EES52 Final Report
“The Reading Book”

April 4, 2002

. Jeff Bazinet,
Reid Blumell,
Andrew Chu,
Chris Ohlmann,
Bryce Palmer,

bazinet@ualberta.ca

iblumell@ualberta.ca

akchu@ualberta.ca

cohlmann@ualberta.ca

bpalmer@ualberta.ca

Declaration of Original Content

The design elements of this project and report are entirely the original work of the authors and
have not been submitted for credit in any other course except as follows:

audio amplifier drive circuitry was taken from figure 12 of reference [1]
code for A/D converter interface was modified from a student application note
submitted by Shauna Rae on October 29, 1999 [2]

Jeff Bazinet

Reid Blumell

Andrew Chu

Chris Ohlmann

Bryce Palmer

Abstract

This document outlines the technical design details of the Reading Book project. The Reading
Book is a book that can detect which pages are currently open and playback a reading of those
pages (either custom recorded or factory recorded). The Reading Book was designed so that
parents can record a reading of a children’s book into the book and the book will automatically
play that recording back as a child flips through the pages. Overall, this project met all proposed

requirements within the given timeline due to good project planning, project management, and
course load balancing.

IC Datasheet

Features

AJD convertor interface for book page detection compatible w/ADCO08 family of ADCs

Generic SPI interface

Audio driver for use with WinBond Chopcorder family of audio ICs
Debounced input for mode select and assert buttons

Two story modes: factory default and user recordable

Two playback modes: auto and manual

Three status LED outputs: auto-playback, default story and record
Compatible with variable page books (up to 6 pages)

Hot-swapping book control

Specifications

Parameter Min Typical Max Units
Clock frequency - 25.175 25.175 MHz
Number of logic cells - 674" - -

! Typical value measured using Altera FLEX10K20 FPGA.

IO Pins
Pin # Pin Name Description 1/0
6 LED AUTO* Auto-playback status LED 0
7 LED RECORD* Record status LED 0
8 LED STORY* Default story status LED @)
28 PB MODE* Mode select I
29 | PB_MODE_ASSERT* | Mode assert I
45 | SS* SPI slave select)
48 | MOSI SPI master out slave in)
50 MISO SPI master in slave out I
53 | SCLK SPI clock)
55 | RAC* Chipcorder row address clock I
65 | NO BOOK Low — book present, High — book not present I
67 | RESET* Asyncronous global reset I
70 | ADC SELECT ADC address select 0
72 | ADC CLOCK ADC clock)
74 | ADC START ADC load address and start conversion 0
76 | ADC DATAREADY | ADC conversion complete I
79 | ADC _DATAT ADC data bit 7 - MSB I
81 | ADC DATAG6 ADC data bit 6 I
83 | ADC DATAS5 ADC data bit 5 I
86 ADC DATA4 ADC data bit 4 |
88 | ADC _DATA3 ADC data bit 3 I
91 | CLOCK Global clock input I
95 | ADC DATA2 ADC data bit 2 I
98 | ADC DATAl ADC data bit 1 I
100 | ADC DATAO ADC data bit 0 — LSB I

Table of Contents

Yo AoV A T=Y LR 6
DL ol 01U [0 T 0 I o) H @) o =Y - L1 (o] o 6
= [0 L= (=0 () ST 7
(O 3o ToTo] (o [T Gl B LV/=Y R 8
O LTl L1 (T =T SR 9
1Y T Oo a1 (o] | T TR 14
FPGA REQUITEIMENTS ..eeiivviieiiitiieeitteeesstteesestetssseteeesssabaesssabessssssbassssbessesabsassssabessesasessessssessesaseenens 15
Experiments and CharaCteriZatiOnS........co.eiceeicreriirireiiiieitee st eeree st s e stee s srbe e sabe e srbessbesssbasesbasesrees 16
Page Detection EXPErIMENTALION........cuiiiiiiirieictie ettt st srte e st s e sbe e sbaeeeree s 16
Recorder Chip EXPEIIMENTATION.cuiiiiie ittt e s sbe s sre e s sabe s sraee e 17
Physical Construction EXPEriMENtAtiONcveeiiiviie ittt e s sbre e s srbee e 19
RS =] Ao 20
Index to Test Cases and Design VErfICAtIONovcueeeiiiiie et et 21
Diagram Of DESION HIBIAICHYcciveiiiiciiii ettt st a s sb e e e s sba e e s s sabae e s sarree e s 34
1010 [y oIV A |] I oo [34
L0 [y o T T A 1T T 0Ty TR 35

Achievements

At the time this report was written, the base functionality of “The Reading Book” as outlined in
the project specification has been achieved. This includes:

Page detection

Factory recorded and user recorded story playback
Auto and manual playback modes

Recording through internal or external microphone
Voice feedback for user interface

Description of Operation

The Reading Book will provide voice recording and playback ability using a simple user
interface. The basic model requires a mode select button, an action button, status LED’s, a
microphone, a non-volatile speech recorder (WinBond ChipCorder 1SD4004), a speaker, and
page detection circuitry. All control functions will be provided by an Altera FLEX10K20 FPGA
mounted on UP1 board.

The user is presented with two basic functional modes: Playback and Record. In addition to
these functional modes, two configuration modes are provided to allow the user to configure the
playback: Toggle Auto-Playback and Toggle Prerecorded Story. By pushing the mode button,
the user may rotate through the active modes. Status LED’s are used to indicate the current mode
and playback configuration. In addition, the ISD4004 is used to provide voice prompts and
messages to indicate the current mode and the actions that can be performed in that mode. To
ensure that the record mode is not entered accidentally a confirmation is required before
recording may begin. The operation of the action button will depend on the current mode.

