
EE 552
Final Report

Networked Appliance Controller

Web Version

Please see http://www.ee.ualberta.ca/~cdjones/EE_552/ for the complete
final report. In order to meet the 200 kB size restriction on this report, the
sections on datasheets, schematics, design hierarchy, testing, and
testbenches have been removed in their entirety.

8 April 2002

Group Email List ee552@novusordo.net

Justin Bague jebague@telusplanet.net
Stephen Dytiuk dytiuks@hotmail.com
Chris Jones cdjones@ee.ualberta.ca
Randy Tsen rtsen@ualberta.ca
Mimi Yiu myiu@ualberta.ca
Jones Yu jones_yu@hotmail.com

© 2002: Justin Bague, Steven Dytiuk, Chris Jones, Randy Tsen, Mimi Yiu, & Jones Yu.
All rights are reserved.
Permission is granted to freely redistribute this document or portions thereof, if credit is provided.
Submitted for credit in EE 552 in the winter 2002 term, at the University of Alberta.

Declaration of Original Content

The design elements of this project and report are entirely the original work of the authors and have not
been submitted for credit in any other course except as follows:

The following VHDL files have been reused from [O2]: clkdiv.vhd, RS232_In.vhd,
RS232_out.vhd, serialShiftRight.vhd, myShiftOut.vhd, and leddecoder.vhd.

The clockDivider.vhd file was reused from that provided in class.

The LFSR_GENERIC component used in the SLIPCONTROL and NETCON test benches was
taken from [O3].

8 April 2002

Justin Bague _________________

Chris Jones _________________

Mimi Yiu _________________

Steven Dytiuk _________________

Randy Tsen _________________

Jones Yu _________________

Abstract

The Networked Appliance Controller was designed to respond to remote requests from a local area network
(LAN) and control an appliance: in this case, a relay with which to reboot a computer. The main focus of
the project was the implementation of Protocol: Ethernet, IP, and UDP and the interface with the EE-100
Ethernet Module. The EE-100 provides a 10BaseT connection using a Crystal/Cirrus CS8900A Ethernet
Controller, operating in 8-bit mode. A SLIP interface was also developed in parallel with the Ethernet
interface as a backup scheme.

The design used two interfaces to the network inputs (Ethernet and SLIP), with an interface-agnostic engine
reading the payload of the incoming UDP packets to determine whether they carried the appropriate value.
In this case, it would activate the relay; otherwise, it would ignore the packet and continue waiting.

While our design simulated correctly, we were unable to completely finish interfacing the Ethernet and SLIP
modules in our FPGA to their respective hardware devices, and thus have not been able to demonstrate
operation of the device as a whole. However, the SLIP and Ethernet modules should be very close to being
usable by a future project for their own devices.

Achievements

Network Controller

The network controller (netController) implements an engine that examines the payload of a User Datagram

Protocol (UDP) packet encapsulated in an Internet Protocol (IP) packet [S4, S5] for a pre-defined “secret

key” which provides a weak level of authorization for the appliance’s control. It interfaces to a packet buffer

which permits random access by the network controller so that it may examine the headers and contents

of the packets without having to interface directly to the Ethernet or SLIP controllers.

The network controller implements a highly stripped-down version of UDP and IP, ignoring all headers.

It is unsuitable for use in anything other than an environment where packets should be accepted from any

source for any destination (i.e. promiscuous mode).

Ethernet Interface

The Ethernet interface (ethIF and pktBuffer) implements an abstract interface to an Ethernet controller chip.

ethIF polls the chip to determine its status, and whether it has received new packets (the CS8900A chip

which we used has 4 kBytes of onboard RAM to store packets for asynchronous retrieval by a host system).

Upon receipt, ethIF stores the packet in an on-FPGA memory (the pktBuffer) for random-access use by the

network controller.

We have demonstrated communication between ethIF and the CS8900A chip, but it has only been partially

successful. We are able to retrieve chip revision information from an internal register on the CS8900A, but

have not been able to successfully retrieve packets from the chip. In spite of this difficulty, the ethIF and

pktBuffer modules implement a coherent interface to hardware: a future group should be able to use them

as a basis for starting implementation of an Ethernet interface and resolve the problems which remain.

