
EE 552 High Level Digital ASIC Design Using CAD

PROJECT

CRAM Parallel Processor

Final Project Report

November 27, 2001

Shahid Aslam Khan Sue Ann Ung Satneev Bhamra
Shahid1994@yahoo.com sueann_u@yahoo.com sbhamra@hotmail.com

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

2

DECLARATION OF ORIGINAL CONTENT

The design elements of this project and report are entirely the work of the authors and have not been
submitted for credit in any other course except as follows:

• Fig5 is taken from reference [2], fig 1 and 3 are from reference [3]
• A few headings and statements are taken from reference [2] and [3] and are appropriately mentioned

with the text as well.
• Fig 4 for the C-RAM is taken from reference [4], A Tightly Coupled Hybrid SIMD/SISD System.
• Fig B in the Appendix is obtained by simplifying figure 5 which is from reference [2], Computational

RAM: Implementing Processors in Memory.
• Figure 6 is taken from references [2, 4].
• Debounce.vhd code is taken from EE 552 course Application notes

http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/keypad/debounce.vhd
• Display_7seg.vhd code is reused from EE 552 Lab 4 Part 3

________________ ________________ _______________
Shahid Aslam Khan Sue Ann Ung Satneev Bhamra

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

3

ABSTRACT

The following report documents the project specifications to implement C.RAM on an FPGA.
C.RAM (computational random access memory) is a fast parallel processor that uses a SIMD
architecture. The C.RAM accepts single instruction stream into parallel processing units to
perform multiple data operations. The design of the processor is to be implemented on a UP1
board and an Altera FLEX10k20 chip.

In this report a detailed description of the architectural components of C.RAM is provided.
Details of the design and operation, requirements for the FPGA and signal and pin-out
descriptions are all outlined. A general discussion of our testing method is found later in the
document. Finally the complete design documentation of the entire project and completed and
working VHDL code is referenced.

This document shows that we were partially successful in implementing C.RAM on an FGPA.
We were able to see correct results for the addition instruction and some other simple instructions
we had set out to build, however, we did not receive correct results for the multiplication of two
four bit numbers. We were successful in combining additional processing elements into an array
to have C.RAM work in true SIMD fashion.

C.RAM was designed to run with a 25MHz clock signal, and used 344/1152 (30%) of the
AlteraFlex10k20 logic cells.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

4

C-RAM DATA SHEET

C.RAM Features:

• Processing Element Array
• 256 Instruction ALU : 8 x 1 MUX
• 3 x 1-bit Registers

• Controller
• Sequencer
• Decoder

• Memory
• 256 x 16 bit instruction ROM initialized by .mif file
• 256 x 1 bit data RAM initialized by .mif file

• I/O
• 7 segment display to show results of PE elements and memory
• LCD display to show instruction set in the ROM.

• Designed to run at 25 MHz clock signal
• C.RAM* used 30 % of Altera Flex10K20 logic cells.

* Total logic cell value is for only one PE

Instruction Set:

The following table outlines the current instruction set used by C-RAM

Instruction Syntax Description Result
Sum A + B Addition of two four-bit

numbers
Correct

Subtraction B – A Subtraction of two four-
bit numbers using 2's
complement

Incorrect

Multiplication B x A Unsigned product of two
four-bit numbers

Incorrect

Chip Information:

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

5

The C-RAM design takes up 344 logic cells in total. This is with implementing only one PE, if
we increase the number of PEs in the array, the number of logic cells used will increase
proportionally. Our estimates show that we can safely add up to 30 PEs into our design.

Module Logic Cells required Performance
PE (1) 12 (1 %) 113.63 MHz
PE (2) 36 (3 %) 113.63 MHz
Controller 78 (6%) 125.00 MHz
I/O 254 (22%) 22.83 MHz
Total* 344 (30 %) 22.17 MHz
PE*: only one PE

Memory Addressing and Output

C-RAM contains two separate memory blocks, one for storing instructions and one reading and
writing data. Each instruction is 16 bits long, and is of two types: a memory address for the PE
to receive data from and an operational code for the PE to perform. The MSB of the instruction
determines between these two types of instructions. If the flag bit is = ‘1’ then the instruction is
an OpCode. If the flag bit = ‘0’, the instruction code is designated as a memory address in the
RAM. Data is pre-set into the RAM as one bit on each address line. Data is fed from the
designated address in the RAM to the PE one bit at a time.

I/O Signals and Pins

The table below describes each the input and output pins used on the UP-1 board. There are two
inputs from push buttons to start the C.RAM and the LCD. There are 3 inputs, one from the
clock oscillator on the board, and two input clocks for the C.RAM and LCD. Two seven-
segment displays are used for displaying the results in the X, Y and Memory. An LCD is used to
display the instruction set stored in the ROM.

IO Signals Input/Output Pin Number Description Number of Pins

clock_25MHz In 91 Clock signal provided by on-board
oscillator (25.175 MHz)

1

clock_pb In 28 Clock Signal Button 1

clock_lcd In 29 clock signal for LCD (2 x clock_pb) 1

3
display10 Out 6 for segment1 a (result in X or Y) 1

display11 Out 7 for segment2 b (result in X or Y) 1

display12 Out 8 for segment3 c (result in X or Y) 1

display13 Out 9 for segment4 d (result in X or Y) 1

display14 Out 11 for segment5 e (result in X or Y) 1

display15 Out 12 for segment6 f (result in X or Y) 1

display16 Out 13 for segment7 g (result in X or Y) 1
7

display20 Out 17 for segment1 a (result in M) 1

display21 Out 18 for segment1 b (result in M) 1

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

6

IO Signals Input/Output Pin Number Description Number of Pins

display22 Out 19 for segment1 c (result in M) 1

display23 Out 20 for segment1 d (result in M) 1

display24 Out 21 for segment1 e (result in M) 1

display25 Out 23 for segment1 f (result in M) 1

display26 Out 24 for segment1 g (result in M) 1

7
lcd_data0 Out 65 Output of LCD 1

lcd_data1 Out 66 Output of LCD 1

lcd_data2 Out 67 Output of LCD 1

lcd_data3 Out 68 Output of LCD 1

lcd_data4 Out 70 Output of LCD 1

lcd_data5 Out 71 Output of LCD 1

lcd_data6 Out 72 Output of LCD 1

lcd_data7 Out 73 Output of LCD 1

reset_lcd Out 40 Reset the LCD screen 1

reg_select Out 62 Selects register to be written to 1

lcd_rw Out 63 Read/Write to LCD (set as write) 1

lcd_nenable Out 64 Enable the LCD 1

12

Total = 29

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

7

TABLE OF CONTENTS

DECLARATION OF ORIGINAL CONTENT…...…………………………………...2

ABSTRACT……………………………………………………………………………....3

C-RAM DATA SHEET...4

INTRODUCTION………………………………...……………………………………..9
 1.0 Motivation……………………………………………………………………………………………....9

ACHIEVEMENTS…………...…………………………………………………………10
 2.1 The Controller
 2.2 The Processing Element
 2.3 Memory
 2.4 User Interface

DESIGN OVERVIEW
 3.0 Description of Operation…...………………………………………………………………………...12

DESIGN DETAILS
 4.1 The Control Unit (CU).………………………………………………………………………………15
 4.1.1 The Sequencer...................…………………………………………………………………….15
 4.1.2 The Controller………………………………………………………..16
 4.1.3 Memory.....................................………………………………………………………..............17
 4.2 C-RAM Architecture.………………………………………………………………………………..17
 4.3 Processing Element.………………………………………………………………………………….18
 4.4 User Interface.....................................………………………………………………………..............20

EXPERIMENTS.....................................……...………………………………..............21

SCHEMATIC……...……………………………………………………………………22

TEST BENCHES
 7.1 Test benches………………………………………………………………………………………….23
 7.2 Controller…………………………………………………………………………………………….23
 7.3 Controller & ROM…………………………………………………………………………………...23

INDEX OF SIMULATION WAVEFORMS AND VHDL CODES………………....24
 8.1 Controller..24
 8.2 Controller and Rom..25
 8.3 Test Cases for PE..26
 8.4 User Interface..27

REFERENCES………………………………………………………………………….29

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

8

APPENDIX……………………………………………………………………………...30
 VHDL CODES………………………………………………………………………………….……….32
 Tester.vhd...33

Tester2.vhd...34
Tester3.vhd...36

 Top_level.vhd...37
 Control2.vhd...41

Clk_div.vhd..43
Debounce.vhd...46
Bin_to_led.vhd...47
Lcd_package.vhd..48
Count_4bit.vhd...49
Lcd.vhd...51
Lcd_out.vhd..55
Lcd.mif...57
Top_level_2PE.vhd..58

 SIMULATION WAVEFORMS…………………...…………………………………………………...62

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

9

INTRODUCTION

Computational RAM is a processor-in-memory architecture that makes highly effective use of
internal memory bandwidth [3]. The architecture as described in later sections consists of a
control unit (sequencer) and many Processing Elements (PE). The host processor generates
instructions, which are broadcasted to all Processing Elements. The data in the memory is fetched
to the single bit registers (X, Y) and processed. The truth table is sent to the inputs of the 3 to 8
mux. The select lines for the mux are from the registers (X, Y) and one from memory. The 3 to 8
mux can support 256 possible instructions. This SIMD parallel processor architecture is
implemented on an FPGA chip.

1.0 Motivation

There is significant interest in processor implementation in Field Programmable Gate Arrays
(FPGAs). FPGAs are often used for prototyping new designs as it allows the specification of the
function of a system to be simulated and tested before the ASIC is actually fabricated. This saves
time and money, and it allows the possibility of quick redesigning and modifications of existing
designs.

We are proposing to build a C-RAM controller-processing unit using SIMD architecture. The
motivation behind this idea is to “exploit the chips’ wide internal data paths” and “the energy
efficiencies that result from better utilization of memory bandwidth and localization of
computations on a millimeter scale” [2]. SIMD architecture allows for fast parallel processing of
data.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

10

ACHIEVEMENTS

2.1 Top Level

The top level design of C.RAM functioned correctly for certain instruction sets. We found that
correct results were obtained for the addition operation of two four-bit numbers. Other simple
instructions were also functioning correctly in C.RAM. However, we were unsuccessful in
implementing a multiplication algorithm on C.RAM. The output did not result in the correct
multiplication of two-four bit numbers.

The top-level design was also successful in implementing an array of PEs. Experiments were
done with different array sizes of PEs, and correct results were obtained for the addition
operation.

