
Hardware Implementation of a Neural Network Trainer and Associated Neural Network

EE552

Hardware Implementation of a Neural Network
Trainer and Associated Neural Network

Final Report

Prepared For: Dr. Duncan Elliott

Group:

Darren Gonek dgonek@ualberta.ca
Guillermo Barreiro guille@ee.ualberta.ca
Andrew Ling acling@ee.ualberta.ca
Shyam Chadha shyam_courses@hotmail.com
Timmy Li tli@nanogatesystems.com
Reid Orsten rorsten@ieee.org

March 21, 2002

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

ABSTRACT

An artificial neural network trainer and an associated neural network designed to solve a
two-dimensional spatial recognition problem was designed for this project. The project
was selected to fulfill the goals of the course, to develop the necessary skills to design
complex digital application specific integrated circuits (ASIC) and systems on a chip
(SoC) using CAD synthesis tools. Working in a group, this significant digital system
using a field programmable gate array (the ALTERA FLEX 10K70RC240-4) was
designed and implemented.

Artificial Neural Networks attempt to recreate the behavior of a biological brain in logic
to solve complex problems. They consist of nodes (neurons) in which inputs are
multiplied by pre-trained weights and are summed together to produce overall outputs.
These neurons must be trained before use, generally through a tedious procedure done in
software. A hardware implementation using a Field Programmable Gate Array could
take advantage of the high speeds achievable using hardware, and as a result would be a
beneficial and economic investment for designs requiring artificial Neural Networks.

The system’s implementation was divided into a number of individual modules that were
combined to produce the finished product. These modules included: a software input and
output device driver; an RS 232 serial connection to the FPGA and its interface; the
Neural Network Trainer and associated Univariate Randomly Optimized Neural Network
composed of a control unit, an error calculator, three networked neurons, a bus controller
(used for the transportation of data), LPM RAM, and a pseudo-random number generator.

This report describes the implementation of these components including: design, uses,
issues pertaining to their affect on the final project, and the actual resource requirements.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

ACHIEVEMENTS

The foremost achievement of this group was the development of a strong team of
individuals with diverse backgrounds and knowledge bases, who came together to form a
successful project of this magnitude. This project developed and improved the teamwork
and organizational skills of all members, and this was seen as a major achievement.

The SoC ASIC design of the Hardware Neural Network Trainer and Associated Neural
Network consisted of the following major components:
 A Software Device Driver
 An RS232 Communications Interface (including FIFO Queues)
 A Hardware Device Control Unit
 A Network of individual Neurons interconnected using a data bus (the hardware

implementation of the software algorithm)
 The Data Bus Control Datapath
 An Error Calculator
 A Pseudo-Random Number Generator.

The Device Driver was the software component of the sys tem, used to control the system,
which acted as a computer system peripheral. This driver was modified from a Microsoft
open source MTTTY program to send the required formats of data to the hardware device
using serial communication.

The RS232 Communications Interface utilized FIFO Queues to attempt to reduce
bottlenecks in the design due to serial communications speed. The overall goal of the
project was the Neural Network device, and thus a design decision to use a serial
connection was made.

The Hardware Control Unit consisted of a complex state machine, which controlled all
hardware aspects of the device.

The neurons were implemented in a number of ways, and the most suitable design was
selected based on speed vs. size considerations. The Data BUS control datapath,
network, error calculator and RAM were designed using CAD tools and implemented in
Hardware on the FPGA.

The Pseudo-Random Number Generator was modified from a hardware design supplied
in the labs.

The actual Neural Network algorithm implemented did not train faster then software as
per the initial goal. It was concluded that this was due to the neuron design.