SLIP Interface

The SLIP interface (slipcontrol) module correctly receives serial data using the Serial Line Internet Protocol
(SLIP) over an asynchronous serial line, at a rate of 9600 baud. The data is stored in the FPGA RAM, and

is accessible by sending an address to it. When the end character is received, it allows read access to the

RAM. This behaviour has been verified through simulation and by programming the FPGA and actually

sending it data. The slipcontrol module is compatible with the ethIF module, and they can be substituted

with a simple recompilation of the overall system.

The slipcontrol module is also setup to send data using SLIP over the serial line. The controller has been

simulated: it correctly formats and sends the data. This was out of the scope of our project, and so has not

been tested.

This module should be usable for future groups to use in their projects when IP connectivity is required and

a full-bore Ethernet connection is overkill.

Appliance Controller

The original design called for the use of the FPGA as a supplier of 3.3 volts to power the relay. However,

upon hooking up the appliance, it was found that a single pin could not supply enough current to activate

the diode in the optical coupler. It was then decided that the pins would be used as a current sink instead

of a source. The optical coupler power line was attached to Vcc on the FPGA, while the ground of the

coupler was attached to our output pin. When the appliance is to be activated, a logic zero is applied to the

pin, thus creating a ground. When it is to be shut off, a logic ‘1' is placed on the pin, resulting in a zero

voltage drop across the diode, and therefore disabling it. This was tested, and worked perfectly.

Description of Operation

Network Controller

The network controller is the “brains” of the networked device: it is responsible for parsing inbound UDP
packets and determining whether they carry the required secret payload which authorizes the user to toggle
the state of the appliance. It communicates to a packet buffer (pktBuffer in the case of Ethernet, and to a
similar buffer encapsulated within slipcontrol in the case of SLIP) to access bytes within a packet with
random access, in order to be able to determine whether the packet is appropriate.

Ethernet Interface

The network controller communicates with a network through the CS8900A chip on the EE-100 board:
the VHDL module used to do this is ethIF.vhd. An Ethernet (IEEE 802.3 [S10]) packet, encapsulating an

IP packet [S4, S7] which in turn encapsulates a UDP packet [S65], is received by the CS8900A and

automatically stored in its onboard memory (capacity 4 kB). The netController polls ethIF when it is idle,

enquiring as to whether a new packet has been received. If so, netController asks ethIF to load the newly

received packet into a packet buffer (pktBuffer), subsequently sending an acknowledgement to the

netController.

ethIF / CS8900A Interface

The Ethernet interface operates at a substantially higher clock frequency (presently 1024 times faster) than

the network controller, so that the new packet can be loaded into the packet buffer in one netController
clock cycle. It interfaces directly to the CS8900A chip as illustrated below:

Upon receiving a request from the

network controller to check for the

receipt of new packets in the CS8900A,

the interface communicates with the

chip to determine whether a new packet

has been received. If this is the case, the

Ethernet interface acknowledges the

controller's request and advises it that a

new packet has been received.

The network controller then may request that the Ethernet interface load the new packet into the packet

buffer, destroying the current contents of the buffer. Upon receiving this request and obtaining the

communication lock described above, the interface communicates with the Ethernet chip to determine the

length of the packet, so that it can copy the appropriate number of bytes into the packet buffer. See the

CS8900A 8-Bit Operation Reference Manual [O1] and the CS8900A Product Data Sheet [D2] for the

precise details of operation.

Once the packet has been loaded into the buffer, the Ethernet interface acknowledges the network

controller's request. The network controller may then communicate with the packet buffer in random-

access mode to determine the contents of each byte. As the layout of the Ethernet, IP, and UDP packets are

known, the network controller need not examine all bytes in the buffer, but may instead simply look for the

packet lengths, and use them as offsets into the RAM to find the UDP payload.

SLIP Interface

The SLIP component takes in 7 inputs, and produces 8 outputs. The soutclr and reset ports are both

connected to slipcontrol’s reset because they are two separate resets that we don’t need to differentiate

against in this project. The serial input (using the SLIP protocol) we receive from the serial port is serialin.