In Play mode, the Reading Book determines which page is currently open and plays audio
accordingly. The story to be played is determined by the user’s configuration in the Toggle
Prerecorded Story mode. If the pre-recorded story has been selected, the non-erasable factory
recorded audio will be used, otherwise, the user-recorded story will be used. The type of
playback in the Play mode is further configured in the Toggle Auto-Playback mode. If auto-
playback has been selected, audio playback begins automatically when a new page is opened,
otherwise the user must press the action button to start audio playback for the current page. In
any playback configuration, closing the book or opening multiple pages will automatically stop
any audio playback in progress.

In the Record mode, the user must simply push the action button to begin recording audio for the
currently open page. Pushing the button again will end the recording.

Whenever the book is opened the magnetic page sensors are used to determine the currently
opened page and will send this data to the main FPGA controller.

A functional block diagram of the entire system is shown in Figure 1.

Affera FLENIRE2D FPGA Fresding Eepk

Maln Condroller
LEDs
O (] O | i Chipurdes Baak
Antes Daleel Fecoed) Comirelie EThe) Copdrelier
Plagbark Shary |
Fusly Buiany ‘
D D ! S nl oeg- v - [iegheal
fWlode Arhnn | Cdanyiate
Manpveal Serrbe o tod DT FRLE
Suirlia
Eecorder
Jusdin b =
3 Binfand CAipCardir 1804004

Auds Out

Figure 1: Functional Block Diagram of The Reading Book

Page Detection
The page detection algorithm makes use of the hardware shown in figure A in Appedix A. The

two D/A converters shown are actually realized in one D/A converter with a built in mux. The
output of the converter is used to detect the open page. There are 3 possible cases to detect.

Case 1 — 1 Page Open
This case is detected when:
N + Ny =Nyax

where Nf and Nb are found using the following equation:
\Y

N, =N = -1

X MAX (VX)

The open page is Nf.

NOTE: The subscripts f and b refer to the front and back cover respectively.

Case 2 — More Than 1 Page Open
This case is detected when:

N f + Nb < N MAX

where Nf and Nb are found as in case 1.
Case 3 — No Pages Open

This case is detected when:

V, =V, =0

Page Connections

The page connections are made with the use of magnets. The resistor will be attached to two
Alnico magnets, which will provide contacts between the two pages. Once wrapped in thin
copper tape, the magnets have minimal resistance and will not provide a problem with the page
detection technique being implemented.

Magnet

=
3

Figure 2: Page embedded resistor network

Page 1 Page 2

Chipcorder Driver

To communicate with the Winbond Chipcorder family of voice IC’s (ISD4004 series), a
ChipCorder driver has been created. In order to comply with the serial peripheral interface (SPI)
standards, the driver has been layered on top of a generic SPI PHY. The SPI PHY serializes data
to be sent to any SPI device, and will parallelize data from the device to be passed back up to the
device driver. The ChipCorder driver receives control commands from a higher level entity.
When a command is sent to the driver, it is processed and the correct sequence of ChipCorder
instruction opcodes is sent out using the SPI standard protocol. The ChipCorder driver will select
the 1ISD4004 device by asserting the Slave Select (SS) line. A LOAD signal will then be asserted
to load the current instruction opcode into the SP1 PHY’s shift register. An SPI clock (SCLK) is

then generated. The SCLK must contain the correct number of pulses to serially send each bit of
the current instruction.

User Interface

The user interface is probably the most important aspect in designs, 'The Reading Book' being no
exception. User input is used to control the different functionality, and the output gives the user
feedback on the current state of the system.

"The Reading Book' has both input and output for the user. There are two push buttons used as
inputs and three LEDs to indicate the operating mode to the user. This module also provides
voice feedback to the user for additional clarity. The main controller will keep track of a mode
change and inform the Chipcorder to play the correct feedback audio.

The functionality of the I/O is as follows:

Push Button #1: On pressing, the mode of the book is advanced through a circular queue
of the three modes. (Auto/Manual Playback, Pre/User defined story, and Record On/Off)
Push Button #2: On pressing, this button toggles the setting of the current mode. For
safety, the user must press this button twice to enter Record On mode.

LED #1: 'ON' indicates Auto Playback Mode is selected, ‘OFF’ indicates Manual
Playback.

LED #2: 'ON' indicates Prerecorded Story is selected, ‘OFF’ indicates User Recorded
Stroy.

LED #3: 'ON' indicates the user is in Record ON mode.

The user interface uses an FPGA for stabilization as well as mode decoding. This includes using
debouncing logic to avoid errors when a push button is pressed. There is also logic to determine
the current operating mode and provide that to the system's main controller. There are outputs

from the mode decode block to enable LED lights which indicate the operating mode to the user.

Following is a detailed block diagram of the user 1/0 block. The two input signals, which are
both push buttons, are fed directly into debouncing blocks. From there the mode signal is fed into
the mode selector block which then provides the main controller with the current operating mode.
The LEDs are also enabled appropriately.

[_memimedbar e
et ol wl cesouncs M e .
Garig Fa Ao
Sham Machirs
. . . m::g 'SJ:HMI I
——— | C=bouns / & g 2T -
s
:LEIZ:I Carbralisr
gt b ply I
6 —: { b ik -
clock i k3 gany .-
_"r o e recard o

Figure 3: User 1/O block diagram

The 'io_controller' has an enable signal ‘enb’ so that the main controller has a way to disable the
block. Specifically by deasserting the enable the push-buttons will no longer have an effect. The
main reason for the enable is that the main controller can prevent a user from modifying the mode
or configuration while a book is not present.

