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Abstract 
 
The Audio Processing Unit (APU) is a device that uses an FPGA to do digital signal 
processing of an audio signal.  Developed on the Xess XSA-100 and Xstend board 
combination, it is capable of sampling an analog input signal, processing it digitally 
and storing it, and transferring the digital signal back into an analog audio signal 
suitable for playback. The APU uses an external LCD and pushbuttons to interact with 
the user for selection of the various operations associated with it.  The main goal of 
the project is to develop an FPGA based device that could provide real-time audio 
effects including Chorus, Flange, Echo, Delay, and Pitch Shifting.  Included in this was 
the goal to provide some facilities for storage of an audio signal.  This report outlines 
the various aspects concerning the design, implementation and testing of the APU.   
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Achievements 
 
Throughout the development of this project, numerous achievements were made.  
Most notably, the successful implementation of a significant digital project in an FPGA 
was realized.  Many valuable achievements were made in the areas of effective group 
and project management.  In addition to this, several more specific achievements 
were made relating specifically to the various design components of the APU. 
 
User Interface 
 
The user interface was implemented with an LCD controller (lcd_top_level.vhd) 
module and a user interface controller (uicontroller.vhd).  The LCD controller was 
originally implemented with each character stored in a logic block, but this was found 
to be very slow to implement and simulate.  Due to this each message was stored in 
ROM that was implemented using the block RAM.  The LCD controller, after configuring 
the display, then retrieved the appropriate message and sent it to the LCD.  This 
worked well and the overall speed of implementation was increased drastically, chip 
space was also conserved as the block RAM was now being used instead of the logic 
blocks.  The uicontroller was a module that de-bounced the inputs from the push-
buttons and kept track of what state the system was in, this state was then sent to the 
other components via a system wide bus. 
 
Memory/Storage 
 
The storage unit (storage.vhd) implements an interface between the Codec interface 
and the SDRAM controller. The storage unit is able to store the audio data from the 
Codec interface into SDRAM while simultaneously playing audio out to the user.  The 
data stored in SDRAM can then be played back at the user’s request. The storage unit 
is able to store up to 170 seconds worth of audio to SDRAM. 
 
Effects Engine 
 
Numerous achievements were made in terms of the effects engine.  To date, the 
circular buffer has been fully tested and works as expected.  An echo has been added 
to the input signal, and this has been tested completely and functions correctly.  As of 
this writing, the Chorus and Flange units are functioning, but need minor tweaking and 
debugging to produce audibly pleasing results.  It is fully expected that this will be 
complete in time for demonstration and presentation purposes.  As well, complete 
implementation with the storage module has been performed, and it has been verified 
that both modules will fit into the target device. 
 
Fast Fourier Transform 
 
A control unit, FFTcontroller, has been created to coordinate the downloading and 
uploading of data from the codec to RAM, and the use of the FFT with RAM.  Another 
subordinate controller, sel_controller, has been created to coordinate the operation of 
the FFT butterfly algorithm.  An arithmetic unit and lookup table IMMULT2 and WNLUT 
have been created to facilitate all the required arithmetic to perform FFT and inverse 
FFT operations.  All that remains to bring the FFT module to completion is some 
debugging in the interaction between RAM and the arithmetic units. 
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Codec Interface 
 
The codec driver supplied by Xess [9] was successfully modified and integrated into 
the design of the APU. 
 
 
Introduction 
 
The APU is able to accept an audio input signal, interact with a user to provide 
operations on the data, and output a modified audio signal.  The operation of the 
entire unit is outlined below. 
 
First, the APU samples audio input to it at 48kHz with 20-bit precision.  This is 
accomplished by means of a stereo codec chip included on the Xstend board.  This 
codec performs both digital to analog and analog to digital conversion.  Once 
converted to a digital medium, the signal can then be processed as desired.  
 
To determine what operation to perform, the APU has a user-friendly interface to the 
world.  For this particular application, an LCD display is used to display messages and 
pushbuttons to select different options.  What this allows is selection of a number of 
different parameters, which translate into specific operations.  Each of these 
operations is performed by one of the three datapath components.  
 
The first component of this datapath is the FFT module.  Its basic operation is to 
provide a conversion from the time-domain signal to a frequency-domain signal, and 
allows processing of the signal in this domain.  A frequency shifter follows the FFT 
section to provide pitch shifting of the input voice signal in real-time.  
 
The effects engine is the next component of the data path.  As opposed to the FFT  
module operating on the signal in the frequency domain, the effects engine operates 
completely in the time domain.  Data incoming from the codec is placed into memory 
in a circular buffer.  The data is then read out with different samples added together 
to provide a modified signal.  The architecture of the effects engine allows it perform 
echo, chorus, flange and phaser effects on the signal. 
 
The storage component is the final component of the datapath.  Its basic purpose is to 
perform one of two operations.  First, it stores a certain amount of input data as 
determined by either the user or the available memory size.  Following this, it plays 
that stored data back.  Effectively this creates an audio record and playback device, 
which is useful in many applications.  
 
