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ABSTRACT 

An artificial neural network trainer and an associated neural network designed to solve a 
two-dimensional spatial recognition problem was designed for this project.  The project 
was selected to fulfill the goals of the course, to develop the necessary skills to design 
complex digital application specific integrated circuits (ASIC) and systems on a chip 
(SoC) using CAD synthesis tools.  Working in a group, this significant digital system 
using a field programmable gate array (the ALTERA FLEX 10K70RC240-4) was 
designed and implemented.  

Artificial Neural Networks attempt to recreate the behavior of a biological brain in logic 
to solve complex problems.  They consist of nodes (neurons) in which inputs are 
multiplied by pre-trained weights and are summed together to produce overall outputs.  
These neurons must be trained before use, generally through a tedious procedure done in 
software.  A hardware implementation using a Field Programmable Gate Array could 
take advantage of the high speeds achievable using hardware, and as a result would be a 
beneficial and economic investment for designs requiring artificial Neural Networks. 

The system’s implementation was divided into a number of individual modules that were 
combined to produce the finished product.  These modules included: a software input and 
output device driver; an RS 232 serial connection to the FPGA and its interface; the 
Neural Network Trainer and associated Univariate Randomly Optimized Neural Network 
composed of a control unit, an error calculator, three networked neurons, a bus controller 
(used for the transportation of data), LPM RAM, and a pseudo-random number generator. 

This report describes the implementation of these components including: design, uses, 
issues pertaining to their affect on the final project, and the actual resource requirements. 
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ACHIEVEMENTS 
 

The foremost achievement of this group was the development of a strong team of 
individuals with diverse backgrounds and knowledge bases, who came together to form a 
successful project of this magnitude.  This project developed and improved the teamwork 
and organizational skills of all members, and this was seen as a major achievement.  
 
The SoC ASIC design of the Hardware Neural Network Trainer and Associated Neural 
Network consisted of the following major components: 
 A Software Device Driver 
 An RS232 Communications Interface (including FIFO Queues) 
 A Hardware Device Control Unit 
 A Network of individual Neurons interconnected using a data bus (the hardware  

implementation of the software algorithm) 
 The Data Bus Control Datapath 
 An Error Calculator 
 A Pseudo-Random Number Generator. 
 
The Device Driver was the software component of the sys tem, used to control the system, 
which acted as a computer system peripheral.  This driver was modified from a Microsoft 
open source MTTTY program to send the required formats of data to the hardware device 
using serial communication. 
 
The RS232 Communications Interface utilized FIFO Queues to attempt to reduce 
bottlenecks in the design due to serial communications speed.  The overall goal of the 
project was the Neural Network device, and thus a design decision to use a serial 
connection was made. 
 
The Hardware Control Unit consisted of a complex state machine, which controlled all 
hardware aspects of the device. 
 
The neurons were implemented in a number of ways, and the most suitable design was 
selected based on speed vs. size considerations.  The Data BUS control datapath, 
network, error calculator and RAM were designed using CAD tools and implemented in 
Hardware on the FPGA. 
 
The Pseudo-Random Number Generator was modified from a hardware design supplied 
in the labs. 
 
The actual Neural Network algorithm implemented did not train faster then software as 
per the initial goal.  It was concluded that this was due to the neuron design. 
 
A final achievement of this group was a combined weight increase of 40 lbs.  At the 
beginning of the project the net weight of the group was 1081 lbs, and at the time of 
completion the net weight was 1121 lbs.  Needless to say, the group has learned 
something about the consumption of Tim Horton’s donuts.  
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INTRODUCTION 
 
Artificial Neural Networks are an attempt to recreate the behavior of a biological brain in 
logic via software or, for the purposes of this project, hardware.  These systems can be 
used to solve complex problems with a comparatively small amount of effort.  As neural 
networks must initially be trained using a tedious procedure with a large amount of 
training input data before they can be used, a faster means of training a neural network 
would be valuable.  In general, the training and use of neural networks is currently done 
using software.  This hardware implementation of a neural network trainer and associated 
network using a Field Programmable Gate Array would take advantage of the high 
speeds achievable using hardware, and as a result would be a valuable investment for 
designs requiring artificial Neural Networks.   
 
