithmetic and logic shift, some additional
logic is created before the barrel shifter inputs that imitates either zeros shifting in from the left or right
or imitates the MSB shifting in from the left (in case of the arithmetic shift).

For the register file it was decided that the read ports were best implemented using a tri-state bus
directly driven by each register. The other option is to create a large 256 to 16 multiplexer for each read
port, but this would require a large amount of logic and would probably offer little speed advantages if
any (since for such a large multiplexer multiple levels of logic are required). Instead the design uses a
tri-state bus and a set of 4 to 16 decoders that select which register can output its value on the read
ports. The same design for a 4 to 16 decoder is used to select what register is written to on the write
port. A separate write port is required for the temp register which contains an extra 16 bit word output
from either a multiply or divide operation because both the divide and multiply produce a 32 bit result
(either the upper 16 bits of the multiplication or the remainder of a divide is stored in the temp register)
should be written in the same clock cycle as the other result from the operation. This also automatically
means that the temp register cannot be addressed from the normal write port select, so that no CPU
operation can explicitly write to the temp register.

There is some opportunity in the execution unit of the CPU to use some externally provided HDL
components. In particular, there are some pipelined division and multiplication units available as IP
cores from Xilinx. Utilizing these cores reduces some of the design that would normally be required on
the fairly involved logic for these operations.

CPU Control Unit

The control unit is described behaviourally and consists of one finite state machine that determines
what registers are enabled at what time. The following states are currently present in the finite state
machine:
reset_cpu
mem_stable
pc_load
load_ir
stall_op2
load_op_exec
load_stall
stopped

Because the memory controller’s inputs are registered, the CPU control unit must always ensure that
the data on the address bus is valid before the rising edge of the clock, it can then latch the read data
from the memory on the next clock edge.

Game Core Classic

- 15 -

When the asynchronous reset is selected, the CPU always goes to the reset_cpu state. Since this reset is
asynchronous, it can occur right before the clock edge. When a reset occurs, the address lines to
instruction memory may not have been given enough time to stabilize to be guaranteed a valid result
the next clock cycle. Therefore, it progresses to the mem_stable state so that after this cycle the
addresses to the SRAM are stable. This means that after the mem_stable state, the SRAM data lines
contain the next instruction.

From the mem_stable state, the next state is always pc_load. When the pc_load state is entered, the
instruction register is enabled so that at the next clock edge the instruction register will hold the
instruction to be executed. Also, the program counter register is enabled so that it will load the address
of the next instruction on the next clock edge.

After the pc_load state, the load_ir state is entered. When the state becomes ir_load, the instruction
register has just loaded. Based upon the instruction currently loaded, a few things can happen. If an
additional instruction word is required (for example immediate values, absolute addresses and branch
targets), the program counter must be incremented again on the next cycle (note that the program
counter always points to the next instruction). Also, the operand registers must be enabled to load the
operand values (either from memory or the register file). If a branch instruction is being executed, the
branch target register must also be loaded. When the instruction is a load or store command, an
additional cycle is required for the instruction memory to fetch the extra data, and the next state entered
will be stall_op2. If the instruction is a NOP or STOP, the CPU can fetch the next instruction or stop
executing instructions all together. In any other case the next state entered will be load_op_exec.

When stall_op2 is entered, it means that the current instruction is a load or store instruction and an
additional word from instruction memory is required. All that the stall_op2 state has to do is enable one
of the operand registers so that the operand register loads the additional word from memory.

When load_op_exec is entered, it means the operand registers have just latched their values. Since the
execution units are directly connected to the operand registers and are purely combinational, the result
is available as soon as the next clock edge arrives. This means the target result register in the register
file must be enabled so that it will store the result from the execution unit. The only case in which the
register file write port must not be enabled yet occurs when a load command is executed. A load
instruction consumes one additional cycle because it has to wait for the memory data to become
available.

With instructions that do not require access to data memory, the execute cycle completes at this point in
time and the next state entered will be pc_load. However, when a load from memory to the register file
must be performed an additional stall cycle is necessary and thus the next state is load_stall. Also a
store operation to data memory requires an additional stall, since the write result does not latch until at
the end of the load_op_exec cycle and an extra cycle is necessary for the address bus to switch over to
the program counter value (since data and instruction memory share their data and address bus).
Therefore the next state after a store to memory is mem_stable.

During the load_stall cycle the general-purpose target register to which the loaded memory value must
be stored is selected. Also the address bus is prepared again to load the next instruction by placing the
program counter value on this bus.

Game Core Classic

- 16 -

Another state, the stopped state, exists. This is the state entered when a stop instruction is executed or
the stop line is high. The CPU remains in the stop cycle until reset is pressed. During the stop cycle the
CPU is simply inactive and disables all memory and register enables.

The following are a set of state diagrams for some typical instructions:

ALU, Shift, I/O and video instructions (always take three cycles):

NOP instructions (always take two cycles) and branch Instructions (always take five cycles)

pc_load

load_ir

load_op_exec

pc_load

load_ir

mem_stable

load_op_exec

stall_op2

pc_load

load_ir

Game Core Classic

- 17 -

Load instructions (can take anywhere from three to five cycles)
All addressing modes refer to the source operand.
Write instructions (can take anywhere from three to five cycles)
All addressing modes refer to the destination operand.

pc_load

load_ir

load_op_exec

stall_op2 Immediate or absolute
address mode

Register direct or
register indirect

mode

load_stall

Register indirect
or absolute

address mode

Register direct
or immediate

mode

pc_load

load_ir

load_op_exec

stall_op2 Immediate or absolute
address mode

Register direct or
register indirect

mode

mem_stable

Register indirect
or absolute

address mode

Register direct
mode

Game Core Classic

- 18 -

Description of GPU (Graphics co-Processor Unit)

In its current implementation (limited by the size of the FPGA and the amount of available internal
block SRAM) the GPU supports 24 independent graphics objects simultaneously being displayed
without any loss in performance in 8-bit colour and 640x480 resolution. These graphics objects come
in two flavors: rectangles, which consist of a single colour, and sprites, which are rectangles where each
individual pixel is mapped to a colour value in memory. Sprites can therefore take on any appearance
the programmer wishes, including having transparent pixels to simulate different shapes. In addition to
sprites and rectangles, the GPU supports a solid colour background to provide for a more appealing
gameplay environment.

The GPU contains the following components:

Component Description
CPU Interface Decodes commands from CPU
VGA Timing Generator Generates control signals for other components. Generates

HSYNC & VSYNC for VGA display.
Sprite Layer (x2) Arbitrates Sprite Graphics
Rectangle Layer Arbitrates Rectangle Objects
Background Layer Renders a solid colour under other objects

Graphics objects are divided up into layers. Each layer is guaranteed to render properly underneath any
layers above it, and above any layers below it. This includes any transparent sprite pixels taking on the
colour of the pixel under them. The lower the ID of the layer, the higher it is. Graphics objects within
the same layer, however, overlap imperfectly, with the lower ID object rendering on top of the higher
ID object. This rendering does not respect transparency.

The various layers supported by the GPU are listed below:

Layer Index Range Object Type
0 (top) 0-7 Sprites 1
1 0-7 Rectangles
2 0-7 Sprites 2
3 0-0 Background Colour

Each graphics layer is responsible for deciding whether or not it is rendering a given VGA pixel, and if
so, which colour it should have. Arbitration is used to allow the upper layers to override the lower
layers, producing a single colour value at the output for the VGA port. Also, at any time the timing
generator can prevent a particular pixel from being rendered, whether the requeset originated from the
CPU, or whether it is motivated by preserving the integrity of the VGA signalling.

Game Core Classic

- 19 -

The GPU layers are fully pipelined so that a new pixel’s colour is calculated every clock cycle. In an
effort to reduce the huge amount of FPGA area required for the GPU, many of the more complicated
graphics object control functions are abstracted to the timing generator. This reduces hardware and
routing at the cost of complexity, since each graphics object requires control signals to operate. This
does however severely increase the complexity of the timing generator, with the current
implementation making use of a seventeen and a three bit state machine.