Using the above basic operation, the APU is a complete audio processor with options 
similar to many commercially available models.  
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Description of Design and Operation 
 
User Interface 
 
The user interface controls what state the system is in by taking inputs from the two 
push-buttons and outputting the current state on the ui_bus, by using the uicontroller 
module.  The entire system monitors this bus to ensure that there are no conflicts 
caused by two processes running at the same time.  The uicontroller has two other 
inputs, pb_overrun and full, that also cause the state to be changed.  These inputs are 
passed from the module that controls audio storage to the SRAM and notify the user 
interface if the RAM is full or if there are no more valid addresses to be read.  
 
The LCD display is controlled by the LCD controller which consists of two main 
modules, lcd_decoder and lcd_driver, as well as a clock divider and top level to 
connect all of the internal modules.  The driver module initializes the LCD upon reset 
and also ensures that the proper delays are obeyed between commands sent to the 
LCD.  These delays are crucial since the driver does not check the busy flag and 
therefore must ensure that the LCD has had enough time to complete the current 
instruction before the next command is sent. The decoder monitors the ui_bus and 
ensures that the proper message is displayed on the LCD.  If the ui_bus changes state 
then the decoder sends a clear signal to the driver which causes the driver to initialize 
the LCD and prepare to receive characters. When the driver is ready to display a 
character it notifies the decoder by setting the dvr_ready signal high.  The decoder 
then reads the next ASCII character to be displayed from the ROM and sends it to the 
driver.  Once the driver has received the signal it lowers dvr_ready and prints the 
character on the LCD.  This process is repeated until the entire message is displayed 
on the screen, the cursor is then returned to the home position, by the decoder 
sending the home signal to the driver, and both modules then wait until the state on 
the ui_bus changes and a new message must be displayed.   
 
UI Controller 
 
The uicontroller module uses push button user inputs to control the operation of the 
Audio Processing Unit. The uicontroller is made up of a finite state machine. The finite 
state machine is controlled by the three user push buttons. Push button one (PB1) is 
used as a enter command, and push button two (PB2) is as a scroll command. The third 
push buttons acts a system wide active low reset. These user push buttons are 
debounced in the uicontroller.  The ui_bus is used to control the operation of the 
entire Audio Processing Unit. The commands placed on the ui_bus tell the rest of the 
unit what operations to perform. The finite state machine of the uicontroller can be 
seen in figure 1.  
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Memory/Storage 
 
The storage module provides an interface between the Codec interface and SDRAM 
Controller. The storage module takes in audio data from the Codec interface and 
stores it in SDRAM.  The audio data stored in SDRAM can then be played back at the 
users’ request. The storage unit can hold up to 170 seconds of audio. The storage unit 
only reads data from the left channel of SDRAM in order to save memory space, and 
because a mono input is inputted to the stereo codec, so both left and right channels 
will be identical.  
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          Figure 2 
 
When the storage unit is storing data to SDRAM it waits for a rising edge on 
ladc_out_rdy signal from the Codec interface. At this point in time the data on 
left_channel from the Codec interface is valid and is stored in SDRAM by asserting the 
write signal (wr) high to SDRAM.   
 
When the storage unit is reading data from SDRAM the read signal (rd) is asserted and 
the data from SDRAM is read into to a register. When either ldac_in_rdy or rdac_in_rdy 
goes high the data read into the register is placed onto the left_channel or 
right_channel busses. The data placed left_channel or right_channel is then played 
back as audio to the user by the codec_interface module. 
 
 
Effects Engine 
 
The purpose of the effects engine is to provide various time-based effects on the input 
signal.  By employing a circular buffer arrangement of memory, using two read 
pointers and a single write pointer, the effects engine is able to produce an output 
signal that is the weighted sum of two previous inputs.  It creates the different effects 
by carefully controlling the difference between the two pointers.  
 
The operator controller (op_cntrl.vhd) accepts signals from the UI bus.  As well, the 
operator controller is responsible for accepting a control signal from the audio codec 
when new data is ready.  Once it detects a valid code on the bus, and new data is 

CODEC 
signals 

SDRAM address bus 

Data to SDRAM 

Data to 
CODEC 

 

 SDRAM 
Read & 
write signals 

Signals to 
Uicontroller 

Ui_bus 

System clock 

System Reset 

Data from SDRAM 

Data to/from CODEC 

SDRAM done signal 
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ready, the controller begins operation by setting the different value registers for the 
correct values for the various modules beyond it.   
 
The address generator (add_gen.vhd) takes as input the registers set by the operator 
controller.  It uses these values to constantly generate new addresses depending on 
which effect is desired.  The write pointer and primary read pointer are controlled by 
basic 16 bit counters, while the secondary read pointer is a slightly offset version of 
the primary one..  For the chorus and flange effects, this offset value changes with 
time, while the phaser and echo effects are time-constant offsets.  For a more 
detailed description of each of these effects, please refer to Appendix F. 
 
The circular controller (circ_cntrl.vhd) simply arbitrates memory reads and writes.  
Every time new data is available, the circular controller writes this value to memory, 
and reads two values.  It then waits for the data clock to go low again before returning 
to its idle state.  Once the data has been recovered from memory, it is put into 
registers for further processing. 
 