There is a signal called 'set_to_play' which is a signal which allows the mode of the state machine
to be placed into 'PLAY' mode without performing a reset, which in turn does not reset the
configurations.

Signal Debouncing

At first, a push button seems like the simplest device to connect problem free with hardware.
This is far from the truth. Push buttons do not have a steady transition, instead they bounce
before a steady state is obtained. This bouncing can cause negative results for two separate
reasons. One is that the signal may be in a transitioning state when latched and the other is that
the toggling can cause a D-Flip-Flop to be enabled several times.

Button
Pushed

Bouncing

Figure 4: Example of active high push-button ringing

To solve the problem of debouncing both data buffering and less frequent sampling.

Data buffering will be the primary solution used to debounce the input signals from the push
buttons. This method will simply be a history of the previous N samples of the signal line. Using
this method, the determining factor that a push button was pressed and has stabilized will be to
logically check for equality of all N bits in the data buffer.

The second part to this solution is to adjust the rate at which the input signal will be sampled.
When reducing the clock frequency that controls the data buffer sampling rate, the data buffer
will consist of values more spaced in time. Spacing out the sampling locations will reduce the
probability that the debouncer will accept a large bounce as a stable state. In other words, if the
sampling frequency is not reduced then the sampling time to fill the data buffer might occur
completely in a single bounce cycle, obviously providing the system with an incorrect input
signal.

10

Calculations and testing is essential to verify that the N bits of the data buffer as well as the rate
of sampling will be sufficient to eliminate all errors caused by debouncing.

Mode Decoding

There are four configurations which the 'io_controller' keeps track of and reports to the main

controller.

1. config_state - Whether 'The Reading Book' is in a 'play’ state or whether the user is
currently changing the configurations (mode_select).

2. config_man_auto - Whether the auto-page-detection is enabled (auto) or else the user
must push a button in order to play a given page (manual).

3. config_story - Whether the prerecorded audio is selected for playback (default) or else
the user auto will playback (user).

4. config_record - Whether the book is currently recording or not (record_on or record_off).

The state-machine which governs the 'io_controller' is shown in figure 5.

Figure 5: 10 State Machine

A description of each the states are as follows:

11

IDLE

Description - This is the reset state of the state machine. It is also the state for normal
operation or 'non_confugure' mode.

Actions
0 Mode - This will advance the state machine to MAN_AUTO.
- set the STATE configuration to 'mode_select'.
0 Assert - This button will command the main controller to play the current page.

MAN_AUTO

Description - This is the configuration state to adjust the current mode between Auto Play
and Manual Play.

Actions
0 Mode - This will advance the state machine to STORY.
o Assert - This button will toggle the current configuration between 'auto’ and
'manual’ play.
- A LED will be set accordingly for which mode it is in.

STORY

Description - This is the configuration state to adjust the current mode between the
Default Audio and the User Audio.

Actions
0 Mode - This will advance the state machine to REC.
o Assert - This button will toggle the current configuration between 'default’ and
‘user' audio.
- A LED will be set accordingly for which mode it is in.

REC
Description - This is the state to inform the user that they are at the point of where they
can select to record.
Actions
o0 Mode - This will cancel the record mode, and take the user out of
configuration mode and place the user back into regular play mode.
- set the STATE configuration to 'play'.
0 Assert - This button will allow the user to select a recording mode and advances
the user to a confirmation state before they begin to record.
- This will advance the state machine to REC_CONFIRM.
REC_CONFIRM
Description - This is the confirmation state for the user before they begin to record their
audio.
Actions:

12

0 Mode - This will cancel the record mode, and take the user out of configuration
mode and place the user back into regular play mode.
- set the STATE configuration to ‘play'.

0 Assert - This will advance the state machine to RECORDING.
- set the RECORDING configuration to 'recording_off'.
- A LED will be asserted to inform the user that in is in recording mode.
- set the RECORDING configuration to 'recording_on'.

RECORDING
Description - This is a state that the user is in during the duration of their audio.

Actions
0 Mode - This will halt the recording of the users audio and place them back in
regular play mode.
- set the STATE configuration to 'play'.
- set the RECORDING configuration to ‘recording_off'.
0 Assert -is passed through to the main controller to begin recording.

13

Main Controller

The main controller is the main intelligence behind "The Reading Book™ which connect all the

other blocks together. Specifically it connects the user interface, the Chipcorder, and the page
detection logic.

A general block diagram below shows the functionality of the main controller. It can be seen that
the main controller decodes the correct memory depending on the current state and configuration

of the system. It then controls the Chipcorder depending directly on the inputs which supply the
state of operation.

el n_contraller_y hid
I|:|=-H'||
" la_pet_ta_piay ;
Ties il
- - -
x:
pape| 2 a - l11..- . playy_esip -
- atop chp
Ta_slaled X0} r récard chip
— - - : .
e " 3 Controd Logic .
& anilify_maan_aiko F: :
sondig_abory ¥, !..r __IM rfdrans
- i
. pﬂﬂﬂ'_
memary_ b
dgnedar
it
R =L SN Feedback
hock ETHE MROEY _ —-""—.'
—_—
- decodar

Figure 6: Main Controller Top Level Block Diagram

To enhance the performance of the main controller the design was modified to take two clock
cycles to propagate data through. Although the latency increased the throughput was greatly

improved. The speed factor was not an issue with this design since it is operating at a relatively
slow clock frequency.