The FPGA clock at 25.175 MHz is input as sysclock.

SLIP Control Design

The serial output transmitted using the SLIP protocol based on the serial_out_data input we receive from

EnetControl is serialout, while outready is a signal which indicates when we are ready to either receive or

transmit data. Out_load must be pulsed high when a new word needs to be outputted from serial_out_data.

The SLIP component uses the RS232 transmission files, as specified in [O2]. It converts the serial input to

byte-sized words, keeps track of the address that the word should be stored in SLIP_BUFFER, and when

the END character is received, pulses pktRead high. Each word is stored into SLIP_BUFFER as soon as it

is completely received. To send, the SLIP component translates the serial_out_data into serial data

conforming to the SLIP standard, and sends it out over the serialout line.

The SLIPBUFFER component uses onboard RAM to store and retrieve the data sent to us over the serial

connection. Whenever the SLIP component has something to write to SLIPBUFFER, write is set high, and

SLIPBUFFER will store the data into the address indicated by ADDRESS. Whenever write is low,

SLIPBUFFER will send the data from the address specified by ctrl_address_in out to the netController.

The SLIP protocol has four special characters:

• END: %11000000 (0xC0, 19210)

• ESC: %11011011 (0xDB, 21810)

• ESC_END: %11011100 (0xDC, 21910)

• ESC_ESC: %11011101 (0xDD, 22010)

The END character is used to indicate the end of an arbitrary sized packet. The ESC character is used so

that we can transmit the same data as the END character without conveying the END message. When an

END character appears in the packet, it is translated to be a (ESC, ESC_END) pair; similarly, when an

ESC character appears naturally in the packet, it is translated to (ESC, ESC_ESC) for transmission. [S1]

Appliance Controller

The appliance interface will require a single pin from the FPGA. Due to the nature of the appliance, and

the high voltages and currents involved, we have chosen to replace the relay in our original design with an

Optical Coupler. This new IC will allow complete voltage and current separation from the appliance side

and the FPGA.

Whenever 3 volts (Logic 1) are applied to the Optical Coupler, it will allow a 12-volt current to flow through

the other half of the IC. This acts as a relay. The datasheet for this device is included in the appendix. This

12-volt signal will then trigger another actual relay, which will complete the circuit within the extension

cord. Intuitively, it can be seen that without power to our FPGA, there will be no activity in the appliance.

The 12-volt signal will be generated with a simple battery. Most likely, two 9 volt batteries in series will

allow for a longer current draw before replacement. Alternatively, a 12-volt AC-DC adapter could be used

in place of the battery.

The maximum speed of this device is rated as 73 MHz, and thus will not have any detrimental impact on

the operations of the FPGA. This VHDL could be completely left out, if the signal from the Ethernet side

of the FPGA was declared as negative logic.

Netcon Datasheet

Netcon consists of the Altera UP-1 FPGA board, an EE-100 Embedded Ethernet module with a CS8900A
Ethernet chip onboard, the appliance relay system, and the serial communication system. Offering a remote
reboot capability for any network-connected computer, Netcon is the perfect solution for when your
computer locks up while you’re not at the desk.

Specifications

• 5V power supply
• 10BaseT and RS-232 connections

Pin Name Pin Type Pin Number Purpose

address0 Output 45 Connection to EE-100 Module.

address1 49

address2 48

address3 51

ioRead 50

ioWrite 54

aEnable 53

data0 Bidirectional 56

data1 55

data2 62

data3 61

data4 64

data5 63

data6 66

data7 65

output 71 To relay subsystem

Design Size: Logic Blocks Used

Network Controller

Ethernet Interface

SLIP Interface

Appliance Controller

Total dedicated input pins used: 6/6 (100%)
Total I/O pins used: 30/183 (16%)
Total logic cells used: 319/1152 (27%)
Total embedded cells used: 16/48 (33%)
Total EABs used: 2/6 (33%)
Average fan-in: 3.23/4 (80%)
Total fan-in: 1032/4608 (22%)