A final achievement of this group was a combined weight increase of 40 lbs. At the
beginning of the project the net weight of the group was 1081 lbs, and at the time of
completion the net weight was 1121 lbs. Needless to say, the group has learned
something about the consumption of Tim Horton’s donuts.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

TABLE OF CONTENTS

 Page

INTRODUCTION 1

IMPLEMENTATION AND DESCRIPTION OF OPERATION 1

 INPUT/OUTPUT SOFTWARE DEVICE DRIVER 2

 CONTROL UNIT 2

 DATA PATH 3

 RS232 Asynchronous Serial Connection 3

 FIFO Queues

The Memory Interface

The Data Bus Controller

The Neural Network

The Neurons

The Error Calculator

The Pseudo Random Number Generator

4

4

4

5

5

6

6

FPGA USER IO SIGNALS AND PINS REQUIRED 7

ESTIMATE OF LOGIC BLOCKS

EXPERIMENTS/CHARACTERIZATION

 8

9

DESCRIPTION OF TEST CASES/SIMULATION 10

CONCLUDING REMARKS 13

REFERENCES 14

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

INTRODUCTION

Artificial Neural Networks are an attempt to recreate the behavior of a biological brain in
logic via software or, for the purposes of this project, hardware. These systems can be
used to solve complex problems with a comparatively small amount of effort. As neural
networks must initially be trained using a tedious procedure with a large amount of
training input data before they can be used, a faster means of training a neural network
would be valuable. In general, the training and use of neural networks is currently done
using software. This hardware implementation of a neural network trainer and associated
network using a Field Programmable Gate Array would take advantage of the high
speeds achievable using hardware, and as a result would be a valuable investment for
designs requiring artificial Neural Networks.

The specific application of this device is to train a neural network for area
recognition/classification on an x-y plane. The neural network accepts two coordinates
as input (x and y) and determines whether or not the point is in a specified area of the x-y
plane (as determined from the training set). The x and y values are 8-bit integers in the
range [0,255]. The network is trained by defining the area using a training data set
consisting of a number of points classified as being in, and not in the area. The data will
consist of three values: two coordinates (x and y) and the target. The target is a
classification of 1 or –1, which is an indication of whether the coordinate is in the area (1)
or not (-1).

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

IMPLEMENTATION AND DESCRIPTION OF OPERATION

The design is implemented both in Hardware and Software, and consists of three key
components that interact with one-another as shown in FIGURE 1 (below). These
components include: the Software Device Driver, which allows the user to specify the
mode of operation (training mode or evaluation mode) and passes data to and from the
device; and the actual Neural Network and Trainer consisting of a control unit and
datapath implemented in hardware using the 10K70RC240-4 FPGA.

FIGURE 1. HIGH-LEVEL DIAGRAM OF DEVICE

INPUT/OUTPUT SOFTWARE DEVICE DRIVER

The user has the ability to specify the operational mode of the device (as “Training
Mode” or “Evaluation Mode”). If the user selects training mode, they are required to
provide a “training data” file containing a training data set in a specified format (see
Appendix D page D3), a “weights” file name into which the final eva luated neuron
weights will be stored, and a number of training iterations that the data set will be used to
train the network. If the user selects evaluation mode, they are required to provide an
“input data” file containing data in a specified format, a “weights” file containing the
neuron weights, and an “output” file name into which the calculated output are stored.

When in training mode, this system trains the on-chip neural network by passing training
data from the training data file provided by the user over an RS232 serial connection to
the neural network (in training mode). The data is processed by the network, which is
specifically designed in the FPGA for the requirements of the artificial neural network’s
application. The system trains the network using the provided data for a user-specified
number of iterations. When the Neural Network has been trained, the final weights are
passed back to the software driver via the serial connection, to be permanently stored in
the weights file (as they are volatile on the RAM), and the training of the Neural Network
is complete.

I/O
Software

Datapath

Control
Unit

H/W trainer and associated NN

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

When in evaluation mode, the system initializes the weights of the on-chip neural
network using the weights from the user provided by the user. The system then uses the
on-chip neural network to evaluate the output of an input data set provided by the user,
and passes the output back to the software driver.

The software driver controls the device via 4-byte signals. The first byte consists of a
Command that tells the Hardware Neural Network trainer which functions to perform.
The next three bytes may contain data, depending on the command. See APPENDIX B,
page numbers B11 and B12 for a complete listing of signal possibilities.