2.2 The Controller

The controller was initially designed as a finite state machine. It contained four main states: idle,
read_RAM, write_RAM and Operation. This implementation was found to be faulty. Although
it correctly fetched the instructions from the ROM and sent the corresponding OpCode to the PE
or the memory address to the RAM, timing issues arose. The synchronous controller was writing
to and reading from the RAM in one complete cycle. Although this can be accomplished using
an aynchronous design, for our synchrounous machine, this resulted in incorrect results. The
controller would not read from the correct address, or instructions, which were labelled as
OpCodes were interpreted as addresses.

The controller was redesigned as a simple selector. The finite state machine was abandoned, and
the new selector design was implemented. Instructions from the ROM are fetched, and the
corresponding signals are set. The instruction format is the same; if the MSB =1 the instruction is
deemed an OpCode, if the MSB = 0 the instruction is deemed an address. One further condition
is set in the instruction format, if the second MSB is set as a 1, the controller sets this
address_write signal, else, the address_read signal is set high.

Currently, the controller is functioning correctly for all test cases. Simulations are as expected.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

11

2.3 PE

The PE design is functioning correctly. Simulation results indicate that for all test cases
presented, the PE is working correctly. The PE accepts the OpCode from the controller, and the
corresponding enabling registers. These have been sent as inputs to the PE by the test bench.
The PE then performs the correct operations set by the OpCode and stores the results in the x, y
and memory registers. Note: for the PE component itself, a RAM interface was not used, rather a
simple register was used to act as RAM. Data was written and read from this register.

2.4 User Interface

The two 7-segment displays connected to the FLEX10K chip is used to show the contents of the
X and Y 1-bit register of the PE. The OpCode going into the PE and the address and enable
signals are shown on the LCD display. The two push buttons connected to the FLEX10K are used
for manual clocking and reset signals. The push button signals are both connected to debounce
circuits. The user interface works as expected.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

12

DESIGN OVERVIEW

Design Hierarchy

Figure 1: Design Hierarchy

3.0 Description of Operation

The C-RAM is a conventional memory chip that when used with a SIMD computer, can be
utilized to run parallel processes in applications such as signal and image processing, computer
graphics, databases and CAD [2].

The C-RAM processing module is broken down into four main components: the control unit
(CU), processing elements (PE), memory modules (C-RAMs) and I/O interfaces and modules
such as video displays and keyboards. The CU contains instructions either locally or fetches then
from the host processor and broadcasts each instruction to the PEs. These instructions may
include operational codes such as addition or subtraction, and broadcast information. Each PE
acts as an independent arithmetic unit (AU) and performs operations on the local memory.

C.RAM

Controller

ALU Registers

I/O SIMD ARRAY
(PE = 2)

Memory

Sequencer 7-Seg. LCD RAM
ROM

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

13

Figure 2: A basic SIMD-CRAM processing module [3]

PE modules

counter

RAM

opcode

Address

Data

ROM

Controller

Address

debounce

Push Button

clock

LED 7 Segment

16 LED
Lights

Figure 3: Block Diagram of the C-RAM Parallel Processor System

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

14

The instructions and address information are first loaded into the ROM before the start of
operation.

The controller will then sequence through the ROM to get instructions and address
information for the PE operations. The PE operations and the contents of the X and Y
registers and the RAM can be seen on the seven- segment display. Instructions issued by
the controller are displayed on the LCD. The clock is input into the system from the push
button.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

15

DESIGN DETAILS

4.1 The Control Unit (CU)

The CU contains two main components: the sequencer and the controller. The sequencer obtains
instructions stored in the local storage of the CU and passes them onto the controller. The
controller then determines what addresses in the local memory each PE should read from and
write to, the related operational codes (OpCode) and broadcast information the PE must perform.

4.1.1 The Sequencer

The C.RAM sequencer provides the instruction stream to each processing element in the C.RAM.
These instruction words can take the form of an OpCode or an address in memory.

Initially a minimalist sequencer will be designed and tested within the C.RAM. This sequencer
acts a simple program counter to provide instructions to the PE’s and requires no ALU or data-
path. An instruction storage element can be added to this to store multiple routines for the
sequencer. This sequencer style is optimal for many embedded systems such as filtering
continuous streams of data in signal processing applications.

The sequencer program counter selects the instruction in the ROM to be fetched. Each
instruction is 16 bits long. There are two types of instructions: a memory address where the PE
will perform its operation on and the operational code itself. A flag bit is set to differentiate
between these two types of instructions. The MSB of the instruction indicates the flag bit; if it is
equal to ‘1’ then the instruction is an OpCode. If the flag bit is equal to ‘0’ then the instruction is
a memory address in the RAM. Six bits are reserved as register enable bits, for three registers (X,
Y and Write-Register), memory write-enable bit, and shift left and shift right bits. Shift left and
shift right bits allow for communication between two PEs. This instruction is then passed onto
the controller. The following is an example of the format for each instruction:

OpCode Memory Instruction

1 1 0 1 0 1 0 1 0 0 0 0 0 0 0

Enable X

Enable Y
Enable Memory
Shift Right

Shift Left
Enable Write
Register

Flag
Bit

OpCode

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Flag Bit

Address

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

16

Figure 4: Minimalist microcoded sequencer [3]

4.1.2 The Controller

The Controller is based upon a simple decoder implemented in the code by using a case
statement. There are three possible cases based on the two most significant bits of the instruction
fetched by the sequencer. The controller either selects the address to read data from the RAM
(MSBs are 00) or it selects an address to write data back to RAM (if MSBs are 01) or issues an
OpCode and other signals to PE (if MSBs of instruction are none of the above two cases).
So its either the PE if the instruction is an OpCode or to the local RAM if the instruction is a
memory address.

The controller interprets the instruction as an address or an OpCode and sets the correct signals
corresponding to the instruction. If the flag bit is equal to 1 the controller moves into the
operation state, sets the OpCode for the PE and enables the correct registers. If the flag bit is
equal to 0, the controller moves to the read state, and sets the address bit to the corresponding
address in the instruction and outputs it to the RAM.

In the reset signal is set high, the controller sets all read and write enable flags to zero and hence
data is also set to zero. If the flag = ‘0’ then the controller moves to the read state, and issues the
instruction to the local RAM. The eight LSBs are sent to the RAM and the rest of the bits are
masked off. If the flag = ‘1’ then the controller moves to the operation state. Here, the MSB is
masked off, and the next eight bits are sent as the OpCode to the PE. The last six bits of the
instruction contain the enabling bits for each of the registers X, Y, and Write-Register. It also
contains the memory write enable bit and shift left and shift left bits for communication
neighboring PEs.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

17

Figure 5: Controller

We will require two different types of memory blocks, ROM and RAM. The memory
blocks, which are already present on the Flex10k20 will be sufficient for our initial
design of C.RAM. The ROM memory block will contain the operational instructions and
memory instructions. These will be fetched by the sequencer and sent to the controller.

RAM memory blocks will be used for reading and writing the data to and from by the PE. Eight
bits comprise each address of the memory block, thus a maximum of 256 lines can be used on the
Flex10K20.

4.1.3 Memory

We will require two different types of memory blocks, ROM and RAM. The memory
blocks, which are already present on the Flex10k20 will be sufficient for our initial
design of C.RAM. The ROM memory block will contain the operational instructions and
memory instructions. These will be fetched by the sequencer and sent to the controller.

RAM memory blocks will be used for reading and writing the data to and from by the PE. Eight
bits comprise each address of the memory block, thus a maximum of 256 lines can be used on the
Flex10K20.

Controller

2Instruction (15 downto 0)

Clock

8

8

7

Address to RAM

OpCode to PE

Signals to PE

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

18

4.2 C-RAM Architecture

The C-RAM structure will be implemented using the SRAM memory cells on the Altera board.
The sense amplifiers at the bottom of each column may not be necessary if we use SRAM cells
instead of the traditional DRAM cells that the C-RAM was implemented on.

Figure 6: Simplified C-RAM Architecture [4]

Figure 6 shows a simplified C-RAM configuration with the memory cells, sense amplifiers, row
and column decoders and processing elements (PEs). SIMD instructions come from a sequencer
in the main controller. The instructions are then decoded and routed by the individual PEs
according to the common SIMD instructions.

4.3 Processing Element (PE)

Figure 7 shows one PE structure that we can use for the C-RAM. As mentioned before the sense
amps may not be necessary when the C-RAM is implemented using SRAM memory cells.

The ALU is a 256 function ALU that is based on an 8-by-1 MUX. The op-code coming from the
main controller in the global instruction bus is an 8-bit value that operates on three inputs
commonly from the X, Y registers and the PEs data store. The ALU operation is received as a
truth table in the op-code to the data inputs of the MUX. The ALU supports bit-serial
computation and has left right and wired-AND bussed communication for inter-element (adjacent
PEs) operations such as left-right shifting. During the communication between adjacent PEs, the
ALU is used to route signals. The output of the ALU goes to the X, Y registers, memory and
write-enable register. The controller detects an operation-complete signal from the PEs and sends
out the next OpCode or instruction for the next operation (see Figure 7) [2, 4].

The write-enable register is used for conditional operation implementations as a handshaking
between the main PE module and its memory store [4].

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

19

Figure 8: Flow Diagram for PE operation [2, 4].

Figure 7: Diagram for PE operation with 256 instructions [2]

P E r e a d y s i g n a l d e t e c t e d b y
h o s t c o n t r o l l e r

O p c o d e s e n t t o A L U

A L U d e t e c t s o p c o d e

A L U r o u t e s o r c o m p u t e s
o p e r a t i o n w i t h d a t a f r o m X , Y
a n d M (f r o m m e m o r y)

A L U o u t p u t s r e s u l t s t o X , Y a n d
m e m o r y (t h r o u g h w r i t e e n a b l e
reg i s t e r)

P E s e n d s d a t a c o m p u t a t i o n -
c o m p l e t e f l a g

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

20

4.4 User Interface

Push Button with Debounce
To make the input and output signals slower for the purpose of demonstration of operation, the
input clock is controlled from a Push Button. The push button is debounced before being used as
input clock to the system.

LED 7 Segment Display
The four 7 segment displays on the board are used to indicate the values that are in the X and Y
registers and the ram at a specific clock cycle.

LCD Display

The Optrex DMC 50218 LCD display is used with the two 7-segment LED displays to indicate
the type of instructions (OpCode or address) that are being sent to the PEs. As an instruction is
read from the ROM and processed, the instruction is also displayed on the LCD. The VHDL code
for the LCD display is based on the code from the CDMA group. The code is modified to display
the instructions for the C-RAM processor.

The LCD works on the 25 MHz system clock but the push button increments the different screens
to be displayed. The progress signal is connected to the push button.

To initialize the LCD display, the following steps were used.