The specific application of this device is to train a neural network for area 
recognition/classification on an x-y plane.  The neural network accepts two coordinates 
as input (x and y) and determines whether or not the point is in a specified area of the x-y 
plane (as determined from the training set).  The x and y values are 8-bit integers in the 
range [0,255].  The network is trained by defining the area using a training data set 
consisting of a number of points classified as being in, and not in the area.  The data will 
consist of three values: two coordinates (x and y) and the target.  The target is a 
classification of 1 or –1, which is an indication of whether the coordinate is in the area (1) 
or not (-1). 
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IMPLEMENTATION AND DESCRIPTION OF OPERATION 
 
The design is implemented both in Hardware and Software, and consists of three key 
components that interact with one-another as shown in FIGURE 1 (below).  These 
components include: the Software Device Driver, which allows the user to specify the 
mode of operation (training mode or evaluation mode) and passes data to and from the 
device; and the actual Neural Network and Trainer consisting of a control unit and 
datapath implemented in hardware using the 10K70RC240-4 FPGA. 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 1. HIGH-LEVEL DIAGRAM OF DEVICE 
 
 
INPUT/OUTPUT SOFTWARE DEVICE DRIVER 
 
The user has the ability to specify the operational mode of the device (as “Training 
Mode” or “Evaluation Mode”).  If the user selects training mode, they are required to 
provide a “training data” file containing a training data set in a specified format (see 
Appendix D page D3), a “weights” file name into which the final eva luated neuron 
weights will be stored, and a number of training iterations that the data set will be used to 
train the network.    If the user selects evaluation mode, they are required to provide an 
“input data” file containing data in a specified format, a “weights” file containing the 
neuron weights, and an “output” file name into which the calculated output are stored. 
 
When in training mode, this system trains the on-chip neural network by passing training 
data from the training data file provided by the user over an RS232 serial connection to 
the neural network (in training mode).  The data is processed by the network, which is 
specifically designed in the FPGA for the requirements of the artificial neural network’s 
application.  The system trains the network using the provided data for a user-specified 
number of iterations.  When the Neural Network has been trained, the final weights are 
passed back to the software driver via the serial connection, to be permanently stored in 
the weights file (as they are volatile on the RAM), and the training of the Neural Network 
is complete. 
 

I/O 
Software 

Datapath 

Control 
Unit 

H/W trainer and associated NN 
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When in evaluation mode, the system initializes the weights of the on-chip neural 
network using the weights from the user provided by the user.  The system then uses the 
on-chip neural network to evaluate the output of an input data set provided by the user, 
and passes the output back to the software driver. 
 
The software driver controls the device via 4-byte signals.  The first byte consists of a 
Command that tells the Hardware Neural Network trainer which functions to perform.  
The next three bytes may contain data, depending on the command.   See APPENDIX B, 
page numbers B11 and B12 for a complete listing of signal possibilities. 
 
CONTROL UNIT 
 
The control unit controls the operation of the neural network trainer and associated 
network based on commands provided by the software driver.  The control unit retrieves 
the control signal from the in-FIFO, and decodes the control packet to determine the 
mode of operation: train from serial data, train from RAM, return weights, load weights, 
and evaluate.  It begins and ends each mode in an idle state ready to retrieve the next 
instruction.  The control unit design consists of a state machine that traverses the states 
and sends and receives control signals to the Datapath.   
 