CONTROL UNIT

The control unit controls the operation of the neural network trainer and associated
network based on commands provided by the software driver. The control unit retrieves
the control signal from the in-FIFO, and decodes the control packet to determine the
mode of operation: train from serial data, train from RAM, return weights, load weights,
and evaluate. It begins and ends each mode in an idle state ready to retrieve the next
instruction. The control unit design consists of a state machine that traverses the states
and sends and receives control signals to the Datapath.

Two possible training modes exist: the first to train from data provided by the RS232 and
store it to on-chip RAM; and the second to train using values stored in RAM allowing
subsequent epochs to be completed much faster then possible with the transmission delay
of the first epoch. During a training run, a random weight is generated for one weight in
the neural net, and the output is evaluated. If this new weight improves the performance
of the system it replaces the old weight; otherwise the original weight is kept. The
training algorithm used performs this calculation for each input set 6 times per neuron,
resulting in a final best weight for the neurons. When the trainer has completed the
specified number of training runs it enters the idle state awaiting the next instruction.
When the control unit decodes the return weights command, it loops through all of the
neurons and weights and returns them via the serial connection. This functionality is
useful because the weights are volatile (not stored on power down) and it removes the
requirement to retrain the network on every use.

When the load weights command is received, the control unit loads the specified weight
to the indicated location it is to be loaded to. This functionality is useful to reload the
weights upon startup to remove the requirement to retrain the network on every use.

When the control unit receives the evaluate command, it runs the inputs through the
network to produce an output (classification), and returns this value to the software.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

HARDWARE DATAPATH

The control unit controls the functionality of the device using control signals. The
datapath consists of a number of components including:

• The RS-232 Asynchronous Serial Connection
• FIFO Queues
• The Memory Interface
• The Data Bus Controller
• The Neural Network
• The Neurons
• The Error Calculator
• The Random Number Generator

RS-232 ASYNCHRONOUS SERIAL CONNECTION

The RS232 asynchronous communications interface transmits packets of information to
and from the device via the PC’s RS232 port and the FPGA. The packets consist of an 8-
bit payload contained within a least-significant start bit (‘0’) and a most significant stop
bit (‘1’). This framing is done by the software and is used as a transmission protocol by
the FPGA to identify the payload. Thus, each control signal is four packets in length.

After being passed through the serial connection, the packet is passed through the
MAX232 converter, which adjusts the voltage level from the TTL/CMOS values (+5.0, -
5.0) found on the FPGA to that of the RS232 serial port (+25.0, -25.0). The FPGA then
accepts the data via a General Purpose Input Output pin, verifies its integrity, and stores
the values into four data storage registers.

The transmitter and receiver must agree on a common word length, and must also use the
same baud rate to ensure transmission synchronization. The transmission protocol used is
the same as the RS232 application note [6].

The software and hardware components are custom designed to communicate correctly
with one-another. The software driver is “aware” of the structure of the Neural Network,
and thus is able to ensure that the correct data is transmitted and received, and can control
the hardware correctly. Also, both the software and hardware “know” what to expect of
one another when a command is sent by the software to the hardware.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

FIFO QUEUES

The FIFO queues acts as receive and transmit buffers for the RS232 link between the
hardware and the software. A receive and transmit FIFO queue connect the control Unit
to the external RS232 port. The receive FIFO currently has a size of four 32-bit words
and the transmit FIFO has six 16-bit words.

The FIFO’s are in control of handshaking signals between the software and the control
unit. When the receive FIFO is full, the software is informed to stop sending data via a
CTS signal. The control unit checks an rx_empty signal to see if the receive FIFO is
empty; and if not, takes data from it as required. When the transmit FIFO is not full, the
control unit is free to add data to the transmit FIFO. The transmit FIFO then signals the
RS232 port to send the data at the front of the queue.

THE MEMORY INTERFACE

This component handles the storage of the training data into RAM during the first epoch
from the FIFO queue. The memory interface also recalls the training data sets for the
control unit during the subsequent training epochs.