RS R/W Data Time Held Purpose
0 0 00000000 7 cycles (2.8ms) Allow LCD to

warm up
0 0 00110000 15 cycles

(6ms)
Set display to 1
line, 8 bit data
interface

0 0 00001000 1 cycle
(0.4 ms)

Turn display off

0 0 00000001 4 cycles
(1.6 ms)

Clear display

0 0 00000110 1 cycle
(0.4 ms)

Set display to
increment on
write, no shift

0 0 00001111 4 cycles
(1.6 ms)

Move cursor to
home position

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

21

EXPERIMENTS

During the course of the project we experimented a few things, which proved to be very
important in determining the exact direction of progress.

5.1 Initially we didn’t try to use mif files for the instructions and thought about feeding them
through keypad but it didn’t turn out to be a good idea. After meeting with Dr. Elliott we
decided to use mif file to store instructions and ream them from ROM. We also stored the
data to be processed in the mif files.

5.2 Another problem we had was with the controller and it proved to be the hardest part to code.
Initially we experimented with a state machine, which would go though three states (Idle,
read, operation). This idea didn’t prove to be too good as it caused timing problems. All
components worked correctly separately but when connected together in the top-level file
caused problems. We tried using four states (Idle, read, write, operation) but this idea didn’t
work too well. Finally we used case statements to change states and worked.

5.3 We initially used only one PE for the C-Ram computer and later we used two PE’s and two
separate RAMs one for each PE. By our calculations we find that we have :

1152 - 344 (total cells with one PE) = 808.
5.2.1.1 / 24 (size of logic cells for one PE) = 33.6

Thus we can safely add up to 30 PEs to our PE array.

5.4 Algorithms:

5.4.1 The multiplication algorithms did not work properly. We tried taking a four bit number,
and with the use of a counter, looped it to calculate addition N times.

5.4.2 The subtraction algorithm is also not providing the correct results. Our results show that
the 2’s complement bits that are read back from the RAM are inverted. This provides an
incorrect result.

5.5 Another important feature in this project was working with two clocks, one for reading the
instructions from the mif file in ROM. Initially the clock to read from ROM was set to a
frequency three times less than system clock but it proved not to be a very good idea. Then
we used a clock period of 20ns for the system clock and 40ns for the ROM clock and it
worked. The timing problem was the biggest problem we faced and it was hard to solve. The
time period for ROM clock was set to high value because for one instruction system clock
had to change a couple of states and if clocks with same frequency were used or if only one
clock was used it didn’t give the correct sequence of operations to get the desired result.

5.6 The instructions mif file was also experimented a lot since as all the operations (arithmetic
operations, enable and disable signals) are actually controlled by the instructions form the mif
file. The instructions decide the read and write addresses and also the op-code for the PE. We
experimented a lot before we finally came with a correct sequence of instructions to carry out
the things satisfactorily. The problem was enabling and disabling the registers and memory at
correct time.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

22

SCHEMATICS

6.1 Push Buttons
The MAX_PB1 and MAX_PB2 push buttons are used as input clocks to the FPGA. They provide
active-low signals and are pulled-up through 10K ohm resistors. Connections to these signals are
made by inserting one end of the hook-up wire into the push button female header. The other end
of the hook-up wire should be inserted into appropriate female header assigned to the I/O pin of
the FPGA device [1].

6.2 LCDs
An Optrex DMC 50218 LCD module is used to display the opcodes sent the PE and addresses for
read and write.

6.3 7-Segment Displays
The following is a schematic connecting the FPGA on the Altera board to three seven segment
display. In our project, we will be using three 7 segment display.

FPGA

7-segment
 display

7-segment
 display

LCD
 display

 X /Y register

Memory

Register select

Lcd read / write

Data

Enable Signal

GND

Power

Contrast Control

7

7

8

Figure 9: Hardware Schematic of two seven segment and LCD displays to the FPGA

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

23

TEST BENCHES

7.1 Controller Test Bench

A simple test bench was created to test the controller. (See Page 33) Inputs of clock, reset and an
instruction signals were inputted into the controller and the outputs of OpCode, En_X, En_Y,
En_memory, address_rd, address_wr and the states of the controller are verified.

Initially, an address instruction is sent to the controller, from which it is set to read the data. The
controller recognizes the instruction as an address to read from, and enables the address_rd signal
for the read cycle. Next, an OpCode instruction is sent to the controller. The controller
recognizes this instruction as an OpCode, by the MSB of the instruction acting as a flag. The
OpCode is sent to the PE and the corresponding registers are enabled in the PE and RAM.
Finally, an address instruction to write too, is inputted into the controller. The controller
recognizes this instruction as an address to write to by the second MSB of the instruction acting
as a read/write flag. The controller sets the address_wr signal to high.

7.2 PE Test Bench

The PE test bench tests the C.RAM PE. (See Page 36). Inputs of clock, enable_x, enable_y, m
and OpCode are fed into the test bench and the corresponding outputs of the PE are verified. The
PE receives the OpCode and enabling signals, and then performs the computation. Results are
stored into registers which are enabled and/or the RAM memory. Note: For the test bench the
RAM interface is not being used, rather a simple register is used to act as RAM. Writing and
reading to RAM is verified through this register.

7.3 PE Top_Level

The Top_Level test bench, simply inputs a clock and reset signals into the design. (See Page 38).
The top-level CRAM component uses instructions stored in the ROM and data stored in the RAM
to perform its computations. All the major components: controller and PE are self -contained in
the top-level design, and require no external inputs. The only input the system requires is the
clock.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

24

INDEX OF SIMULATION WAVEFORM

8.1 Controller

The controller was thoroughly tested with a number of test cases. The controller functioned
correctly, as it passed from its initial state of idle to either the operation state or the read state
depending on the instruction received. On the Controller Waveform 1 in the Appendix an
instruction containing an OpCode and enable bits was sent as an input. The controller received
the instruction and moved into the operation state by correctly identifying the instruction as an
OpCode from the flag bit (which is set to 1). The controller then set the OpCode signal to the
correct OpCode, in this case OpCode = 10101010 and set the correct enable bits, En_X and
En_Memory.

In Controller Waveform 2 we have sent varied the instructions from those, which are OpCodes to
those, which contain RAM addresses. Again the controller received the instruction in the idle
state and then moved into the next state corresponding to the instruction. From 0 to 500ns, and
instruction = 1101010100001010 was sent into the controller. The controller again correctly
identified this as an OpCode from the flag bit, set the OpCode = 10101010 and initiated the En_X
and En_Memory signals to high. The controller then returned back into its starting state of idle to
receive the next instruction. Between 500 ns and 1.0 us an instruction = 0000000000000001 is
inputted into the controller. The controller identifies this as an RAM address from the flag bit
and sets the address signal = 00000001. (As mentioned earlier, only the 8 least significant bits
are used as the address, the rest are masked off). Again the controller, then returns to the idle
state to await the next instruction.

We can see that the controller is functioning correctly. It interprets the instruction as either an
OpCode or an address and sets the correct signals corresponding to the instruction. If the flag bit
is equal to 1 the controller moves into the operation state, sets the OpCode for the PE and enables
the correct registers. If the flag bit is equal to 0, the controller moves to the read state, and sets
the address bit to the corresponding address in the instruction and outputs it to the RAM.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

25

8.2 Controller & ROM

The next phase of testing was to test the controller with the ROM. A mif file was created which
contained instructions for the controller and was stored in the ROM. A simple counter was used
to access the ROM and pass on the instructions to the controller. To test the controller working
with the ROM, we simply verified, the outputs of the controller with the instructions in the mif
file.

In Controller + ROM Waveform in the Appendix. The signal “junk” is equal to the instructions in
the mif file and is inputted into the controller. By verifying which instruction is sent against what
signals are outputted, we can determine if the controller and ROM components are functioning
correctly. The first instruction in the mif file is an address of 0000000000000000. We can see
this on signal junk. The controller moves from the idle state to the read state and interprets the
instruction from the mif file as an RAM address, thus sets the address line = 00000001. The
controller then moves back to the initial state of idle. The next instruction in the mif file is an
OpCode, junk = 1101010100000010. The controller interprets this instruction as an OpCode, and
moves into the operation state. It then sets the OpCode = 10101010, and sets the En_X = 1, as
determined by the instruction. The controller returns to the idle state. From 200ns to 275ns, an
address instruction = 0000000000000101 is sent to the controller. (This is the third instruction in
the mif file). Again we can see the controller moves into the correct state of read and sets the
address signal to 0000101. Finally, the next instruction in the mif file is an OpCode, and from
275ns to 350ns, instruction = 1101000000000100 (seen as the junk signal) is sent to the
controller. The controller sets the OpCode = 10100000 and sets the En_Y signal = 1.

By verifying the correct outputs of the controller against the instructions in the mif file stored in
the ROM we see that the controller is correctly receiving the instructions from the ROM and
outputting the correct results to either the PE or the RAM.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

26

8.3 Test cases for the PE

The PE takes in the OpCode from the controller along with some other signals to enable the
registers (x, y and write enable register) RAM, buses. The controller also sends in the shift right
and shift left signals to the PE. We used internal signals port mapped to outputs to check the
contents of the registers and memory.
We haven’t done the RAM interface for writing the data back in to RAM so we are using a
register as RAM and writing data back to that register.
The Enable signals are set manually in this PE simulation but for the top level File
“ram_cont_ram.vhd” all the control signals are generated by the controller.
In the waveform attached in the Appendix we simulated following test cases.

OpCode Operation Other signals Expected Result Result
Obtained

10101010 load x or y from
data stored in mif
file

Enable x is set
to high

load the data at first
memory location into
x

x = 1
as data in
RAM is 1

11110000 writing data back
to RAM from x
register

write enable
is set to 1

RAM should go to
logic 1 as x is 1

RAM=1

10101010 load x or y form
the data stored in
mif file

Enable y is set
to high

Load data from next
memory location into
y

y = 1 as next
data is 1.

10101010 load x or y form
mif file

enable y is set
to high

Load data from next
location in memory
into y

y =0 as next
data is 0

10100000 x = x and m
performs the and
operation

x is enabled to
write the
result of and
operation in y
register

Data in register x is 1
and data in next
memory location is 0
so and operation
gives a 0

x register
goes low
i.e. 0

01100110 y= x xor m
performs an x-or
operation

y is enabled Data in register x is 1
and data in next
memory location is 0
so xor operation
gives 1

y register
goes high

Since we changed the controller from State machine to a selector, the following test cases are
simulated to demonstrate that the PE now works better.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

27

CASE1: (M =! Y)
Reads data from a mif file (ram.mif) in the RAM.
The data read from the RAM is inverted and written to register y.
The data in register y is written back to RAM.