CPU Interface

All the properties of a graphics object (position, enable state, colour, sprite address) must be
configurable by the programmer and hence the CPU. Since these properties are almost always in use, a
copy of them is stored in FPGA block RAM. While the GPU is generating the pixel information for the
current VGA frame, the CPU is free to modify these values using the GPU interface. Then, when the
GPU is transitioning between VGA frames (there is a mandatory amount of time between frames in the
VGA specification), the GPU serially updates each graphics object’s local copy of this information.
During this time, the CPU cannot update graphics object properties.

Background Layer

Sprites Layer 2

Rectangles Layer

Pipe Delay

Override

Override

Override

VGA Timing
Generator

Control

Sprites Layer 1

Disable

VGA Port

Display

HSync

VSync

Colour

Colour

Colour

Colour

HSync VSync

Pipe
Delay

Disable

Display

Game Core Classic

- 20 -

The following graphics commands can be issued from the CPU to the GPU:
Command (4 bits) Mnemonic Description
0x0 Row1 Sets object top value
0x1 Row2 Sets object bottom value
0x2 Col1 Sets object left value
0x3 Col2 Sets object right value
0x4 Enable Sets object draw enable attribute
0x5 Reserved
0x6 Colour Sets object color value (for non-sprites)
0x7 StartAddr Sets object start address (for sprites)
0x8 DispOn Enables VGA output
0x9 DispOff Disables VGA output (black screen)
0xA Reserved
0xB Reserved
0xC Reserved
0xD Reserved
0xE Reserved
0xF Reserved

The following signals connect the CPU to the GPU

Signal Direction Bits Description
command CPU -> GPU 4 Command issued to GPU
index CPU -> GPU 6 Index of graphics object
cpuData CPU -> GPU 16 Data bus
latch CPU -> GPU 1 Load cpuData into registers
retrace CPU <- GPU 1 Notifies CPU that vertical retrace

is happening => CPU cannot
update GPU registers.

red CPU <- GPU 2 Red value to monitor
green CPU <- GPU 3 Green value to monitor
blue CPU <- GPU 3 Blue value to monitor
hsync CPU <- GPU 1 Horizontal sync to monitor
vsync CPU <- GPU 1 Vertical sync to monitor

The CPU opcode will determine the command issued to the GPU. Most graphics instruction will take
two register operands. The first operand (destination) will be the value placed on the ‘index’ lines. The
‘index’ signal specifies one of the graphics objects to update. The second operand (value) will contain
the value to be sent to the ‘cpuData’ bus. The latch signal is used to synchronize writes to GPU
registers.

The CPU is responsible for ensuring that it does not update any GPU registers while the GPU is in
between displaying frames. The CPU will only be able to write to the GPU registers when the ‘retrace’
signal is de-asserted.

Pipeline Organization

Rectangle and sprite layers will be almost identical. Both will be divided into blocks of graphics
objects from which they arbitrate a colour value for the current pixel, if applicable. Each block that
attempts to render the current pixel will contend to place its colour or image address on the bus, with
the lowest numbered block winning out. Sprites that place their addresses on the bus will be arbitrated
into a single winning address which will be looked up in memory. If the resultant colour is transparent,
the sprite layer does not render the pixel. Otherwise, the resultant colour is placed on the colour bus to

Game Core Classic

- 21 -

be passed to the VGA port. In the case of rectangles, the winning colour value is simply placed on the
colour bus.

A depiction of a block of graphics objects is shown below:

Each GPU block consists of four GPU objects that contend for which will draw the current pixel, if any
of them. Control signals are also needed for the updating of object properties, since most of the logic
has been abstracted to the timing generator.

Each GPU object consists of four 12-bit down counters which track that object’s row and column
ranges for which is should display. It also has an “enabled” flag which needs to be set for the object to
display itself. In addition, it has either a colour or a sprite address depending on whether it is a
rectangle/background or a sprite. Control signals are used to reset the counters to store the positional
information, as well as modify the enable state or colour/address of the object.

GPU
Block

colour/spriteAddr

propSel[0..2]

0
1
2
3

2 to 4
Demux writeEnable

addr[0..3]

data

reset

set

Q D

overrideOut

overrideIn

rowEnable

0

GPU
Object

A[0..3]

OO

W
RR

RE
RS

D

CR

CE
CS

S[0..2]

OI

C/A

GPU
Object

A[0..3]

OO

W
RR

RE
RS

D

CR

CE
CS

S[0..2]

OI

C/A

GPU
Object

A[0..3]

OO

W
RR

RE
RS

D

CR

CE
CS

S[0..2]

OI

C/A

GPU
Object

A[0..3]

OO

W
RR

RE
RS

D

CR

CE
CS

S[0..2]

OI

C/A

1

 Q D

 Q D

 Q D

 Q D

 Q D

 Q D

 Q D

objectSel[0..1] Q D

 Q D

 Q D

1

1

1

Q D

display

Game Core Classic

- 22 -

A depiction of a graphics object is shown below:

A depiction of a 12 bit down counter is shown below:

GPU
Object

colour/
spriteAddr colour/

spriteAddr

writeEnable

12 bit Down
Counter

with
Memory

A[0..3]

Z
W
R

E
 S

D

12 bit Down
Counter

with
Memory

A[0..3]

Z
W
R

E
 S

D

12 bit Down
Counter

with
Memory

A[0..3]

Z
W
R

E
 S

D

12 bit Down
Counter

with
Memory

A[0..3]

Z
W
R

E
 S

D

propSel[0..2]

D
Flip-
Flop

CE

Q D enabled
addr[0..3]
data

colReset
colSet

rowReset
rowSet

col1

col2

row1

row2

 Q D

overrideOut

overrideIn

colEnable

rowEnable

display

3 to 8
Demux

0
1
2
3
4
5
6
7

12 bit
Down Counter
with Memory

set

16x1 bit
 SRAM

O WE
D

A[0..3]

4 bit Shift
Counter

H

O1
I2
I1

S
O2

4 bit Shift
Counter

H

O1
I2
I1

S
O2

4 bit Shift
Counter

H

O1
I2
I1

S
O2 1

D
Flip-
Flop

Q
R
D
S

addr0
addr1
addr2
addr3

writeEnable
data

reset

zero

enable

Game Core Classic

- 23 -

Each down counter is composed of three shift counters and a small SRAM to store the value it needs to
count to.

A depiction of a 4 bit shift counter is shown below:

The motivation for this unconventional counter design is two-fold. First, Xilinx FPGAs allow a four-
input look-up-table to be converted into either a 16 bit shift register or a 16 bit SRAM, providing far
more logic than a single flip-flop if it can be exploited in a design. Second, with the large number of
graphics objects in this design, and hence the large number of counters it makes use of, flip-flops would
run out far faster than look-up-tables if the counters were flip-flop based. In addition, pipelining units
like the divider require very large numbers of flip-flops while only moderate numbers of look-up-
tables, so exchanging one for the other with this design proved to be advantageous in several ways.

4 bit
Shift
Counter

16 bit Shift
Register

CE

Q D

enableIn1

enableOut1

enableIn2

shift

halt

enableOut2

Game Core Classic

- 24 -

Description of Memory

Initially, memory capacity was to come from external SRAM. This solution would have provided a
much greater capacity than internal SRAM on the FPGA. There were difficulties with mounting the
external SRAM chips on a PCB. This is discussed in more detail in the experiments and
characterization section of this report. The end result was that internal block RAM was used as a
substitute to the external RAM. The Xilinx Core Generator was used to configure the internal
memories. This block memory on the Spartan 2 board is organized in 4096 bit blocks with a total of 14
blocks on our particular board. The block ram can be configured using Core Generator to various sizes
and up to dual port reads and writes.

The following memories were created:

• 1536x16-bit CPU memory, logically divided into 1024x16-bit instruction memory and a
512x16-bit data memory.

• 256x16-bit GPU memory for storing graphic object information. This memory is writable by the
CPU through a 16-bit port, and is readable by the GPU through a 1-bit port.

• 3072x8-bit GPU sprite memory for storing sprite data. This memory is readable through two 8-
bit ports.

