

Audio Processing Unit
EE 552 Project
Final Report

March 31, 2003

Duncan Campbell - duncanc@ualberta.ca
Grant Cunningham -grantc@ualberta.ca
Clint Lozinsky - lozinsky@ualberta.ca
Richard Schultz rschultz@ee.ualberta.ca

 ii

Declaration of Original Content

The design elements of this project and report are entirely the original work of the
authors and have not been submitted for credit in any other course except as follows:

-Stereo Codec driver code and associated interface components supplied by [9].
-SDRAM controller driver and memory access taken from [9].
-LCD interface based on code taken from [11].
-Audio Effects Algorithms and implementation hints from [12].
-Various building blocks and support modules generated by the Xilinx Core Generator
Tools.

______________________ ______________________
Duncan Campbell Grant Cunningham

______________________ ______________________
Clint Lozinsky Richard Schultz

 iii

Abstract

The Audio Processing Unit (APU) is a device that uses an FPGA to do digital signal
processing of an audio signal. Developed on the Xess XSA-100 and Xstend board
combination, it is capable of sampling an analog input signal, processing it digitally
and storing it, and transferring the digital signal back into an analog audio signal
suitable for playback. The APU uses an external LCD and pushbuttons to interact with
the user for selection of the various operations associated with it. The main goal of
the project is to develop an FPGA based device that could provide real-time audio
effects including Chorus, Flange, Echo, Delay, and Pitch Shifting. Included in this was
the goal to provide some facilities for storage of an audio signal. This report outlines
the various aspects concerning the design, implementation and testing of the APU.

 iv

Table of Contents

Abstract... iii
Table of Contents ... iv
Achievements ... 1

User Interface .. 1
Memory/Storage ... 1
Effects Engine .. 1
Fast Fourier Transform.. 1
Codec Interface.. 2

Introduction... 2
Description of Design and Operation... 3

User Interface .. 3
UI Controller.. 3

 Memory/Storage... 4
Effects Engine .. 5
Fast Fourier Transform.. 6
Codec Interfacing .. 7

Total Implementation Size.. 9
Codec Interface and Effects-engine ... 9
LCD Controller ... 9
U.I. Controller...10
FFT..10

Experiments ..10
Modifying Synthesis Options..10

External FFT Core ..11
Designed FFT module ..11

External VHDL Components ..11
Stereo Codec Driver..12
SDRAM Controller ...12
Xilinx Core Generator Modules..12

References ...13
Appendices
 Appendix A- VHDL Code
 Appendix B - Simulations and Test Cases
 Appendix C - Test Benches
 Appendix D - Diagrams of Design Hiearchy
 Appendix E - FFT Design
 Appendix F - FPGA Implementation of Audio Effects
 Appendix G - Microphone Preamp

 1

Achievements

Throughout the development of this project, numerous achievements were made.
Most notably, the successful implementation of a significant digital project in an FPGA
was realized. Many valuable achievements were made in the areas of effective group
and project management. In addition to this, several more specific achievements
were made relating specifically to the various design components of the APU.

User Interface

The user interface was implemented with an LCD controller (lcd_top_level.vhd)
module and a user interface controller (uicontroller.vhd). The LCD controller was
originally implemented with each character stored in a logic block, but this was found
to be very slow to implement and simulate. Due to this each message was stored in
ROM that was implemented using the block RAM. The LCD controller, after configuring
the display, then retrieved the appropriate message and sent it to the LCD. This
worked well and the overall speed of implementation was increased drastically, chip
space was also conserved as the block RAM was now being used instead of the logic
blocks. The uicontroller was a module that de-bounced the inputs from the push-
buttons and kept track of what state the system was in, this state was then sent to the
other components via a system wide bus.

Memory/Storage

The storage unit (storage.vhd) implements an interface between the Codec interface
and the SDRAM controller. The storage unit is able to store the audio data from the
Codec interface into SDRAM while simultaneously playing audio out to the user. The
data stored in SDRAM can then be played back at the user’s request. The storage unit
is able to store up to 170 seconds worth of audio to SDRAM.

Effects Engine

Numerous achievements were made in terms of the effects engine. To date, the
circular buffer has been fully tested and works as expected. An echo has been added
to the input signal, and this has been tested completely and functions correctly. As of
this writing, the Chorus and Flange units are functioning, but need minor tweaking and
debugging to produce audibly pleasing results. It is fully expected that this will be
complete in time for demonstration and presentation purposes. As well, complete
implementation with the storage module has been performed, and it has been verified
that both modules will fit into the target device.

Fast Fourier Transform

A control unit, FFTcontroller, has been created to coordinate the downloading and
uploading of data from the codec to RAM, and the use of the FFT with RAM. Another
subordinate controller, sel_controller, has been created to coordinate the operation of
the FFT butterfly algorithm. An arithmetic unit and lookup table IMMULT2 and WNLUT
have been created to facilitate all the required arithmetic to perform FFT and inverse
FFT operations. All that remains to bring the FFT module to completion is some
debugging in the interaction between RAM and the arithmetic units.

 2

Codec Interface

The codec driver supplied by Xess [9] was successfully modified and integrated into
the design of the APU.

Introduction

The APU is able to accept an audio input signal, interact with a user to provide
operations on the data, and output a modified audio signal. The operation of the
entire unit is outlined below.