The mif files and the simulations for the CASE1 are attached. The mif files are labeled according
to the data they have. The simulations for the top-level test cases are so arranged that 1st page
shows the whole simulation to see if the result is correct or not. Then in next few pages the
simulation is spread over a few pages to see the instructions and op-code and addresses changing
clearly.

So for CASE1 data in mif file is read as 0,0,11 and inverted and written to y as 1,1,0,0 and same
is written back to RAM as 1,1,0,0.

CASE2: (ADDITION)

Data is read from the RAM (B[0]) and sent to register X.
Data is read from the RAM (A[0]) and its ANDED with data already in X and sent to Y.
Data in X is XOR with data in RAM (A[0]) and written into and X as well as into RAM.
RAM is disabled for Writing.

These steps are repeated three more times with one additional step and we get the
final sum of two four bit numbers.

The Data in the mif file(ram_sum.mif) is B= 1001 and A = 1001
The sum being one bit at a time and written back to RAM should be Sum =0010
We get 0010, which is the correct result therefore C-RAM is working properly.
Since we changed the controller from State machine to a selector it seems to work better.

8.4 User Interface (7 Segment LEDs and LCD)

Clock Divider:
The clock divider takes in the 25MHz system clock as input and outputs the required clock speed
needed for the circuits. In our system, only the debounce circuit needs to work on a 100Hz clock.

Debounce on the Push Buttons: The output of the debounce changes only when the push button
is held for longer than the debounce period (1us).

7 segment LEDs: The LEDs are simulated using the code from Lab 3 where a counter is used to
display values onto the LEDs.

LCD
The LCD module takes in the 25MHz system clock and run it through a delay to get the right
timing for the LCD to initialize and to display characters from the a mif file.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

28

Index to the Simulation Waveforms Page number
Controller 63
Controller & ROM Simulation 64
C-RAM Simulation (PE = 1) M = !Y 66
C-RAM Simulation (PE = 1) Addition 67
C-RAM Simulation (PE = 2) Addition 68

Index to the Code
Design File Description Compile Function

Correctly
Comments Page number

Display_7seg
.vhd

Decoder to display
correct outputs on
the 7-segment
display

Yes Yes

58

Debounce Circuit used to
debounce the
pushbutton input

Yes Yes

46

LCD LCD display Yes Yes
50

Pe_dp_loop.v
hd

This file contains
the architecture
for the PE

Yes Yes Takes the OpCode
and the enable
control signals as
inputs, and outputs
the mux result to
the corresponding
registers or
memory

51

Rom_control.
vhd

This file contains
the architecture
for the controller
and the ROM

Yes Yes Instructions are
stored in a mif file
located in the
ROM and are fed
sequentially to the
controller. The
controller
interprets these
insructions as
either an address
or and OpCode.

58

top_level.vhd This is the top-
level file
connecting the
Rom + Controller
+ PE + RAM

Yes Yes This is the top
level file
containing all the
modules of
C.RAM. Data is
being read from
RAM, operated on
by the OpCode,
and being written
back into RAM.

37

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

29

REFERENCES

[1] Altera Corporation (1997). UP1 Board Documentation

[2] Elliott, Duncan G., Stumm, Michael, Snelgrove, W. Martin, Cojocaru,
 Christian, McKenzie, Robert (1999). Computational RAM: Implementing
 Processors in Memory. (p32 – 41) IEEE Design and Test of Computers January-March 1999

[3] Elliott, Duncan G. (1998). Computational RAM: A Memory – SIMD Hybrid
 PhD Thesis, The University of Toronto.

[4] Aklilu, Noah, Elliott, Duncan G., Wickman, Curtis A. A Tightly Coupled Hybrid SIMD/SISD
 System.
 MSc Thesis, The University of Alberta.

[5] Luker, Jarrod. RISC System Implementation in a FPGA [Online]. Available:
vailablehttp://cegt201.bradley.edu/~rekul/msee_project/documents/risc_fpga_pr oposal.pdf

[6] Bensler, Tim, Chan, Eric (1999). Data Compression Co-processor.
 Available:http://www.ee.ualberta.ca/~elliott/ee552/projects/1999_w/dataCompression/
 [1991, March 29].

[7] Rivest, Micheal, Lawson, Kelly and Eriksen, Charlene (1999). uCMK
Microprocessor.Available:http://www.ee.ualberta.ca/~elliott/ee552/projects/1999_w/microproces
sor/report.html [1999, March 30].

[8] Benbow, Wendy, Behm, Rob and Joly, Craig (2001). LLAMA Loadable Logic Arcade
 Machine Architecture. Avaliable:
 http://www.ee.ualberta.ca/~elliott/ee552/projects/2001_w/llama/ (2001, April 2)

[9] Cheung, Eric, Cheng, Felicia, Li, David and Kwan, Tim. (2000). SRAM Interfacing Basics
[Online].
 Available:
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2000_w/interfacing/sram_basics/
 Sram.html [2001, February 10].

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

30

APPENDIX

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

31

VHDL Codes

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

32

-- Filename: tester.vhd
-- Descripton: Testbench for controller
-- By: CRAM Group (referenced from EE 552 Class Notes)
-- Date: November 12, 2001

library ieee;
use ieee.std_logic_1164.all;

entity tester is

end tester;

architecture test of tester is

-- send instructions to controller and verify results

component control2
generic(

total : positive := 15;
 size : positive := 7);

port (
 clock, reset : in std_logic;
 instruction : in std_logic_vector (total downto 0);
 address_rd,address_wr : out std_logic_vector (size downto 0);
 opcode : out std_logic_vector (size downto 0);
 En_X, En_Y, En_memory : out std_logic;

 select1, dout1 : out std_logic_vector(1 downto 0);
 En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out std_logic
);

end component;

signal clock, reset : std_logic;
signal instruction : std_logic_vector(total downto 0);

begin

control_check : control2
port map(
clock => clock,
reset => reset,
instruction => instruction
);

clock_period : process
begin

clock <= '0';
wait for 40 ns;
clock <= '1';
wait for 40 ns;

end process clock_period;

instruction_test : process

begin
 -- instructions for addition of two 4 bit numbers.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

33

wait for 120 ns;
instruction <= "0000000000000000"; -- test for address
wait for 120 ns;
instruction <= "1101010100000010"; -- test for opcode
wait for 120 ns;
instruction <= "0000000000000100"; --test for address
wait for 120 ns;
instruction <= "1101000000000100"; -- test for opcode

 wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;
instruction <= "1000000000000000"; -- test for opcode
wait for 120 ns;

instruction <= "0000000000000001"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

 instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
instruction <= "00000000000000101"; -- test for address
wait for 120 ns;

 instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

 instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;

instruction <= "0000000000000010"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

 instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
instruction <= "0000000000000110"; -- test for address
wait for 120 ns;

 instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

 instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;

 instruction <= "0000000000000011"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

 instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
instruction <= "0000000000000111"; -- test for address
wait for 120 ns;

 instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

 instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;

end process instruction_test;
end test;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

34

-- Filename: tester2.vhd
-- Descripton: Testbench for PE
-- By: CRAM Group (referenced from EE 552 Class Notes)
-- Date: November 12, 2001

library ieee;
use ieee.std_logic_1164.all;

entity tester2 is
end tester2;

architecture test2 of tester2 is

-- send instructions to controller and verify results

component pe_dp_loop
port (clock,enable_x,enable_y, write_enable: in std_logic;

 bus_enable,shift_right,shift_left : in std_logic;
 opcode : in std_logic_vector(7 downto 0);

 m_test : out std_logic_vector(0 downto 0);
 m: in std_logic_vector(0 downto 0);

 x_int,y_int,mux_d : out std_logic_vector (0 downto 0)
 --data_written_back_toRAM

);

end component;

signal clock, enable_x, enable_y, bus_enable, write_enable : std_logic;
signal shift_right, shift_left, m : std_logic;
signal opcode : std_logic_vector(7 downto 0);

begin

pe_check : pe_dp_loop
port map(
clock <= clock,
enable_x <= enable_x,
enable_y <= enable_y,
bus_enable <= bus_enable,
shift_right <= shift_right,
shift_left <= shift_left,
m <= m,
opcode <= opcode
);

clock_period : process
begin

clock <= '0';
wait for 40 ns;
clock <= '1';
wait for 40 ns;

end process clock_period;

opcode_test : process

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

35

begin
wait for 150 ns;
opcode <= "10101010"; -- test for opcode
enable_x <= '1';

 m <= '1';

wait for 150 ns;
opcode <= "1111000"; -- test for opcode
write_enable <= '1';

wait for 150 ns;
opcode <= "10101010";
enable_y <= '1';
m <= '1';

wait for 150 ns;
opcode <= "10100000";
enable_x <= '1';
m <= '0';

wait for 150 ns;
opcode <= "01100110";
enable_y <= '1';
m <= '0';

end process opcode_test;

end test2;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

36

-- Filename: tester3.vhd
-- Descripton: Testbench for top-level design of CRAM
-- By: CRAM Group (referenced from EE 552 Class Notes)
-- Date: November 12, 2001

library ieee;
use ieee.std_logic_1164.all;

entity tester3 is
end tester3;

architecture test3 of tester3 is

-- send instructions to controller and verify results

component top_level is
port (clock,reset: in std_logic;

Instruction : out std_logic_vector(15 downto 0);
 display1,display2,display3: out std_logic_vector(6 downto 0);

RAM_value_read : out std_logic_vector (0 downto 0);
 RAM_value_written : out std_logic_vector (0 downto 0);

 xreg,yreg,muxout,muxin : out std_logic_vector(0 downto 0);
 write_ad,read_ad : out std_logic_vector(7 downto 0);
 enx,eny, RAM_we, Bus_Enable : out std_logic

);
end component top_level;

signal clock, reset : std_ulogic;

begin

top_level_check : top_level
port map(
clock => clock,
reset => reset
);

clock_period : process
begin

clock <= '0';
wait for 50 ns;
clock <= '1';
wait for 50 ns;

end process clock_period;

--- reset process not used currently.
--reset_test : process
--begin

--reset <= '1';
-- reset <= '0'; after 5 ns;
-- wait for 1 ms;
--end process

end test3;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

37

-- Filename: top_level.vhd
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library lpm;
use lpm.lpm_components.all;

entity top_level is
generic(

 zero : positive := 0;
 size : positive := 7);

port (clock,reset: in std_logic;
--memory_value : out std_logic_vector (zero downto 0);

 --opcode : out std_logic_vector(size downto 0);
 Instruction : out std_logic_vector(15 downto 0);

 --display1,display2,display3: out std_logic_vector(size - 1
downto 0);

 RAM_value_read : out std_logic_vector (zero downto 0);
 RAM_value_written : out std_logic_vector (zero downto 0);