Six internal block RAMs were assigned to CPU program and data storage. Another six blocks were
used to store sprites graphics. A single block RAM was allocated to the GPU to store graphic object
properties. The CPU memory was configured with a single 16-bit read/write port. The CPU memory
was configured with a single 16-bit read/write port. The sprite memory was configured with dual 8-bit
read ports so that two layers of sprite data could be read simultaneously. The graphic object property
memory constituted the CPU to GPU interface, and it was configured with a 16-bit write port from the
CPU and a 1-bit read port for the GPU.

Game Core Classic

- 25 -

Description of I/O Bus

The IO bus is the link between the CPU and its peripherals. This bus is completely isolated from the
main memory bus, and is accessed using special CPU instructions: PIN and POUT.

All directions specified in this description are with respect to the CPU (ie. if a data register is an ‘out’
register, it is for values coming out of the CPU to the peripherals).

The CPU is the bus master, and bus transactions only happen when requested by PIN and POUT
instructions. Originally a bi-directional tri-state bus was used, but later the bus was converted to a
synchronous bus with separate lines for each direction.

During an PIN operation, the CPU places an address on the bus, sets ioRw to 0, and set the ioEnable
signal to 1. The peripheral places the requested data on the bus and at the next system clock edge the
data is read and the ioEnable signal is returned to 0.

During an POUT operation, the CPU places an address on the address bus, places data on the data bus,
set ioRw to 1, and sets ioEnable to 1. On the next clock edge the peripheral is written and the ioEnable
signal is returned to 0.

The following table lists the most important signals of the IO Bus:

Signal Bits Dir (CPU
relative)

Description

ioAddressBus 4 Out Address of 16 different ports
ioDataIn 8 In 8-bit data into IO bus module from CPU going

out to peripheral
ioDataOut 8 Out 8-bit data out of IO bus to CPU from peripheral.
ioRw 1 Out 0 for CPU to read from peripheral, 1 for CPU to

write to peripheral
ioEnable 1 Out When enabled, a read or write takes place on the

next system clock edge.

Game Core Classic

- 26 -

The following table shows the IO Bus address assignments:
Address Device
0 Read joystick 1 x-axis
1 Read joystick 1 y-axis
2 Read joystick 2 x-axis
3 Read joystick 2 y-axis
4 Read joystick buttons
5 unassigned
6 UART Data Register (write to TX, read to RX)
7 UART Status Register
8 Write LED lower byte
9 Write LED upper byte
10 Write 7-segment lower byte
11 Write 7-segment upper byte
12 unassigned
13 unassigned
14 unassigned
15 unassigned

 CPU

Bus

master

IN

OUT

Address

Data

8

4

I/O Bus node

Input
Output
Registers

Node
address

Game Core Classic

- 27 -

Description of Joystick Controller

The joystick controller is configured to collect input from two standard analog PC joysticks. The
joystick controller uses a 15 bit free-running counter clocked at 1MHz to collect joystick status
information. The counter has a rollover frequency of 1MHz / 2^15 = 30.5 Hz. Each time the counter
rolls over the 4 joystick buttons are latched and the 4 monostable multivibrators are triggered. The 30.5
Hz sampling frequency is slow enough to adequately debounce the joystick button inputs but is fast
enough to keep with even the most avid game player.

A 15 bit register is used for each axis to latch the count value when it’s multivibrator returns to its
stable state, and this count value will be a function of the joystick axis resistance (resistance being
proportional to position). The CPU can read the status of the buttons or any of the 4 axes from the IO
bus. Calibration of the joystick position information will be left up to software running on the CPU.

Reading a joystick register through the IO bus interface returns an 8-bit value composed of the most
significant 8-bits of the particular 15-bit joystick axis register. Reading the joystick button register
across the IO bus returns the status of the four buttons in bits 0..3 of the 8-bit register. A zero indicates
that a button is depressed.

Refer to the joystick circuit in the schematic diagram section of this report to see how the joysticks are
interfaced to the joystick controller.

Game Core Classic

- 28 -

Description of LED Controller

The LED controller allows the CPU to control 16 individual LEDs and to display a data on 4 7-segment
displays. The LED controller is connected to the IO bus and occupies four registers 8-bit registers: LED
upper byte, LED lower byte, 7-seg upper byte, and 7-seg lower byte.

Description of UART

The UART is implemented as a full duplex single channel RS-232 UART without hardware flow
control. The bit rate is fixed at 9600 BPS. The UART interfaces to the CPU via the IO Bus. The CPU
can read and write the uart data register to read a received byte and to transmit a byte, respectively. The
CPU can read the uart status register to see if the uart is ready to transmit and to see if a character has
been received. A write of any value to the uart status register clears the RX flag bit.

The uart is useful to the system programmer because it can be used to output debugging information,
and to allow data input that can’t be done efficiently with the joystick. For example, a PC keyboard can
be used for input to the gamecore system if connected to a PC’s serial port with a communications
program open.

The Digilent FPGA board has an on-board MAX chip for conversion between FPGA voltages and
standard RS-232 voltage levels.

Game Core Classic

- 29 -

Gamecore Data Sheet

Features

• Integrated 16-bit CPU
o 16-bit multiplier
o Complete instruction set
o Specialized video and IO instructions
o Dedicated video and IO buses
o Separate data and instruction memories (Harvard architecture)

• Integrated sprite and rectangle VGA graphics generator unit
o Layered graphics with support for transparency
o Hardware sprite and rectangle generators
o Fully parallel graphic generation with immunity to flickering

• Internal SRAM for program code and data, graphic object properties, and bitmapped sprite
graphics

• Support for two standard PC joysticks
• VGA monitor output
• RS-232 serial port available to user programs
• 16 individual LEDs and four 7-segment displays available to the programmer

IO Pins

Signal Description Direction FPGA Pin Connector
Pin

Total I/O
Pins

Colour(0) VGA Blue Bit 0 Output 16 A40
Colour(1) VGA Blue Bit 1 Output 17 A39
Colour(2) VGA Blue Bit 2 Output 18 A38
Colour(3) VGA Green Bit 0 Output 20 A37
Colour(4) VGA Green Bit 1 Output 21 A36
Colour(5) VGA Green Bit 2 Output 22 A35
Colour(6) VGA Red Bit 0 Output 23 A34
Colour(7) VGA Red Bit 1 Output 24 A33
Hsync VGA Horizontal Sync Output 27 A32
Vsync VGA Vertical Sync Output 29 A31
Clockin Clock signal Input 80 -
Resetin Reset signal Input 77 -
Dio2address(0) DIO2 address interface Output 59 A12
Dio2address(1) DIO2 address interface Output 62 A9
Dio2address(2) DIO2 address interface Output 61 A10
Dio2address(3) DIO2 address interface Output 67 A7
Dio2address(4) DIO2 address interface Output 63 A8
Dio2address(5) DIO2 address interface Output 69 A5
Dio2address(6) DIO2 address interface Output 68 A6

Game Core Classic

- 30 -

Dio2data(0) DIO2 data interface Output 41 A23
Dio2data(1) DIO2 data interface Output 37 A24
Dio2data(2) DIO2 data interface Output 43 A21
Dio2data(3) DIO2 data interface Output 42 A22
Dio2data(4) DIO2 data interface Output 45 A19
Dio2data(5) DIO2 data interface Output 44 A20
Dio2data(6) DIO2 data interface Output 47 A17
Dio2data(7) DIO2 data interface Output 46 A18
Dio2clkout DIO2 input clock Output 60 A11
Dio2cs0 DIO2 chip select Output 49 A15
Dio2oe DIO2 output enable Output 58 A13
Dio2we Dio2 write enable Output 48 A16
Joystickaxispins(0) Joystick 1, x-axis Input 174 C10
Joystickaxispins(1) Joystick 1, y-axis Input 173 C11
Joystickaxispins(2) Joystick 2, x-axis Input 172 C12
Joystickaxispins(3) Joystick 2, y-axis Input 168 C13
Joystickbuttonpins(0) Joystick 1, button 1 Input 167 C14
Joystickbuttonpins(1) Joystick 1, button 2 Input 166 C15
Joystickbuttonpins(2) Joystick 2, button 1 Input 165 C16
Joystickbuttonpins(3) Joystick 2, button 2 Input 164 C17
Joysticktriggerpin Joystick trigger Input 163 C18

Total: 40

Maximum Speed

The maximum speed reported by the Xilinx tools was 53MHz. This equates to a minimum clock period
of about 19 ns.