The design takes one clock cycle to calculate all the possible memory locations it may require:
current page to play, current page to record, and current feedpage. During the second clock the
control logic determines is a change in state has occurs and needs to inform the Chipcorder of a
new event. If so, the main controller asserts the correct signal to the Chipcorder (play_clip,
stop_clip, or record_clip). Also at this time if either the play or record signal is asserted the
memory address bus is latched with the correct value.

The main controller only asserts the signals supplying the Chipcorder with pulses of 1 clock pulse
width. The memory address bus is latched at time of change and remains constant until a new
value is latched. With the interface used commands should never occur consecutive but if they
do our system is capable of handling it.

Likewise, the main controller requires inputs that follow certain rules which are clearly defined

by our other modules which connect to it. For example, some inputs that are provided must only
be single pulses.

14

FPGA Requirements

The “Reading Book” will be built using the Altera Flex10K20 UP1 board. The following table

summarizes the logic block requirements of each component.

Name of Component

Number of Logic Blocks (%0)

Measured/Estimated

Page Detection and Book
Interface

72 (6%)

Measured

Recorder Interface 208 (18%) Measured
User I/0 219 (19%) Measured
Main Controller 175 (15%) Measured
Complete Project 674 (69%) Measured

Based on our measurements and estimates we are confident that the Flex10K20 chip will meet all

of our requirements.

15

Experiments and Characterizations

The design of the Reading Book has gone through a number of changes due to the results of
experiments. This especially true in the page detection and recorder modules. The 1/O section
has not undergone any significant changes in design as the result of experimentation.

Page Detection Experimentation
Approach 1

The initial design of the page conversion module was based on the following equation:

V
Ny = Nyax (\i‘ D
Where N is the number of pages in the book, Vs is the A/D value of the voltage source (255)
and Vy is the A/D value of the voltage detected at either the front or back cover of the book.
(Refer to figure A of the schematics section) This implementation required a divider, multiplier
and adder unit. While the design produced accurate results, it required 584 logic blocks or 50%
of the total available. Because of this, an alterative solution was suggested and implemented.

Approach 2

The second solution used the idea that if we could keep the number of pages in the book constant,
then we could build a simple decoder to determine the page number based on precalculated
expected values. The problem with this was that we wanted the capability to have several
different books, with different number of pages, that could be plugged into the base unit and used.
To solve this problem it was decided that no book would have more than 6 pages. Then by
altering the value of the resistance in the back cover of the book, we are able to make a book with
any number of pages less than or equal to 6 behave as if it were a book with 6 pages. For
example, if a book has 4 pages it effectively becomes a 6 page book where the last two pages are
never opened because they are embedded in the back cover. With these modifications the size of
the book interface dropped to 72 logic blocks or 6% of the total available.

Conclusion of Experiment

Approach 2 is the obvious choice for our project. While it is not as flexible as approach 1, the
savings in chip space makes it the better design.

16

Recorder Chip Experimentation

In one experiment, the SPI PHY and SPI Controller were generalized so that they could be used
with various different clock configurations and so that they could be reused to interface to other
peripherals, such as a digital potentiometer for volume control.

SPI PHY

The LPM shift register originally used proved to be insufficiently customizable for the purposes
of this design. A custom shift register had to be created so that loads would occur when the load
signal is asserted and shifts would occur on a selectable edge (selected at instantiation) of the shift
signal. The SPI SCLK signal would be connected to the shift port of the register to shift data out
of the register. In this manner, data signals in phase and out of phase with the SCLK signal can
be generated by simply shifting data out onto the MOSI line on one edge or the other. Changes in
polarity can be realized by simply inverting the SCLK signal and shifting data out on the desired
edge. In order for a truly generic SPI PHY, ie. one that can handle any of the four combinations
of SCLK phase and polarity, this design would require that two of these components be
instantiated (one clocked on the rising edge and one clocked on the falling edge) and multiplexed
onto the bus, or bus arbitration logic would be required to tri-state one device while enabling the
other. Only the first approach was deemed to be feasible since we could not think of a way to
realize the second approach on an FPGA.

SPI Controller

The SPI Controller would ideally control the edge on which to shift data out (ie. which of the two
SPI PHY’s described above should be in control of the bus), the loading of the selected PHY’s
shift register, and the generation the correct number of SCLK pulses with the correct polarity. A
higher level entity would communicate to this controller by telling it what to send and when it is
ready to send it. The controller would send the data and notify the higher level entity that the
transmission is complete. The initial ChipCorder driver was coded according to this approach,
and simulations showed that it should work. Experimentation showed otherwise: the state
machines would get out of sync with each other once in a while so there are some handshaking
issues to work out. When the two entities were combined, the issues could not be reproduced
through experimentation and the simulated behaviour was realized. Furthur investigation is
needed to determine the cause of the desynchronization.

Approach 1

Through the modularized approach, the following results were obtained under normal fitting with
Quartus Fitter:

Component Logic Cells Used Minimum clock Maximum frequency
period

SPI PHY 10 8.6 ns 116.27 MHz

SPI Controller 107 58.3 ns 17.15 MHz

ChipCorder Driver 98 32.4 ns 30.86 MHz

The limiting factor is the adder and comparator used in the SPI Controller to control the counter
that controls the number of SCLK pulses.

17

By structurally connecting up the SPI PHY, SPI Controller, and ChipCorder Driver into the
Digital Recorder Module of the overall design, the following metrics were obtained for various

methods of fitting.

Fitter Setting

Logic Cells Used

Minimum clock

Maximum Frequency

period
Normal w/ Quartus 208 61.3 ns 16.31 MHz
Normal w/o Quartus 208 63.8 ns 15.67 MHz
Advanced w/ 208 61.3 ns 16.31 MHz
Quartus
Advanced w/o 208 63.8 ns 15.67 MHz
Quartus

Without custom tweaking any parameters, the module uses 208 logic cells, and runs at a
Maximum of 16.31 MHz (Minimum clock period of 61.3 ns). The critical path is through the
counter of the SPI Controller.