Following the circular controller is the mixer (mixer.vhd).  The purpose of the mixer is 
to accept the two values from the circular controller and output the weighted sum of 
them.  Currently the mixer is only capable of weighting the values by values 
represented by 2-n

.  It is expected that this may be improved upon before 
demonstration and presentations, should time permit. 
 
 
Fast Fourier Transform 

 
The FFT is implemented by a butterfly algorithm [4].  It is a 32 point FFT with 8 bit 
accuracy.  The FFT consists of 4 modules: 
-An arithmetic unit called IMMULT2 which performs a complex multiplication and 
addition for 3 complex inputs, and outputs a complex number.  Complex numbers are 
represented as 2 signed numbers, one for the real component, and another for the 
imaginary.  This is required for each point at each stage in the butterfly algorithm. 
-A lookup table, WNLUT, which receives an input and outputs the corresponding Wn, 
where Wn = e2?j/n .  This contains decimal components.  This is handled by outputting 
the number times 26 and then later truncating 6 bits after the multiplication.  
-A state machine sel_controller, which has several output signals, selA, selB, sel_wn, 
counter, stage.  This controller works with the FFTcontroller to pull values for to input 
to the complex multiplier from RAM, select the correct Wn, and output the correct 
result from IMMULT2 to RAM. 
-An overall controller FFTcontroller interacts with RAM and stereo codec through a 
higher toplevel.  It coordinates the building of 32 point samples to RAM from the codec 
driver, moving values in and out of designated sections of RAM for IMMULT2 with the 
aid of sel_controller, and the output of the end result to the codec driver.  
 
Below is a diagram of the flow of DATA through sections of RAM, and a block diagram 
of the FFT unit.  Each block in the Data Flow diagram corresponds to an array of 32, 16 
bit registers, with only the upper 8 bits used, and the lower 8 bits padded with zeros. 
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Codec Interfacing 
 
The codec driver (codec_intfc.vhd) has several important signals for interfacing with it 
that are passed through to various components in the design:   
-Two 20 bit parallel input signals to the DAC . 
-Two 20 bit parallel output signals from the ADC. 
-ladc_out_rdy, radc_out_rdy which flag when data is ready to be read from ADC. 
-ldac_out_rdy, rdac_out_rdy which flag when new data can be placed on the shift 
registers to be written to the DAC. 
 
The _rdy signals must be watched by all DSP units to synchronize the processing of 
data with the flow of data, and tell the DSP modules when new data must be dealt 
with, and when processed data must be sent out.  Other signals, such as the rd and wr 
are controlled by the top-level.
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Specif icat ions
Maximum Clock Freq 43.156 MHz
Minimum SDRAM clock Freq 25 MHz
Number of Logic Cells 1 1 9 8
Number of Gates 49,174

Audio Parameters
Codec sampling rate 48.8KHz
Codec sampling resolution 20  b i t s
Memory Storage resolution 16  b i t s
Maximum audio storage length 170 seconds

User Interface and Codec Module  
Pin # Pin Name Description I/O
88 clk System clock I
93 notrst Active low replace I
26 pb1 Active-low push button I
78 pb2 Active-low push button I
77 mclk Codec Master clk O
59 lrck Codec left/right clock O
75 sclk Codec Shift clock O
74 sdin Codec Serial data to DACs O
76 sdout Codec Serial data from ADCs I

LCD Module 
Pin # Pin Name Description I/O
60 data_bus_out<0>  LCD Output O
62 data_bus_out<1>  LCD Output O
54 data_bus_out<2>  LCD Output O
56 data_bus_out<3>  LCD Output O
63 data_bus_out<4>  LCD Output O
64 data_bus_out<5>  LCD Output O
66 data_bus_out<6>  LCD Output O
67 data_bus_out<7>  LCD Output O
49 enable_out  LCD control signal O
46 read_write_out  LCD control signal O
44 reg_sel_out  LCD control signal O

SDRAM Module
Pin # Pin Name Description I/O
141 saddr<0> SDRAM address bus O
4 saddr<1> SDRAM address bus O
6 saddr<2> SDRAM address bus O
10 saddr<3> SDRAM address bus O
11 saddr<4> SDRAM address bus O
7 saddr<5> SDRAM address bus O
5 saddr<6> SDRAM address bus O
3 saddr<7> SDRAM address bus O
140 saddr<8> SDRAM address bus O
138 saddr<9> SDRAM address bus O
139 saddr<10> SDRAM address bus O
136 saddr<11> SDRAM address bus O
95 sdata<0> SDRAM data bus O
99 sdata<1> SDRAM data bus I/O
101 sdata<2> SDRAM data bus I/O
103 sdata<3> SDRAM data bus I/O
113 sdata<4> SDRAM data bus I/O
115 sdata<5> SDRAM data bus I/O
117 sdata<6> SDRAM data bus I/O
120 sdata<7> SDRAM data bus I/O
121 sdata<8> SDRAM data bus I/O
116 sdata<10> SDRAM data bus I/O
114 sdata<11> SDRAM data bus I/O
112 sdata<12> SDRAM data bus I/O
102 sdata<13> SDRAM data bus I/O
100 sdata<14> SDRAM data bus I/O
96 sdata<15> SDRAM data bus I/O
130 ras_n SDRAM ras I/O
131 cke SDRAM clock-enable O
123 we_n SDRAM write-enable O
134 ba<0> SDRAM bank select O
137 ba<1> SDRAM bank select O
126 cas_n SDRAM cas O
41 ce_n Flash Ram chip enable O
132 cs_n SDRAM chip select O
124 dqmh SDRAM DQMH O
122 dqml SDRAM DQML O
91 sclkfb SDRAM feedback clock O
129 sclk_ram SDRAM clock I