Game Core Classic

- 31 -

Resource Usage Measurements

The resource usage for the completed design as reported by the Xilinx tools was as follows:

Resource Usage Total Percent Usage
4-input LUTS 3141 4707 67%
Flip-flops 1256 4707 27%
Slices 2350 2352 100%
Tri-state Buffers 864 2464 35%
IO Pins 40 140 29%
Global Clock Buffers 3 4 75%

The following data was collected by compiling various sub-components independently. Please note that
the numbers are not indicative of the final design.

GPU:
 1446 slices
 1785 LUTs
 645 flip flops
 352 tri-state buffers

ALU:
 226 slices
 448 4-input LUTs
 0 flip flops

UART:
 64 slices
 84 4-input LUTs
 71 flip flops

VGA Timing Generator:
 43 slices
 67 4-input LUTs
 26 flip flops

Joystick Controller:
 81 slices
 23 4-input LUTs
 79 flip flops

GPU Block
 160 slices
 207 4-input LUTs
 31 flip flops

Game Core Classic

- 32 -

Results of Experiments and Characterization

Throughout the design process, many different things were tried. Some made it into the final design,
while many experiments failed. Below is a summary of experiments conducted.

Graphics Processing Unit

Initially, the idea for the GPU was to keep everything as simple as possible. Each graphics object
would monitor row and column lines, comparing their values against internal ones in order to decide
whether or not they should render the current pixel. While the straight-forward nature of this approach
was appealing, a few quick calculations showed that this design would require an exorbitant number of
flip-flops in order to store all these comparison values. While the current design can only practically
support 24 graphics objects at once, it was estimated that the former design would support only 12.

While an inefficient design in any normal situation would lead to a small loss in FPGA resources and is
normally not worth the effort to correct, the special situation of the GPU magnifies the problem. With
24 graphics objects, there are a total of 96 down-counters which means a total of 288 shift counters. It
is easy to see that even a single extra look-up-table or flip-flop in any of these sub-component designs
quickly grows to a much more significant waste when that design element is replicated.

To that end, a good deal of thought and creativity was applied to the problem of designing an efficient
graphics object property storage element that minimized the number of flip-flops used. The result was
a 12-bit down-counter with its own memory that consists of 11 look-up tables and one flip-flop. The
cost of this flip-flop savings is an increased complexity in the control logic used to control it, and the
reliance on serial transmission of data instead of parallel. The later does however cause the added
bonus of significant savings on routing resources as fewer signals need to read each object. Overall,
this design was chosen so as to maximize the number of graphics objects that could fit in the FPGA
while minimizing the number of flip-flops required for each.

External SRAM
External SRAM was a fundamental part of the initial Gamecore design. It was recognized that large
amounts of memory would be desired for user program and data storage, and more importantly for
storing large sprite graphics. The initial design included 256 KB of fast 10ns SRAM divided into two
independent 16-bit wide memories of 128KB each. One memory was to be used for program and data
storage, and the second was to be used for sprite video memory.

SRAM chips were selected and ordered, and PC boards were manufactured through Alberta PC Board.
Each board could handle two 44-pin J-Lead surface mount SRAM chips from Cypress Semiconductors.
Each board interfaced to the Digilent FPGA board through a 40-pin header. The SRAM chips were
very difficult to solder onto the boards because of their small pin pitch and the fact that the pads were
small and could not be reached by the soldering iron because the leads of a J-Lead package curl under
the chip.

During testing of the RAM, it was discovered that one board had a short between power and ground
that could not easily be repaired. The second board worked better, but only about half of it’s data pins
functioned correctly. While a large supply of extra boards, chips, and headers was purchased, time did
not permit more boards to be assembled, and redesign with internal FPGA block RAM’s was

Game Core Classic

- 33 -

necessary. This action limiting the available RAM to 7KB, and somewhat crippled the Gamecore
design since 256 KB was originally planned for.

Internal Block RAM
The Xilinx Core Generator was a useful tool in configuring internal block RAM. Once the SRAM size,
data width, and read/write capabilities was determined, generating a chuck of SRAM could be
performed in less than a minute. An option to initialize the memory was also provided. The function
does experience a limitation, however. The initialization data that is provide in the *.coe file must be
the same size as the data width of port A. Otherwise, the memory will either fail to generate or the
initialization file cannot be read.

The process of configuring block memory create quite a few files in the project directory. As part of
good housekeeping, moving these files to a subdirectory was tried, but the block memory failed to
regenerate in the project. Configuring block memory is separate projects was also tried, but also failed
when added to the top level project. Disadvantage of using block memory is therefore reduced capacity
when compared to most externally connected SRAM and a large project directory that can easily wreak
havoc on organization.

Gray Code Counters
Gray code was investigated with the goal of reducing signal lines between a few devices. Since gray
code changes only one bit for each consecutive count, perhaps a single bit could be transmitted as
opposed to many bits for a count. The savings in bits could be quite significant with a large count.
Methods to convert between Gray code and binary were found and proved to execute correctly. A
method to determine the bit that changed for a count could not be found. There did not seem to be a
deterministic pattern to the way the gray code bits changed. Efforts were abandoned in this area as it
proved too difficult.

Joystick Characterization and Calibration
The joystick circuit was originally tested with a function generator and an oscilloscope before
connecting to the FPGA. The function generator was set to supply a 30.5 Hz square wave to the trigger
inputs of the monostable multivibrators, and the output pulse width was measured with respect to the
joystick position. The 30.5 Hz trigger frequency mimicked the joystick controller which uses the same
triggering and sampling frequency.

The capacitor values were adjusted until a good range of output pulse widths was obtained. A duty-
cycle swing of about 0% to 80% was set. Once the circuit was thus calibrated, measurements were
taken which showed that the pulse width was indeed directly proportional to the joystick position.

Some non-ideal behaviours of the joystick circuit were discovered. One of these non-ideal behaviours
was the jittering of the measured values. This jittering can at least in part be due to the mechanical
nature of the joystick potentiometer. Another non-ideal behaviour was that the resistance of the joystick
dropped off to zero for the last 10% of motion. Since precise analog control of the joystick position is
not needed, the joystick input can be cleaned up in software by quantizing to a small set of possible
input values.

Game Core Classic

- 34 -

Externally provided HDL components

Xilinx Cores were used to implement the multiplier, divider, and the block RAMs. A 16-bit
combinational multiplier has been added to the CPU, and it has been verified to work properly at
25MHz (our system clock frequency) by having the CPU multiply a series of numbers an then display
the results on the seven segment displays. The RAMs were tested independently in hardware, and also
during the test of the multiplier since, in the process, the CPU was reading instructions out of RAM.

These components have been verified, and it is easily concluded that these components are suitable for
the design. Xilinx Cores were used partly to save time, and partly to meet the requirement of using
externally provided HDL components.

Game Core Classic

- 35 -

References

• [1] OSU8 Microprocessor, Paul Stoffregen, August 31, 1999
www.pjrc.com/tech/osu8/inst_set.html

• [2] Cypress Semiconductor Corporation, 1995-2003, www.cypress.com
• [3] A Simplified VHDL UART, University of California Riverside Computer Science, June

2001, www.cs.ucr.edu/content/esd/labs/uart/uart.html
• [4] ePanorama – Joystick documents, Tomi Engdal, 1996-1998

www.epanorama.net/documents/joystick/index.html
• [5] MIPS32 Instruction Set, MIPS Technologies Inc., March 12, 2001

http://segfault.net/~scut/cpu/mips/MIPS32_Vol2_The_MIPS32_Instruction_Set_v0.95.pdf
• [6] The Designer’s Guide to VHDL, Peter J. Ashenden, 2nd Edition, 2002.
• [7] ALSE (Advance Logic Synthesis for Electronics), 2002, www.alse-fr.com
• [8]Joystick Circuit based on circuit from Epanorama.net

Accessed http://www.epanorama.net/documents/joystick/pc_joystick.html. February 18, 2003
• [9]VGA timing calculator spreadsheet from VESA

Accessed http://www.vesa.org/public/SMT/SMT640_720x480v1.xls. February 18, 2003
• [10]VGA timing signal information from EE552 appnote

Accessed
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/interfacing/CRT/CRT_A
pp_Note.html. February 17, 2003

• [11] Xilinx Spartan II Primitives instantiation templates.
Accessed http://toolbox.xilinx.com/docsan/xilinx5/data/docs/lib/lib0024_8.html
March 1, 2003.