THE DATA BUS CONTROLLER

This component is designed to get and set the weights and to activate the neural network
during operational mode. The data bus controller controls the transfer of data through the
neural network, and supplies the network with new random weights as well as the inputs.
The datapath entity is instantiated for each neuron. Subsequently, each neuron will have
a unique identifier corresponding to the number in which it was instantiated. A
comparator uses this identifier to ensure that the value being passed in on the address bus
lines matches the identifier of the neuron. If a match is detected, then it sets the equal
signal to high, and the logic gates for the neuron can be used.

Along with the address bus and the data bus, there exists a command bus and select bus.
The command bus provides the neuron with one of four commands utilizing 2 bits, which
also act as inputs to the combinational logic:

 00 - read the weights of the neurons, i.e. send to the datapath
 01 - write weights of the neurons, i.e. take from datapath and store
 10 - idle
 11 – begin forward calculation

The select bus tells the neuron which weight it is dealing with. The combinational logic
(AND gates) determines from the bus inputs which weight is being used and what
operation to perform. Each weight is stored in a storage unit, controlled by an enable
(write the weight) and q_enable (read the weight).

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

The bi-directional 8-bit data bus exists to provide the weight storage units with their
values during storage and to take the values from the storage units when reading. The
address bus is used to inform the neural network which neuron it should be performing a
read or write on. The schematic for the datapath is included in Appendix B.

THE NEURAL NETWORK

This component consists of the neurons and their connections into a network and to the
data bus.

THE NEURONS

The algorithm chosen for implementation was the Univariate randomly optimized Neural
Network (uronn) (Reference 1, pages 211-212). This Algorithm searches for the weights
that best fit the neural network by randomly changing them. This algorithm is a very
advantageous first approach in the implementation of a neural network trainer because
few calculations have to be performed in each epoch and 8-bit signed integers can be
used as values for weights and inputs instead of 32-bit floating points values. This
algorithm is also very handy for comparing training speeds between software and
hardware. The pseudocode for this algorithm is provided in Appendix B.

Each neuron has a “hold_weights” component that does all the interaction with the
datapath. This component is composed of two blocks: a storage unit for the weights and
the actual Hebbian Neuron. The first block stores the actual weight and eventually stores
the new weight values to be tested during training. The second block calculates the output
of the whole component. The block diagrams for the datapath of the neuron and its
interaction, schematic diagrams for both components, and the state diagram for the
neuron are provided in Appendix B.

The datapath contains three neurons, two for the hidden layer and one for the output
layer, and are connected in a traditional feed-forward architecture. For this
implementation input neurons were not considered, as their purpose is to merely
distribute the inputs among the neurons at the hidden layer. Thus, in the design the inputs
come directly from the data bus into the neurons at the hidden layer.

Two different prototypes for this datapath were designed: one with a bi-directional data
bus and one with an independent input data bus and an output data bus. Although the first
prototype is smaller and uses the FPGA’s resources better, its implementation is not as
modular as the second, and a future scaling of the neural network if this prototype was
used would require more work than using the second prototype.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

THE ERROR CALCULATOR

This component compares the output evaluated by the neural network from the inputs
provided with the current weights, and compares it to the expected target output. If the
evaluated output is closer to the target value, the current random weight being tested
replaces the previous weight value.

THE RANDOM NUMBER GENERATOR

The random number generator generates the random weights used by the neural network.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

FPGA USER I/O SIGNALS

Pin
Description

Pin Type Pin Mapping Pin Description

Clock Input Pin = 91 System Clock at 25.175
MHz

Reset Input Pin = 28 (Push Button 1) Used to reset the system,
Active Low

rx_full Output Pin = 55 (Hole Number 23) Asserts to High when the rx
FIFO is full, tells the
software to stop sending
data

CmpSerialIn Input Pin = 61 (Hole Number 25) Receive
CmpSerialOut Output Pin = 63 (Hole Number 27) Used to send packets of 8bit

data from the FPGA to the
Computer

TABLE 1: FPGA User I/O Signals

In deciding on what I/O pins were needed, three areas were given focus: data entry, data
exit, and user interfaces. Currently, there is only one line needed for data entry and one
line for data exit. This creates two need I/O pins which connect directly to the PC via the
interface circuit described in the sections above. Another output line is needed for flow
control of data entry telling the software to stop sending data if the rx FIFO buffer is full.