Datasheet for Chip  

DATA SHEET 

Audio Processing Unit 
 
Features 

• Stereo Codec    
• LCD user interface  
• SDRAM Controller 
• Audio effects module 
• Fast Fourier Transform 
• Audio Storage/Playback module 



 9 

FPGA Resource Usage 
 
The completed components of  the project exceeded the device resources.  For this 
reason, the project was divided into two parts for implementation.  Because of the 
modular nature and three distinct datapath components, the implemented parts work 
independently of each other.  The specific resource usage is documented in the table 
below. 

Total Implementation Size 
 Storage and Effects 

Engine (Slices) 
FFT Module Both Together 

Number of Slices: 1187/1200    
98% 

463/1200    
38% 

122% 

Total Number Slice 
Registers: 

866/2400    
36% 

165/2400 
6% 

42% 

Total Number 4 input 
LUTs: 

1892/2400    
78% 

878 /2400    
36% 

98% 

Number of bonded 
IOBs: 

58/92    
63% 

58/92    
63% 

58/92    
63% 

Number of Block 
RAMs 

1/4    
25% 

1/4    
25% 

1/4    
25% 

Number of GCLKs:   1/4    
25% 

1/4    
25% 

1/4    
25% 

Number of GCLKIOBs: 2/4 
50% 

2/4 
50% 

2/4 
50% 

Number of DLLs:   2/4    
50% 

2/4    
50% 

2/4    
50% 

Total equivalent gate 
count 50512 

 
31742 

 
75422 

 

Codec Interface and Effects-engine 
 
Number of Slices:                       625 out of  1,200   52% 
Total Number Slice Registers:    599 out of  2,400   24% 
Total Number 4 input LUTs:      898 out of  2,400   37% 
Number of bonded IOBs:                74 out of     92   80% 
 
Total equivalent gate count for design:  11,011 
Additional JTAG gate count for IOBs:  3,600 
 
LCD Controller 
 
Number of Slices:                      362 out of  1,200   30% 
Number of Slice Flip Flops:        151 out of  2,400    6% 
Total Number 4 input LUTs:       625 out of  2,400   26% 
Number of bonded IOBs:                 20 out of     92   21% 
Number of Block RAMs:                   1 out of     10   10% 
 
Total equivalent gate count for design:  21,651 
Additional JTAG gate count for IOBs:  1,008 
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U.I. Controller 
 
Number of Slices:                         53 out of  1,200    4% 
Number of Slice Flip Flops:         46 out of  2,400    1% 
Total Number 4 input LUTs:        80 out of  2,400    3% 
Number of bonded IOBs:               13 out of     92   14% 
 
Total equivalent gate count for design:  899 
Additional JTAG gate count for IOBs:  672 
 
FFT  
 
Number of Slices:                        463 out of  1,200   38% 
Number of Slice Flip Flops:        165 out of  2,400    6% 
Total Number 4 input LUTs:       878 out of  2,400   36% 
Number of bonded IOBs:              106 out of     92  115% 
 
Total equivalent gate count for design:  8,698 
Additional JTAG gate count for IOBs:  5,136 
 
 
Results of Experiments and Characterization 
 
Throughout the course of the project, numerous experiments were completed to 
determine the best way to do things.  Some of these experiments are documented 
below. 
 
Modifying Synthesis Options 
 
The Xilinx ISE synthesis tools have options for different synthesis settings.  These 
include optimizing for speed or area, and changing the effort used by the synthesizer 
from normal to high.  During each stage of development, different options were tried 
to determine the best settings.   
 

Optimization 
Goal 

Optimization 
Effort 

Maximum 
Clock 

Frequency 

Number of SLICEs 
used 

Synthesis/Imple
mentation Time 

Speed Normal 43.156MHz 1198/1200 (99%) 02:14:00
Speed  High 43.482MHz 1187/1200 (98%) 02:30:00
Area Normal 28.206MHz 1146/1200 (95%) 01:57:00
Area  High 30.348MHz 1140/1200 (95%) 02:15:00
 
In all cases, the project containing the storage and effects engine module was 
compiled.  The synthesis time is the total time taken to generate a programming file.  
As shown above, changing these settings has a great effect on the performance of the 
finished program.  It is noted that changing the optimization settings has very little 
effect on total synthesis time.  When set to high there is a marginal improvement in 
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both speed and area for each optimization goal.  However, the differences are so 
marginal that there appears to be very little benefit.   
 
In addition to the given settings, tests were done to attempt to use incremental 
synthesis.  In this style of synthesis, only the changed components are re-synthesized 
each time, saving time generating new programming files each time only one or two 
files are changed.  Unfortunately all efforts to make this work resulted in bit streams 
that didn't function properly.  For this reason and due to time constraints, further 
experiments were abandoned.    
 
