

EE 552 Final Report
DATAD Binary Keyboard

Group Members

DENILLE GARCIA (ellined@hotmail.com)

ALY DHANJI (adhanji@ualberta.ca)
TREVOR SEMENIUK (semeniuk@ee.ualberta.ca)

AHMED ALKHATIB (aa1@ee.ualberta.ca)
DERRICKRASUGU (drasugu@ualberta.ca)

D. Garcia, A. Dhanji, T. Semei, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

i

Abstract

Portable has become a common word in today’s society. A portable laptop computer
gives people access to familiar desktop functions anywhere. But sometimes the use of a
laptop far exceeds what is required. So people use portable pocket PCs, small devices
usually powered by Windows CE to give the resemblance of the familiar computer
screen. For example the popular Palm Pilots. The problem is, the word portable usually
also means sacrifice. Inputting information into these devices tends to be clumsy and
tedious. One existing solution is the fold out keyboard. The disadvantage to this method
is that the keyboard requires a flat surface, which usually limits the mobility of the user.

The solution DATAD has developed is an apparatus with the ability to interface into such
devices but without the loss of mobility. The binary keyboard is lightweight, shaped in a
familiar form, and has a sufficient number of input switches to allow for character
representation of all letters in the English alphabet, as well as additional obscure
characters and commands such as the “,”, “.”, “SPACE”, “Back-SPACE”, and “carriage
return”. The prototype developed contains certain limitations due to time constraints
experienced during the design. First, the device does not incorporate the “carriage return”
feature. Also the system only uses upper case letters. Although the opportunity still exists
to add these features, it was determined not to add them to the first generation device due
to problems experienced during implementation. Also the device will not be completely
mobile, mainly due to the fact that the FPGA used is not mobile.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

ii

Binary Keyboard Datasheet

Description
The binary keyboard provides an alternative method to interface with pc-type devices.
The primary target for the device is the pocket PC and organizer market but it is not
limited to this particular family. All coded aspects of the binary keyboard are
incorporated into two packages: char_display.vhd and transmitter.vhd. The first package
ties the keyboard in with the VGA and the second with the PS/2. For proper operation of
the device all portions of the package must be compiled and loaded into an FPGA. The
keyboard can then be used for character input in replace of existing methods, such as
script recognition or portable standard keyboard devices.

Features
1. Six-bit resolution allows for representation for all characters of the English

alphabet as well as standard computer commands.
2. Keyboard allows for interface through standard VGA port.
3. Keyboard is designed for PS/2 protocol.
4. The device is lightweight and ergonomically designed for relative comfort.

Electrical Parameters
Keyboard Supply Voltage Requirement: 5V DC

Signal Propagation
Package Max Path Max

Time
Min Path Min

Time
Min
Period

Max
Speed

char_display.vhd reset –
data_out1

22.2 ns clock –
vga_red/
reen/blue

12.8 ns 112.5 ns 8.88 MHz

transmitter.vhd Clock –
data_out

27.9 ns Clock --
PCclock

11.2 ns 60 ns 16.7 MHz

FPGA IO Signals
Signal I/O Description # of Pins Req’d
Thumb Input Binary thumb switch 1
Index Input Binary Index Finger switch 1

Middle Input Binary Middle Finger switch 1
Ring Input Binary Ring Finger switch 1
Little Input Binary Little Finger switch 1

Toggle Input Binary Toggle Switch (Caps Lock) 1

VGA Output Output Display 5
PS/2 Output PS/2 Interface 2

Table 1: FPGA IO Signals

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

iii

FPGA Logic Usage
FPGA logic block usage was estimated using MAX PLUS II.

Architecture Number of Blocks Required % Used
Data Control 230/1152 20.0%
VGA 691/1152 60.0%
PS/2 196/1152 17.0%

Total 1117/1152 97%

Table 2: Logic Block Usage

FPGA Pin Assignments
Signal I/O Description Pin Assign. UP1 pin

+5 V Common 5 V DC Power Out ---
Gnd Common Ground ---
clock Common Common Clock 91 Global clk pin
reset Common Common Reset 28 PB 1

Thumb Input Binary thumb switch 45 15
Index Input Binary Index Finger switch 48 17

Middle Input Binary Middle Finger switch 50 19
Ring Input Binary Ring Finger switch 53 21
Little Input Binary Little Finger switch 55 23

Toggle Input

Binary Toggle Switch (Caps Lock) N/C N/C

vga_red Output VGA Red data 236 VGA connector

vga_green Output VGA Green data 237 VGA connector
vga_blue Output VGA Blue data 238 VGA connector

vga_h_sync Output VGA horizontal sync 240 VGA connector
vga_v_sync Output VGA vertical sync 239 VGA connector