 -- result : out std_logic_vector(zero downto 0);
 xreg,yreg,muxout,muxin : out std_logic_vector(zero downto
0);
 write_ad,read_ad,opcode_out : out std_logic_vector(size
downto 0);
 enx,eny, RAM_we, Bus_Enable : out std_logic

 -- En_X, En_Y, junk_we : out std_logic;
 -- En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out

std_logic
);

end top_level;

architecture structural of top_level is
signal internal_add_rd,internal_add_wr,Int_opcode :

std_logic_vector (size downto 0);
signal internal_enable_memory : std_logic;

 signal Int_En_Write_Reg, Int_Shift_R, Int_Shift_L : std_logic;
 signal Int_Bus_Enable,Int_En_X,Int_En_Y : std_logic;
 signal memory_value : std_logic_vector (zero downto 0);
 signal xreg1,yreg1,muxout1 :std_logic_vector(zero downto 0);
 signal rom_data : std_logic_vector(zero downto 0);
 signal RAM_value_int : std_logic_vector(zero downto 0);

--signal Int_RAM_data_in : std_logic;
--signal Int_Write_Enable_Register;

 component rom_control is
generic(
 zero : positive := 0;
 size : positive := 7);
port(

clock, reset : in std_logic;
address_rd,address_wr : out std_logic_vector (size downto

0);
 opcode : out std_logic_vector (size downto 0);

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

38

 En_X, En_Y, En_memory : out std_logic;
En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out std_logic;
junk : out std_logic_vector(15 downto 0)

);
end component rom_control;

component rom2 is
generic (rom_data_width : positive := 1; -- width of data in rom

 rom_address_width : positive := 8;-- width of address in rom
 rom_data_size : positive := 13); -- number of values in rom

PORT(clock : in std_logic;
 address1 : in std_logic_vector(7 downto 0);

rom_data: out std_logic_vector(rom_data_width -1 downto 0));
-- data in address indicated by "counter"

end component rom2;

component ram2 is
generic (rom_data_width : positive := 1; -- width of data in ram
rom_address_width : positive := 8; -- width of address in ram
rom_data_size : positive := 13); -- number of values in ram
PORT(clock: in std_logic; --system clock

memory_address : in std_logic_vector(7 downto 0);
 write_enable : in std_logic;

 data_to_ram : in std_logic_vector (rom_data_width -1 downto 0);
ram_out : out std_logic_vector(rom_data_width -1 downto 0));

-- output data
end component ram2;

--component dqff is
--port (clock,enable : in std_logic;
-- D: in std_logic_vector(0 downto 0);
-- Q: out std_logic_vector(0 downto 0)
--);
-- end component dqff;

component pe_dp_loop
 generic(

 zero : positive := 0;
 size : positive := 7);

port (clock,enable_x,enable_y: in std_logic;
 bus_enable,shift_right,shift_left : in std_logic;
 opcode : in std_logic_vector(size downto 0);
 --x,y: in std_logic;
 m_test : out std_logic_vector(zero downto 0);
 m: in std_logic_vector(zero downto 0);
 --y: buffer std_logic;
 x_int,y_int,mux_d : out std_logic_vector(zero downto 0)

);
end component pe_dp_loop;

--component display_7seg is
-- generic(
-- width :positive := 5
--);
-- port(
-- clk : in std_logic;
-- input : in std_logic_vector(3 downto 0);
-- output: out std_logic_vector(width + 1 downto 0)
--);
-- end component display_7seg;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

39

--component display7seg2 is
--generic(width :positive := 4;

 zero : positive := 0);

-- port(
-- clk: in std_logic;
-- input1: in std_logic_vector(zero downto 0);
-- input2: in std_logic_vector(zero downto 0);
-- output : out std_logic_vector(width + 2 downto 0)
--);
--end component display7seg2;

begin

 RC_Component : rom_control
 port map(

reset => reset,
Clock => clock,

 --clock_rom => clock_rom,
address_rd => internal_add_rd,

 address_wr => internal_add_wr,
opcode => Int_opcode,
En_X => Int_En_X,
En_Y => Int_En_Y,

 En_memory => internal_enable_memory,
En_Write_Reg => Int_En_Write_Reg,
Shift_R => Int_Shift_R,
Shift_L => Int_Shift_L,
Bus_Enable => Int_Bus_Enable,
junk => Instruction

);

 Rom_with_data : rom2
 port map(
 clock=>clock,
 address1 => internal_add_rd,

 rom_data=>memory_value
);
 R2_Component : ram2

port map(
clock => clock,
memory_address => internal_add_wr,
write_enable => internal_enable_memory,
data_to_ram => muxout1,
ram_out => RAM_value_int
);

--Data_write_back_RAM: dqff
 -- port map (clock=>clock,
 -- enable=>internal_enable_memory,
 -- D=>muxout1,
 -- Q=>RAM_value_int
 --);

 PE : pe_dp_loop
 port map(
 clock => clock,
 enable_x => Int_En_X,
 enable_y => Int_En_Y,
 bus_enable => Int_Bus_Enable,

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

40

 shift_right => Int_Shift_R,
 shift_left => Int_Shift_L,
 x_int=>xreg1,
 y_int=>yreg1,
 mux_d=>muxout1,

 opcode => Int_opcode,
 --wr_en_reg_output => Int_Write_Enable_Register,
 --write_reg_en => Int_En_Write_Reg,

 m => memory_value
);

 --display_op_3to1: display_7seg
 -- port map (
 -- clk => clock,
 -- input =>Int_opcode(width-1 downto 0) ,
 -- output =>display1
 --);
 -- display_op_7to4: display_7seg
 -- port map (
 -- clk => clock,
 -- input => Int_opcode(size downto width) ,
 -- output =>display2

 --);
 -- display_x_y: display7seg2
 -- port map (
 -- clk => clock,
 -- input1 =>xreg1,
 -- input2 => yreg1,
 -- output => display3
 --);

--p1: process(clock)
 -- begin
 --mux_d<=a;
 --m_test<=m;
 xreg<=xreg1;
 yreg<=yreg1;
 muxout<=muxout1;
 enx<=Int_En_X;
 eny<=Int_En_Y;
 RAM_value_read <= memory_value;
 Bus_Enable <= Int_Bus_Enable;
 RAM_value_written <= Ram_value_int ;
 muxin <= memory_value;
 write_ad<=internal_add_wr;
 read_ad<=internal_add_rd;
 opcode_out<=Int_opcode;
 -- end process p1;
RAM_we <= internal_enable_memory;
end structural;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

41

-- Filename: control2.vhd
--

library ieee;
use ieee.std_logic_1164.all;
library lpm;
use lpm.lpm_components.all;

package controller_pkg is

component control2 is
generic(

 size : positive := 7);

port (
 clock, reset: in std_logic;
 instruction : in std_logic_vector (15 downto 0);
 address_rd,address_wr : out std_logic_vector (size downto 0);
 opcode : out std_logic_vector (size downto 0);
 En_X, En_Y, En_memory : out std_logic;

 En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out std_logic
);

end component control2;

end package controller_pkg;

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.controller_pkg.all;

library lpm;
use lpm.lpm_components.all;

entity control2 is
generic(

 size : positive := 7);

port (
 clock, reset : in std_logic;
 instruction : in std_logic_vector (15 downto 0);
 address_rd,address_wr : out std_logic_vector (size downto 0);
 opcode : out std_logic_vector (size downto 0);
 En_X, En_Y, En_memory : out std_logic;

 select1, dout1 : out std_logic_vector(size-6 downto 0);
 En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out std_logic
);

end entity control2;

architecture mixed of control2 is

 signal sel : std_logic_vector(1 downto 0);
 signal dout : std_logic_vector(1 downto 0);

begin

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

42

sel <= instruction(15 downto 14);

process (reset,clock)
 begin
 if reset = '1' then

opcode <= "00000000";
Bus_Enable <= '0';
En_X <= '0';
En_Y <= '0';
En_memory <= '0';
Shift_L <= '0';
Shift_R <= '0';

 En_Write_Reg<='0';

elsif (clock'event and clock = '1') then

 case sel is
 when "00"=> dout <= "00";
 address_rd <= instruction(size downto 0);

 when "01"=> dout <= "01";
 address_wr <= instruction(size downto 0);

 when others => dout <= "10";
 opcode <= instruction(14 downto size);

 Bus_Enable <= instruction(0);
 En_X <= instruction(1);

 En_Y <= instruction(2);
 En_memory <= instruction(3);

 Shift_L <= instruction(4);
 Shift_R <= instruction(5);
 En_Write_Reg <= instruction(6);

 end case;
end if;
 end process;

select1<=sel;
dout1<=dout;

end mixed;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

43

-- Filename: clk_div.vhd
-- Description: clock divider

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
USE IEEE.STD_LOGIC_ARITH.all;
USE IEEE.STD_LOGIC_UNSIGNED.all;

ENTITY clk_div IS

PORT
(

clock_25Mhz : IN STD_LOGIC;
clock_1MHz : OUT STD_LOGIC;
clock_100KHz : OUT STD_LOGIC;
clock_10KHz : OUT STD_LOGIC;
clock_1KHz : OUT STD_LOGIC;
clock_100Hz : OUT STD_LOGIC;
clock_10Hz : OUT STD_LOGIC;
clock_1Hz : OUT STD_LOGIC);

END clk_div;

ARCHITECTURE a OF clk_div IS

SIGNAL count_1Mhz: STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL count_100Khz, count_10Khz, count_1Khz : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL count_100hz, count_10hz, count_1hz : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL clock_1Mhz_int, clock_100Khz_int, clock_10Khz_int, clock_1Khz_int: STD_LOGIC;
SIGNAL clock_100hz_int, clock_10Hz_int, clock_1Hz_int : STD_LOGIC;

BEGIN
PROCESS
BEGIN

-- Divide by 25
WAIT UNTIL clock_25Mhz'EVENT and clock_25Mhz = '1';

IF count_1Mhz < 24 THEN
count_1Mhz <= count_1Mhz + 1;

ELSE
count_1Mhz <= "00000";

END IF;
IF count_1Mhz < 12 THEN

clock_1Mhz_int <= '0';
ELSE

clock_1Mhz_int <= '1';
END IF;

-- Ripple clocks are used in this code to save prescalar hardware
-- Sync all clock prescalar outputs back to master clock signal

clock_1Mhz <= clock_1Mhz_int;
clock_100Khz <= clock_100Khz_int;
clock_10Khz <= clock_10Khz_int;
clock_1Khz <= clock_1Khz_int;
clock_100hz <= clock_100hz_int;
clock_10hz <= clock_10hz_int;
clock_1hz <= clock_1hz_int;

END PROCESS;