External FFT Core 
 
At the outset of this project, it was expected that the APU would contain a fast fourier 
transform module supplied by an external source [7],[10].  It was learned through trial 
and error that none of the available FFT cores would fit into the target device.  The 
FFT core generated using the Core Generator system [10] used 927 out of 1200 (77%) 
total SLICEs.  This was using a 32 Point transform with 8 bits of precision. The core 
downloaded from OpenCores.org [7], with the same specifications used 16 of 10 (160%) 
possible Block RAM of the available Block RAM, and did not include customizations to 
modify this.  As a result of these cores being far too large to fit into the rest of the 
project, a separate FFT core using other memory was developed, as described 
previously. 
 
Designed FFT module 
 
Experiments were conducted to discern the relation ship between multiplier input 
width, and size.  The following date was obtained for multipliers with the given input 
widths, and outputs of twice that input width. 
 
Input width 

4 Number of Slices:                  9 out of  1,200    1% 
  Maximum combinational path delay: 15.285n 

8    Number of Slices:                 36 out of  1,200    3% 
  Maximum combinational path delay: 20.112ns 

16 Number of Slices:                140 out of  1,200   11% 
  Maximum combinational path delay: 25.519ns 
 
It can be seen that input width can be is a function of the square of the input width, 
and that the max combinational delay increases 5 ns with the doubling of the input 
width.  Since the complex arithmetic unit IMMULT2 requires 4 such multipliers, 8 bits 
is the only feasible size for the input widths, and it has a max operating frequency of 
just under 50MHz. 
 
Another experiment was done to yield the size of a 32 to 1 multiplexer. 
 
  Number of Slices:                 18 out of  1,200    1% 
  Maximum combinational path delay: 13.987ns 
 
With the previous choice for design, 8 * 4 = 32 such multiplexers would have to be 
uses, taking up 48% of the available slices.  It was attempted to minimize this by 
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implementing shift registers, to reduce the number of multiplexers required by a 
factor of 8(the input width). 
 
In an attempt to minimize the size of the original FFT design using multiplexers and 
registers, the registers were replaced with shift registers, and where there had been 8 
MUXes in parallel, there was one MUX moving data in serial form to an output shift 
register.  The control path was modified.  The end result was an FFT that took up 94% 
of the chip, not usable.  It could be used with some debugging on a larger FPGA.  RAM 
will be used instead. 
 
 
External VHDL Components 
 
As a requirement for this project, certain external HDL modules were used.  In 
addition to fulfilling the requirements, it was also found that using external 
components drastically reduces overall design time and gave more time to concentrate 
on other areas of design.  As a result, it improved the quality of the project and made 
extra progress possible.  A description of each of the externally supplied modules is 
given below. 
 

Stereo Codec Driver 
As the Xstend V1.3.2 board includes a stereo codec interface chip, it was necessary to 
implement a driver module to control the operation of the codec.   It was discovered 
early on in the project that Xess had provided such functionality through their 
examples [9].  Only minor changes needed to be made to the supplied codec_intfc.vhd 
to get it to function and provide basic audio loop-back functions.  Once this was 
accomplished, the digital signal provided by the codec could be routed to any 
particular component and modified accordingly.   
 
SDRAM Controller 
Much like the Xstend V1.3.2  board contained the codec chip, the XSA-100 Board 
contains 16MB of SDRAM onboard.   Using sdramcntrl.vhd as provided [9], it was 
possible to interface directly with the SDRAM as though it were SRAM.  The provided 
module controlled all necessary timing and refresh operations and made design overall 
much simpler. 
 
Xilinx Core Generator Modules 
Included in the Xilinx ISE software package was the Xilinx Core Generator System.  
This was used throughout the project as a way of simplifying design of certain 
elements by generating cores to do specific tasks and implementing these cores 
structurally rather than behaviorally.  As a general rule, structural designs are much 
easier to debug and design than behavioral designs, so this further reduced design 
time.  Each of the following cores were created by the Xilinx tools and used in the 
design of the APU: 
-lcd_rom.xco – Block RAM configured for read-only operation to hold the characters 
used for displaying messages on the LCD.  Instantiated by lcd_decoder.vhd 
-count16.xco – 16-bit counter used to control address pointers for the circular buffer.  
Instantiated by add_gen.vhd.   
-count8.xco – 8 bit counter used in the delay generator to provide an input to the sine-
LUT.  Instantiated by delay_gen.vhd. 
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-sine_gen.xco – Sine/Cosine Lookup-Table (LUT) to provide a sine-varying offset to the 
secondary address read pointer for chorus/flange effects.  Instantiated by 
delay_gen.vhd. 
- add.xco – Adder/Subtracter to provide a constant offset value to the secondary 
address read pointer for echo effects.  Instantiated by delay_gen.vhd. 
- subtract.xco – Adder/Subtracter to subtract the offset values from the primary read 
pointer. Instantiated by delay_gen.vhd. 
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VHDL Code 
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Index to VHDL Code 
 
