Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

Appendix F.
Testbenches

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

APPENDIX F: TESTBENCH INDEX

F.1 BUSMASTER

Description: This testbench for the busmaster demonstrates how the weights are sent out
on the data bus according to the signals asserted.

F.2 RAM

Description: This testbench stores 256 words to separate addresses in the ram then reads
them out in the same order. Asit writes and reads in values, it the testbench stores these
values to an associated file.

F.3 BusMaster Simulation

F4 RAM Simulation

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

F.1 Tedbench for Bus Master

In the testbench for the busmaster we can see how according to the signal asserted the
proper value of the weightsis sent by the data out bus.

In page F.1.1 we can see how by asserting the signal “asser_rand” the value coming from
the random number generator is outputted to the data out bus. This value is stored in a
register inside the bus, that is why it has some delay. We can also see that by
incrementing the “incr_sel” signal the Sel counter goes through all the weights of the
specified neuron and through al the neurons. When all the weights of al neurons have
been changed the “don” signal goes high.

In page F.1.2 we can see how by asserting the signal “ assert_data” the values coming
from RAM are outputted into the data out bus. Also by asserting “assert saved” the value
previously stored that cam in the data in bus is outputted.

The testbench proved the component to work according to requirements.

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

F.1 BUSMASTER TESTBENCH CODE

-- Busmaster testbench

-- Author : Guillermo Barreiro
-- Student ID : 1042071

-- Date : March 24, 2002

-- FileName : busmaster_test.vhd
-- Architecture : Structural

library ieee;

useieeestd logic_1164.dl;
library work;

use work.nn_pack.all;

-- textfixture
entity busmaster_test is
end busmaster_test;

architecture mixed of busmaster_test is
signal reset, clock, done_wire, read rand_wireread_data wire,incr_sel_wireload_sel_wire: std_logic;
signal assert_rand_wire, assert_data wire,assert_saved_wire, load_addr_wire, do_nothing: std_logic;
signal zero, one, notreset: std_logic;
signal seed_ram, seed rng: std_logic_vector (7 downto 0);
signal stored_data wires, dataout_wires, datain_wires, in_rng_wires, in_data wires: std_logic_vector(7 downto 0);
signal addr_wires, sel_wires, in_sel_wires, in_addr_wires: std_logic_vector(1 downto 0);

constant T_halfclock : time:=25ns;
begin

-- clock generator
clock_gen: process
begin
clock <="'0";
wait for T_halfclock;
clock <="1";
wait for T_halfclock;
end processclock_gen;

-- Instantiation of the NN datapath component -
Component_busmaster : busmager_2

port map (clock => clock,
read_rand => read_rand_wire,
read_data=> read_data wire,
assert_rand => assert_rand_wire,
assert_data=> assert_data wire,
assert_saved => assert_saved wire,
load_addr => load_addr_wire,
clear => reset,
in_sd =>in_sd_wires,
incr_sdl =>incr_sd_wire,
load sdl => load_sdl_wire,
datain => datain_wires,
dataout => dataout_wires,
addr => addr_wires,
s => sd_wires,
in_rng =>in_rng_wires,
in_data=>in_Data wires,
in_addr => in_addr_wires,
done => done_wire,
stored_data => stored_data wires,
do_nothing => do_nothing);

-- Instantiation of the PRNG
seed_rng <= X"00";

Random_numbers: LFSR_GENERIC generic map(Width => 8)

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

port map (clock => clock,
reset => reset,
load => one,
enable => zero,
parallel_in => seed rng,
paralel_out => in_rng_wires);

-- Vaues coming from RAM
seed_ram <= x"04";

datain_wires <=in_rng_wires;

zero <="'1}

values RAM : LFSR_GENERIC generic map(Width => 8)
port map (clock => clock,
reset => reset,
load => one,
enable => zero,
paralel_in=> seed ram,
paralel_out => in_data wires);

-- process to initialize counters

in_sel_wires<="00"; -- Thetrainer should start with first neuron
load_sdl_wire <="0}

in_addr_wires <="00"; -- Trainer should start with first neuron
load_addr_wire <=0}

ctrl_1: process

begin
-- pulsereset to avoid "dont cares' on input
reset <=0,
wait for 50 ns;
reset <="'1";
wait for 50 ns;
one<="1
wait for 50 ns;
one<="'0,
wait for 50 ns;

wait;
end processctrl_1;

-- process to load random numbers in neurons
ctrl_2: process
begin
loop
--Inputs random values into neurons
read_rand_wire <="1}
wait for 100 ns;
read_rand_wire <=0}
wait for 50 ns;
assert_rand_wire <=1,
wait for 50 ns;
assert_rand_wire <="0';
wait for 50 ns,
incr_sel_wire<="1}
wait for 50 ns,
incr_sel_wire<="0}
wait for 50 ns,
exit when done_wire ='1';
end loop;
loop
--Reads the values stored in RAM
read data wire<="1};
wait for 100 ns;
read data wire<='0;
wait for 50 ns;
assert_data wire<="1;
wait for 50 ns;