First, the APU samples audio input to it at 48kHz with 20-bit precision. This is
accomplished by means of a stereo codec chip included on the Xstend board. This
codec performs both digital to analog and analog to digital conversion. Once
converted to a digital medium, the signal can then be processed as desired.

To determine what operation to perform, the APU has a user-friendly interface to the
world. For this particular application, an LCD display is used to display messages and
pushbuttons to select different options. What this allows is selection of a number of
different parameters, which translate into specific operations. Each of these
operations is performed by one of the three datapath components.

The first component of this datapath is the FFT module. Its basic operation is to
provide a conversion from the time-domain signal to a frequency-domain signal, and
allows processing of the signal in this domain. A frequency shifter follows the FFT
section to provide pitch shifting of the input voice signal in real-time.

The effects engine is the next component of the data path. As opposed to the FFT
module operating on the signal in the frequency domain, the effects engine operates
completely in the time domain. Data incoming from the codec is placed into memory
in a circular buffer. The data is then read out with different samples added together
to provide a modified signal. The architecture of the effects engine allows it perform
echo, chorus, flange and phaser effects on the signal.

The storage component is the final component of the datapath. Its basic purpose is to
perform one of two operations. First, it stores a certain amount of input data as
determined by either the user or the available memory size. Following this, it plays
that stored data back. Effectively this creates an audio record and playback device,
which is useful in many applications.

Using the above basic operation, the APU is a complete audio processor with options
similar to many commercially available models.

 3

Description of Design and Operation

User Interface

The user interface controls what state the system is in by taking inputs from the two
push-buttons and outputting the current state on the ui_bus, by using the uicontroller
module. The entire system monitors this bus to ensure that there are no conflicts
caused by two processes running at the same time. The uicontroller has two other
inputs, pb_overrun and full, that also cause the state to be changed. These inputs are
passed from the module that controls audio storage to the SRAM and notify the user
interface if the RAM is full or if there are no more valid addresses to be read.

The LCD display is controlled by the LCD controller which consists of two main
modules, lcd_decoder and lcd_driver, as well as a clock divider and top level to
connect all of the internal modules. The driver module initializes the LCD upon reset
and also ensures that the proper delays are obeyed between commands sent to the
LCD. These delays are crucial since the driver does not check the busy flag and
therefore must ensure that the LCD has had enough time to complete the current
instruction before the next command is sent. The decoder monitors the ui_bus and
ensures that the proper message is displayed on the LCD. If the ui_bus changes state
then the decoder sends a clear signal to the driver which causes the driver to initialize
the LCD and prepare to receive characters. When the driver is ready to display a
character it notifies the decoder by setting the dvr_ready signal high. The decoder
then reads the next ASCII character to be displayed from the ROM and sends it to the
driver. Once the driver has received the signal it lowers dvr_ready and prints the
character on the LCD. This process is repeated until the entire message is displayed
on the screen, the cursor is then returned to the home position, by the decoder
sending the home signal to the driver, and both modules then wait until the state on
the ui_bus changes and a new message must be displayed.

UI Controller

The uicontroller module uses push button user inputs to control the operation of the
Audio Processing Unit. The uicontroller is made up of a finite state machine. The finite
state machine is controlled by the three user push buttons. Push button one (PB1) is
used as a enter command, and push button two (PB2) is as a scroll command. The third
push buttons acts a system wide active low reset. These user push buttons are
debounced in the uicontroller. The ui_bus is used to control the operation of the
entire Audio Processing Unit. The commands placed on the ui_bus tell the rest of the
unit what operations to perform. The finite state machine of the uicontroller can be
seen in figure 1.

 4

Memory/Storage

The storage module provides an interface between the Codec interface and SDRAM
Controller. The storage module takes in audio data from the Codec interface and
stores it in SDRAM. The audio data stored in SDRAM can then be played back at the
users’ request. The storage unit can hold up to 170 seconds of audio. The storage unit
only reads data from the left channel of SDRAM in order to save memory space, and
because a mono input is inputted to the stereo codec, so both left and right channels
will be identical.

 5

 Figure 2

When the storage unit is storing data to SDRAM it waits for a rising edge on
ladc_out_rdy signal from the Codec interface. At this point in time the data on
left_channel from the Codec interface is valid and is stored in SDRAM by asserting the
write signal (wr) high to SDRAM.

When the storage unit is reading data from SDRAM the read signal (rd) is asserted and
the data from SDRAM is read into to a register. When either ldac_in_rdy or rdac_in_rdy
goes high the data read into the register is placed onto the left_channel or
right_channel busses. The data placed left_channel or right_channel is then played
back as audio to the user by the codec_interface module.

Effects Engine

The purpose of the effects engine is to provide various time-based effects on the input
signal. By employing a circular buffer arrangement of memory, using two read
pointers and a single write pointer, the effects engine is able to produce an output
signal that is the weighted sum of two previous inputs. It creates the different effects
by carefully controlling the difference between the two pointers.

The operator controller (op_cntrl.vhd) accepts signals from the UI bus. As well, the
operator controller is responsible for accepting a control signal from the audio codec
when new data is ready. Once it detects a valid code on the bus, and new data is

CODEC
signals

SDRAM address bus

Data to SDRAM

Data to
CODEC

 SDRAM
Read &
write signals

Signals to
Uicontroller

Ui_bus

System clock

System Reset

Data from SDRAM

Data to/from CODEC

SDRAM done signal

 6

ready, the controller begins operation by setting the different value registers for the
correct values for the various modules beyond it.