Entity Name Description Status 
Toplevel.vhd Top level entity for all elements Compiled 
Codec_interface.vhd Entity combining all datapath components to 

control data movement 
Compiled 

Clock_gen.vhd Generates required clock signals to operate codec Compiled 
Codec_intfc.vhd Brings together interface channels to codec driver Compiled 
Channel.vhd Uses signals from clkgen to move data Compiled 
Clkgen.vhd Generates required clock signals to operate 

controller 
Compiled 

Storage.vhd Entity controlling storage and playback functions Compiled 
Fx_engine_toplevel.vhd Combines all effects engine components Compiled 
Add_gen.vhd Address generator to control address pointers for 

effects engine 
Compiled 

Delay_gen.vhd Delay generator to generated an offset memory 
address for circular buffer 

Compiled 

Modulus.vhd Clock divider for delay generator Compiled 
Scaler.vhd Ensures address falls within range Compiled 
Shifter.vhd Shift register to divide offset value to a 

controllable value 
Compiled 

Circ_cntrl.vhd Circular buffer controller Compiled 
Mixer.vhd Mixes two memory output values to produce an 

output value to hear 
Compiled 

Op_cntrl.vhd Controls effects engine operation Compiled 
Lcd_top_level.vhd Overall control of the LCD interface. Compiled 
Clock_divider.vhd Divides clock to provide LCD slow clock Compiled 
Lcd_decoder.vhd Determines which message to display and sends 

proper characters to lcd_driver. 
Compiled 

Lcd_driver.vhd Initializes LCD and outputs characters. Compiled 
Sdramcnt.vhd SDRAM controller module to provide timing and 

refresh operations 
Compiled 

UIcontroller.vhd User Interface that takes in user inputs and tells 
the other components what to do. 

Compiled 

Storage2.vhd FFT controller module to provide FFT operations Compiled 
Immult2.vhd Provides complex number multiplication Compiled 
Selectcontroller.vhd Provides memory selection for FFT Compiled 
WNLUT.vhd Look-up table for FFT twiddle factors Compiled 
Interface.vhd Package for LCD interface Compiled 
Level2.vhd Package for overall integration Compiled 
Store.vhd Package for storage functions Compiled 
Codec.vhd Package for codec operations Compiled 
Fx_pkg.vhd Package for overall effects engine operation Compiled 
Delay_pkg.vhd Package for delay generator functions Compiled 
Common.vhd Package for added LCD operations Compiled 
Codec_top.vhd Package for codec top level. Compiled 
UIPackage.vhd Package for user interface functions Compiled 
Counter4b.vhd 4 bit counter for storage functions Compiled 
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Simulation and Test Cases 
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Index to Test Cases and Simulations 
Name Description Status 
UI Controller Simulation waveforms for Storage Unit Simulated 
FFT modules Simulation waveforms for FFT operation Simulated 
LCD Operation Simulation waveforms for LCD unit Simulated 

Storage Unit Simulation Waveforms for storage unit and 
memory operations 

Simulated 

Effects engine Simulation Waveforms for Effects Engine Simulated 
 

 



 - 1 -

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix C 
Test benches 
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Test Bench Index 
Test Bench 
Name 

Description Status 

lcd_test.vhd Testbench for LCD interface.  Simulates all 
of the valid inputs. 

Simulated – no known bugs 

Test.vhw UI controller testbench (generated) Simulated – no known bugs 
Top_level.vhw LCD driver testbench (generated) Simulated – no known bugs 
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Diagrams of Design Hierarchy 
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Implemented Design without FFT
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Note: As this is the final report, all elements listed above have been 
Compiled/Simulated and have no known bugs or are having minor bugs currently being 
worked out.  As well, two separate design have been drawn to reflect the way that the 
design was implemented.  FFT controller can be considered to be connected to Codec 
Interface, in much the same way storage and fx_engine_toplevel are.  
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Description of FFT Implementation 
 
 The inputs are 2 arrays of 32, 8 bit signals, for the imaginary and real components 
of the 32 points to be transformed.  Most have been deleted to save space.  Also shown 
are the state, next_state, calc, reset and counter signal.   
 In the FFT, 1 complex multipliers is multiplexed to perform all 32 multiplications 
for each stage(5 in all).  
 
Description of FFT 
 
 

 
Figure 1: Successive Steps in an 8-point FFT taken from “Signal Processing & Linear Systems” by B.P. Lathi. [4] 
 

index stage0       stage1       stage2   
  Fh Fl Wn   Fh Fl Wn   Fh Fl Wn 
000 000 100 000   000 010 000  000 100 000 
001 000 100 100   001 011 010  001 101 001 
010 010 110 000   000 010 100  010 110 010 
011 010 110 100   001 011 110  011 111 011 
100 001 101 000   100 110 000  000 100 100 
101 001 101 100   101 111 010  001 101 101 
110 011 111 000   100 110 100  010 110 110 
111 011 111 100   101 111 110   011 111 111 
Table A1: summary of indexes in Binary 
Figure one shows the butterfly algorithm for an 8 point FFT.  Table A1 summarizes the 
terms that must be multiplied together to come up with intermediate stages within the 
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FFT.  This algorithm can be implemented with 2 arrays of 8 complex numbers, a lookup 
table for complex Wn and a device that computes Fh+Fl*Wn.  One array would have to 
be an input array, and the other array would be the output array.  Table A1, shows for an 
index(in binary) for the answer of Fh+F1*Wn to be written to the answer array for each 
stage.  The index under Fh, F1 indicate the index from which these values come from in 
the input array.  The index for Wn indicate which Wn must be looked up.  At the end of a 
stage, load the output array to the input array, and then compute again, only using the 
appropriate logic to control the indexes.  Use a counter to increment through the output 
index.  From the table you can see that: 
In stage0 
Fl = ‘0’& index(1) & index(2) 
Fh = ‘1’ & index(1) & index(2) 
Wn = ‘index(0) & “00” 
 