Approach 2

By combining the SP1 Controller and ChipCorder Driver into one entity, the following results
were obtained under normal fitting with Quartus Fitter:

Component Logic Cells Used Minimum clock Maximum frequency
period

SPI PHY 10 8.6 ns 116.27 MHz

ChipCorder Driver 304 72.0 ns 13.88 MHz

By structurally connecting up the SPI PHY and the new ChipCorder Driver into the Digital
Recorder Module of the overall design, the following metrics were obtained for various methods

of fitting.

Fitter Setting Logic Cells Used Minimum clock Maximum Frequency
period

Normal w/ Quartus 312 70.2 ns 14.24 MHz

Normal w/o Quartus 312 75.4 ns 13.26 MHz

Advanced w/ 312 70.2 ns 14.24 MHz

Quartus

Advanced w/o 312 75.4 ns 13.26 MHz

Quartus

Without custom tweaking any parameters, the module uses 312 logic cells, and runs at a
Maximum of 14.24 MHz (Minimum clock period of 70.2 ns). The critical path is through the

counter of the SPI Controller that is integrated into the ChipCorder Driver.

Conclusion of Experiment

If the handshaking issues can be resolved, approach 1 is the preferred approach because of the

smaller area, faster speed, and reusable design.

18

Physical Construction Experimentation

The construction of the reading book was mainly dependent on the method of page detection that
was to be implemented. The most important features of the page detection would be to be able to
tell which page was open and if more then one page was open. Many different methods for page
detection were discussed.

Switches on each page — This method would provide a discrete signal for each page.
The difficulties of this method include design of the switches, the book would require as
many wires as there are pages plus two and along with that the wiring would be difficult.

Hall effect sensors — This method would require putting hall effect sensors on both the
back and front covers and inserting magnets into each of the pages of the book. The
sensors would be able to detect the number of magnets present on that side of the book
and therefore detect the page number and if more then one page was open. Also the
number of lines to the book would be minimal as only two input lines and two output
lines would be used. This method was not implemented because doubts existed on the
ability of the sensor to detect all of the magnets and doubts about the resolution even if
they were detected. This would still be an interesting method to research if time were to
permit.

Resistor between two contacts — This is the method that was finally implemented. It
consists of two contacts on each page that can both connect with the page before and the
page after. Between the two contacts is a resistor. This is illustrated in Figure 2. Doing
this creates parallel resistor networks that correspond to the number of pages contacting.
Measuring a voltage off the front and back of the book gives the current page and if more
then one page is open.

The contacts decided upon were magnets. This had the benefit of holding the pages together to
ensure proper contact. This required a couple of things from the selected magnets. They must be
small enough to fit in the pages of the book and they must also be conductive. Most magnets are
made from ceramics or plastics so special magnets were ordered that would conduct. These
magnets were not the correct size but it was assumed they could be easily machined to the right
size. This ended up not being possible. The facilities to machine these magnets were not
available and the magnets were harder to machine then had been anticipated. New magnets were
ordered that were the appropriate size. When they arrived it was discovered that the despite the
fact that the size was correct they were of the wrong material. These magnets were not
conductive. Due to time constraints it was decided to treat the surface so that the magnets would
be conductive. Three methods were attempted.

Conductive paint — A nickel print was used to coat the magnets. This made the magnets
conductive but upon soldering to the magnets the solder would pull off the print from the
magnets causing it not to stay connected

Aluminum foil — Regular household aluminum foil was glued to the magnets. This made
the magnet conductive but due to the coatings and films on household aluminum fold
soldering to the fold was not possible.

Copper foil — The product used here is a special adhesive backed copper foil that is used
in making stained glass windows. This was very convenient, as we did not have to use

19

any glue. This worked very well as it made the magnets conductive and was very easy to
solder to.

From this point the construction of the book went fairly well. A simple child’s board book was
used to construct the project. The pages were separated and grooves were cut to enable the
resistors to be embedded in the pages. It was also discovered that to enable the contacts to
connect the two magnetic contacts would have to be placed at on the same side of the page but at
the top and bottom corners.

O = Magnet
O ©
O
© ¢ /
\/

Figure 7: Magnet Positions

When the magnets were placed closer together it was difficult for both of the magnets to connect
with another page.

Conclusion of Experiment

The design decisions made for the physical construction of the book proved to be effective as the
final book met all of the project requirements.

References

[1] 1SD4003 Series Datasheet, Winbond Electronics
[2] Code for A/D converter interface was modified from a student application note submitted by
Shauna Rae on October 29, 1999

20

Index to Test Cases and Design Verification

o (0 < 010 Y] 1 22
- shows the operation of the page_convert.vhd module
- boundary conditions for each page are tested

BOOK CONtroller — ADC CONVEISION. .ttt vt een ettt e e e e et et et e et e e e e e eeeaes 23
- shows the operation of the book_controller.vhd module
- total of four ADC conversions

Book_Controller — Test BENCh RESUILS. iu i e eeas 24
- shows the results of the book_controller test bench
- a comprehensive test of the book_controller.vhd module

S Il 25
- shows the operation of the SPI PHY

- parallel data is serialized and placed on the MOSI bus line

- serial data is parallelized from the MISO bus line

o 1K 0] 11110 T 26
- shows the correct generation of the SCLK SPI bus control signal

(O 01T o100 o [T G] YT 27
- shows the correct operation of the ChipCorder device driver
- all possible control signals are tested verifying the correct generation of SPI bus data

Digital Recorder MOGUIE. e et e e e e e e e e e eeeae s 28
- shows the translation of high-level control signals down to the serial bitstream of the SPI PHY

(@ I 00T 0110 1 1= 29
- shows the operation of 10_Controller Module
- all states in the 1/O state machine are tested

ST T O 0 1 (0] | T 30
- shows the cases that the main controller may encounter

(O [0T01 B Y o[PR 32
- shows the generation of a clock with frequency 1/50" of the input clock

L0 1Y 0T 0 33
- shows the operation of the two components in the book module

21

Page_convert

This waveform shows the operation of the page_convert.vhd module. The boundary conditions
for each page are tested.