Game Core Classic

- 36 -

Data Sheets

The only external integrated circuit used was a 74LS123 retrigerable monostable multivibrator. This
chip was used in the joystick circuit to convert the joystick position (resistance) into a pulse width.

Game Core Classic

- 37 -

 Diagram of Design Hierarchy

Game Core

I/O Bus
(Compiled - Tested)

Memory Graphics co-
Processor Unit

(Compiled – Simulated)

CPU

Rectangle
Layer

(Compiled –
Simulated)

Sprite Layer
(Compiled –
Simulated)

Gpu Block
(Compiled – Tested)

VGA Timing
Generator

(Compiled – Simulated)

CPU
Interface
(Compiled –

Tested)

UART
(Compiled –
Simulated)

Joystick
(Compiled - Tested)

LEDs
(Compiled - Tested)

(See Next Page)

Gpu Object
(Compiled – Simulated)

12 Bit Down
Counter With

Memory
(Compiled –
Simulated)

4 Bit Shift
Counter

(Compiled –
Simulated)

Background
Layer

(Compiled –
Simulated)

Gpu Layer
(Compiled – Tested)

VGA Port
(Compiled – Tested)

Pipeline Reg
(Compiled – Tested)

(See Next Page)

Shift Sin
Pout

(Compiled –
Simulated)

Counter Sin
Pout

(Compiled –
Simulated)

Adder
(Compiled –
Simulated) Note:

The Simulated
designation is considered
as superset of tested.

Game Core Classic

- 38 -

Diagram of CPU Hierarchy

Legend
PC = Program Counter
IR = Instruction Register
OPR1 & OPR2 = Operand Register 1 and Operand Register 2
BTR = Branch Target Register
ALU = Arithmetic-Logic Unit
Temp Reg = Temporary register where an operand from the I/O
bus or memory is stored before being written to the register file
GPR = General Purpose Register
Constant Register = all zeros or all ones register
ALU Temp Register = remainder from division operation or
upper 16 bits from multiplication storage

CPU
(Compiled - Tested)

Instruction
Fetch

(Simulated)

Instruction
Decode
(Simulated)

Instruction
Execute
(Simulated)

CPU Control
Section

(Simulated)

PC Mux.
(Simulated)

PC Reg
(Simulated)

IR
(Simulated)

BTR
(Incomplete)

Register File
(Simulated)

OPR1 & OPR2
(Simulated)

Move Unit
(Simulated)

Video Unit
(Compiled)

Branch Unit
(Simulated)

Device I/O
Unit

(Compiled)

ALU
(Simulated)

Logic
Unit

(Simulated)

Arithmetic
Unit

(Simulated)

Constant
Register
(Simulated)

ALU Temp
Register
(Simulated)

GPR
(Simulated) Device I/O

Unit
(Compiled)

Game Core Classic

- 39 -

Diagram of Memory Hierarchy

 Memory

(Compiled – Tested)

CPU_mem_type
(Compiled – Tested)

GPU_mem_wrp
(Compiled – Tested)

GPU_mem_type
(Compiled – Tested)

GPU_mem_type
(Compiled – Tested)

Game Core Classic

- 40 -

Index to VHDL packages and code

PACKAGE / COMPONENT and DESCRIPTION STATUS
Package pigme_types
 Package containing common data types and constants

Compiled – No errors (types
and constants package)

Component pipeline_reg
 Pipeline registers

Compiled – Tested

Component Gamecore
 Gamecore project top-level

Compiled – Tested

Package memory_pkg
 Package of block ram components

Compiled – No errors

Component Adder
 N-bit adder

Compiled – Tested

Package dio2_pkg
 Package with body to connect to IO Board LEDs

Compiled – No errors

Package io_bus_pkg
 Package of all IO bus components

Compiled – No errors

Component io_bus
 IO bus components

Compiled – Tested

Package joystick_pkg
 Package and body of joystick controller

Compiled – No errors

Package uart_pkg
 Package and body of serial port

Compiled – No errors

Package barrel_shift_pkg
 Barrel Shifter package

Compiled – No errors

Component barrel_shift
 Barrel Shifter

Compiled – Tested

Package branch_unit_pkg
 Branch unit package

Compiled – No errors

Component branch_unit
 Branch unit

Compiled – Tested

Package cpu_controlsection_pkg
 CPU control path package

Compiled – No Errors

Component cpu_controlsection
 CPU control path definition

Compiled – Tested

Package cpu_pkg
 CPU architecture interface

Compiled – No errors

Component cpu
 CPU architecture

Compiled – Tested

Package decoder4_16_pkg
 Four to 16 bit address decoder, recognized and optimized
 by the Xilinx tools

Compiled – No Errors

Package inst_decode_pkg
 CPU instruction decoder package

Compiled – No errors

Component inst_decode
 CPU instruction decoder

Compiled – Tested

Package inst_exec_pkg
 CPU instruction execution package

Compiled – No errors

Game Core Classic

- 41 -

Component inst_exec
 CPU instruction execution

Compiled – Tested

Package inst_fetch_pkg
 CPU instruction fetch package

Compiled – No errors

Component inst_fetch
 CPU instruction fetch

Compiled – Tested

Package io_unit_pkg
 Handler of reads and writes to I/O bus

Compiled – No errors

Component io_unit
 Handler of reads and writes to I/O bus

Compiled – Tested

Package load_store_pkg
 CPU reads/writes to memory package

Compiled – No errors

Component load_store
 CPU reads/writes to memory

Compiled – Tested

Package register_file_pkg
 CPU Register File package

Compiled – No errors

Component register_file
 CPU Register File

Compiled – Tested

Package register_pkg
 Various CPU register types

Compiled – No errors

Component register
 Various CPU register types

Compiled – Tested

Package shift_unit_pkg
 Shift unit package

Compiled – No errors

Component shift_unit
 Shift unit package

Compiled – Tested

Package alu_pkg
 ALU for PIGME CPU

Compiled – No errors

Component back_layer
 Background generator

Compiled – Tested

Component counter_sin_pout
 N-bit counter with serial input and parallel output

Compiled – Tested

Component down_counter
 12 bit down counter

Compiled – Tested

Component gpu_block
 Block of GPU objects

Compiled – Tested

Component gpu_layer
 Layer of GPU blocks

Compiled – Tested

Component gpu_object
 GPU Graphics Object

Compiled – Tested

Component gpu
 GPU top level

Compiled – Tested

Component joystick
 Joystick interface

Compiled – Tested

Component rect_layer
 Layer of Rectangle Generators

Compiled – Tested

Component shift_counter
 4-bit shift counter

Compiled – Tested

Component sprite_layer
 Layer of sprite generators

Compiled – Tested

Game Core Classic

- 42 -

Component vga_port
 VGA port

Compiled – Tested

Component vgaTimeGen
 Provides VGA timing signals.

Compiled – Tested

Game Core Classic

- 43 -

VHDL Design

VHDL Code not available in the electronic version of this report.