The address generator (add_gen.vhd) takes as input the registers set by the operator
controller. It uses these values to constantly generate new addresses depending on
which effect is desired. The write pointer and primary read pointer are controlled by
basic 16 bit counters, while the secondary read pointer is a slightly offset version of
the primary one.. For the chorus and flange effects, this offset value changes with
time, while the phaser and echo effects are time-constant offsets. For a more
detailed description of each of these effects, please refer to Appendix F.

The circular controller (circ_cntrl.vhd) simply arbitrates memory reads and writes.
Every time new data is available, the circular controller writes this value to memory,
and reads two values. It then waits for the data clock to go low again before returning
to its idle state. Once the data has been recovered from memory, it is put into
registers for further processing.

Following the circular controller is the mixer (mixer.vhd). The purpose of the mixer is
to accept the two values from the circular controller and output the weighted sum of
them. Currently the mixer is only capable of weighting the values by values
represented by 2-n

. It is expected that this may be improved upon before
demonstration and presentations, should time permit.

Fast Fourier Transform

The FFT is implemented by a butterfly algorithm [4]. It is a 32 point FFT with 8 bit
accuracy. The FFT consists of 4 modules:
-An arithmetic unit called IMMULT2 which performs a complex multiplication and
addition for 3 complex inputs, and outputs a complex number. Complex numbers are
represented as 2 signed numbers, one for the real component, and another for the
imaginary. This is required for each point at each stage in the butterfly algorithm.
-A lookup table, WNLUT, which receives an input and outputs the corresponding Wn,
where Wn = e2?j/n . This contains decimal components. This is handled by outputting
the number times 26 and then later truncating 6 bits after the multiplication.
-A state machine sel_controller, which has several output signals, selA, selB, sel_wn,
counter, stage. This controller works with the FFTcontroller to pull values for to input
to the complex multiplier from RAM, select the correct Wn, and output the correct
result from IMMULT2 to RAM.
-An overall controller FFTcontroller interacts with RAM and stereo codec through a
higher toplevel. It coordinates the building of 32 point samples to RAM from the codec
driver, moving values in and out of designated sections of RAM for IMMULT2 with the
aid of sel_controller, and the output of the end result to the codec driver.

Below is a diagram of the flow of DATA through sections of RAM, and a block diagram
of the FFT unit. Each block in the Data Flow diagram corresponds to an array of 32, 16
bit registers, with only the upper 8 bits used, and the lower 8 bits padded with zeros.

 7

Codec Interfacing

The codec driver (codec_intfc.vhd) has several important signals for interfacing with it
that are passed through to various components in the design:
-Two 20 bit parallel input signals to the DAC .
-Two 20 bit parallel output signals from the ADC.
-ladc_out_rdy, radc_out_rdy which flag when data is ready to be read from ADC.
-ldac_out_rdy, rdac_out_rdy which flag when new data can be placed on the shift
registers to be written to the DAC.

The _rdy signals must be watched by all DSP units to synchronize the processing of
data with the flow of data, and tell the DSP modules when new data must be dealt
with, and when processed data must be sent out. Other signals, such as the rd and wr
are controlled by the top-level.

 8

Specif icat ions
Maximum Clock Freq 43.156 MHz
Minimum SDRAM clock Freq 25 MHz
Number of Logic Cells 1 1 9 8
Number of Gates 49,174

Audio Parameters
Codec sampling rate 48.8KHz
Codec sampling resolution 20 b i t s
Memory Storage resolution 16 b i t s
Maximum audio storage length 170 seconds

User Interface and Codec Module
Pin # Pin Name Description I/O
88 clk System clock I
93 notrst Active low replace I
26 pb1 Active-low push button I
78 pb2 Active-low push button I
77 mclk Codec Master clk O
59 lrck Codec left/right clock O
75 sclk Codec Shift clock O
74 sdin Codec Serial data to DACs O
76 sdout Codec Serial data from ADCs I

LCD Module
Pin # Pin Name Description I/O
60 data_bus_out<0> LCD Output O
62 data_bus_out<1> LCD Output O
54 data_bus_out<2> LCD Output O
56 data_bus_out<3> LCD Output O
63 data_bus_out<4> LCD Output O
64 data_bus_out<5> LCD Output O
66 data_bus_out<6> LCD Output O
67 data_bus_out<7> LCD Output O
49 enable_out LCD control signal O
46 read_write_out LCD control signal O
44 reg_sel_out LCD control signal O