Two possible training modes exist: the first to train from data provided by the RS232 and 
store it to on-chip RAM; and the second to train using values stored in RAM allowing 
subsequent epochs to be completed much faster then possible with the transmission delay 
of the first epoch.  During a training run, a random weight is generated for one weight in 
the neural net, and the output is evaluated.  If this new weight improves the performance 
of the system it replaces the old weight; otherwise the original weight is kept.  The 
training algorithm used performs this calculation for each input set 6 times per neuron, 
resulting in a final best weight for the neurons.  When the trainer has completed the 
specified number of training runs it enters the idle state awaiting the next instruction. 
When the control unit decodes the return weights command, it loops through all of the 
neurons and weights and returns them via the serial connection. This functionality is 
useful because the weights are volatile (not stored on power down) and it removes the 
requirement to retrain the network on every use.   
 
When the load weights command is received, the control unit loads the specified weight 
to the indicated location it is to be loaded to.  This functionality is useful to reload the 
weights upon startup to remove the requirement to retrain the network on every use. 
 
When the control unit receives the evaluate command, it runs the inputs through the 
network to produce an output (classification), and returns this value to the software. 
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HARDWARE DATAPATH 
  
The control unit controls the functionality of the device using control signals.  The 
datapath consists of a number of components including: 

• The RS-232 Asynchronous Serial Connection  
• FIFO Queues 
• The Memory Interface 
• The Data Bus Controller 
• The Neural Network 
• The Neurons 
• The Error Calculator 
• The Random Number Generator 

 
 
RS-232 ASYNCHRONOUS SERIAL CONNECTION 
 
The RS232 asynchronous communications interface transmits packets of information to 
and from the device via the PC’s RS232 port and the FPGA.  The packets consist of an 8-
bit payload contained within a least-significant start bit (‘0’) and a most significant stop 
bit (‘1’).  This framing is done by the software and is used as a transmission protocol by 
the FPGA to identify the payload.  Thus, each control signal is four packets in length. 
 
After being passed through the serial connection, the packet is passed through the 
MAX232 converter, which adjusts the voltage level from the TTL/CMOS values (+5.0, -
5.0) found on the FPGA to that of the RS232 serial port (+25.0, -25.0).  The FPGA then 
accepts the data via a General Purpose Input Output pin, verifies its integrity, and stores 
the values into four data storage registers. 
 
The transmitter and receiver must agree on a common word length, and must also use the 
same baud rate to ensure transmission synchronization. The transmission protocol used is 
the same as the RS232 application note [6].   
 
The software and hardware components are custom designed to communicate correctly 
with one-another.  The software driver is “aware” of the structure of the Neural Network, 
and thus is able to ensure that the correct data is transmitted and received, and can control 
the hardware correctly.  Also, both the software and hardware “know” what to expect of 
one another when a command is sent by the software to the hardware. 
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FIFO QUEUES 
 
The FIFO queues acts as receive and transmit buffers for the RS232 link between the 
hardware and the software.  A receive and transmit FIFO queue connect the control Unit 
to the external RS232 port.  The receive FIFO currently has a size of four 32-bit words 
and the transmit FIFO has six 16-bit words. 
 
The FIFO’s are in control of handshaking signals between the software and the control 
unit.  When the receive FIFO is full, the software is informed to stop sending data via a 
CTS signal.  The control unit checks an rx_empty signal to see if the receive FIFO is 
empty; and if not, takes data from it as required.  When the transmit FIFO is not full, the 
control unit is free to add data to the transmit FIFO.  The transmit FIFO then signals the 
RS232 port to send the data at the front of the queue. 
 
THE MEMORY INTERFACE 
 
This component handles the storage of the training data into RAM during the first epoch 
from the FIFO queue.  The memory interface also recalls the training data sets for the 
control unit during the subsequent training epochs. 
 
THE DATA BUS CONTROLLER 
 
This component is designed to get and set the weights and to activate the neural network 
during operational mode.  The data bus controller controls the transfer of data through the 
neural network, and supplies the network with new random weights as well as the inputs.  
The datapath entity is instantiated for each neuron.  Subsequently, each neuron will have 
a unique identifier corresponding to the number in which it was instantiated.  A 
comparator uses this identifier to ensure that the value being passed in on the address bus 
lines matches the identifier of the neuron.  If a match is detected, then it sets the equal 
signal to high, and the logic gates for the neuron can be used. 
 