Game Core Classic

- 44 -

Test Bench Documentation

Test Bench / Simulation index
Pipeline_reg_tb
 Test pipeline for correct delay
Io_bus_tb
 Test register file registers and verifies correctness
Barrel_shift_tb
 Verifies correct rotation of bits
Cpu_controlsection_tb
 Test the proper operation of the cpu control section in
conjunction with the instruction fetch and decode stages as well
as the ALU and move unit.
Cpu_tb
 Test the top level CPU interface by reading in an assembly
program and verifying that the CPU writes the correct data back
to the register file and data memory.
Inst_decode_tb
 Test the proper loading of the operand 1 and operand 2
registers from either the register file or memory. Also the
loading of the branch target register is tested.
Inst_fetch_tb
 Test the PC, PC incrementer, and instruction register (IR)
Register_file_tb
 Test the register file reads and writes
Shift_unit_tb
 Test the various types of shift operations in both
directions.
Down_counter_tb
 12-bit down counter test bench
Gpu_object_tb
 Test a gpu object’s ability to draw itself
Shift_counter_tb
 Shift counter test bench
Vga_time_gen_tb
 Test VGA timing generation of signals

For the register file (register_file_tb.vhd) the following scenarios were tested:
Each register’s index value (or register address) will be written to that register, than some small amount
of time later it is verified that the register does indeed contain the correct value. This value is output on
both read ports of the register value. Of course, the constant registers cannot be written to and will
always output all ones or all zeros. A special signal must be asserted for the temp register, since this
temp register will be written to in parallel with another 16-bit ALU output.
Then to verify that two different registers can each write to one of the read ports, another loop is
executed in which the register at index and index+1 each output their index value on one of the read

Game Core Classic

- 45 -

ports. Finally the functionality of the temp register is verified by writing to the temp register at the
same time as one of the other general-purpose registers is written to.
The worst delay in the register counter is 12.166 ns between the register select value change and the
constant register 0. To reduce the delay it is possible to exchange the tri-state output but for a pair of
256 to 16 multiplexers for the read ports, however this would increase the area used tremendously and
likely yields only small timing gains, if any.

For the instruction fetch unit another test bench is written (inst_fetch_tb.vhd).
In this test bench a limited number of CPU fetch cycles are simulated. Initially, a reset signal is sent
and it is verified that the PC and IR reset properly.
After the reset, a few CPU fetch cycles are simulated in which the PC is incremented and sent down the
address bus to the instruction memory to fetch an instruction. After the address has been put on the
memory address bus, a value is put on the data bus and this is latched into the instruction register. It is
then verified that the value put on the data bus matches the value in the instruction register.
Finally, it is verified that when a branch succeeds, the branch target register value is loaded into the PC
instead of an increment of the previous address.
Inside the instruction fetch unit, the critical path lies between the PC output and the PC input through
the adder and multiplexer. However, once the unit is connected to the memory controller, the time
between putting the PC value on the address bus and waiting for the result will likely be the path of
longest delay as the instruction fetch unit must wait for the memory controller data bus signal to
stabilize.

The instruction decode unit contains the register file. A test bench (inst_decode_tb) somewhat similar
to the register file test bench was created, in that the operand registers are each loaded from each
register from the file register. Also, loading from the instruction bus into the operand register is tested.
It is also verified that the branch target register properly loads when it is enabled.
The worst delay in the instruction decode is 16.696 ns; the critical path lies between the register select
value change and the corresponding change in the register read port. There is little one can do to speed
this up, since most of the delay is due to the register file. The change from a tri-state bus to the
multiplexer based approach to speed up the register file read cycles can be used to increase the speed of
this part of the circuit. However, since our clock period is 40ns, there is no real need to speed up this
circuit, and area constraints are a bigger concern than speed concerns.

Because simulating the control unit separately takes more effort than simulating it as part of the CPU, it
was decided to connect the instruction decode, instruction fetch, ALU and move unit all in one test
bench. This has the added bonus that all the signals between the units are clearly visible and can be
inspected. A sample instruction stream is provided to verify that the control section advances from state
to state properly. Meanwhile, the functionality of the CPU as a whole is also tested. The interaction
between the different components of the CPU is also confirmed when testing in this manner. The
instructions supplied to the CPU can be found in the test bench file cpu_controlsection_tb.vhd.

To verify that the barrel shifter operated correctly, an input bit vector was generated and shifted from 0
through 15 bits to the left in a test bench (barrel_shift_tb.vhd). The barrel shifter’s output is compared
with the VHDL ROL operator some time after new inputs have been applied. The critical path in the
barrel shifter is from a change in the most significant bit in the bit vector specifying the number of bits

Game Core Classic

- 46 -

to be shifted to the least significant bit in the shifter’s output. The critical path delay is 17.063 ns, but
cannot be improved upon. The generic barrel shifter was compared to a design that the Xilinx tools
recognize and optimize, and their logic and delay characteristics are identical.

To verify that the shift unit operates correctly, all possible shift and rotate instructions are tested in both
directions. All the different shift instructions are put through a test in which their inputs are shifted
from 0 to 15 bits. The output for each shift and rotate instruction is then compared to the corresponding
VHDL operator’s output for the same input data (shift_unit_tb.vhd).

The most important part of the simulation is the verification of the top level CPU entity. In order to
facilitate proper testing of the CPU, the following signals are passed through the top-level entity for
testing purposes only: temp register data and enable, general purpose register select and data and the
current instruction register value. The test bench starts out by reading in the ASCII instruction and data
memory files. It parses the instruction streams and stores them in internal arrays for instruction and data
memory. After completing reading in the program, it asserts the reset signal for a few clock cycles, and
then commences simulating the program. To verify that the CPU is operating correctly, the test bench
simulates the CPU instructions itself. The test bench contains a simulated register file, as well as the
simulated instruction and data memory values read in at the start of the simulation. As the CPU
executes instructions and writes them to the register file and data memory, the test bench monitors the
outputs, and catches any errors in the address and data busses to the register file and data memory. This
approach to testing the CPU allows for thorough verification of the CPU’s operation. An added
advantage is that the programmer can debug their program in hardware simulation and determine
whether the problem they are debugging is due to faulty hardware or a fault in their software (this
becomes problematic, however, for programs that execute for more than a few hundred cycles
however). There are two sets of waveforms included for this test bench, one simulating the video
instructions and one simulating a variety of instructions.

For the GPU object testbench (gpu_object_tb.vhd), the main testing strategy consisted of loading a set
of properties into the object using the timing generator’s protocol, then observing whether or not it
behaved correctly. Namely, the object should not display itself when it is not supposed to, it should
always display itself when it is supposed to, and it should always display itself correctly. By
positioning the object in the center of a small rectangular simulated screen, the object’s ability to
identify when it should render itself and in what colour was verified.

For the VGA timing generator testbench, (vga_time_gen_tb.vhd), the main strategy was simulate
memory values for the generator’s serial read requests of bits, then observe that all the correct timing
and control signals were generated. While this approach is very thorough, it does take an extremely
large amount of time to simulate a frame of video elapsing. However, after much waiting, it was
observed that not only did the timing generator produce the appropriate sync and disable signals for
VGA, it also effectively made use of dead-times in between retraces in order to update the memory
values of every graphics object.

Game Core Classic

- 47 -

Schematics

Joystick Schematic

Joystick Schematic
+5v

10k10k10k10k

Button 0 Button 1 Button 2 Button 3

Monostable

QQ
Trig

5k

+5v

Axis
22

Monostable

QQ
Trig

5k

+5v

Axis
33

Monostable

QQ
Trig

5k

+5v

Axis
11

Monostable

QQ
Trig

5k

+5v

Axis
00

JB0
JB1
JB2
JB3

AX0

AX1

AX2

AX3

Trigger

Game Core Classic

- 48 -

 Instruction Set
ADD

Signed Addition

Operation: rd ← rs1 + rs2

Syntax: ADD rd, rs1, rs2

Description: Adds rs2 to rs1 and stores the result in rd.

Notes: Overflow and Borrow are ignored.

AND
Bitwise AND

Operation: rd ← rs1 & rs2

Syntax: AND rd, rs1, rs2

Description: Stores the bitwise AND of rs1 and rs2 in rd.

Notes: none

ASL
Arithmetic Shift Left

Operation: rd ← rd << rs

Syntax: ASL rd, rs

Description: Bit shifts rd to the left by the number of bits in rs, storing the result in rd. Each most
significant bit shifted out of rd slides the remaining bits to the left by one, replacing the
least significant bit with 0.