SDRAM Module
Pin # Pin Name Description I/O
141 saddr<0> SDRAM address bus O
4 saddr<1> SDRAM address bus O
6 saddr<2> SDRAM address bus O
10 saddr<3> SDRAM address bus O
11 saddr<4> SDRAM address bus O
7 saddr<5> SDRAM address bus O
5 saddr<6> SDRAM address bus O
3 saddr<7> SDRAM address bus O
140 saddr<8> SDRAM address bus O
138 saddr<9> SDRAM address bus O
139 saddr<10> SDRAM address bus O
136 saddr<11> SDRAM address bus O
95 sdata<0> SDRAM data bus O
99 sdata<1> SDRAM data bus I/O
101 sdata<2> SDRAM data bus I/O
103 sdata<3> SDRAM data bus I/O
113 sdata<4> SDRAM data bus I/O
115 sdata<5> SDRAM data bus I/O
117 sdata<6> SDRAM data bus I/O
120 sdata<7> SDRAM data bus I/O
121 sdata<8> SDRAM data bus I/O
116 sdata<10> SDRAM data bus I/O
114 sdata<11> SDRAM data bus I/O
112 sdata<12> SDRAM data bus I/O
102 sdata<13> SDRAM data bus I/O
100 sdata<14> SDRAM data bus I/O
96 sdata<15> SDRAM data bus I/O
130 ras_n SDRAM ras I/O
131 cke SDRAM clock-enable O
123 we_n SDRAM write-enable O
134 ba<0> SDRAM bank select O
137 ba<1> SDRAM bank select O
126 cas_n SDRAM cas O
41 ce_n Flash Ram chip enable O
132 cs_n SDRAM chip select O
124 dqmh SDRAM DQMH O
122 dqml SDRAM DQML O
91 sclkfb SDRAM feedback clock O
129 sclk_ram SDRAM clock I

Datasheet for Chip

DATA SHEET

Audio Processing Unit

Features

• Stereo Codec
• LCD user interface
• SDRAM Controller
• Audio effects module
• Fast Fourier Transform
• Audio Storage/Playback module

 9

FPGA Resource Usage

The completed components of the project exceeded the device resources. For this
reason, the project was divided into two parts for implementation. Because of the
modular nature and three distinct datapath components, the implemented parts work
independently of each other. The specific resource usage is documented in the table
below.

Total Implementation Size
 Storage and Effects

Engine (Slices)
FFT Module Both Together

Number of Slices: 1187/1200
98%

463/1200
38%

122%

Total Number Slice
Registers:

866/2400
36%

165/2400
6%

42%

Total Number 4 input
LUTs:

1892/2400
78%

878 /2400
36%

98%

Number of bonded
IOBs:

58/92
63%

58/92
63%

58/92
63%

Number of Block
RAMs

1/4
25%

1/4
25%

1/4
25%

Number of GCLKs: 1/4
25%

1/4
25%

1/4
25%

Number of GCLKIOBs: 2/4
50%

2/4
50%

2/4
50%

Number of DLLs: 2/4
50%

2/4
50%

2/4
50%

Total equivalent gate
count 50512

31742

75422

Codec Interface and Effects-engine

Number of Slices: 625 out of 1,200 52%
Total Number Slice Registers: 599 out of 2,400 24%
Total Number 4 input LUTs: 898 out of 2,400 37%
Number of bonded IOBs: 74 out of 92 80%

Total equivalent gate count for design: 11,011
Additional JTAG gate count for IOBs: 3,600

LCD Controller

Number of Slices: 362 out of 1,200 30%
Number of Slice Flip Flops: 151 out of 2,400 6%
Total Number 4 input LUTs: 625 out of 2,400 26%
Number of bonded IOBs: 20 out of 92 21%
Number of Block RAMs: 1 out of 10 10%

Total equivalent gate count for design: 21,651
Additional JTAG gate count for IOBs: 1,008

 10

U.I. Controller

Number of Slices: 53 out of 1,200 4%
Number of Slice Flip Flops: 46 out of 2,400 1%
Total Number 4 input LUTs: 80 out of 2,400 3%
Number of bonded IOBs: 13 out of 92 14%

Total equivalent gate count for design: 899
Additional JTAG gate count for IOBs: 672

FFT

Number of Slices: 463 out of 1,200 38%
Number of Slice Flip Flops: 165 out of 2,400 6%
Total Number 4 input LUTs: 878 out of 2,400 36%
Number of bonded IOBs: 106 out of 92 115%

Total equivalent gate count for design: 8,698
Additional JTAG gate count for IOBs: 5,136

Results of Experiments and Characterization

Throughout the course of the project, numerous experiments were completed to
determine the best way to do things. Some of these experiments are documented
below.

Modifying Synthesis Options

The Xilinx ISE synthesis tools have options for different synthesis settings. These
include optimizing for speed or area, and changing the effort used by the synthesizer
from normal to high. During each stage of development, different options were tried
to determine the best settings.

Optimization
Goal

Optimization
Effort

Maximum
Clock

Frequency

Number of SLICEs
used

Synthesis/Imple
mentation Time

Speed Normal 43.156MHz 1198/1200 (99%) 02:14:00
Speed High 43.482MHz 1187/1200 (98%) 02:30:00
Area Normal 28.206MHz 1146/1200 (95%) 01:57:00
Area High 30.348MHz 1140/1200 (95%) 02:15:00

In all cases, the project containing the storage and effects engine module was
compiled. The synthesis time is the total time taken to generate a programming file.
As shown above, changing these settings has a great effect on the performance of the
finished program. It is noted that changing the optimization settings has very little
effect on total synthesis time. When set to high there is a marginal improvement in

 11

both speed and area for each optimization goal. However, the differences are so
marginal that there appears to be very little benefit.

In addition to the given settings, tests were done to attempt to use incremental
synthesis. In this style of synthesis, only the changed components are re-synthesized
each time, saving time generating new programming files each time only one or two
files are changed. Unfortunately all efforts to make this work resulted in bit streams
that didn't function properly. For this reason and due to time constraints, further
experiments were abandoned.