Along with the address bus and the data bus, there exists a command bus and select bus.  
The command bus provides the neuron with one of four commands utilizing 2 bits, which 
also act as inputs to the combinational logic: 
 
 00 - read the weights of the neurons, i.e. send to the datapath 
 01 - write weights of the neurons, i.e. take from datapath and store 
 10 - idle 
 11 – begin forward calculation 
 
The select bus tells the neuron which weight it is dealing with.  The combinational logic 
(AND gates) determines from the bus inputs which weight is being used and what 
operation to perform.  Each weight is stored in a storage unit, controlled by an enable 
(write the weight) and q_enable (read the weight). 
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The bi-directional 8-bit data bus exists to provide the weight storage units with their 
values during storage and to take the values from the storage units when reading.  The 
address bus is used to inform the neural network which neuron it should be performing a 
read or write on.  The schematic for the datapath is included in Appendix B. 
 
THE NEURAL NETWORK 
 
This component consists of the neurons and their connections into a network and to the 
data bus. 
 
THE NEURONS 
 
The algorithm chosen for implementation was the Univariate randomly optimized Neural 
Network (uronn)   (Reference 1, pages 211-212). This Algorithm searches for the weights 
that best fit the neural network by randomly changing them. This algorithm is a very 
advantageous first approach in the implementation of a neural network trainer because 
few calculations have to be performed in each epoch and 8-bit signed integers can be 
used as values for weights and inputs instead of 32-bit floating points values. This 
algorithm is also very handy for comparing training speeds between software and 
hardware.  The pseudocode for this algorithm is provided in Appendix B. 
 
Each neuron has a “hold_weights” component that does all the interaction with the 
datapath.  This component is composed of two blocks:  a storage unit for the weights and 
the actual Hebbian Neuron. The first block stores the actual weight and eventually stores 
the new weight values to be tested during training. The second block calculates the output 
of the whole component.  The block diagrams for the datapath of the neuron and its 
interaction, schematic diagrams for both components, and the state diagram for the 
neuron are provided in Appendix B. 
 
The datapath contains three neurons, two for the hidden layer and one for the output 
layer, and are connected in a traditional feed-forward architecture. For this 
implementation input neurons were not considered, as their purpose is to merely 
distribute the inputs among the neurons at the hidden layer. Thus, in the design the inputs 
come directly from the data bus into the neurons at the hidden layer. 
 
Two different prototypes for this datapath were designed: one with a bi-directional data 
bus and one with an independent input data bus and an output data bus. Although the first 
prototype is smaller and uses the FPGA’s resources better, its implementation is not as 
modular as the second, and a future scaling of the neural network if this prototype was 
used would require more work than using the second prototype.   
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THE ERROR CALCULATOR 
 
This component compares the output evaluated by the neural network from the inputs 
provided with the current weights, and compares it to the expected target output.  If the 
evaluated output is closer to the target value, the current random weight being tested 
replaces the previous weight value. 
 
THE RANDOM NUMBER GENERATOR 
 
The random number generator generates the random weights used by the neural network.
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FPGA USER I/O SIGNALS 
 

Pin 
Description 

Pin Type Pin Mapping  Pin Description 

Clock Input Pin  = 91 System Clock at 25.175 
MHz 

Reset Input Pin = 28  (Push Button 1) Used to reset the system, 
Active Low 

rx_full Output Pin = 55 (Hole Number 23) Asserts to High when the rx 
FIFO is full, tells the 
software to stop sending 
data 

CmpSerialIn Input Pin = 61 (Hole Number 25)  Receive  
CmpSerialOut Output Pin = 63 (Hole Number 27) Used to send packets of 8bit 

data from the FPGA to the 
Computer 

TABLE 1: FPGA User I/O Signals 
 

In deciding on what I/O pins were needed, three areas were given focus: data entry, data 
exit, and user interfaces.  Currently, there is only one line needed for data entry and one 
line for data exit.  This creates two need I/O pins which connect directly to the PC via the 
interface circuit described in the  sections above.  Another output line is needed for flow 
control of data entry telling the software to stop sending data if the rx FIFO buffer is full. 
 