Valid input range for value is 0 to 255, this represents the ADC output for either the front or back
cover voltage.

Valid output range for page is 0 to 6.
Maximum Speed: No registers to measure performance for this module specifically, but it is
measured as part of the book_controller performance.

Critical Path: As above.
Improvements: N/A

22

Book_Controller — ADC Conversion

This waveform shows the operation of the book_controller.vhd module. Shown is a total of four
ADC conversions (two for the front cover and two for the back). This shows the proper setting of
the page number and the closed signal.

The sequence of events for a proper ADC conversion is as follows:

Select line is set for either front (0) or back (1) cover.

Start line is pulsed high to begin conversion.

Data_Ready line goes high, indicating the conversion is complete.
This sequence is repeated for every conversion.
This test only shows, in detail, the proper execution of ADC conversion and page detection for a
couple of cases. A less detailed but comprehensive test performed by a test bench is included
next in this section.
Maximum Speed: 87.71 MHz

Critical Path: Loading of registers.
Improvements: N/A

23

Book_Controller — Test Bench Results

This waveform shows a comprehensive test of the book_controller.vhd module. This test was
performed using the book_controller test bench included later in this report.

After reset, the test bench cycles through all of the possible page combinations. The page
combination currently being tested is indicated by the output vector ‘test_case’. Tests are
performed on the rising edge of the signal ‘test’. The output signal ‘pass’ indicates whether the
module passed the test, with “1” indicating a passed test and ‘0’ indicating a failure. The
following table summarizes the test cases:

Front Page

0 1 2 3
7 6 5 4
13 12 11 10
18 17 16 15
22 21 20 19
25 24 | 23 X
27 26 X X
28 X X X

ack Page

OB IWIN|R(O

XX |X|X |2 |o|w]|~
XX |[X|X[X|eo|N]o
XIX|X|X[X|X[=]|o

Test Cases

Notes:
An ‘X’ indicates a combination that is not physically realizable.
The closed book condition is test case 29.

Maximum Speed: N/A
Critical Path: N/A
Improvements: N/A

SPI PHY

This simulation shows the correct operation of the SPI PHY for the Reading Book: parallel data is
serialized and placed on the MOSI bus line. Serial data is parallelized from the MISO bus line.
The PHY shifts and samples data on the falling edge of SCLK in this configuration.

Tests performed but not shown in waveforms (important for generalizing the PHY):

Polarity Test

Feeding in SCLK with different polarity. SCLK and MOSI signals were tested against Motorola
reference timing, found a bug that does not affect our design, but affects the generic properties of
the SPI PHY:: First shift occurs too soon (ie. loses first bit, see waveform).

Load/Shift Priority Test

Asserting both the load and SCLK. Load takes priority.

Rising Edge Test

Clocking data out on the rising edge instead of the falling edge. Works correctly.

Maximum Speed: 125.00 MHz

Critical Path: shift register
Improvements: N/A

25

SPI Controller

This simulation shows the correct generation of the SCLK SPI bus control signal. The generation
of the 8 SCLK pulses occurs one clock cycle after the load signal has been asserted. This allows
the PHY to load the parallel data to be sent on the bus. Tests were also done to show that the
ready signal must be deasserted for at least two clock cycles between transfer operations (results
not shown).

Tests performed but not shown in waveforms (important for generalizing the controller):
Phase Shifted Clock Test

SCLK180 signal generated and is 180 degrees out of phase with SCLK.

Maximum Speed: 17.15 MHz

Critical Path: counter to generate SCLK pulses

Improvements: shift register instead of counter. The bits of the shift register can be ORed

together to activate pulse generation. To start the sequence, a ‘1’ is shifted into the register. The
critical path in this design would be the shift operation and the chained OR operations.

26

ChipCorder Driver

This simulation shows the correct operation of the ChipCorder device driver. All possible control
signals are tested verifying the correct generation of SPI bus data.

Tests performed but not shown in waveforms (so as not to confuse interpretation of the
waveforms):

Multiple Reset Test

State machine asserts and deasserts SS many times (as it is being reset over and over) and sends
partial sequences of pulses out the SCLK line, but the final reset pulse is the one that will send the
correct number of SCLK pulses with the correct behaviour of SS. This behaviour is by design
and is the expected behaviour.

Multiple Play, Record, or Stop Test

Pulses occurring within a command sequence are ignored. Holding one signal for longer than the
duration of a command sequence results in back to back command sequences as expected.

Asserting Play, Record, and Stop at the Same Time Test

Priority is given to Record, Stop, and Play in that sequence. This will be changed in the future to:
Stop, Play, Record.

Maximum Speed: 14.04 MHz

Critical Path: counter to generate SCLK pulses

Improvements: use the modular design hierarchy of ChipCorder Driver -> SPI Controller -> SPI
PHY as described previously. Also, make improvements to the SPI Controller as described
previously.