Total dedicated input pins used: 1/6 (16%)
Total I/O pins used 1/183 (0%)
Total logic cells used 1/1152 (0%)
Total embedded cells used 0/48 (0%)
Total EABs used 0/6 (0%)
Average fan-in 1.00/4 (25%)
Total fan-in 1/4608 (0%)

Total dedicated input pins used: 6/6 (100%)
Total I/O pins used: 35/183 (19%)
Total logic cells used: 274/1152 (23%)
Total embedded cells used: 0/48 (0%)
Total EABs used: 0/6 (0%)
Average fan-in: 3.50/4 (87%)
Total fan-in: 959/4608 (20%)

Total dedicated input pins used: 6/6 (100%)
Total I/O pins used: 36/183 (19%)
Total logic cells used: 141/1152 (12%)
Total embedded cells used: 0/48 (0%)
Total EABs used: 0/6 (0%)
Average fan-in: 3.56/4 (89%)
Total fan-in: 502/4608 (10%)

Results of Experiments

Appliance Controller

The original design called for a system of components arranged in the following manner.

FPGA => Buffer => OPAMP (If Necessary) => Relay => Computer

This was ultimately decided against, due to the unnecessary and prohibitive costs of the specific relay we

were using. Also, since there was a requirement of a power supply to bring the opamp up to 12 volts

anyway, it was decided that for simplicity’s sake we would just use two relays, thus changing the design to

the following.

FPGA => Relay1 => 12-volt supply => Relay2 => Computer

This design however, had one notable drawback. By attaching a standard electro mechanical relay directly

to the FPGA, we risked backwards EMF interference / and or destruction of the FPGA. To get around this

dilemma, it was chosen to use an optical coupler to isolate the FPGA from the appliance circuitry, resulting

in the following.

FPGA => Optical Coupler => 12-volt supply => 12-volt Relay => Computer

As for the code to run these devices, a single output pin is all that is required. The VHDL code for a working

interface to the appliance is included in the appendix, but may be summarized as:

If disable signal goes high, Reset_Computer_Relay signal goes low.

This VHDL code is simply an inverter, so that the appliance is always running, until the FPGA actively

decides to shut it off.

References

Books

B1. Stevens, W. Richard: “TCP/IP Illustrated, Volume 1: The Protocols”
ISBN 0-201-63346-9, Addison-Wesley, 1994.

Diagrams & Data Sheets

D1. Cirrus Logic: “CS8900A: 10Base-T Ethernet Controller”,
http://www.cirrus.com/design/products/overview/index.cfm?ProductID=46

D2. Cirrus Logic: “CS8900A Product Data Sheet”,
http://www.cirrus.com/pubs/cs8900a-4.pdf

D3. Li, Timmy: “Schematic of TTL to RS232 Interface”
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/circuits/TTL_to_Serial/images/Drawing3.jpg

D4. MAXIM: “+5V-Powered, Multichannel RS-232 Drivers/Receivers”,
http://pdfserv.maxim-ic.com/arpdf/MAX220-MAX249.pdf

Other Resources

O1. Ayres, Jim: “Using the Crystal(R) CS8900A in 8-bit Mode”,
http://www.cirrus.com/pubs/an181.pdf

O2. Ng, Dave; Mel Lumague; Ben Talbot; Emy Egbogah; Nitin Parimi: “RS-232 Serial Port”
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2002_w/vhdl/rs232/RS232.html

O3. EE 552: “Lab 5: Pipelining, Handshaking & Test Benches”
 http://www.ee.ualberta.ca/~elliott/ee552/labs/lab5/lab5.html.
LFSR_GENERIC file created by Raymond Sung; modified by Raymond Sung and John Koob.