-- Divide by 10
PROCESS

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

44

BEGIN
WAIT UNTIL clock_1Mhz_int'EVENT and clock_1Mhz_int = '1';

IF count_100Khz /= 4 THEN
count_100Khz <= count_100Khz + 1;

ELSE
count_100khz <= "000";
clock_100Khz_int <= NOT clock_100Khz_int;

END IF;
END PROCESS;

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_100Khz_int'EVENT and clock_100Khz_int = '1';
IF count_10Khz /= 4 THEN

count_10Khz <= count_10Khz + 1;
ELSE

count_10khz <= "000";
clock_10Khz_int <= NOT clock_10Khz_int;

END IF;
END PROCESS;

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_10Khz_int'EVENT and clock_10Khz_int = '1';
IF count_1Khz /= 4 THEN

count_1Khz <= count_1Khz + 1;
ELSE

count_1khz <= "000";
clock_1Khz_int <= NOT clock_1Khz_int;

END IF;
END PROCESS;

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_1Khz_int'EVENT and clock_1Khz_int = '1';
IF count_100hz /= 4 THEN

count_100hz <= count_100hz + 1;
ELSE

count_100hz <= "000";
clock_100hz_int <= NOT clock_100hz_int;

END IF;
END PROCESS;

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_100hz_int'EVENT and clock_100hz_int = '1';
IF count_10hz /= 4 THEN

count_10hz <= count_10hz + 1;
ELSE

count_10hz <= "000";
clock_10hz_int <= NOT clock_10hz_int;

END IF;
END PROCESS;

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_10hz_int'EVENT and clock_10hz_int = '1';

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

45

IF count_1hz /= 4 THEN
count_1hz <= count_1hz + 1;

ELSE
count_1hz <= "000";
clock_1hz_int <= NOT clock_1hz_int;

END IF;
END PROCESS;

END a;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

46

-- Filename: debounce.vhd
-- Description: debounce circuit

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
USE IEEE.STD_LOGIC_ARITH.all;
USE IEEE.STD_LOGIC_UNSIGNED.all;

-- Debounce Pushbutton: Filters out mechanical switch bounce for around 40Ms.
ENTITY debounce IS

PORT(pb, clock_100Hz : IN STD_LOGIC;
 pb_debounced : OUT STD_LOGIC);

END debounce;

ARCHITECTURE a OF debounce IS
SIGNAL SHIFT_PB : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

-- Debounce clock should be approximately 10ms or 100Hz
PROCESS
BEGIN

 WAIT UNTIL (clock_100Hz'EVENT) AND (clock_100Hz = '1');
-- Use a shift register to filter switch contact bounce

 SHIFT_PB(2 DOWNTO 0) <= SHIFT_PB(3 DOWNTO 1);
 SHIFT_PB(3) <= NOT PB;
 IF SHIFT_PB(3 DOWNTO 0)="0000" THEN
 PB_DEBOUNCED <= '0';
 ELSE
 PB_DEBOUNCED <= '1';
 END IF;

END PROCESS;
END a;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

47

-- Filename: bin_to_led.vhd
-- Description: binary to 7 segment led converter
--
-- Modified by: Sue Ann Ung
-- Date: September 28, 2001

library ieee;
use ieee.std_logic_1164.all;

entity bin_to_led is
port (input: in std_logic_vector (3 downto 0);
output: out std_logic_vector (6 downto 0));

end entity bin_to_led;

architecture behavioral of bin_to_led is
begin

with input select
output <=

"1000000" when "0000",
"1111001" when "0001",
"0100100" when "0010",
"0110000" when "0011",
"0011001" when "0100",
"0010010" when "0101",
"0000010" when "0110",
"1111000" when "0111",
"0000000" when "1000",
"0010000" when "1001",
"0001000" when "1010",
"0000011" when "1011",
"1000110" when "1100",
"0100001" when "1101",
"0000110" when "1110",
"0001110" when "1111",
"1000000" when others;

end behavioral;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

48

-- Filename: lcd_package.vhd

library ieee;
use ieee.std_logic_1164.all;

package lcd_package is

component lcd_out is
generic(

data_out_width: positive := 8;
data_in_width: positive := 9

);
port(

lcd_data_in : in std_logic_vector(data_in_width-1 downto 0);
lcd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select, lcd_nenable : out std_logic;

clock, reset : in std_logic;
extra_delay, lcd_latch : in std_logic;
lcd_complete : out std_logic

);

end component lcd_out;

component segdisplay is
generic(countwidth: positive := 4; segment_width : positive := 7);

 port(count: in std_logic_vector(countwidth-1 downto 0);
 display: out std_logic_vector(segment_width-1 downto 0)
);
end component segdisplay;

component lcd is
generic(

data_in_width : positive := 16;
 data_out_width : positive := 8;

mode_width : positive := 4
);

port(
-- ** external device ports **

lcd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select : out std_logic;
lcd_nenable : out std_logic;
lcd_rw : out std_logic;

-- ** internal device ports **
clock : in std_logic;
areset : in std_logic;

-- lcd_data_in : in std_logic_vector(data_in_width-1 downto 0);
lcd_mode : in std_logic_vector(3 downto 0);
lcd_mode_chg : in std_logic;
lcd_done: buffer std_logic;
segment1, segment2: out std_logic_vector(6 downto 0)

);
end component lcd;

end lcd_package;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

49

-- Lab 3
-- Filename: count4bit.vhd
-- Description: 4 bit counter with asynchronous reset
-- modified from count2bit.vhd
-- Modified by: Sue Ann Ung
-- Date: September 28, 2001

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity count4bit is
generic (counterwidth: positive := 4;

 segments: positive := 7);

port (clock_25MHz : in std_logic;
 manual_clock: in std_logic;

 reset : in std_logic;
 led: out std_logic_vector (segments-1 downto 0));

end count4bit;

architecture behavior of count4bit is
signal bin : std_logic_vector (counterwidth-1 downto 0);
signal clock_100Hz : std_logic;
signal system_clock : std_logic;

component bin_to_led
port (input: in std_logic_vector (counterwidth-1 downto 0);
 output: out std_logic_vector (segments-1 downto 0));

end component bin_to_led;

component debounce
port (pb : in std_logic;

 clock_100Hz : in std_logic;
 pb_debounced: out std_logic
);

end component debounce;

component clk_div
port (clock_25Mhz : IN STD_LOGIC;

 clock_1MHz : OUT STD_LOGIC;
 clock_100KHz : OUT STD_LOGIC;
 clock_10KHz : OUT STD_LOGIC;
 clock_1KHz : OUT STD_LOGIC;
 clock_100Hz : OUT STD_LOGIC;
 clock_10Hz : OUT STD_LOGIC;
 clock_1Hz : OUT STD_LOGIC);

end component clk_div;

begin
counter: process (system_clock, reset)

begin
--if rising_edge (system_clock) then

--bin <= bin + '1';

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

50

--elsif reset = '0' then
--bin <= (others => '0');

--end if;

if reset = '0' then
bin <= (others => '0');

elsif rising_edge (system_clock) then
bin <= bin + '1';

end if;
end process counter;

whatever : clk_div
port map (

clock_25Mhz => clock_25Mhz,
clock_100Hz => clock_100Hz);

decode: bin_to_led
port map (

input => bin,
output => led);

bounce : debounce
port map (

pb => manual_clock,
clock_100Hz => clock_100Hz,
pb_debounced => system_clock);

end behavior;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

51

-- Filename: lcd.vhd
-- Description: LCD Controller Interface

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library lpm;
use lpm.lpm_components.all;
library work;
use work.lcd_package.all;

entity lcd is
generic(

data_in_width : positive := 16;
 data_out_width : positive := 8;

mode_width : positive := 4
);

port(
-- ** external device ports **

lcd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select : out std_logic;
lcd_nenable : out std_logic;
lcd_rw : out std_logic;

-- ** internal device ports **
clock : in std_logic;
areset : in std_logic;

-- lcd_data_in : in std_logic_vector(data_in_width-1 downto 0);
lcd_mode : in std_logic_vector(3 downto 0);
lcd_mode_chg : in std_logic;
lcd_done: buffer std_logic;
segment1, segment2: out std_logic_vector(6 downto 0)

);
end entity lcd;

-- architecture for lcd entity
architecture lcd_arch of lcd is

type state_type is (mpoweron, initialization, initialization_wait, wait_for_mode, wait_address,
load_address, get_char, display_char, inc_address);

signal state : state_type;

constant clr_screen : std_logic_vector(11 downto 0) := X"001"; -- clear the lcd
signal address, mode_address: std_logic_vector(7 downto 0);
signal ch : std_logic_vector(11 downto 0);
signal dsp_done, screen_refresh : std_logic;
signal latch_add, display_enable : std_logic;
signal name_dis, increment : std_logic;
signal lcd_complete, char_valid, delay: std_logic;
signal setup, init_int: std_logic;
signal clock_count, init_time: std_logic_vector(19 downto 0);
signal latch_address, init: std_logic;

begin

lcd_rw <= '0';

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

52

init_time <= X"5B8D8"; -- used to create a 15ms delay 0x5B8D8
LCD_1: lcd_out
generic map(data_out_width => data_out_width,

data_in_width => 9)
port map(lcd_data_in => ch(8 downto 0),

lcd_data_out => lcd_data_out,
lcd_register_select => lcd_register_select,
lcd_nenable => lcd_nenable,
clock => clock,
reset => areset,
extra_delay => delay,
lcd_latch => char_valid,
lcd_complete => lcd_complete

);

seg1: segdisplay
port map(count => ch(7 downto 4),

display => segment1
);

seg2: segdisplay
port map(count => ch(3 downto 0),

display => segment2
);

startrom: lpm_rom
generic map(

LPM_WIDTH => 12,
LPM_WIDTHAD => 8,
LPM_FILE => "lcd.mif"

)
port map(

inclock => clock,
outclock => clock,
address => address,
q => ch

);

with lcd_mode select
mode_address <=
"00000101" when "0000", -- poweron
"00010001" when "0001", -- command
"00101001" when "0010", -- from ?
"00111100" when "0011", -- waiting for tx
"01100011" when "0100", -- downloading
"01001100" when "0101", -- streaming
"01011000" when "0110", -- complete msg
"10100011" when "0111", -- blank screen
"10000011" when "1000", -- play icon
"10001001" when "1001", -- pause icon
"10000110" when "1010", -- stop icon
"10001100" when "1011", -- delete? 1=OK
"10011011" when "1100", -- deleted
-- when "0110", -- default song
-- when "0111", -- default name

-- mplay when "1000", -- play icon
-- mpause when "1001", -- pause icon
-- mstop when "1010", -- stop icon
-- mdel_what when "1011", -- delete ?
-- mdel_done when "1100", -- deleted