PS/2 Output PS/2 Interface PS/2 connector

Table 3: FPGA Pin Assignments

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

iv

PS/2 Interface
Pin Name Dir Description
1 DATA IN/OUT ey Data
2 n/c - Not connected
3 GND ------ Ground
4 VCC OUT Power , +5 VDC
5 CLK OUT Clock
6 n/c - Not connected

Table 4: PS/2 Pin-out [2]

VGA Interface
Pin Name Description
1 vga_red Red Video
2 vga_green Green Video
3 vga_blue Blue Video
13 Vert_sync Vertical Sync
14 Hor_sync Horizontal Sync

Table 5: VGA Pinouts [4]

Keyboard Interface
The keyboard interface used is connected through a 10-pin two-row ribbon cable.
Pin Name Description
1 Common Ground
2 Common Ground
3 Common Ground
4 Common Ground
5 Toggle Keyboard toggle switch
6 Pinky LSB, little finger switch
7 Ring Ring switch
8 Middle Middle switch
9 Index Index switch
10 Thumb MSB, thumb switch
Table 6: Keyboard Interface Pinout

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 1 2 3 4 5

 6 7 8 9 10

To keyboard

D. Garcia, A. Dhanji, T. SemeA, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

A

1.0 Introduction

1.1. Design Goal
The goal of this project is to build multifunctional input device. The device should
incorporate sufficient flexibility such that the device is independent of the chosen
interfacing platform. The prototype should be semi-portable and allow for simple
operation for individuals.

1.2. Design
The approach that has been adopted is to produce a portable handheld binary keyboard.
The device will identify a binary alphabet and output the information using ASCII code.
To represent all the letters in the alphabet the binary keyboard will contain 5 switches
representing each finger. With 5 switches 32 characters can be represented which is more
than enough to represent the alphabet.

The system would output the information in two ways. The first method would be
through a standard VGA port. The use of a VGA port allows the user of the device to
connect to a standard computer monitor or any other device that has a VGA port. The
output of the keyboard would then display instantly on the view screen. The second is the
PS/2 interface The use of this interface allows for the system flexibility since the PS/2
standard is used in a number of different devices ranging from computers, to pocket
organizers. In fact the PS/2 is so versatile that the Sony 300CD mega-changer uses the
protocol to allow users to input CD titles.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

B

2.0 Design Approach

2.1. Binary Alphabet
The binary alphabet will be implemented using 5 bits, with each bit representing each of
the five fingers. This will allow for 32 different characters. The case when no buttons are
pressed will be used to represent an “end of character”. After each character the user will
return to the “end of character” case. This will allow for the system to properly capture
each character. The remaining 31 will represent characters and common punctuation or
commands. Also, each character will be considered to be UPPER CASE. Lower case
may be later implemented by adding an additional bit to represent CAPS lock. The
binary alphabet and corresponding ASCII code is shown below in table 1.

Thumb Index Middle Ring Little Character ASCII
0 0 0 0 0 N/c n/c
0 0 0 0 1 A 41
0 0 0 1 0 B 42
0 0 0 1 1 C 43
0 0 1 0 0 D 44
0 0 1 0 1 E 45
0 0 1 1 0 F 46
0 0 1 1 1 G 47
0 1 0 0 0 H 48
0 1 0 0 1 I 49
0 1 0 1 0 J 4A
0 1 0 1 1 K 4B
0 1 1 0 0 L 4C
0 1 1 0 1 M 4D
0 1 1 1 0 N 4E
0 1 1 1 1 O 4F
1 0 0 0 0 P 50
1 0 0 0 1 Q 51
1 0 0 1 0 R 52
1 0 0 1 1 S 53
1 0 1 0 0 T 54
1 0 1 0 1 U 55
1 0 1 1 0 V 56
1 0 1 1 1 W 57
1 1 0 0 0 X 58
1 1 0 0 1 Y 59
1 1 0 1 0 Z 5A
1 1 0 1 1 SPACE 20
1 1 1 0 0 BKSP 08
1 1 1 0 1 . 2E
1 1 1 1 0 , 2C
1 1 1 1 1 CR 0D

Table 1: Binary Alphabet

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

C

2.2. Binary Keyboard Design

2.2.1. Physical Design
In physically implementing the keyboard device a number of different issues must be
addressed:

i. The keyboard must comfortably fit into an individual’s hand.
ii. The binary keys for the keyboard should be easy for the user to press for all

fingers. Since the mobility of the little finger tends to be limited on its own, the
shape of the keyboard should account for this. This is a key issue in designing
the physical structure.

iii. The keyboard should be lightweight. If the keyboard is too heavy, the user
may become fatigued due to prolonged use.