Notes: Overflow is ignored. rd is undefined if [rs] is negative.

1000 rs2 rs1 rd
15 12 11 8 7 4 3 0

0111 rs rd 0010
15 12 11 8 7 4 3 0

rd
14 1 15 0

0

1100 rs2 rs1 rd
15 12 11 8 7 4 3 0

Game Core Classic

- 49 -

ASR
Arithmetic Shift Right

Operation: rd ← rd >> rs

Syntax: ASR rd, rs

Description: Bit shifts rd to the right by the number of bits in rs, storing the result in rd. Each least
significant bit shifted out of rd slides the remaining bits to the right by one, leaving a
copy of the most significant bit in place.

Notes: Borrow is ignored. rd is undefined if [rs] is negative.

BEQ
Branch On Equal

Operation: if rs1 = rs2 then pc ← addr

Syntax: BEQ rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 and rs2 are both the same value.

Notes: addr is specified as a label which is resolved by the assembler.

BG
Branch On Greater Than

Operation: if rs1 > rs2 then pc ← addr

Syntax: BG rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 is greater than rs2.

Notes: addr is specified as a label which is resolved by the assembler.

0111 rs rd 0011
15 12 11 8 7 4 3 0

rd
14 1 15 0

0100 rs2 rs1 0010
15 12 11 8 7 4 3 0

0100 rs2 rs1 0111
15 12 11 8 7 4 3 0

Game Core Classic

- 50 -

BGE
Branch On Greater Than Or Equal To

Operation: if rs1 >= rs2 then pc ← addr

Syntax: BGE rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 is greater than or equal to rs2.

Notes: addr is specified as a label which is resolved by the assembler.

BL
Branch On Less Than

Operation: if rs1 < rs2 then pc ← addr

Syntax: BL rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 is less than rs2.

Notes: addr is specified as a label which is resolved by the assembler.

BLE
Branch On Less Than Or Equal To

Operation: if rs1 <= rs2 then pc ← addr

Syntax: BLE rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 is less than or equal to rs2.

Notes: addr is specified as a label which is resolved by the assembler.

0100 rs2 rs1 0100
15 12 11 8 7 4 3 0

0100 rs2 rs1 0101
15 12 11 8 7 4 3 0

0100 rs2 rs1 0110
15 12 11 8 7 4 3 0

Game Core Classic

- 51 -

BN
Branch On Negative

Operation: if rs < 0 then pc ← addr

Syntax: BN rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is negative.

Notes: addr is specified as a label which is resolved by the assembler.

BNE
Branch On Not Equal

Operation: if rs1 != rs2 then pc ← addr

Syntax: BNE rs1, rs2, addr

Description: Branches to the address specified in the next word following the current instruction if
rs1 and rs2 are different values.

Notes: addr is specified as a label which is resolved by the assembler.

BNN
Branch On Not Negative

Operation: if rs >= 0 then pc ← addr

Syntax: BNN rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is not negative.

Notes: addr is specified as a label which is resolved by the assembler.

0100 rs2 rs1 0011
15 12 11 8 7 4 3 0

0100 rz rs 0110
15 12 11 8 7 4 3 0

0100 rz rs 0101
15 12 11 8 7 4 3 0

Game Core Classic

- 52 -

BNP
Branch On Not Positive

Operation: if rs <= 0 then pc ← addr

Syntax: BNP rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is not positive.

Notes: addr is specified as a label which is resolved by the assembler.

BNZ
Branch On Non Zero

Operation: if rs != 0 then pc ← addr

Syntax: BNZ rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is non zero.

Notes: addr is specified as a label which is resolved by the assembler.

BP
Branch On Positive

Operation: if rs > 0 then pc ← addr

Syntax: BP rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is positive.

Notes: addr is specified as a label which is resolved by the assembler.

0100 rz rs 0011
15 12 11 8 7 4 3 0

0100 rz rs 0111
15 12 11 8 7 4 3 0

0100 rz rs 0100
15 12 11 8 7 4 3 0

Game Core Classic

- 53 -

BR
Unconditional Branch

Operation: pc ← addr

Syntax: BR addr

Description: Unconditionally branches to the address specified in the next word following the current
instruction.

Notes: addr is specified as a label which is resolved by the assembler.

BSR
Branch to Subroutine

Operation: (sp)++ ← pc; pc ← addr

Syntax: BSR addr

Description: Unconditionally branches to the address specified in the next word following the current
instruction. A subsequent RTS instruction returns execution to the instruction following
the BSR.

Notes: addr is specified as a label which is resolved by the assembler.

BVD
Branch On Video Drawing

Operation: if ‘video is drawing’ then pc ← addr

Syntax: BVD addr

Description: Branches to the address specified in the next word following the current instruction if the
video unit is busy redrawing the screen and cannot accept new parameters.

Notes: addr is specified as a label which is resolved by the assembler. Video object properties
should only be changed when the video is not drawing.

0100 ---- ---- 0000
15 12 11 8 7 4 3 0

0100 ---- ---- 1000
15 12 11 8 7 4 3 0

0100 ---- ---- 1100
15 12 11 8 7 4 3 0

Game Core Classic

- 54 -

BZ
Branch On Zero

Operation: if rs = 0 then pc ← addr

Syntax: BZ rs, addr

Description: Branches to the address specified in the next word following the current instruction if rs
is zero.

Notes: addr is specified as a label which is resolved by the assembler.

CLR
Clear All Register Bits

Operation: r ← 0x0000

Syntax: CLR r

Description: Clears all of the specified register’s bits (sets the register to zero).

Notes: none

DEC
Signed Decrement By 1

Operation: r ← r - 1

Syntax: DEC r

Description: Decrements r by 1 and stores the result back into r.

Notes: Borrow is ignored.

1000 rn r r
15 12 11 8 7 4 3 0

0100 rz rs 0010
15 12 11 8 7 4 3 0

0101 rz r 0
15 12 11 7 4 3 0

000
10 8

Game Core Classic

- 55 -

DIV
Signed Division

Operation: rd ← rs1 / rs2 rt ← rs1 % rs2

Syntax: DIV rd, rs1, rs2

Description: Divides rs2 into rs1, placing the 16 bits result in rd. The 16 bit remainder is placed in
the temporary register rt.

Notes: This instruction modifies rt. Therefore rd cannot be rt.

INC
Signed Increment By 1

Operation: r ← r + 1

Syntax: INC r

Description: Increments r by 1 and stores the result back into r.

Notes: Overflow is ignored.

1011 rs2 rs1 rd
15 12 11 8 7 4 3 0

1001 rn r r
15 12 11 8 7 4 3 0

Game Core Classic

- 56 -

LOAD
Register or Memory Transfer to Register

Operation: rd ← rs rd ← (rs) rd ← as rd ← #is

Syntax: LOAD rd, rs LOAD rd, as

 LOAD rd, (rs) LOAD rd, #is

Description: Moves a 16 bit value from source to the destination register using one of the following
effective addressing modes:

Code Mnemonic Name Description

0b000 rs Register Direct Source is the register specified by rs.

0b001 (rs) Register Indirect Source is at the memory address contained in the register
specified by rs.

0b010 as Absolute Address Source is the memory address specified in the syntax
instead of a register.

0b011 #is Immediate Value Source is the immediate 16 bit constant specified in the
syntax instead of a register, prefixed by a ‘#’.

0b1?? n/a Reserved Reserved for future implementation

Source Effective Addressing Modes

 If absolute addressing or immediate value is used, the next word following the current
instruction is that absolute memory address or immediate value. Whenever an
addressing mode requiring an additional 16 bit argument is used, the contents of the rs
register field is undefined.

Notes: none

0101 rs rd 0
15 12 11 7 4 3 0

sea
10 8

Game Core Classic

- 57 -

LSL
Logical Shift Left

Operation: rd ← rd << rs

Syntax: LSL rd, rs

Description: Bit shifts rd to the left by the number of bits in rs, storing the result in rd. Each most
significant bit shifted out of rd slides the remaining bits to the left by one, replacing the
least significant bit with 0.

Notes: Overflow is ignored. rd is undefined if [rs] is negative.