O4. Desrosiers, Gary T.: “CS8900A Packet Sniffer”,
http://www.embeddedethernet.com/appnotes/sniffer.bs2

O5. Bensler, Tim & Eric Chan: “RS-232 Serial Port”
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/RS232/

Standards & Specifications

S1. Romkey, J.: “A Nonstandard For Transmission of IP Datagrams Over Serial Lines: SLIP”
(RFC 1055, STD 47), The Internet Society, 1988.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1055.html

S2. Socolofsky, Theodore J. & Claudia J. Kale: “A TCP/IP Tutorial”
(RFC 1180), The Internet Society, 1991.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1180.html

S3. Internet Engineering Task Force: “Requirements for Internet Hosts – Communication Layers”
(RFC 1122, STD 3), The Internet Society, 1989.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1122.html

S4. Deering, Steve: “Internet Protocol”
(RFC 791, STD 5), USC/Information Sciences Institute, 1981.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc791.html

S5. Postel, Jon (Ed.): “User Datagram Protocol”
(RFC 768, STD 6), USC/Information Sciences Institute, 1980.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc768.html

S6. Postel, Jon (Ed.): “Transmission Control Protocol”
(RFC 793, STD 7), USC/Information Sciences Institute, 1981.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc793.html

S7. Hornig, C: “"Standard for the transmission of IP datagrams over Ethernet networks”
(RFC 894, STD 41), USC/Information Sciences Institute, 1984.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc894.html

S8. Postel, Jon, & J.K. Reynolds: “Standard for the transmission of IP datagrams over IEEE 802
networks”, (RFC 1042, STD 43), USC/Information Sciences Institute, 1988.
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1042.html

S9. IEEE: “IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture”
(IEEE Std. 802-1990), ISBN 1-55937-052-1,
Institute of Electrical & Electronics Engineers, New York City, 1990.

S10. IEEE: “Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method
and physical layer specifications”, (IEEE Std. 802.3, 2000 Ed.), ISBN 0-7381-2673-8
[PDF Vers.], Institute of Electrical & Electronics Engineers, Piscataway NJ, 2000.

S11. TechFest: “Ethernet Technical Summary”
http://www.techfest.com/networking/lan/ethernet2.htm#2.1

S12. Fairhurst, Gorry: “IP Packet Header”:
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html

S13 The University of North Carolina at Chapel Hill:
http://www.cs.unc.edu/Courses/comp249-s02/lectures/comp249_s02_3/sld009.htm

Web Pages

W1. Elliott, Duncan: “EE 552 Project”,
http://www.ee.ualberta.ca/~elliott/ee552/reports.html

W2. Radio Shack: “Mount Electro-Mechanical Relay”,
http://www.radioshack.com/searchsku.asp?find=900–8653

W3. TechFest.com: “TechFest Ethernet Technical Summary”,
http://www.techfest.com/networking/lan/ethernet.htm

W4 www.embeddedether.net: “EE-100 Ethernet Module Technical Specifications”,
http://www.embeddedether.net/specs.html

W5. Thornton, Mitch: “Lab4: Using LPMs in VHDL”,
http://www.ece.msstate.edu/~mitch/class/ee4743/labs/lab4/lab4.html

Design Verification

Ethernet Interface

The Ethernet interface was tested using the nettester.vhd file to attempt to debug the connection between
the CS8900A and the FPGA. The design could not be verified in its entirety, but communication between
the chips was established.

SLIP Interface

The sliptester.vhd file was created to verify the slipcontrol design, using the LEDDecoder.vhd file from [O2].

This testing program is useful to physically test the slipcontrol. It accepts serial data, stores it in the RAM,
and displays the contents of the RAM onto the LED display. The pushbuttons are used to look at the next
memory address, and go back to address 0. In addition, the two decimal points on the LED display the
data_valid line, and the packet_received line.

The design was verified by sending characters from Hyperterminal on the Windows computer, and checking
to see that the characters were received and stored properly on the FPGA. To test whether the END
character would be received, we changed the definition of END to be ASCII ‘e’ so that I could send it the
END char. Otherwise we would not have been able to use Hyperterminal to send the data. Also used was
the jSLIP program listed later: it sends UDP packets over Ethernet or SLIP. This works correctly using the
correct end character for the SLIP protocol.

The SlipControl functioned correctly. It received all the data, stored it, and retrieved it when requested.

Other verification of the smaller components was performed. Waveforms and explanations of those
verifications are included.

Appliance Controller

The appliance controller was tested manually, using a push-button switch.