To create the physical design of the binary keyboard the upper portion of an old joystick
was used. With this method the above concerns were addressed fully. This device was
shape and lightweight design created a good starting point for the keyboards. The joystick
was previously shaped to fit an individual’s hand, and already contained two buttons and
a toggle switch. The toggle switch may be used to latter represent Caps lock. Three
additional buttons were added to the device to complete the keyboard. Also the device
has been initially designed for right-handed users. Changing the device would simply
involve moving the buttons.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

D

2.2.2. Keyboard Interface Design
To interface the keyboard to the FPGA an active low philosophy was taken. Each switch
was tied to a common ground within the keyboard. The inputs for the FPGA were tied to
a pull up resistor and a 5V power supply. When the switch is closed the power supply
will be shorted to ground pulling the input voltage to zero. When the switch is open the
input voltage was pulled up to +5V. In this way, floating inputs were avoided. The
keyboard circuit is located below in figure 2.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

E

3.0 Software Design
The driver for the keyboard was separated into three main stages: data handling, and data
output. Section 6.0 contains a more detailed description of the VHDL code.

3.1. Data Handling
The primary task of the data handling stage is to process the inputs from the keyboard
switches, decode the data, and transmit the data into the output streams. A key part of the
data handling stage is the input stage. The data input stage must take into account that not
all switches may arrive at the same time.

The following gives a detailed representation of how data is handled from input to
display. This process makes use of various delay signals to load various components. To
give an insight into how this design works the top-level diagram in Appendix 1 will be
described in the following. All the inputs into the NOR gate and the SR Latch are
debounced using debouncer component. This debouncer is basically a D Flip flop that is
samples input data every millisecond or 25,000 clock cycles based on a 25 MHz clock.

This design takes into assumption that there are no floating inputs. As a result when the
keyboard is powered all the components reset. The SR latch resets from the output of the
NOR gate which is high at this instance. The inputs into the register and decoder are also
set to zero. Delay D2 delays the reset signal into the SR latch long enough to clear the
register and decoder. Delay D2 also allows the system to keep the register load signal
High.

The SR latch component is basically an SR flip flop that uses data in as the set signal but
only has one reset signal. This reset signal is the output of the NOR gate that is delayed to
ensure valid data propagates through the data path.

The idea behind using the NOR gate is that once the user begins pressing keys, no load
signals will be activated until after all keys have been released. To clarify this idea the
propagation of signals out of the NOR gate into the SR latch reset and the register load
will be explained.

• Initially once the glove is powered the output of the NOR gate is high. The signal
out of the NOR gate is debounced to eliminate any noise that may arise due to the
switches in use. The output from the NOR gate is used to reset the SR latch and
also load other components, the register and ASCII Decoder. This signal is also
used to load the PS/2 controller and VGA driver. Therefore once the NOR output
is high, after propagation through delay D2, the SR latch resets. This occurs in
microseconds.

• Once data input begins the NOR output goes low. This change does not affect the
load control as will be explained briefly. This low signal has also no effect on the
SR latch. Once input is done and all switches are released, the NOR gate signal
goes high immediately thus activating load control. This load control will be kept

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

F

high for as long as specified. It is important that the load signal goes low before
the SR flip-flop resets so that the registers do not get cleared. Data is therefore
loaded from the SR flip-flop once the load signal goes high.

• Once debounced, the NOR output signal propagates through delay D2 and the
register SR latch resets. It is worth noting that by the time the SR latch resets the
register load signal is already low keeping the output of the register available to
other peripheral component for a longer period of time.

• The register is a five-bit register. This register is loaded using an active high load
signal. The register also has an active low global reset input.

• The PS/2 interface receives its five bit data from the register. The PS/2 enable

signal is a delayed and controlled version of the NOR gate output. This signal
comes straight from the NOR gate to keep the PS/2 enable signal high for a
relatively longer period of time (approximately 3 Clock cycles of a 25Khz Clock).
This enable signal turns high only when the register data has been set. This signal
should terminate in good time such that it is ensured that invalid data is not
transmitted. More details about the PS/2 are covered in the PS/2 controller
section.

• The 5-bit to 8-bit ASCII decoder receives its data from the register and the enable
signal is a delayed version of the register load signal, which also terminates at
about the same time as the register load signal. The output of the ASCII decoder
does not clear when the load signal goes low but rather is refreshed when new
data arrives.

• The VGA interface requires an enable signal and eight-bit ASCII. The enable
signal is only required to stay high for one clock cycle, because of the refresh rate
of the VGA. In a situation where one clock cycle causes unstable output to the
VGA the period over which the VGA load signal is high is increased, and the
VGA code is modified such that it does not refresh more than once for every
VGA enable signal high event. More details about the VGA are covered in the
VGA driver section.