Of course, there needs to be a universal clock synchronizing events in the design and a 
universal reset pin.  That makes a total of 5 I/O pins needed for the Neural Net.  
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EXPERIMENTS/CHARACTERIZATION 
 
RS-232 
When testing the RS232 port, various speeds were chosen, from a 9600-baud rate to a 
max transmission speed of 115200 bps.  The only reason for the upper limit is due to the 
PC side being unable to transmit data any faster through its COM ports.  Integration of 
the RS232 port with the Neural net was done with a 9600-baud rate to reduce the 
probability of errors due to corrupted data.  However, during the demonstration a max 
speed of 115200 bps will be used if possible. 
 
Neuron 
Because the Neuron has a multiplier component inside it, the measurements of size and 
speed change considerably depending on the implementation used for it.  Four different 
prototypes were designed, taking into consideration size constraints. 
 
Prototype 1: Booth Algorithm multiplier 
A classical Booth algorithm was implemented as the multiplier unit. Some states were 
added to the state machine, but in general there were no huge modifications. 

• Advantages: Small, multiplies signed and unsigned numbers without changing 
any part of the component, easy to control. 

• Disadvantages: Slow performance, calculates multiplication in different time for 
different input numbers, causing the system to be idle if one neuron has not 
finished its task while the others finished already, the architecture of the datapath 
has to be slightly changed. 

 
Prototype 2: Carry-Save-Adder 
A parallel carry-add-adder was implemented.  

• Advantages:  Regular structure, fast, could be optimized for better performance 
through pipelining. 

• Disadvantages: The architecture implemented only works with unsigned numbers, 
critical path could delay considerably the performance if the number of bits of the 
inputs and weights is increased, and modifications could be somehow 
complicated. 

 
Prototype 3: Multiplier using lpm_mult megafunction : 
The lpm_mult megafunction was included in the datapath replacing the multiplier 
component. Its pipelining parameter was set to 1, in order to reduce space consumption. 

• Advantage: A function in a library always works, easy implementation of 
pipelining and parameterization (change width of variables, etc.), easy reference 
and no problem with debugging. 

• Disadvantage: Synchronization of the clock is difficult, big in size when 
synthesized, has problems with delay times when connecting the control unit. 
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Prototype 4: Neuron architecture implemented using behavioral architecture 
A behavioral description of a Hebbian Neuron was implemented in this design 

• Advantage: fast, easy to implement, easy to add changes, easy to modify. 
• Disadvantages: extremely big, uncertainty on structure implemented by the 

synthesizer, its performance is lost when connected to another components. 
 
The following tables summarize the measurements for size and speed, the throughput of 
each model and a measurement of frequency/area used to see which prototype has better 
usage of resources. These experiments were performed on both the Flex10K20 and 
Flex10K70.  
 

  10K20RC240-4 
Prototype Number Clock Period (ns) Frequency ( MHz) Percentage of LC used (%)* 

1 62.1 16.10 19 
2 66.6 15.01 21 
3 57.0 17.54 26 
4 8 125 32 
TABLE 3: Experimental Measurement of Size and Speed on Flex10k20  

 

  10K70RC240-4 

Prototype Number Clock Period (ns) Frequency (MHz) Percentage of LC used (%)* 
1 69.2 14.45 6 
2 93.7 10.67 6 
3 77.1 12.97 8 
4 8 125 10 