External FFT Core

At the outset of this project, it was expected that the APU would contain a fast fourier
transform module supplied by an external source [7],[10]. It was learned through trial
and error that none of the available FFT cores would fit into the target device. The
FFT core generated using the Core Generator system [10] used 927 out of 1200 (77%)
total SLICEs. This was using a 32 Point transform with 8 bits of precision. The core
downloaded from OpenCores.org [7], with the same specifications used 16 of 10 (160%)
possible Block RAM of the available Block RAM, and did not include customizations to
modify this. As a result of these cores being far too large to fit into the rest of the
project, a separate FFT core using other memory was developed, as described
previously.

Designed FFT module

Experiments were conducted to discern the relation ship between multiplier input
width, and size. The following date was obtained for multipliers with the given input
widths, and outputs of twice that input width.

Input width

4 Number of Slices: 9 out of 1,200 1%
 Maximum combinational path delay: 15.285n

8 Number of Slices: 36 out of 1,200 3%
 Maximum combinational path delay: 20.112ns

16 Number of Slices: 140 out of 1,200 11%
 Maximum combinational path delay: 25.519ns

It can be seen that input width can be is a function of the square of the input width,
and that the max combinational delay increases 5 ns with the doubling of the input
width. Since the complex arithmetic unit IMMULT2 requires 4 such multipliers, 8 bits
is the only feasible size for the input widths, and it has a max operating frequency of
just under 50MHz.

Another experiment was done to yield the size of a 32 to 1 multiplexer.

 Number of Slices: 18 out of 1,200 1%
 Maximum combinational path delay: 13.987ns

With the previous choice for design, 8 * 4 = 32 such multiplexers would have to be
uses, taking up 48% of the available slices. It was attempted to minimize this by

 12

implementing shift registers, to reduce the number of multiplexers required by a
factor of 8(the input width).

In an attempt to minimize the size of the original FFT design using multiplexers and
registers, the registers were replaced with shift registers, and where there had been 8
MUXes in parallel, there was one MUX moving data in serial form to an output shift
register. The control path was modified. The end result was an FFT that took up 94%
of the chip, not usable. It could be used with some debugging on a larger FPGA. RAM
will be used instead.

External VHDL Components

As a requirement for this project, certain external HDL modules were used. In
addition to fulfilling the requirements, it was also found that using external
components drastically reduces overall design time and gave more time to concentrate
on other areas of design. As a result, it improved the quality of the project and made
extra progress possible. A description of each of the externally supplied modules is
given below.

Stereo Codec Driver
As the Xstend V1.3.2 board includes a stereo codec interface chip, it was necessary to
implement a driver module to control the operation of the codec. It was discovered
early on in the project that Xess had provided such functionality through their
examples [9]. Only minor changes needed to be made to the supplied codec_intfc.vhd
to get it to function and provide basic audio loop-back functions. Once this was
accomplished, the digital signal provided by the codec could be routed to any
particular component and modified accordingly.

SDRAM Controller
Much like the Xstend V1.3.2 board contained the codec chip, the XSA-100 Board
contains 16MB of SDRAM onboard. Using sdramcntrl.vhd as provided [9], it was
possible to interface directly with the SDRAM as though it were SRAM. The provided
module controlled all necessary timing and refresh operations and made design overall
much simpler.

Xilinx Core Generator Modules
Included in the Xilinx ISE software package was the Xilinx Core Generator System.
This was used throughout the project as a way of simplifying design of certain
elements by generating cores to do specific tasks and implementing these cores
structurally rather than behaviorally. As a general rule, structural designs are much
easier to debug and design than behavioral designs, so this further reduced design
time. Each of the following cores were created by the Xilinx tools and used in the
design of the APU:
-lcd_rom.xco – Block RAM configured for read-only operation to hold the characters
used for displaying messages on the LCD. Instantiated by lcd_decoder.vhd
-count16.xco – 16-bit counter used to control address pointers for the circular buffer.
Instantiated by add_gen.vhd.
-count8.xco – 8 bit counter used in the delay generator to provide an input to the sine-
LUT. Instantiated by delay_gen.vhd.

 13

-sine_gen.xco – Sine/Cosine Lookup-Table (LUT) to provide a sine-varying offset to the
secondary address read pointer for chorus/flange effects. Instantiated by
delay_gen.vhd.
- add.xco – Adder/Subtracter to provide a constant offset value to the secondary
address read pointer for echo effects. Instantiated by delay_gen.vhd.
- subtract.xco – Adder/Subtracter to subtract the offset values from the primary read
pointer. Instantiated by delay_gen.vhd.

References

[1] Smith, Steven W. The Scientist and Engineer's Guide to Digital Signal

Processing, Second Edition. San Diego, CA: California Technical Publishing,
1999

[2] DeFatta, David J., Lucas, Joseph G., and HodgeKiss, William S. Digital Signal

Processing: A System Design Approach. Toronto, ON: John Wiley & Sons, 1988

[3] Lim, Jae S. Speech Enhancement. New Jersey: Prentice-Hall, 1983

[4] Lathi, B.P. Signal Processing and Linear Systems. Carmichael, CA: Berkeley

Cambridge Press: 1998

[5] Antoniou, Andreas Digital Filters Analysis, Design, and Applications, Second

Edition. Toronto, ON: Primis Custom Publishing, 2000

[6] Smith, Douglas J. HDL Chip Design, Madison, AL: Doone Publications, 1996

[7] OpenCores.org, URL: http://www.opencores.org, 2003

[8] Swartzlander, Earl E. Jr. VLSI Signal Processing Systems. Hingham, MA, 1982

[9] Xess Corporation, Example Designs, Tutorials, Application Notes.
 URL: http://www.xess.com/ho03000.html#Examples, 2003

[10] Xilinx Corporation, Xilinx IP Center.