"01110001" when others; -- anything else

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

53

with state select
latch_add <=
'1' when initialization_wait,
'1' when load_address,
'1' when wait_address,
'0' when others;

with state select
lcd_done <=
'1' when wait_for_mode,
'0' when others;

with state select
char_valid <=
'1' when display_char,
'0' when others;

with state select
name_dis <=
'0' when initialization,
'0' when others;

with state select
init_int <=
'1' when initialization_wait,
'1' when initialization,
'0' when others;

with state select
increment <=
'1' when inc_address,
'0' when others;

with ch select
delay <=

'1' when clr_screen,
'0' when others;

comb_logic: process (clock, areset)
begin

if areset = '1' then
state <= mpoweron;

elsif rising_edge(clock) then
case state is

when mpoweron =>
state <= initialization_wait;

when initialization_wait =>
if setup = '1' then

state <= initialization;
else

state <= initialization_wait;
end if;

when initialization =>
state <= get_char;

when wait_for_mode =>
if lcd_mode_chg = '1' then

state <= load_address;
else

state <= wait_for_mode;
end if;

when load_address =>

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

54

state <= wait_address;
when wait_address =>

if mode_address = address then
state <= get_char;

end if;
when get_char =>

state <= display_char;
when display_char =>

if ch = X"100" then
state <= wait_for_mode;

elsif lcd_complete = '1' then
state <= inc_address;

else
state <= display_char;

end if;
when inc_address =>

state <= get_char;
end case;

end if;
end process comb_logic;

regs2: process(clock, areset)
begin

if areset = '1' then
address <= (others => '0');

elsif rising_edge(clock) then
if latch_address = '1' and init = '1' then

address <= (others => '0');
elsif latch_address = '1' and name_dis = '0' then

address <= mode_address;
elsif latch_address = '1' and name_dis = '1' then

address <= mode_address;
elsif increment = '1' then

address <= address + '1';
end if;

end if;
end process regs2;

init_count: process(clock, areset)
begin

if areset = '1' then
latch_address <= '0';
setup <= '0';
clock_count <= (others => '0');

elsif rising_edge(clock) then
latch_address <= latch_add;
init <= init_int;
if init = '1' then

if clock_count = init_time then
setup <= '1';

else
clock_count <= clock_count + '1';

end if;
end if;

end if;
end process init_count;

end architecture lcd_arch;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

55

-- Filename: lcd_out.vhd
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity lcd_out is
generic(

data_out_width: positive := 8;
data_in_width: positive := 9

);
port(

lcd_data_in : in std_logic_vector(data_in_width-1 downto 0);
lcd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select, lcd_nenable : out std_logic;

clock, reset : in std_logic;
extra_delay, lcd_latch : in std_logic;
lcd_complete : out std_logic

);

end entity lcd_out;

architecture lcd_display of lcd_out is

type state_type is (wait_for_char, load_data, set_count, wait_time);

signal state : state_type;
signal load_char, clear_count, count_down : std_logic;
signal count, clock_count, time_count : std_logic_vector(15 downto 0);
signal nenable : std_logic;

begin

with extra_delay select
count <=

X"FFFF" when '1', -- used to create 1.5ms delay 0x927C
X"0FFF" when '0', -- used to create 40us delay 0x03E8
X"0FFF" when others;

-- X"002F" when '1', -- used to create 1.5ms delay 0x927C
-- X"000A" when '0', -- used to create 40us delay 0x03E8
-- X"000A" when others;

with state select
nenable <=

'0' when wait_time, -- used to trigger enable (active low) LCD
'0' when wait_for_char,
'1' when others;

with state select
lcd_complete <=

'1' when wait_for_char,
'0' when others;

with state select
count_down <=

'1' when wait_time,
'0' when others;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

56

with state select
clear_count <=

'1' when set_count, -- clear the counters and set the time delay
'0' when others;

with state select
load_char <=

'1' when load_data, -- used to latch lcd_data_in to lcd_data_out
'0' when others;

-- purpose to step through the states of execution
comb_logic : process(clock, reset)
begin

if reset = '1' then -- active high asynchronous reset
state <= wait_for_char;

elsif rising_edge(clock) then
case state is

when wait_for_char =>
if lcd_latch = '1' then

state <= load_data;
else

state <= wait_for_char;
end if;

when load_data =>
state <= set_count;

when set_count =>
state <= wait_time;

when wait_time =>
if time_count = clock_count then

state <= wait_for_char;
else

state <= wait_time;
end if;

end case;
end if;

end process comb_logic;

process (clock, reset)
begin

if reset = '1' then
time_count <= (others => '0');

elsif rising_edge(clock) then
lcd_nenable <= nenable;
if load_char = '1' then

lcd_data_out <= lcd_data_in(7 downto 0);
lcd_register_select <= lcd_data_in(8);

elsif clear_count = '1' then
time_count <= (others => '0');
clock_count <= count;

elsif count_down = '1' then
time_count <= time_count + '1';

end if;
end if;

end process;

end lcd_display;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

57

-- Filename: lcd.mif
-- Description: MIF file for LCD Displays
--

WIDTH = 12;
DEPTH = 17;
ADDRESS_RADIX = DEC;
DATA_RADIX = HEX;
CONTENT BEGIN

-- initialize --
0: 001; -- clear screen
1: 03C; -- two-lines set function set
2: 00C; -- display-on
3: 006; -- set auto increment cursor or use 014 for cursor/display shift
4: 100; -- null

5: 001; -- clear screen
6: 143; -- C
7: 12D; -- hyphen
8: 152; -- R
9: 141; -- A
10: 14D; -- M
11: 120; -- space
12: 147; -- G
13: 152; -- R
14: 14F; -- O
15: 155; -- U
16: 150; -- P
17: 0C0; -- next line
18: 153; -- S
19: 148; -- H
20: 141; -- A
21: 148; -- H
22: 149; -- I
23: 144; -- D
24: 120; -- space
25: 153; -- S
26: 155; -- U
27: 145; -- E
28: 120; -- space
29: 153; -- S
30: 141; -- A
31: 154; -- T
32: 14E; -- N
33: 145; -- E
34: 145; -- E
35: 156; -- V
36: 100; -- null
END;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

58

-- top-level file using two PEs
-- top_level1.vhd
-- C-RAM group

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library lpm;
use lpm.lpm_components.all;

entity top_level1 is
port (clock,reset,clock_rom: in std_logic;
 Instruction : out std_logic_vector(15 downto 0);

 display1,display2,display3: out std_logic_vector(6 downto 0);
 RAM_value_read,RAM_value_read2 : out std_logic_vector (0 downto 0);

 RAM_value_written,RAM_value_written2 : out std_logic_vector (0 downto 0);
 xreg,yreg,muxout,muxin : out std_logic_vector(0 downto 0);
 write_ad,read_ad,opcode1 : out std_logic_vector(7 downto 0);
 enx,eny, RAM_we, Bus_Enable : out std_logic

);
end top_level1;

architecture structural of top_level1 is

 signal internal_add_rd,internal_add_wr,Int_opcode : std_logic_vector (7 downto 0);
 signal internal_enable_memory : std_logic;
 signal Int_En_Write_Reg, Int_Shift_R, Int_Shift_L : std_logic;
 signal Int_Bus_Enable,Int_En_X,Int_En_Y : std_logic;
 signal memory_value,memory_value2 : std_logic_vector (0 downto 0);
 signal xreg1,yreg1,muxout1,xreg2,yreg2,muxout2 :std_logic_vector(0 downto 0);
 signal rom_data,rom_data2 : std_logic_vector(0 downto 0);
 signal RAM_value_int,RAM_value_int2 : std_logic_vector(0 downto 0);

 component rom_control is
port(

clock,reset,clock_rom : in std_logic;
address_rd,address_wr : out std_logic_vector (7 downto 0);

 opcode : out std_logic_vector (7 downto 0);
 En_X, En_Y, En_memory : out std_logic;

En_Write_Reg, Shift_R, Shift_L, Bus_Enable : out std_logic;
junk : out std_logic_vector(15 downto 0)

);
end component rom_control;

 component ramPE1 is
generic (rom_data_width : positive := 1; -- width of data in rom

rom_address_width : positive := 8; -- width of address in rom
rom_data_size : positive := 13); -- number of values in rom

PORT(clock : in std_logic;
 address1 : in std_logic_vector(7 downto 0);

 rom_data: out std_logic_vector(rom_data_width -1 downto 0)); -- data in address indicated by "counter"
 end component ramPE1;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

59

 component ramPE2 is
generic (rom_data_width : positive := 1; -- width of data in rom

rom_address_width : positive := 8; -- width of address in rom
rom_data_size : positive := 13); -- number of values in rom

PORT(clock : in std_logic;
 address1 : in std_logic_vector(7 downto 0);

rom_data: out std_logic_vector(rom_data_width -1 downto 0)); -- data in address indicated by "counter"
 end component ramPE2;

 component ram2PE1 is
generic (rom_data_width : positive := 1; -- width of data in ram
rom_address_width : positive := 8; -- width of address in ram

 rom_data_size : positive := 13); -- number of values in ram
PORT(clock: in std_logic; --system clock

memory_address : in std_logic_vector(7 downto 0);
 write_enable : in std_logic;

 data_to_ram : in std_logic_vector (rom_data_width -1 downto 0);
ram_out : out std_logic_vector(rom_data_width -1 downto 0)); -- output data

end component ram2PE1;

 component ram2PE2 is
generic (rom_data_width : positive := 1; -- width of data in ram
 rom_address_width : positive := 8; -- width of address in ram
 rom_data_size : positive := 13); -- number of values in ram

PORT(clock: in std_logic; --system clock
memory_address : in std_logic_vector(7 downto 0);

 write_enable : in std_logic;
 data_to_ram : in std_logic_vector (rom_data_width -1 downto 0);

ram_out : out std_logic_vector(rom_data_width -1 downto 0)); -- output data
end component ram2PE2;

 component pe_dp_loop
 port (enable_x,enable_y,clock: in std_logic;
 bus_enable,shift_right,shift_left : in std_logic;
 opcode : in std_logic_vector(7 downto 0);
 m_test : out std_logic_vector(0 downto 0);
 m: in std_logic_vector(0 downto 0);
 x_int,y_int,mux_d : out std_logic_vector(0 downto 0)

);
 end component pe_dp_loop;

 component display_7seg is
 generic(
 width :positive := 5
);
 port(
 clk : in std_logic;

 input : in std_logic_vector(3 downto 0);
 output: out std_logic_vector(6 downto 0)
);
 end component display_7seg;

 component display7seg2 is
 --generic(width :positive := 4);

 port(
 clk: in std_logic;
 input1: in std_logic_vector(0 downto 0);
 input2: in std_logic_vector(0 downto 0);
 output : out std_logic_vector(6 downto 0)