TABLE 4: Measurement of Size and Speed on Flex10k70  
 

  10K20RC240-4 

Prototype Number Throughput (us) 
Resource Usage 

(MHZ/LC) 
1 4.95 0.070 
2 0.718 0.061 
3 0.870 0.057 
4 0.1 0.336 

TABLE 5: Measurement of Throughput and Resource Usage on Flex10k20  
 

  10K70RC240-4 

Prototype Number Throughput (us) 
Resource Usage 

(MHZ/LC) 
1 4.95 0.061 
2 0.718 0.044 
3 0.870 0.042 
4 0.1 0.331 

TABLE 6: Measurement of Size and Speed on Flex10k70  
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As seen on the tables, prototype 4 has the best throughput, latency and resource usage. 
Unfortunately the control over the components inside these designs is not complete. Still 
for this first integration of all the components of the project the prototype 3 was chosen, 
for it allows a clear visualization of the data flow and an easier manipulation of the inputs 
and weights.  
 
To see the effectiveness of the algorithm two implementations in software tools were 
programmed, one in Matlab and one in C. 
 
In both cases the algorithm showed to be very slow and to have a high error percentage 
with a non-normalized training database. However this experiment was performed for 
statistical uses only, and to have a comparison point for the neural training that is being 
implemented.  This is an ideal study case to compare speed on software-developed 
systems and hardware-developed systems. The following table summarizes the results 
obtained using the software- implemented algorithms trying to train a simple x-y position 
exercise. 
 
 Matlab C 

Number of 
Iterations 

Time Final Error Time Final Error 
(%) 

1000 21 seconds 0.2066 1.3 seconds 0.2103 
2000 46 seconds 0.2080 2 seconds 0.2106 
5000 2:15 minutes 0.2075 5 seconds 0.2088 
10000 5:10 minutes 0.2072 10 seconds 0.2094 

TABLE 7: Software Developed Algorithms for Experimentation 
 
The full problem and all of its data as described in the introduction, are included in 
Appendix D. 
 
Tristate buses 
 
One of the first implementations of the Hold_weights component was built using little 
components that would allow each individual weight to communicate with the bi-
directional bus.  This component (weights_io) used tristate buffers for communication 
purposes with the outside world. The schematic diagram is shown in Appendix B. 
 
Unfortunately when trying to scale up the design by building another components based 
on this component, it was found to be non-compatible because the inout port was being 
driven by more than one source. Thus this design had to be dropped and a new 
implementation of the Hold_weights component had to be done. The code and simulation 
for the Weights_io component are provided. 
 
A tristate buffer is used among the components used in the Hold_weights component that 
is being used right now. Because this design brings little scalability the tristate buffer will 
be replaced by a multiplexer. 



Hardware Implementation of a Neural Network Trainer and Associated Neural Network 
 

DESCRIPTION OF TEST CASES/SIMULATION 
 
RS-232 Port and FIFO buffers 
The difficulty in testing the RS232 port relates to its asynchronous behavior.  It is 
common knowledge that asynchronous programs and chips are much harder to debug 
since they are driven by events.  Testing was accomplished two ways, running the 
hardware in real-time and using the MaxPlus II waveform editor. 
 
The real-time testing involved connecting the FPGA to a PC and getting the two devices 
to send and receive serial data.  The PC would send data from its keyboard.  This data 
would be received by the FPGA and stored into its rx FIFO buffer.  Data sent from the 
FPGA was accomplished by looping back the rx FIFO to the tx FIFO.  On a push button 
command, data from the rx FIFO was entered to the tx FIFO and sent out to the RS232 
port.  The PC Software receives the data and converts it to an ASCII representation so it 
is readable by any text viewer. 
 
Simulations involved manually entering input data in waveforms.  For the RS232 port, 
two cases were tested for receiving data and four cases were tested for sending data. 
 
Receiving : Accepting Valid Data, Accepting Invalid Data 
Sending : Overflow of transmission stream, Disabling the transmit enable signal, 

    Asserting the transmit reset, Sending consecutive data. 
 
As for the tx and rx FIFO’s, data was simply entered and read to ensure the FIFO 
behaved properly. 
 