27

Digital Recorder Module

This simulation shows the translation of high-level control signals down to the serial bitstream of
the SPI PHY. Operations such as reset, record, play, and stop are initiated and the SS, SCLK, and
MOSI bitstreams are analyzed.

The main testing occurs in the Testbench.
Maximum Speed: 12.67 MHz

Critical Path: same bottleneck as the ChipCorder Driver.
Improvements: same as the ChipCorder Driver

28

10_Controller
In summary the waveforms show:

- Reset
- MAN_AUTO Mode
- manual configuration
- auto configuration
- STORY Mode
- user configuration
- default configuration
- REC Mode
- REC abort via 'mode’
- REC_CONFIRM Mode
- REC_CONFIRM abort via 'mode’
- RECORD Mode
- re-assert to begin recording
- RECORD abort via 'mode’
- 'enb’ functional testing
- 'set_to_play' functional testing

The values of the modes are as follows:

-- 10O States
PLAY =p"000"
MAN_AUTO =p"001"
STORY =p"010"
REC =p"011"
REC_CONFIRM =p"100"
RECORDING =p"101"

Performance Results:

Mim Clock Period: 21.2 ns

Max Frequency: 47.16 MHz

(0)
(1)
()
®3)
(4)
(®)

Critical Path is to determine which state to enter of the state machine. With out a redesign this is
not easily changed. A different state machine could be designed to have less states in it, and then

incorporate all the functionality into a few state-machines working together.

29

Main_Controller

This set of waveforms shows the cases that the main controller may encounter. The main
controller must monitor the book interface and the user input to determine what to either play or
record, or in general, how to control the Chipcorder.

The main controller is concerned with mode, configuration, book status (open/closed and page
number). It is designed to sample each of these every clock cycle and supply the Chipcorder
pulses according to what is observed. Only pulses are sent to the Chipcorder when a change in
status has occured.

In summary the waveforms show:

- Reset
- Out of reset
- no action
- Closed book
- disable io_controller
- Page turn (page 2)
- plays page audio (0x10 = PAGE_2 DEFAULT)
- Inbetween pages
- stops play
- Completed the page turn (page 3)
- plays page audio (0x11 = PAGE_3 DEFAULT)
- Assert page play (page 3)
- plays page audio (0x11 = PAGE_3 DEFAULT)
- Mode change to MAN_AUTO
- plays feedback audio (0x03 = FB_AUTO)
- Change configuration to ‘'manual’
- plays feedback audio (0x02 = FB_ MANUAL)
- Change configuration to ‘auto’
- plays feedback audio (0x03 = FB_AUTO)
- Mode change to STORY
- plays feedback audio (0x04 = FB_DEFAULT)
- Change configuration to 'user'
- plays feedback audio (0x05 = FB_USER)
- Change configuration to ‘default’
- plays feedback audio (0x04 = FB_DEFAULT)
- Mode change to REC
- plays feedback audio (0x06 = FB_REC)
- Mode change to REC_CONFIRM
- plays feedback audio (0x07 = FB_REC_CONFIRM)
- Mode change to RECORDING (page 3)
- begins to record (OXOA = PAGE_3 USER)
- Assert recording page (page 3)
- begins to record (OXOA = PAGE_3 USER)
- Test REC abort (mode goes to PLAY)
- plays feedback audio (0x01 = FB_PLAY)
- Test REC_CONFIRM abort (mode goes to PLAY)
- plays feedback audio (0x01 = FB_PLAY)

30

- Test RECORDING abort (mode goes to PLAY)
- plays feedback audio (0x01 = FB_PLAY)

For test purposes the values of the memory have been set to the following:

-- Memory locations

FB_PLAY X"01";
FB_MANUAL x"02";

FB_AUTO X"03";
FB_DEFAULT Xx"04";

FB_USER X"05";
FB_REC X"06";
FB_REC_CONFIRM X"07";
PAGE_1 USER X"08";
PAGE_2_USER X"09";
PAGE_3_USER x"0a";
PAGE_4_USER X"0b";
PAGE_5 USER x"0c";
PAGE_6_USER x"0d";
PAGE_7_USER x"0e";

PAGE_1_DEFAULT x"Of";
PAGE_2_DEFAULT x"10"
PAGE_3_DEFAULT x"11%
PAGE_4 DEFAULT x"12"
PAGE_5_DEFAULT x"13"
PAGE_6_DEFAULT x"14";
PAGE_7_DEFAULT x"15%

-- |O States

PLAY =b"000" (x"0™)
MAN_AUTO =b"001" (x"1")
STORY =b"010" (x"2"
REC =bh"011" (x"3"M
REC_CONFIRM =b"100" (x"4™
RECORDING =p"101" (x"5")

Performance Results:

Mim Clock Period: 30.8 ns
Max Frequency: 32.46 MHz

Critical Path for the main controller involved the internal variable 'page_last' which is used to
inform the main controller that the page has just been turned. There are a few solutions to
improve this if desired. One is to put a signal in from the book interface to inform the main
controller that the page was changed. This would completely eliminate this function from the
main controller. Another solution would be to divide this task among 2 clock cycles to improve
the throughput. Two clock cycles are already designed into the main controller but not regarding
'page_last which could be if speed performance was an issue.

31

Clock Divider

This waveform shows the operation of the clock _divider.vhd module. For this simulation the
input clock had a period of 20ns (50 MHz), and it is shown that the output clock has been divided
by 50 (1us, 1 MHz), which is the proper operation. This waveform also shows proper reset
operation.