In stage1 
Fl = index(2) & ‘0’ & index(0) 
Fh = index(2) & ‘1’ & index(0) 
Wn = index(1) & index(0) & ‘0’ 
 
In stage2 
Fl = ‘0’ & index(1) & index(0) 
Fh = ‘1’ & index(1) & index(0) 
Wn = index 
 
From the above logic for 8 point FFT, the logic for 32 bit FFT can be inferred to be as in 
the controller in FFT.vhd.  For more stage1 and above, the column of ‘0’ and ‘1’ simply 
shift to more and more significant bits.  Below is a block diagram of FFT.vhd 
architecture. Note, the math is in 2’s compliment form. 



 - 4 -

 
 
Figure A1: FFT Architecture 
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FPGA Implementation of Audio Effects -  
An EE 552 Student Application Note  
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INTRODUCTION 
 
Digital signal processing (DSP) is a very exciting market these days.  FPGA's and 
ASIC's make up such a large part of this market that FPGA manufacturers are 
predicting their products will soon completely take over standard DSP 
microprocessors.  While this prediction might be a little over ambitious, digital 
signal processing in FPGAs is gaining momentum.  And while audio processing 
only makes up a fraction of the DSP market, it is both interesting and useful to 
understand how certain audio algorithms work. 
 
The effects described here have all been implemented in the time domain.  
Frequency domain processing is possible for certain effects, but time domain 
processing is much easier.  Because audio sampling is done in the time domain, 
it is inherently easier to process in this domain as it does not require hardware 
to transform the signal.  Using a few basic elements outlined below one can 
easily and effectively implement a digital effects processor. 
 
 
 
THE BUILDING BLOCKS 
 
The Circular Buffer  
 
The first critical element in effects 
implementation is a circular buffer.  
Circular buffers are a crucial 
component to any digital signal 
processing application.    They permit 
data to be continually updated, and 
overwrite the oldest data in memory.  
Looking at figure 1, data is originally 
written to the very first memory 
location.  As new data comes in, it is 
written to the next available memory 
address.  Once the address pointer 

 
 

FIGURE 1 – A CIRCULAR BUFFER 
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reaches the end of the circular buffer, it immediately wraps around and starts 
writing to the first memory address again.  Storing data in this manner, 2N 
samples are always available in the buffer, and all that is necessary is 
controlling the pointers.  This can be most easily done with a simple N-bit 
counter.  
 
For the implementation of the effects 
described here, one write pointer and 
two read pointers are used as shown in 
figure 2.  Using these three pointers, 
one is able to obtain an input, x[n] and 
two outputs, y1[n] and y2[n] .  Both 
y1[n] and y2[n] are time delayed 
versions of the input, and can be 
written as: 
 

][][ 11 dnxny τ−=  
][][ 22 dnxny τ−=  

 

 
FIGURE 2 – A CIRCULAR BUFFER FOR AUDIO 

EFFECTS 

 
where τd1 and τd2 are constant delay factors.  τd1 is the difference between the 
first (current) read pointer and the write pointer.  Generally this could be as 
little as one clock cycle (giving adequate time to store a value before 
immediately reading it back) but for purposes of this document it is assumed to 
be zero.  The human ear does not notice time delays less than about 50ms, so 
this is a reasonable assumption.  Using this, we can simplify our outputs to: 
 

][][1 nxny =   (1) 
][][2 τ−= nxny  (2) 

 
With τ being a value corresponding to the time difference of the two samples.  
This difference is the product of the sample rate of the digital audio stream, 
and the number of samples.  Also note that while n corresponds to an index in 
the circular buffer and is thus constrained to N (total number of samples 
stored), the circular buffer treats the data as continuous.  The only precaution 
that must be taken is to keep τ < N.  
 
The Mixer 
 
The next element required to implement a few basic effects is a mixer.  This is 
a very simple element that in effect takes in two signals and outputs the 
weighted sum of them.  The two inputs to the mixer are the values from the 
circular buffer, so the output of the mixer is given by the equation: 
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][][][ 21 nynynyout βα +=    
 
Which, from Equations 1 and 2, can be simplified to yield: 
 

][][][ τβα −+= nxnxnyout  (3) 
 
Where α and β are the weighting coefficients.   
 
With Equation 3, one can easily implement a large range of effects by changing 
only the values α,β and τ. 
 