Of course, there needs to be a universal clock synchronizing events in the design and a
universal reset pin. That makes a total of 5 I/O pins needed for the Neural Net.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

EXPERIMENTS/CHARACTERIZATION

RS-232
When testing the RS232 port, various speeds were chosen, from a 9600-baud rate to a
max transmission speed of 115200 bps. The only reason for the upper limit is due to the
PC side being unable to transmit data any faster through its COM ports. Integration of
the RS232 port with the Neural net was done with a 9600-baud rate to reduce the
probability of errors due to corrupted data. However, during the demonstration a max
speed of 115200 bps will be used if possible.

Neuron
Because the Neuron has a multiplier component inside it, the measurements of size and
speed change considerably depending on the implementation used for it. Four different
prototypes were designed, taking into consideration size constraints.

Prototype 1: Booth Algorithm multiplier
A classical Booth algorithm was implemented as the multiplier unit. Some states were
added to the state machine, but in general there were no huge modifications.

• Advantages: Small, multiplies signed and unsigned numbers without changing
any part of the component, easy to control.

• Disadvantages: Slow performance, calculates multiplication in different time for
different input numbers, causing the system to be idle if one neuron has not
finished its task while the others finished already, the architecture of the datapath
has to be slightly changed.

Prototype 2: Carry-Save-Adder
A parallel carry-add-adder was implemented.

• Advantages: Regular structure, fast, could be optimized for better performance
through pipelining.

• Disadvantages: The architecture implemented only works with unsigned numbers,
critical path could delay considerably the performance if the number of bits of the
inputs and weights is increased, and modifications could be somehow
complicated.

Prototype 3: Multiplier using lpm_mult megafunction :
The lpm_mult megafunction was included in the datapath replacing the multiplier
component. Its pipelining parameter was set to 1, in order to reduce space consumption.

• Advantage: A function in a library always works, easy implementation of
pipelining and parameterization (change width of variables, etc.), easy reference
and no problem with debugging.

• Disadvantage: Synchronization of the clock is difficult, big in size when
synthesized, has problems with delay times when connecting the control unit.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

Prototype 4: Neuron architecture implemented using behavioral architecture
A behavioral description of a Hebbian Neuron was implemented in this design

• Advantage: fast, easy to implement, easy to add changes, easy to modify.
• Disadvantages: extremely big, uncertainty on structure implemented by the

synthesizer, its performance is lost when connected to another components.

The following tables summarize the measurements for size and speed, the throughput of
each model and a measurement of frequency/area used to see which prototype has better
usage of resources. These experiments were performed on both the Flex10K20 and
Flex10K70.

 10K20RC240-4
Prototype Number Clock Period (ns) Frequency (MHz) Percentage of LC used (%)*

1 62.1 16.10 19
2 66.6 15.01 21
3 57.0 17.54 26
4 8 125 32
TABLE 3: Experimental Measurement of Size and Speed on Flex10k20

 10K70RC240-4

Prototype Number Clock Period (ns) Frequency (MHz) Percentage of LC used (%)*
1 69.2 14.45 6
2 93.7 10.67 6
3 77.1 12.97 8
4 8 125 10

TABLE 4: Measurement of Size and Speed on Flex10k70

 10K20RC240-4

Prototype Number Throughput (us)
Resource Usage

(MHZ/LC)
1 4.95 0.070
2 0.718 0.061
3 0.870 0.057
4 0.1 0.336

TABLE 5: Measurement of Throughput and Resource Usage on Flex10k20

 10K70RC240-4

Prototype Number Throughput (us)
Resource Usage

(MHZ/LC)
1 4.95 0.061
2 0.718 0.044
3 0.870 0.042
4 0.1 0.331

TABLE 6: Measurement of Size and Speed on Flex10k70

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

As seen on the tables, prototype 4 has the best throughput, latency and resource usage.
Unfortunately the control over the components inside these designs is not complete. Still
for this first integration of all the components of the project the prototype 3 was chosen,
for it allows a clear visualization of the data flow and an easier manipulation of the inputs
and weights.