Maximum Speed: 92.59 MHz

Critical Path: The counter.
Improvements: N/A

32

Book Module

This simulation shows the correct operation of the two components in the book module.
Tests performed:

ADC Input Test

ADC stimuli were fed in to observe the correct outputs on the page and closed signals.
Digital Recorder Test

High level play, record, and stop stimuli were fed in with appropriate memory page information
to observe correct output from the SPI interface.

Maximum Speed: 13.69 MHz

Critical Path: SCLK counter in ChipCorder Driver
Improvements: N/A

33

Diagram of Design Hierarchy

Reading Book Prototype

[Simulated - No Known Bugs]

v v v

Book Module Clock Divider Reading Book Base Unit

[Simulated - No Known Bugs] [Simulated - No Known Bugs] [Simulated - No Known Bugs]

Book_Controller Digital_Recorder_Module Main_Controller I0_Controller
[Simulated - No Known Bugs] [Simulated - No Known Bugs] [Simulated - No Enown Bugs] [Simulated - No Enown Bugs]
A ¢ ¢ y
Page_Convert ChipCorder_Driver SPI_PHY Debounce
[Simulated - No Known Bugs) [Simulated - No Enown Bugs] [Simulated - No Enown Bugs] [Simulated - No Enown Bugs]
A A
Shift_Register
[Simulated - No Enown Bugs]

Figure 8: VHDL entity hierarchy

Index To VHDL Code

Page Detection Code Error! Bookmark not defined.

Page convert.vhd: Simulated — no known bugs...........ccceeeeuee.. Error! Bookmark not defined.

book controller.vhd : Simulated — no known bugs Error! Bookmark not defined.
Chip Recorder Code Error! Bookmark not defined.

shift_register.vhd: simulated - no known bugsccccceevvvevnee. Error! Bookmark not defined.

register_pkg.vhd: compiled — N0 €rrorsccccoevevevveevcvee e, Error! Bookmark not defined.

spi_phy.vhd: simulated - N0 KNOwWn bugs...........ccovevvvveivecineenns Error! Bookmark not defined.

spi_controller.vhd: simulated — no known bugs (not used in current design)Error! Bookmark
not defined.

spi_pkg.vhd: compiled — N0 EITOrS......ccceevvveeeivieee e Error! Bookmark not defined.
chipcorder_driver.vhd: simulated — no known bugs.................. Error! Bookmark not defined.
chipcorder pkg: compiled — N0 EITOrSvceevvveeeeriiee e, Error! Bookmark not defined.
digital recorder module.vhd: simulated — no known bugs....... Error! Bookmark not defined.
digital recorder package.vhd: compiled — no errors................. Error! Bookmark not defined.

chiptest.vhd: compiled — no error (oscilloscope verifies correct signals)Error! Bookmark not
defined.

1/0 Code Error! Bookmark not defined.
debounce.vhd: simulated — no Known bugscceeeevvievnnenns Error! Bookmark not defined.
io_controller.vhd: simulated — no Known bugs..........ccceeevvvenen. Error! Bookmark not defined.
Main Controller Code Error! Bookmark not defined.
main_controller.vhd — Simulated — no known bugs................... Error! Bookmark not defined.
Top Level Code Error! Bookmark not defined.
Reading Book Base Unit.vhd — Simulated — no known bugs . Error! Bookmark not defined.
Book Module.vhd — Simulated — no known bugs.............cu...... Error! Bookmark not defined.
clock divider.vhd — Simulated — no known bugs...................... Error! Bookmark not defined.

reading_book prototype.vhd — Simulated — no known bugs..... Error! Bookmark not defined.

34

Index To Test Benches

BOOK CONITOIET TESE BEINCNeeeeeiee ittt ettt e e e ettt e e e sa et e eeeesass sttt eeeessassnteeeeeesssasbaneeeesssanrereeeeessans 36
Digital Recorder Modulg TESIDENCK . .vvvveeeeeee ettt ettt e e e e e Error! Bookmark not defined.
[FL@ N Ofo] a1 Vo] | [T =Ty A ==Y o Tod o [T Error! Bookmark not defined.

Main Controller TSt BENCH ...vvviiiveiie sttt ettt e s e e e s ressrreeeenens Error! Bookmark not defined.

Book Controller Test Bench

This test bench tests the book_controller.vhd module. It is not a test bench in the strictest sense because the entity

contains inputs and outputs (a restriction imposed by MaxlIplus); however, it does provide an easy means for
testing all possible page combinations. After reset, the test bench cycles through all of the possible page

combinations. The page combination currently being tested is indicated by the output vector ‘test_case’. Tests are
performed on the rising edge of the signal ‘test’. The output signal ‘pass’ indicates whether the module passed the

test, with “1” indicating a passed test and ‘0’ indicating a failure. The following table summarizes the test cases:

Notes:

An ‘X’ indicates a combination that is not physically realizable.
The closed book condition is test case 29.

Front Page
0 1 2 3 4 5 6
0 7 6 5 4 3 2 1
1 13 12 11 10 9 8 X
2 18 17 16 15 14 X X
3 22 21 20 19 X X X
4 25 24 23 X X X X
5 27 26 X X X X X
6 28 X X X X X X
Test Cases

36

Appendix A

Schematics

37

ml

— m o7 —
—_ o — w1H oi —
— oz oz —
— o3 YHEH . —1 YFEW o3 —
— wEEF —L -— WREF- od —
W
— s - o5 —
— g h— ! — =oc o —
— o7 OF— 1L-ﬁ, — DE o7 f—
T
— EQC EQCf—
AOG AOG
Page ? Page n-1
e - = 1

Lo Lo ! e |

Figure A — Page Detection Circuitry

Note: The 2 ADCs shown are actually implamented using 1 ADC with an internal

MUX.

38

Appendix B

Datasheets

39