LSR
Logical Shift Right

Operation: rd ← rd >> rs

Syntax: LSR rd, rs

Description: Bit shifts rd to the right by the number of bits in rs, storing the result in rd. Each least
significant bit shifted out of rd slides the remaining bits to the right by one, replacing
the most significant bit with 0.

Notes: Borrow is ignored. rd is undefined if [rs] is negative.

MULT
Signed Multiplication

Operation: rt:rd ← rs1 * rs2

Syntax: MULT rd, rs1, rs2

Description: Multiplies rs2 and rs1, placing the lower 16 bits of the result in rd. The upper 16 bits
of the result are placed in the temporary register rt.

Notes: This instruction modifies rt. Therefore rd cannot be rt.

1010 rs2 rs1 rd
15 12 11 8 7 4 3 0

0111 rs rd 0000
15 12 11 8 7 4 3 0

rd
14 1 15 0

0

0111 rs rd 0001
15 12 11 8 7 4 3 0

rd
14 1 15 0

0

Game Core Classic

- 58 -

NEG
2’s Compliment Negation

Operation: rd ← -rs

Syntax: NEG rd, rs

Description: Stores the 2’s compliment negation of rs in rd.

Notes: none

NOP
No Operation

Operation: none

Syntax: NOP

Description: Causes the microprocessor to wait for one clock cycle.

Notes: none

NOT
Bitwise NOT

Operation: rd ← ~rs

Syntax: NOT rd, rs

Description: Stores the bitwise NOT of rs in rd.

Notes: none

0000 ---- ---- 0000
15 12 11 8 7 4 3 0

1110 rn rs rd
15 12 11 8 7 4 3 0

1001 rs rz rd
15 12 11 8 7 4 3 0

Game Core Classic

- 59 -

OR
Bitwise OR

Operation: rd ← rs1 | rs2

Syntax: OR rd, rs1, rs2

Description: Stores the bitwise OR of rs1 and rs2 in rd.

Notes: none

PIN
I/O Bus Port Input

Operation: rd ← port(rp)

Syntax: PIN rp, rd

Description: Reads a word from the I/O port whose id is in rp, storing it in rd.

Notes: Undefined if rp contains an invalid I/O port id.

POUT
I/O Bus Port Output

Operation: port(rp) ← rs

Syntax: POUT rp, rs

Description: Writes the word stored in rs to the I/O port whose id is in rp.

Notes: Undefined if rp contains an invalid I/O port id.

1101 rs2 rs1 rd
15 12 11 8 7 4 3 0

0010 rd rp 0000
15 12 11 8 7 4 3 0

0010 rs rp 0001
15 12 11 8 7 4 3 0

Game Core Classic

- 60 -

ROTL
Rotate Left

Operation: rd ← rd Q rs

Syntax: ROTL rd, rs

Description: Bit rotates rd to the left by the number of bits in rs, storing the result in rd. Each most
significant bit rotated out of rd slides the remaining bits to the left by one, and is put
back into the least significant bit.

Notes: Overflow is ignored. rd is undefined if [rs] is negative.

ROTR
Rotate Right

Operation: rd ← rd P rs

Syntax: ROTR rd, rs

Description: Bit rotates rd to the right by the number of bits in rs, storing the result in rd. Each
least significant bit rotated out of rd slides the remaining bits to the right by one, and is
put back into the most significant bit.

Notes: Borrow is ignored. rd is undefined if [rs] is negative.

RTS
Return from Subroutine

Operation: pc ← --(sp)

Syntax: RTS

Description: Returns execution to the instruction following the last BSR instruction.

Notes: addr is specified as a label which is resolved by the assembler. Undefined behaviour if
there was no matching BSR instruction.

0111 rs rd 0100
15 12 11 8 7 4 3 0

rd
14 1 15 0

0111 rs rd 0101
15 12 11 8 7 4 3 0

rd
14 1 15 0

0100 ---- ---- 1001
15 12 11 8 7 4 3 0

Game Core Classic

- 61 -

STOP
Stop Program Execution

Operation: halt processor

Syntax: STOP

Description: Causes the microprocessor to stop executing instructions. This the normal method for
terminating a program cleanly

Notes: Any instructions after a STOP instruction will not be executed.

STORE
Register Transfer to Register or Memory

Operation: rd ← rs (rd) ← rs ad ← rs

Syntax: STORE rd, rs STORE (rd), rs STORE ad, rs

Description: Moves a 16 bit value from the source register to the destination using one of the
following effective addressing modes:

Code Mnemonic Name Description

0b000 rd Register Direct Destination is the register specified by rd respectively.

0b001 (rd) Register Indirect Destination is the memory address contained in the
register specified by rd.

0b010 ad Absolute Address Destination is the memory address specified in the syntax
instead of a register.

0b011 n/a Invalid Invalid addressing mode
0b1?? n/a Reserved Reserved for future implementation

Destination Effective Addressing Modes

 If absolute addressing is used, the next word following the current instruction is that
absolute memory address. Whenever an addressing mode requiring an additional 16 bit
argument is used, the contents of the rd register field is undefined.

Notes: none

0000 ---- ---- 0001
15 12 11 8 7 4 3 0

0101 rs rd 1
15 12 11 7 4 3 0

dea
10 8

Game Core Classic

- 62 -

SUB
Signed Subtraction

Operation: rd ← rs1 - rs2

Syntax: SUB rd, rs1, rs2

Description: Subtracts rs2 from rs1 and stores the result in rd.

Notes: Overflow and Borrow are ignored.

VBP
Set Video Object Bottom Position

Operation: video(rv).bottom ← rs

Syntax: VBP rv, rs

Description: Sets the bottom position of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or
shape, or if the value of rs is outside the valid range of the screen.

VC
Set Video Object Colour

Operation: video(rv).colour ← rs

Syntax: VC rv, rs

Description: Sets the color of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, if the value of rs is outside the valid
range of colours, or if the target object is not a shape or the background.

1001 rs2 rs1 rd
15 12 11 8 7 4 3 0

0011 rs rv 0011
15 12 11 8 7 4 3 0

0011 rs rv 0100
15 12 11 8 7 4 3 0

Game Core Classic

- 63 -

VD
Disable Video Object

Operation: video(rv).disable()

Syntax: VD rv

Description: Disables the video object whose id is in rv.

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite
or shape.

VE
Enable Video Object

Operation: video(rv).enable()

Syntax: VE rv

Description: Enables the video object whose id is in rv.

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite
or shape.

VI
Set Video Object Image Address

Operation: video(rv).image ← rs

Syntax: VI rv, rs

Description: Sets the image address of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, or if the target object is not a sprite.

0011 rs rv 0101
15 12 11 8 7 4 3 0

0011 ---- rv 1000
15 12 11 8 7 4 3 0

0011 ---- rv 1001
15 12 11 8 7 4 3 0

Game Core Classic

- 64 -

VLP
Set Video Object Left Position

Operation: video(rv).left ← rs

Syntax: VLP rv, rs

Description: Sets the left position of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or
shape, or if the value of rs is outside the valid range of the screen.

VRP
Set Video Object Right Position

Operation: video(rv).right ← rs

Syntax: VRP rv, rs

Description: Sets the right position of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or
shape, or if the value of rs is outside the valid range of the screen.

VTP
Set Video Object Top Position

Operation: video(rv).top ← rs

Syntax: VTP rv, rs

Description: Sets the top position of the video object, whose id is in rv, to the value stored in rs.

Notes: Undefined if rv contains an invalid video object id, if the target object is not a sprite or
shape, or if the value of rs is outside the valid range of the screen.

0011 rs rv 0000
15 12 11 8 7 4 3 0

0011 rs rv 0001
15 12 11 8 7 4 3 0

0011 rs rv 0010
15 12 11 8 7 4 3 0

Game Core Classic

- 65 -

XOR
Bitwise XOR

Operation: rd ← rs1 ⊕ rs2

Syntax: XOR rd, rs1, rs2

Description: Stores the bitwise XOR of rs1 and rs2 in rd.

Notes: none

1110 rs2 rs1 rd
15 12 11 8 7 4 3 0