Datapath 
The testing of the Neural Network was very trivial.  Essentially, a combination of the 
CMD, SEL, and ADDR inputs were tested to ensure that their functionality was correct 
and that the correct things occurred when the different situations arose.  For example, if 
CMD was set to 00, it was ensured that a data value was “read” by asserting the read 
output to be the data.  The two prototypes were tested and the proper behavior of each 
one is included in Appendix E. 
A test bench for the Neural Network Datapath with bi-directional databus is included in 
Appendix C. 
 
 
Neuron 
All the neuron simulation waveforms are marked according to the prototype used and the 
expected output (either positive or negative one). Each simulation shows the Done signal 
outputted by the component and the final answer on the accumulator register. 
 
A waveform of the Random Number Generator is also attached. It shows how the 
numbers generated are random, although if the generator starts at the reset state the 
numbers generated will always be the same. This problem will be fixed with the control 
unit. 
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Waveforms of the Hold_weights component are attached to see how it behaves properly. 
It shows how the component reads and writes properly to the assign weight. However this 
component will have to go through some modifications to male it reusable. 
 
A waveform of the weights_io experimental component is also attached. It shows how 
the component reads and writes properly from one register.  All the waveforms for all 3 
components are included in Appendix E. 
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CONCLUDING REMARKS 
 
The main advantage of algorithm implementation in hardware over software is speed of 
execution.  The propose of a hardware implementation of a Neural Network Trainer and 
associated Neural Network, is that the device could take advantage of this characteristic, 
making it more attractive then currently available software implementations.  Although 
after comparing the implementation of this artificial NN in hardware to implementations 
in software (C and Matlab), it was expected that the design would execute faster, the 
hardware design was in-fact slower.  This project did achieve full functionality, and with 
more time, the design could have been modified to increase its overall speed possibly by 
pipelining the multipliers used, and using a different form of communication between the 
software and hardware (parallel communication rather then serial communication).   
 
Developing the interface between the PC and our Neural Net gave much insight on the 
benefits and difficulties that come with serial communication.  Like with all hardware 
designs, the tradeoff between speed and hardware were debated, as was the simplicity of 
design and error detection. 
 
Our Serial Port has very limited error checking, simply ignoring packets that don’t follow 
a standard RS232 format.  As for speed, since there is only one tx data line and one rx 
data line, the transmission of data was bottlenecked; however, the benefit of the 
simplicity in the hardware came with that latency.  RS232 protocol is probably not the 
best solution for communication between the device and the PC, but it was chosen due to 
its simplicity.  Its simplicity made it easy to debug and design, thus focusing our efforts 
on the Neural Net itself, the core of the project. 
 
The main advantages of RS232 communication is its adaptability to many devices, and its 
asynchronous nature.  However, with other protocols such as USB becoming the norm, 
we feel that our Neural Net would probably abandon RS232 in future upgrades to the 
product. 
 
Creating a neural network trainer in hardware is not as beneficial as originally 
anticipated. The complexity of the traning algorithms makes even an extremely simplistic 
one a significant undertaking requiring lots of hardware. For the device to be worthwhile, 
it would have to be full custom to achieve performance significantly above that of a 
modern workstation. Even as a full custom chip, communication with software could 
remain a bottleneck. 

 
By analyzing the current implementations of the compiled components and simulations, it 
has been determined that the design would indeed have been too large to fit on the 10K20 
FPGA, and it currently requires 60% of the 10K70.   
 
Testbenches were used to test the individual components, in addition to the extensive 
testing that was done on each of the components individually, to identify and remove a 
number of bugs.  The results of the simulations show that although the speed 
requirements were not met, the functionality requirements certainly were. 
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As expected the issues of interfacing between hardware and software, the neurons into 
the network, and the actual network to a trainer implemented in hardware provided many 
challenges.  We have encountered some of these challenges and working as a team, such 
as clock skew, and interfacing design issues that were created due to miscommunications.  
These challenges were overcome, allowing us to realize the importance of 
communication in a group work setting.  Through teamwork, a fully functioning 
prototype was completed by the required deadline. 
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