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

60

);
 end component display7seg2;

begin

RC_Component : rom_control
port map(

 reset => reset,
 Clock => clock,
 clock_rom => clock_rom,
 address_rd => internal_add_rd,

 address_wr => internal_add_wr,
 opcode => Int_opcode,
 En_X => Int_En_X,
 En_Y => Int_En_Y,
 En_memory => internal_enable_memory,
 En_Write_Reg => Int_En_Write_Reg,
 Shift_R => Int_Shift_R,
 Shift_L => Int_Shift_L,
 Bus_Enable => Int_Bus_Enable,
 junk => Instruction

);
 Rom_with_data1 : ramPE1
 port map
 (
 clock=>clock,
 address1 => internal_add_rd,
 rom_data=>memory_value
);

 Rom_with_data2 : ramPE2
 port map
 (
 clock=>clock,

 address1 => internal_add_rd,
 rom_data=>memory_value2

);

R2_Component1 : ram2PE1
port map(

clock => clock,
memory_address => internal_add_wr,
write_enable => internal_enable_memory,
data_to_ram => muxout1,
ram_out => RAM_value_int

);
 R2_Component2 : ram2PE2

port map(
clock => clock,
memory_address => internal_add_wr,
write_enable => internal_enable_memory,
data_to_ram => muxout2,
ram_out => RAM_value_int2

);

 PE1 : pe_dp_loop
 port map(
 clock => clock,

 enable_x => Int_En_X,
 enable_y => Int_En_Y,
 bus_enable => Int_Bus_Enable,

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

61

 shift_right => Int_Shift_R,
 shift_left => Int_Shift_L,

 x_int=>xreg1,
 y_int=>yreg1,

 mux_d=>muxout1,
 opcode => Int_opcode,

 m => memory_value
);

 PE2 : pe_dp_loop
 port map(
 clock => clock,

 enable_x => Int_En_X,
 enable_y => Int_En_Y,

 bus_enable => Int_Bus_Enable,
 shift_right => Int_Shift_R,
 shift_left => Int_Shift_L,
 x_int=>xreg2,
 y_int=>yreg2,
 mux_d=>muxout2,
 opcode => Int_opcode,
 m => memory_value2

);

 display_op_3to1: display_7seg
 port map (

 clk => clock,
 input =>Int_opcode(3 downto 0) ,
 output =>display1
);
 display_op_7to4: display_7seg
 port map (
 clk => clock,
 input => Int_opcode(7 downto 4) ,
 output =>display2

);

 display_x_y: display7seg2
 port map (
 clk => clock,
 input1 =>xreg1,
 input2 => yreg1,
 output => display3
);

 xreg<=xreg1;
 yreg<=yreg1;

muxout<=muxout1;
enx<=Int_En_X;

 eny<=Int_En_Y;
 RAM_value_read <= memory_value;

RAM_value_read2 <= memory_value2;
 Bus_Enable <= Int_Bus_Enable;

RAM_value_written <= Ram_value_int ;
RAM_value_written2 <= Ram_value_int2 ;
muxin <= memory_value;
write_ad<=internal_add_wr;
read_ad<=internal_add_rd;
opcode1<=Int_opcode;
RAM_we <= internal_enable_memory;

 end structural;

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

62

Simulation Waveforms

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

63

Controller Simulation

The controller was thoroughly tested with a number of test cases. The controller
functioned correctly, as it passed from its initial state of idle to either the operation state
or the read state depending on the instruction received. On the Controller Waveform 1 in
the Appendix an instruction containing an OpCode and enable bits was sent as an input.
The controller received the instruction and moved into the operation state by correctly
identifying the instruction as an OpCode from the flag bit (which is set to 1). The
controller then set the OpCode signal to the correct OpCode, in this case OpCode =
10101010 and set the correct enable bits, En_X and En_Memory.

In Controller Waveform 2 we have sent varied the instructions from those, which are OpCodes to
those, which contain RAM addresses. Again the controller received the instruction in the idle
state and then moved into the next state corresponding to the instruction. From 0 to 500ns, and
instruction = 1101010100001010 was sent into the controller. The controller again correctly
identified this as an OpCode from the flag bit, set the OpCode = 10101010 and initiated the En_X
and En_Memory signals to high. The controller then returned back into its starting state of idle to
receive the next instruction. Between 500 ns and 1.0 us an instruction = 0000000000000000 is
inputted into the controller. The controller identifies this as an RAM address from the flag bit
and sets the address signal = 00000001. (As mentioned earlier, only the 8 least significant bits
are used as the address, the rest are masked off). Again the controller, then returns to the idle
state to await the next instruction.

We can see that the controller is functioning correctly. It interprets the instruction as either an
OpCode or an address and sets the correct signals corresponding to the instruction. If the flag bit
is equal to 1 the controller moves into the operation state, sets the OpCode for the PE and enables
the correct registers. If the flag bit is equal to 0, the controller moves to the read state, and sets
the address bit to the corresponding address in the instruction and outputs it to the RAM.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

64

Controller & ROM Simulation

The next phase of testing was to test the controller with the ROM. A mif file was created
which contained instructions for the controller and was stored in the ROM. A simple
counter was used to access the ROM and pass on the instructions to the controller. To
test the controller working with the ROM, we simply verified, the outputs of the
controller with the instructions in the mif file.

In Controller + ROM Waveform in the Appendix. The signal “junk” is equal to the instructions in
the mif file and is inputted into the controller. By verifying which instruction is sent against what
signals are outputted, we can determine if the controller and ROM components are functioning
correctly. The first instruction in the mif file is an address of 0000000000000000. We can see
this on signal junk. The controller moves from the idle state to the read state and interprets the
instruction from the mif file as an RAM address, thus sets the address line = 00000000. The
controller then moves back to the initial state of idle. The next instruction in the mif file is an
OpCode, junk = 1101010100000010. The controller interprets this instruction as an OpCode, and
moves into the operation state. It then sets the OpCode = 10101010, and sets the En_X = 1, as
determined by the instruction. The controller returns to the idle state. From 200ns to 275ns, an
address instruction = 0000000000000101 is sent to the controller. (This is the third instruction in
the mif file). Again we can see the controller moves into the correct state of read and sets the
address signal to 0000101. Finally, the next instruction in the mif file is an OpCode, and from
275ns to 350ns, instruction = 1101000000000100 (seen as the junk signal) is sent to the
controller. The controller sets the OpCode = 10100000 and sets the En_Y signal = 1.

By verifying the correct outputs of the controller against the instructions in the mif file stored in
the ROM we see that the controller is correctly receiving the instructions from the ROM and
outputting the correct results to either the PE or the RAM.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

65

Test cases for the PE Simulation

The PE takes in the OpCode from the controller along with some other signals to enable the
registers (x, y and write enable register) RAM, buses. The controller also sends in the shift right
and shift left signals to the PE. We used internal signals port mapped to outputs to check the
contents of the registers and memory.
We haven’t done the RAM interface for writing the data back in to RAM so we are using a
register as RAM and writing data back to that register.
The Enable signals are set manually in this PE simulation but for the top level File
“ram_cont_ram.vhd” all the control signals are generated by the controller.
In the waveform attached in the Appendix we simulated following test cases.

OpCode Operation Other signals Expected Result Result
Obtained

10101010 load x or y from
data stored in mif
file

Enable x is set
to high

load the data at first
memory location into
x

x = 1
as data in
RAM is 1

11110000 writing data back
to RAM from x
register

write enable
is set to 1

RAM should go to
logic 1 as x is 1

RAM=1

10101010 load x or y form
the data stored in
mif file

Enable y is set
to high

Load data from next
memory location into
y

y = 1 as next
data is 1.

10101010 load x or y form
mif file

enable y is set
to high

Load data from next
location in memory
into y

y =0 as next
data is 0

10100000 x = x and m
performs the and
operation

x is enabled to
write the
result of and
operation in y
register

Data in register x is 1
and data in next
memory location is 0
so and operation
gives a 0

x register
goes low
i.e. 0

01100110 y= x xor m
performs an x-or
operation

y is enabled Data in register x is 1
and data in next
memory location is 0
so xor operation
gives 1

y register
goes high

Since we changed the controller from State machine to a selector, the following test cases are
simulated to demonstrate that the PE now works better.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

66

C.RAM Simulation (PE = 1)

CASE1: (M =! Y)
Reads data from a mif file (ram.mif) in the RAM.
The data read from the RAM is inverted and written to register y.
The data in register y is written back to RAM.

The mif files and the simulations for the CASE1 are attached. The mif files are labeled according
to the data they have. The simulations for the top-level test cases are so arranged that 1st page
shows the whole simulation to see if the result is correct or not. Then in next few pages the
simulation is spread over a few pages to see the instructions and op-code and addresses changing
clearly.

So for CASE1 data in mif file is read as 0,0,11 and inverted and written to y as 1,1,0,0 and same
is written back to RAM as 1,1,0,0.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

67

C.RAM Simulation (PE = 1)

ADDITION

Data is read from the RAM (B[0]) and sent to register X.
Data is read from the RAM (A[0]) and its ANDED with data already in X and sent to Y.
Data in X is XOR with data in RAM (A[0]) and written into and X as well as into RAM.
RAM is disabled for Writing.

These steps are repeated three more times with one additional step and we get the
final sum of two four bit numbers.

The Data in the mif file(ram_sum.mif) is B= 1001 and A = 1001
The sum being one bit at a time and written back to RAM should be Sum =0010
We get 0010, which is the correct result therefore C-RAM is working properly.
Since we changed the controller from State machine to a selector it seems to work better.

C-RAM Parallel Processor
Final Project Report

12/05/01 C-RAM Parallel Processor
Shahid, Sue Ann, Satneev

68

C.RAM Simulation (PE = 2)

ADDITION

For both PEs the following instruction set is the same:

Data is read from the RAM (B[0]) and sent to register X.
Data is read from the RAM (A[0]) and its ANDED with data already in X and sent to Y.
Data in X is XOR with data in RAM (A[0]) and written into and X as well as into RAM.
RAM is disabled for Writing.

These steps are repeated three more times with one additional step and we get the
final sum of two four bit numbers.

The Data in the mif file of PE #1 is B= 1111 and A = 1111
The Data in the mif file of PE #2 is B = 1010 and A = 0101

The sum being one bit at a time and written back to RAM should be Sum #1 = 1110
and sum for PE #2 is: Sum #2 = 1111.

The simulations show that we get a result of 1110 for PE #1 and 1111 for PE #2, which is the
correct result therefore C-RAM is working properly.