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

assert_data wire<='0';

wait for 50 ns;
incr_sel_wire<="1}

wait for 50 ns;
incr_sel_wire<="0,

wait for 50 ns;

exit when done wire =1

end loop;

assert_saved wire <="'1}
wait for 50 ns;
assert_saved wire <="0}
wait for 50 ns;

wait;
end processctrl_2;

end mixed;

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

F.2 Testbench for RAM

A 256-word ram is to be used in our project for storing previously loaded data. To ensure
that the ram stores data correctly, a testbench is used to write vaues to the ram and read
them out. The reason for atestbench is because it is impractical to exhaustively manually
check if the ram stores 256 values correctly. What the testbench does is that it stores 256
words to separate addresses in the ram then reads them out in the same order. Asit
writes and reads in values, it the testbench stores these values to an associated file. Thus,
to check if the ram is working, the output file of the read values should be exactly the
same as the output file of the write values.

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

F.2 RAM TESTBENCH CODE

-- adder_pkg.vhd

-- Revised 2001/02/09

library ieee;
useieeestd logic_1164.dl;
-- these packages allow math on std_logic

useieeestd logic_arithall;
useieeestd logic_unsigned.al;

--LIBRARY Ipm;
--USE Ipm.Ipm_components.ALL;

package adder_pkgis

constant data_width : positive := 16;

constant ram_data width : positive := 16; -- width of datain ram
constant ram_address_width : positive := 8; -- width of addressin ram
constant ram_data size: positive := 256; -- number of valuesinram

subtype datapath is std_logic_vector(data_width-1 downto 0);

COMPONENT adder IS

PORT(ram_data in:instd_logic vector(ram_data width-1 downto 0);--ram_data_ width - 1 downto 0);

-- input data
write: in std_logic;
-- determines write
read : in std_logic;
-- determines read
clock, reset : in std_logic;
-- synchronized with system clock
ram_data out : out std_logic_vector(ram_data width-1 downto 0);--ram_data width- 1 downto 0)
-- output data

r_add : out std_logic_vector(ram_address width-1 downto 0);--ram_data width - 1 downto 0) -- output data
w_add : out std_logic_vector(ram_address width -1 downto 0);
add : out std_logic_vector(ram_address width -1 downto 0)
END COMPONENT adder;

end package adder_pkag;

-- adder_test.vhd

-- Revised 2001/02/09

-- Authors: John Koob, Raymond Sung & Duncan Elliott
-- Date: Feb 2001

-- Course: EES52

-- Desc:

-- Testbench for adder.vhd. Thisfileisto

-- be compiled using Mentor Graphics. The adder.vho
-- file should have been generated by MaxPlusl| before
-- compiling this testbench.

-- Thistestbench serves asatemplate for testing

-- other designsthat require pseudo-random input

-- data and signature analysis

library ieee;

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

useieeestd_logic_1164.dll;

--LIBRARY Ipm;
--USE Ipm.IJpm_components. ALL;

packagetest_pkgis

-- this component is used to creste the PRPG and Signature Compactor
component LFSR_GENERIC is

generic(Width: positive := 4); -- length of pseudo-random sequence

port (clock: in std_logic;
reset: in std_logic; -- active low reset
load: in std_logic; -- active high load (assert thisto use as regular reg)
enable: in std_logic; -- active high enable
parale_in: in std_logic_vector(Width-1 downto 0); -- pardlel seed input
parallel_out: out std_logic_vector(Width-1 downto 0); - parallel data out
serial_out: out std_logic -- serial dataout (From last shift register)

);
end component LFSR_GENERIC;
end packagetest_pkg;

library ieee;
useieecestd_logic_1164.all;
library work;

use work.ted_pkg.all;

use work.adder_pkg.al;

use |EEE.gtd_logic_textio.all;
use STD.textio.all;

-- textfixture
entity adder_test is
end adder_test;

architecture mixed of adder_test is

constant T_halfclock : time:= 100 ns;
constant T_prop: time:= 10 ns; - avoid hold time violations

signa a internd, b_internal : datapath := (others =>'0");

signal a interna_delayed, b_internal_delayed : datapath := (others =>'0");
signal seed a, seed b : datapath;