To see the effectiveness of the algorithm two implementations in software tools were
programmed, one in Matlab and one in C.

In both cases the algorithm showed to be very slow and to have a high error percentage
with a non-normalized training database. However this experiment was performed for
statistical uses only, and to have a comparison point for the neural training that is being
implemented. This is an ideal study case to compare speed on software-developed
systems and hardware-developed systems. The following table summarizes the results
obtained using the software- implemented algorithms trying to train a simple x-y position
exercise.

 Matlab C

Number of
Iterations

Time Final Error Time Final Error
(%)

1000 21 seconds 0.2066 1.3 seconds 0.2103
2000 46 seconds 0.2080 2 seconds 0.2106
5000 2:15 minutes 0.2075 5 seconds 0.2088
10000 5:10 minutes 0.2072 10 seconds 0.2094

TABLE 7: Software Developed Algorithms for Experimentation

The full problem and all of its data as described in the introduction, are included in
Appendix D.

Tristate buses

One of the first implementations of the Hold_weights component was built using little
components that would allow each individual weight to communicate with the bi-
directional bus. This component (weights_io) used tristate buffers for communication
purposes with the outside world. The schematic diagram is shown in Appendix B.

Unfortunately when trying to scale up the design by building another components based
on this component, it was found to be non-compatible because the inout port was being
driven by more than one source. Thus this design had to be dropped and a new
implementation of the Hold_weights component had to be done. The code and simulation
for the Weights_io component are provided.

A tristate buffer is used among the components used in the Hold_weights component that
is being used right now. Because this design brings little scalability the tristate buffer will
be replaced by a multiplexer.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

DESCRIPTION OF TEST CASES/SIMULATION

RS-232 Port and FIFO buffers
The difficulty in testing the RS232 port relates to its asynchronous behavior. It is
common knowledge that asynchronous programs and chips are much harder to debug
since they are driven by events. Testing was accomplished two ways, running the
hardware in real-time and using the MaxPlus II waveform editor.

The real-time testing involved connecting the FPGA to a PC and getting the two devices
to send and receive serial data. The PC would send data from its keyboard. This data
would be received by the FPGA and stored into its rx FIFO buffer. Data sent from the
FPGA was accomplished by looping back the rx FIFO to the tx FIFO. On a push button
command, data from the rx FIFO was entered to the tx FIFO and sent out to the RS232
port. The PC Software receives the data and converts it to an ASCII representation so it
is readable by any text viewer.

Simulations involved manually entering input data in waveforms. For the RS232 port,
two cases were tested for receiving data and four cases were tested for sending data.

Receiving : Accepting Valid Data, Accepting Invalid Data
Sending : Overflow of transmission stream, Disabling the transmit enable signal,

 Asserting the transmit reset, Sending consecutive data.

As for the tx and rx FIFO’s, data was simply entered and read to ensure the FIFO
behaved properly.

Datapath
The testing of the Neural Network was very trivial. Essentially, a combination of the
CMD, SEL, and ADDR inputs were tested to ensure that their functionality was correct
and that the correct things occurred when the different situations arose. For example, if
CMD was set to 00, it was ensured that a data value was “read” by asserting the read
output to be the data. The two prototypes were tested and the proper behavior of each
one is included in Appendix E.
A test bench for the Neural Network Datapath with bi-directional databus is included in
Appendix C.

Neuron
All the neuron simulation waveforms are marked according to the prototype used and the
expected output (either positive or negative one). Each simulation shows the Done signal
outputted by the component and the final answer on the accumulator register.

A waveform of the Random Number Generator is also attached. It shows how the
numbers generated are random, although if the generator starts at the reset state the
numbers generated will always be the same. This problem will be fixed with the control
unit.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

Waveforms of the Hold_weights component are attached to see how it behaves properly.
It shows how the component reads and writes properly to the assign weight. However this
component will have to go through some modifications to male it reusable.