URL: http://www.xilinx.com/ipcenter/index.htm, 2003

[11] Smith, Jessamyn Wired CDMA Network – Application Note, URL:

http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2000f/interfacin
g/lcd/, 2000.

[12] Micea , Mihai V., Stratulat, Mircea, Ardelean, Dan, and Aioanei, Daniel

Implementing Professional Audio Effects with DSPs. University of Timisoara,
Romania, 2001
URL: http://dsplabs.utt.ro/~micha/publications/pdfs/Audio%20Processor.pdf

 - 1 -

Appendix A
VHDL Code

 - 2 -

Index to VHDL Code

Entity Name Description Status
Toplevel.vhd Top level entity for all elements Compiled
Codec_interface.vhd Entity combining all datapath components to

control data movement
Compiled

Clock_gen.vhd Generates required clock signals to operate codec Compiled
Codec_intfc.vhd Brings together interface channels to codec driver Compiled
Channel.vhd Uses signals from clkgen to move data Compiled
Clkgen.vhd Generates required clock signals to operate

controller
Compiled

Storage.vhd Entity controlling storage and playback functions Compiled
Fx_engine_toplevel.vhd Combines all effects engine components Compiled
Add_gen.vhd Address generator to control address pointers for

effects engine
Compiled

Delay_gen.vhd Delay generator to generated an offset memory
address for circular buffer

Compiled

Modulus.vhd Clock divider for delay generator Compiled
Scaler.vhd Ensures address falls within range Compiled
Shifter.vhd Shift register to divide offset value to a

controllable value
Compiled

Circ_cntrl.vhd Circular buffer controller Compiled
Mixer.vhd Mixes two memory output values to produce an

output value to hear
Compiled

Op_cntrl.vhd Controls effects engine operation Compiled
Lcd_top_level.vhd Overall control of the LCD interface. Compiled
Clock_divider.vhd Divides clock to provide LCD slow clock Compiled
Lcd_decoder.vhd Determines which message to display and sends

proper characters to lcd_driver.
Compiled

Lcd_driver.vhd Initializes LCD and outputs characters. Compiled
Sdramcnt.vhd SDRAM controller module to provide timing and

refresh operations
Compiled

UIcontroller.vhd User Interface that takes in user inputs and tells
the other components what to do.

Compiled

Storage2.vhd FFT controller module to provide FFT operations Compiled
Immult2.vhd Provides complex number multiplication Compiled
Selectcontroller.vhd Provides memory selection for FFT Compiled
WNLUT.vhd Look-up table for FFT twiddle factors Compiled
Interface.vhd Package for LCD interface Compiled
Level2.vhd Package for overall integration Compiled
Store.vhd Package for storage functions Compiled
Codec.vhd Package for codec operations Compiled
Fx_pkg.vhd Package for overall effects engine operation Compiled
Delay_pkg.vhd Package for delay generator functions Compiled
Common.vhd Package for added LCD operations Compiled
Codec_top.vhd Package for codec top level. Compiled
UIPackage.vhd Package for user interface functions Compiled
Counter4b.vhd 4 bit counter for storage functions Compiled

 - 1 -

Appendix B
Simulation and Test Cases

 - 2 -

Index to Test Cases and Simulations
Name Description Status
UI Controller Simulation waveforms for Storage Unit Simulated
FFT modules Simulation waveforms for FFT operation Simulated
LCD Operation Simulation waveforms for LCD unit Simulated

Storage Unit Simulation Waveforms for storage unit and
memory operations

Simulated

Effects engine Simulation Waveforms for Effects Engine Simulated

 - 1 -

Appendix C
Test benches

 - 2 -

Test Bench Index
Test Bench
Name

Description Status

lcd_test.vhd Testbench for LCD interface. Simulates all
of the valid inputs.

Simulated – no known bugs

Test.vhw UI controller testbench (generated) Simulated – no known bugs
Top_level.vhw LCD driver testbench (generated) Simulated – no known bugs

 - 1 -

Appendix D
Diagrams of Design Hierarchy

 - 2 -

Implemented Design without FFT

 - 3 -

Note: As this is the final report, all elements listed above have been
Compiled/Simulated and have no known bugs or are having minor bugs currently being
worked out. As well, two separate design have been drawn to reflect the way that the
design was implemented. FFT controller can be considered to be connected to Codec
Interface, in much the same way storage and fx_engine_toplevel are.

 - 1 -

Appendix E
FFT Operation

 - 2 -

Description of FFT Implementation

 The inputs are 2 arrays of 32, 8 bit signals, for the imaginary and real components
of the 32 points to be transformed. Most have been deleted to save space. Also shown
are the state, next_state, calc, reset and counter signal.
 In the FFT, 1 complex multipliers is multiplexed to perform all 32 multiplications
for each stage(5 in all).