--signd sum_internal_x : datapath;

signal sum_internal_x : std_logic_vector(ram_data width-1 downto 0);
signal signature x, signature_y : datapath := (others =>'0);

signal clock, reset : std_logic;

signal load_prpg, load_compact : std_logic;

signal serial_prpg_a, serid_prpg_b, serial_compact_x, serial_compact v : std_logic;
signal datain_request_internal, dataout_valid_interna : std_logic;

signal dateout_request_internal, datain_valid_interna : std_logic;

signal datain_vadid_internal_delayed, datain_valid_internal_buf : std_logic;
signal one: std_logic;

signal zero : std_logic;

signal ram_input : std_logic_vector(ram_data width-1 downto 0);
signal write_sig, read_sig,reading, writing : std_logic;
signal write_address, read_address, address: std_logic_vector(ram_address width -1 downto 0);

begin

--insert delay elements - Do you know why thisis necessary?
a_internal_delayed <= a_internal after T_prop;

b_internal_delayed <= b_internal after T_prop;
datain_valid_interna_delayed <= datain_valid_internal_buf after T_prop;

--initial seed vaue - DO NOT EDIT -
seed_a<= X"AAAA";
seed_b <= X"0014";
one<="1
zero<="0,

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

-- Y our adder component port map here--
ram_input <= a_internal_delayed;
adder_part : component adder
port map(ram_data in=>ram_input,
write => write_sig,
read =>read _dg,
clock =>clock,
reset => one,
ram_data_out => sum_internal_x,
r_add => read address,
w_add => write_address,
add => address

write file:
process (clock) is - write file_io.out (when done goesto '1')
filemy_output : TEXT open WRITE_MODE is"file_io.out";
variable my_output_line: LINE;
variable count : integer range0to 2 :=0;
begin
if falling_edge(clock) then
if write_sig="1" and count = 2 then
write(my_output_line, sum_internal_x); - or any other stuff
writeling(my_output, my_output_line);
write(my_output_line, address); -- or any other stuff
writeline(my_output, my_output_line);
count :=0;
writing <="1";
elsif write_sig="1"and count < 2 then
count :=count + 1;
writing <="0;
end if;
end if;
end process write file;

read_ram file:
process (clock) is -~ write file_io.out (when done goes to '1')
filemy_output : TEXT open WRITE_MODE is"file_read.out";
varigblemy_output_line: LINE;
variable count : integer range0to 2 :=1;
begin
if faling_edge(clock) then
if reed sig="1"and count = 2 then
write(my_output_line, sum_internal_x); - or any other stuff
writeling(my_output, my_output_line);
write(my_output_line, address); -- or any other stuff
writelineg(my_output, my_output_line);
count :=0;
reading <=1,
elsif read_sig="1" and count < 2 then
count := count + 1;
reading <="'0;
end if;
end if;
end processread_ram file;

datain_valid_input_ff: process (clock) is
begin
if reset ='1' then - if reset line low = active and clock edge received
datain_valid_internal_buf <="0'
elsif clock ="1' and clock'event then -- if rising edge of clock
if datain_request_internal = '1' then
datain_valid_internal_buf <=
datain_valid_internal; -- latch input and drive to outputs
end if;
end if;

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

end process datain_valid_input_ff;

-- instantiate a PRPG for input a

prpg_input_a: component LFSR_GENERIC

generic map(Width => data_width)

port map (clock => clock,
reset => reset,
load => load_prpg,
enable => one,—-datain_request_internal,
paralel_in=>seed a,
paralle_out => a_internd,
seria_out => serid_prpg_a

)i

-- instantiate a PRPG for input b

prpg_input_b : component LFSR_GENERIC

generic map(Width => data_width)

port map (clock => clock,
reset => reset,
load => load _prpg,
enable => one —datain_request_internal,
parallel_in =>seed b,
paralel_out => b _internd,
serial_out => serial_prpg_b

)i

-- instantiate a Signature compactor for output x

-- (output x can be used as the sum of an adder)

compactor_x : component LFSR_GENERIC

generic map(Width => data_width)

port map (clock => clock,
reset => reset,
load => load_compact,
enable => dataout_valid_internal,
pardle_in => sum_interna_x,
parallel_out => signature X,
seria_out => serial_compact_x

-- clock generator
clock_gen: process
begin
clock <=1}
wait for T_halfclock;
clock <="'0}
wait for T_halfclock;
end processclock_gen;

-- process to control the load_compact and load_prpg
ctrl_1: process

begin

load_prpg <=1
load_compact <=1}

-- pulsereset to avoid "don't cares' on input
reset <=0,

reset <="'1';

wait for 250 ns;
reset <="1";

wait for 250 ns;
reset <=0,

wait for 200 ns;

-- start compacting
load_compad <= "0}
wait for 400 ns;

-- start generating random data

Har dwar e Implementation of a Neural Network Trainer and Associated Neural Network

load_prpg <="'0}
wait for 5000 ns;

wait;
end processctrl_1;

-- process to control handshaking signas
ctrl_2: process

begin

-- normal operation

write sig<='0;

read sig<="0}
dataout_request_internal <='1';
datain_valid_internal <="1',
wait for 1300 ns;

write sig<="1}
wait for 153600 ns;
write_sig<="0}

wait for 200 ns;

read sig <="'l;
wait for 153600 ns;
read _sig<="0}
wait;
end processctrl_2;

end mixed;