• The load control component controls the duration of all the load signals. The load
control circuit diagram is contained in the appendix B. All the signals are active
high. As a result, it is needed to load data only when load signals are high and for
a specified duration. To achieve this, as can be seen in the circuit diagram an
AND and XOR gate are used with one delay mechanism. Once the output of the
NOR gate goes high, the output of the delay mechanism will be assumed to be
low, until the input signal propagates. During this duration of time, the output of
the AND gate is low, thus the output of the XOR gate will be high. Once the
signal propagates through the delay mechanism the XOR output is set low. When
the output from the NOR gate is low the XOR output will always be low because
of the AND gate.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

G

3.2. Data Output
The data from the decoder will be outputted with two different approaches. The first
approach is the use of a standard PS/2 interface. In this way, the binary keyboard can
interface to pocket PC systems or regular desktop computers. The second method will be
through VGA. This method allows for direct interfacing with a monitor, or any device
with a VGA port.

3.2.1. PS/2 Interface
The PS2 Controller is comprised of five parts.

1) Binary Keyboard to PS2 data decoder.
2) Scan Code generator
3) Shift Register [1]
4) Transmitter Controller [1]
5) Transmitter Component -- This integrates the parts together [1]

 The PS2 keyboard and PS2 mouse both use the same type of communication method
between the device and the computer. Therefore, it was possible to re-use some of the
code developed for the Spatial Mouse[1]. In particular, the code used from the Spatial
Mouse project is required to generate a serial bit-stream that is synchronized with a data
clock used to send data to a computer.

In order for a keyboard to transmit a character to a computer, it has to generate a scan
code that the computer can interpret. The scan code is comprised to two parts: a make
code, and a break code. Unfortunately there is no given formula to calculate the make and
break codes for any given key on a keyboard. The only way to know what scan code is
associated with a certain key is to look it up on a table. However, there is a relation
between the make and break code. The break code is simply the hexadecimal number $F0
followed by the make code. Whenever a key is pressed and released on a keyboard, the
keyboard sends three data packets of 11 bits. Each packet contains 8 data bits, a start bit
of 0, a stop bit of 1, and an odd parity bit. The first data packet is simply the make code
of the key pressed. The second packet is the hexadecimal number $F0, and finally the
third packet is the make code again. For example, the character “A” has a make code of
$1C. Therefore, whenever “A” is pressed and released, the keyboard sends a serial bit
stream to a computer which contains the data $1C, followed by $F0, and finally $1C
again. Therefore, in order to implement a PS2 keyboard controller we have to ensure that
we generate the scan codes for the character we wish to display, and send it serially to the
computer, using the PS2 communication protocol.

In the PS2 controller, the Binary to PS2 decoder generates the make code for a character
by looking it up on a table of make code values. The make code is then sent to the scan
code generator that passes the transmitter controller the make code, followed by $F0,
followed by the make code again. The only time the scan code generator passes the scan
codes is after an enable signal is asserted. Otherwise the scan code generator simply
ignores any data changes on the input.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

H

3.2.2. VGA
The purpose of the VGA interface is to accept data from the binary keyboard, decode this
data to establish the correct character that should be displayed on the VGA monitor, and
then sent this character to the monitor. It also prints the project title on the monitor,
above the characters received from the binary keyboard.

Three character roms and three .mif files are used to generate the title and characters.
One .mif file contains the pixel definition of each character used in the project, the
second .mif file contains the title message which is to be displayed. The third .mif file
contains the 26 letter alphabet which is part of the binary keyboard interface, as well as a
space character which functions as a backspace.

D. Garcia, A. Dhanji, T. Semeniuk, A. Alhaktib, D. Rasugu EE 552 Binary Keyboard
Nov. 29, 2001 Final Report

I

Appendix E: References

1. Spatial Mouse project. PS2 Mouse TX. April 2001.m
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2001_w/interfacing/PS2_Mou
se_TX/

2. Christopher Kowalski. E-Field Probe group. March 7, 2001.
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2000f/interfacing/keyboard/

3. Hao Luan , Bo Liu and Albert Chan . Dicerace Game code. April 9, 1998.
http://www.ee.ualberta.ca/~boliu/projects/ee552/ee552.html

4. UAB "BBD SOFT". 2000-2001. http://www.bbdsoft.com/video.html

5. Adam’s Micro-Resources. 1999-1998.
http//govschl.ndsu.nodak.edu/~achapwes/PICmicro/keyboard/scancode2.html