A waveform of the weights_io experimental component is also attached. It shows how
the component reads and writes properly from one register. All the waveforms for all 3
components are included in Appendix E.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

CONCLUDING REMARKS

The main advantage of algorithm implementation in hardware over software is speed of
execution. The propose of a hardware implementation of a Neural Network Trainer and
associated Neural Network, is that the device could take advantage of this characteristic,
making it more attractive then currently available software implementations. Although
after comparing the implementation of this artificial NN in hardware to implementations
in software (C and Matlab), it was expected that the design would execute faster, the
hardware design was in-fact slower. This project did achieve full functionality, and with
more time, the design could have been modified to increase its overall speed possibly by
pipelining the multipliers used, and using a different form of communication between the
software and hardware (parallel communication rather then serial communication).

Developing the interface between the PC and our Neural Net gave much insight on the
benefits and difficulties that come with serial communication. Like with all hardware
designs, the tradeoff between speed and hardware were debated, as was the simplicity of
design and error detection.

Our Serial Port has very limited error checking, simply ignoring packets that don’t follow
a standard RS232 format. As for speed, since there is only one tx data line and one rx
data line, the transmission of data was bottlenecked; however, the benefit of the
simplicity in the hardware came with that latency. RS232 protocol is probably not the
best solution for communication between the device and the PC, but it was chosen due to
its simplicity. Its simplicity made it easy to debug and design, thus focusing our efforts
on the Neural Net itself, the core of the project.

The main advantages of RS232 communication is its adaptability to many devices, and its
asynchronous nature. However, with other protocols such as USB becoming the norm,
we feel that our Neural Net would probably abandon RS232 in future upgrades to the
product.

Creating a neural network trainer in hardware is not as beneficial as originally
anticipated. The complexity of the traning algorithms makes even an extremely simplistic
one a significant undertaking requiring lots of hardware. For the device to be worthwhile,
it would have to be full custom to achieve performance significantly above that of a
modern workstation. Even as a full custom chip, communication with software could
remain a bottleneck.

By analyzing the current implementations of the compiled components and simulations, it
has been determined that the design would indeed have been too large to fit on the 10K20
FPGA, and it currently requires 60% of the 10K70.

Testbenches were used to test the individual components, in addition to the extensive
testing that was done on each of the components individually, to identify and remove a
number of bugs. The results of the simulations show that although the speed
requirements were not met, the functionality requirements certainly were.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

As expected the issues of interfacing between hardware and software, the neurons into
the network, and the actual network to a trainer implemented in hardware provided many
challenges. We have encountered some of these challenges and working as a team, such
as clock skew, and interfacing design issues that were created due to miscommunications.
These challenges were overcome, allowing us to realize the importance of
communication in a group work setting. Through teamwork, a fully functioning
prototype was completed by the required deadline.

Hardware Implementation of a Neural Network Trainer and Associated Neural Network

REFERENCES

1) Looney, Carl: “Pattern Recognition Using Neural Networks: Theory and
Algorithms for Engineers and Scientists”, Oxford University press, New York,
1997. Chapters 3, 4 and 6.

2) Perez-Uribe, Sanchez: “FPGA implementation of a Network of Neuronlike

Adaptive elements”, International conference on Artificial Neural Networks
ICANN, 1997, LNCS 1327, pp 1247-1252.
http://lslwww.epfl.ch/~aperez/ps/PerezSanchez_icann97.pdf

3) Beuchat, Haenni, Sanchez: “Hardware Reconfigurable Neural Networks”

http://ipdps.eece.unm.edu/1998/raw/haenni.pdf

4) Chapman, Sutankayo: “Implementing Artificial Neural Network Designs: Final
Report”
http://www.ee.ualberta.ca/~elliott/ee552/projects/1998_w/NeuralNets/inndfr.pdf

5) Ossoinig, Reisinger, Steger, Weiss: “Design and FPGA-implementation of a

Neural Network” http://www.icspat.com/papers/493mfi.pdf

 6) Bensler, Chan: “RS232 Serial Port”
 http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/RS232/

 7) http://www.cs.unbc.edu/hdp/VHDL/samples/samples.html