Description of FFT

Figure 1: Successive Steps in an 8-point FFT taken from “Signal Processing & Linear Systems” by B.P. Lathi. [4]

index stage0 stage1 stage2
 Fh Fl Wn Fh Fl Wn Fh Fl Wn
000 000 100 000 000 010 000 000 100 000
001 000 100 100 001 011 010 001 101 001
010 010 110 000 000 010 100 010 110 010
011 010 110 100 001 011 110 011 111 011
100 001 101 000 100 110 000 000 100 100
101 001 101 100 101 111 010 001 101 101
110 011 111 000 100 110 100 010 110 110
111 011 111 100 101 111 110 011 111 111
Table A1: summary of indexes in Binary
Figure one shows the butterfly algorithm for an 8 point FFT. Table A1 summarizes the
terms that must be multiplied together to come up with intermediate stages within the

 - 3 -

FFT. This algorithm can be implemented with 2 arrays of 8 complex numbers, a lookup
table for complex Wn and a device that computes Fh+Fl*Wn. One array would have to
be an input array, and the other array would be the output array. Table A1, shows for an
index(in binary) for the answer of Fh+F1*Wn to be written to the answer array for each
stage. The index under Fh, F1 indicate the index from which these values come from in
the input array. The index for Wn indicate which Wn must be looked up. At the end of a
stage, load the output array to the input array, and then compute again, only using the
appropriate logic to control the indexes. Use a counter to increment through the output
index. From the table you can see that:
In stage0
Fl = ‘0’& index(1) & index(2)
Fh = ‘1’ & index(1) & index(2)
Wn = ‘index(0) & “00”

In stage1
Fl = index(2) & ‘0’ & index(0)
Fh = index(2) & ‘1’ & index(0)
Wn = index(1) & index(0) & ‘0’

In stage2
Fl = ‘0’ & index(1) & index(0)
Fh = ‘1’ & index(1) & index(0)
Wn = index

From the above logic for 8 point FFT, the logic for 32 bit FFT can be inferred to be as in
the controller in FFT.vhd. For more stage1 and above, the column of ‘0’ and ‘1’ simply
shift to more and more significant bits. Below is a block diagram of FFT.vhd
architecture. Note, the math is in 2’s compliment form.

 - 4 -

Figure A1: FFT Architecture

 - 5 -

Appendix F
FPGA Implementation of Audio Effects

 - 6 -

FPGA Implementation of Audio Effects -
An EE 552 Student Application Note

by Richard Schultz

Audio Processing Unit
Duncan Campbell - Grant Cunningham - Clint Lozinsky - Richard Schultz

INTRODUCTION

Digital signal processing (DSP) is a very exciting market these days. FPGA's and
ASIC's make up such a large part of this market that FPGA manufacturers are
predicting their products will soon completely take over standard DSP
microprocessors. While this prediction might be a little over ambitious, digital
signal processing in FPGAs is gaining momentum. And while audio processing
only makes up a fraction of the DSP market, it is both interesting and useful to
understand how certain audio algorithms work.

The effects described here have all been implemented in the time domain.
Frequency domain processing is possible for certain effects, but time domain
processing is much easier. Because audio sampling is done in the time domain,
it is inherently easier to process in this domain as it does not require hardware
to transform the signal. Using a few basic elements outlined below one can
easily and effectively implement a digital effects processor.

THE BUILDING BLOCKS

The Circular Buffer

The first critical element in effects
implementation is a circular buffer.
Circular buffers are a crucial
component to any digital signal
processing application. They permit
data to be continually updated, and
overwrite the oldest data in memory.
Looking at figure 1, data is originally
written to the very first memory
location. As new data comes in, it is
written to the next available memory
address. Once the address pointer

FIGURE 1 – A CIRCULAR BUFFER

 - 7 -

reaches the end of the circular buffer, it immediately wraps around and starts
writing to the first memory address again. Storing data in this manner, 2N
samples are always available in the buffer, and all that is necessary is
controlling the pointers. This can be most easily done with a simple N-bit
counter.

For the implementation of the effects
described here, one write pointer and
two read pointers are used as shown in
figure 2. Using these three pointers,
one is able to obtain an input, x[n] and
two outputs, y1[n] and y2[n] . Both
y1[n] and y2[n] are time delayed
versions of the input, and can be
written as:

][][11 dnxny τ−=
][][22 dnxny τ−=

FIGURE 2 – A CIRCULAR BUFFER FOR AUDIO

EFFECTS

where τd1 and τd2 are constant delay factors. τd1 is the difference between the
first (current) read pointer and the write pointer. Generally this could be as
little as one clock cycle (giving adequate time to store a value before
immediately reading it back) but for purposes of this document it is assumed to
be zero. The human ear does not notice time delays less than about 50ms, so
this is a reasonable assumption. Using this, we can simplify our outputs to:

][][1 nxny = (1)
][][2 τ−= nxny (2)

With τ being a value corresponding to the time difference of the two samples.
This difference is the product of the sample rate of the digital audio stream,
and the number of samples. Also note that while n corresponds to an index in
the circular buffer and is thus constrained to N (total number of samples
stored), the circular buffer treats the data as continuous. The only precaution
that must be taken is to keep τ < N.