 
THE EFFECTS 
 
Echo 
 
The echo effect is the easiest of the effects to implement.  This effect is 
created by adding the current sample to a previous sample.  Using Equation 3, 
it is easy to see that this effect is created by keeping T constant.  Therefore an 
echo effect is simply described by the equation: 
 

][][][ echoecho nxnxny τβα −+=  (4) 
 
Where τecho is the echo length.   
 
Obviously, this is accomplished using only the mixer and circular buffer 
outlined in equation 3 above.  The only thing that is necessary to accomplish 
this is to subtract a value from the current read pointer and use it as the 
second read pointer. 
 
Chorus 
 
The chorus effect is only slightly more complicated than the echo.  In a similar 
manner to an echo, the chorus is produced when you add the current sample to 
a previous sample, only the amount of delay is varied sinusoidally.  By varying 
the delay from 40ms to 60ms continuously at a rate of 0.25 Hz, you have a 
standard chorus effect.  The equation that describes this is: 
 

)]([][][ nnxnxnychorus τβα −+=  (5) 
 
Where )2sin()( fAn πτ = , A = Constant multiplier and  f = frequency of variation 
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 To implement this effect, a sine look up table can be generated, and this can 
be subtracted from the current read pointer.  Numerous HDL design libraries 
include sine-cosine lookup tables, and their usage is rather simple. 
 
Flange 
 
The flange effect is very similar is structure to the chorus effect.  In fact, the 
only thing that changes is the amount of varying delay, and the rate at which it 
occurs.  For a standard flange effect the delay generally varies from 0ms to 
10ms at a rate of 0.5Hz.  Obviously the equation for a flange effect is the same 
as that for a chorus effect: 
 

)]([][][ nnxnxny flange τβα −+=  (6) 
 
Where, once again )2sin()( fAn πτ = , A = Constant multiplier and  f = frequency 
of variation.  Cleary this is the same as the chorus effect in equation 5.  The 
only difference between implementation is the specification of the A and f 
values. 
 
Phaser 
 
The phaser effect is the result of two identical, yet out of phase, signals being 
added together. This produces various notches in the phase response and has a 
canceling effect which is audible to the human ear.  In essence, this is basically 
the same effect as the flange and chorus, only with different parameters once 
again.  The equation for a phaser is:  
 

)]([][][ nnxnxny phaser τβα −−=  (7) 
 
In this case, )(nτ  can be anything from a sinusoid to a saw-tooth or even a 
constant value. The only major difference is the sign of B, which results in the 
phase canceling effect.  The varying delay isn't completely necessary for this 
effect, but it does have improved tonal qualities when it is changed by some 
small factor.    
 
Once again, this can be implemented in the same manner as the flange and 
chorus effects.  The only necessary precaution is to ensure that the mixer is 
capable of signed arithmetic.  If using VHDL, the std_logic_vector array type 
has signed arithmetic capabilities built in, so one does not need to generally 
worry about this too much. 
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OVERALL IMPLEMENTATION 
 
Certain other factors need to be taken into consideration when designing these 
effects into an FPGA project.  As is clearly evident, the circular buffer needs to 
be large enough to be able to produce a noticeable echo effect.  This requires 
the usage of memory, and there are numerous types of memory available to 
the FPGA designer.  The Block RAM found on Xilinx boards is generally of 
sufficient size for this, and is easy to use.  For this reason, as well as its lack of 
external components, it is the obvious solution.  SDRAM (Synchronous Dynamic 
RAM) is another option, although this requires the usage of a separate SDRAM 
controller to handle refresh cycles and other control aspects.  If the project is 
not already using SDRAM this is perhaps not feasible in all instances.  However, 
if SDRAM is available, its larger sizes make it preferable for total flexibility of 
the effects.  SRAM (Static RAM) or Flash memory is yet another option, as it 
does not have the stringent control requirements SDRAM has.  However, one 
may find that the board they have to work with doesn't allow them to use the 
SRAM, or its resources may be used by other FPGA elements.  SRAM is also more 
expensive than SDRAM, so this may make it less feasible in certain instances.  
 
Aside from that, implementation is rather straightforward.  As the sampling 
rate of the audio is generally much lower than the clock rate for an FPGA 
project, all memory read and write operations, as well as any mixing and other 
post-processing operations can generally be done with extra clock cycles to 
spare.  Even at a standard sampling rate of 44-48 kHz and a conservative clock 
of 25MHz, there are approximately 500 clock cycles to carry out the required 
operations. 
 
 
CONCLUSIONS 
 
As described, implementing standard audio effects in an FPGA is not as 
complicated as one might assume.  It is also very rewarding, as the results of 
the implementation are noticeable by anyone.  These few basic effects are 
used widely in the music industry to process vocals and instruments, so their 
application gets heard by literally millions of ears every day.  As well, the way 
the methods used to implement the effects are applicable to various other 
fields of digital signal processing.  Based on the ease of implementation in an 
FPGA, it’s no wonder that FPGA's occupy a large share of the DSP market.   
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Appendix G 
Microphone Preamp Schematic  
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Component Value 

R1* 4K7 

R2 1K 

R3 100K 

R4 100K 

R5** 100K- 1M 

C1 0.1uF 

C2 0.1uF 
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Group Self-Evaluation 

 
After discussion with the group, it was decided that marks should be distributed evenly 
among group members. 
 