The Mixer

The next element required to implement a few basic effects is a mixer. This is
a very simple element that in effect takes in two signals and outputs the
weighted sum of them. The two inputs to the mixer are the values from the
circular buffer, so the output of the mixer is given by the equation:

 - 8 -

][][][21 nynynyout βα +=

Which, from Equations 1 and 2, can be simplified to yield:

][][][τβα −+= nxnxnyout (3)

Where α and β are the weighting coefficients.

With Equation 3, one can easily implement a large range of effects by changing
only the values α,β and τ.

THE EFFECTS

Echo

The echo effect is the easiest of the effects to implement. This effect is
created by adding the current sample to a previous sample. Using Equation 3,
it is easy to see that this effect is created by keeping T constant. Therefore an
echo effect is simply described by the equation:

][][][echoecho nxnxny τβα −+= (4)

Where τecho is the echo length.

Obviously, this is accomplished using only the mixer and circular buffer
outlined in equation 3 above. The only thing that is necessary to accomplish
this is to subtract a value from the current read pointer and use it as the
second read pointer.

Chorus

The chorus effect is only slightly more complicated than the echo. In a similar
manner to an echo, the chorus is produced when you add the current sample to
a previous sample, only the amount of delay is varied sinusoidally. By varying
the delay from 40ms to 60ms continuously at a rate of 0.25 Hz, you have a
standard chorus effect. The equation that describes this is:

)]([][][nnxnxnychorus τβα −+= (5)

Where)2sin()(fAn πτ = , A = Constant multiplier and f = frequency of variation

 - 9 -

 To implement this effect, a sine look up table can be generated, and this can
be subtracted from the current read pointer. Numerous HDL design libraries
include sine-cosine lookup tables, and their usage is rather simple.

Flange

The flange effect is very similar is structure to the chorus effect. In fact, the
only thing that changes is the amount of varying delay, and the rate at which it
occurs. For a standard flange effect the delay generally varies from 0ms to
10ms at a rate of 0.5Hz. Obviously the equation for a flange effect is the same
as that for a chorus effect:

)]([][][nnxnxny flange τβα −+= (6)

Where, once again)2sin()(fAn πτ = , A = Constant multiplier and f = frequency
of variation. Cleary this is the same as the chorus effect in equation 5. The
only difference between implementation is the specification of the A and f
values.

Phaser

The phaser effect is the result of two identical, yet out of phase, signals being
added together. This produces various notches in the phase response and has a
canceling effect which is audible to the human ear. In essence, this is basically
the same effect as the flange and chorus, only with different parameters once
again. The equation for a phaser is:

)]([][][nnxnxny phaser τβα −−= (7)

In this case,)(nτ can be anything from a sinusoid to a saw-tooth or even a
constant value. The only major difference is the sign of B, which results in the
phase canceling effect. The varying delay isn't completely necessary for this
effect, but it does have improved tonal qualities when it is changed by some
small factor.

Once again, this can be implemented in the same manner as the flange and
chorus effects. The only necessary precaution is to ensure that the mixer is
capable of signed arithmetic. If using VHDL, the std_logic_vector array type
has signed arithmetic capabilities built in, so one does not need to generally
worry about this too much.

 - 10 -

OVERALL IMPLEMENTATION

Certain other factors need to be taken into consideration when designing these
effects into an FPGA project. As is clearly evident, the circular buffer needs to
be large enough to be able to produce a noticeable echo effect. This requires
the usage of memory, and there are numerous types of memory available to
the FPGA designer. The Block RAM found on Xilinx boards is generally of
sufficient size for this, and is easy to use. For this reason, as well as its lack of
external components, it is the obvious solution. SDRAM (Synchronous Dynamic
RAM) is another option, although this requires the usage of a separate SDRAM
controller to handle refresh cycles and other control aspects. If the project is
not already using SDRAM this is perhaps not feasible in all instances. However,
if SDRAM is available, its larger sizes make it preferable for total flexibility of
the effects. SRAM (Static RAM) or Flash memory is yet another option, as it
does not have the stringent control requirements SDRAM has. However, one
may find that the board they have to work with doesn't allow them to use the
SRAM, or its resources may be used by other FPGA elements. SRAM is also more
expensive than SDRAM, so this may make it less feasible in certain instances.

Aside from that, implementation is rather straightforward. As the sampling
rate of the audio is generally much lower than the clock rate for an FPGA
project, all memory read and write operations, as well as any mixing and other
post-processing operations can generally be done with extra clock cycles to
spare. Even at a standard sampling rate of 44-48 kHz and a conservative clock
of 25MHz, there are approximately 500 clock cycles to carry out the required
operations.

CONCLUSIONS

As described, implementing standard audio effects in an FPGA is not as
complicated as one might assume. It is also very rewarding, as the results of
the implementation are noticeable by anyone. These few basic effects are
used widely in the music industry to process vocals and instruments, so their
application gets heard by literally millions of ears every day. As well, the way
the methods used to implement the effects are applicable to various other
fields of digital signal processing. Based on the ease of implementation in an
FPGA, it’s no wonder that FPGA's occupy a large share of the DSP market.

 - 1 -

Appendix G
Microphone Preamp Schematic

 - 2 -

Component Value

R1* 4K7

R2 1K

R3 100K

R4 100K

R5** 100K- 1M

C1 0.1uF

C2 0.1uF

 - 1 -

Group Self-Evaluation

After discussion with the group, it was decided that marks should be distributed evenly
among group members.

