EE 552 High Level Digital ASIC Design Using CAD

PROJECT

CRAM Parallel Processor

Final Project Report

November 27, 2001

Shahid Aslam Khan Sue Ann Ung Satheev Bhamra
Shahid1994@yahoo.com sueann_u@yahoo.com sbhamra@hotmail.com

C-RAM Parallel Processor
Final Project Report

DECLARATION OF ORIGINAL CONTENT

The design elements of this project and report are entirely the work of the authors and have not been
submitted for credit in any other course except as follows:

Fig5 istaken from reference [2], fig 1 and 3 are from reference [3]

A few headings and statements are taken from reference [2] and [3] and are appropriately mentioned
with the text aswell.

Fig 4 for the C-RAM is taken from reference [4], A Tightly Coupled Hybrid SMD/S D System.
Fig B in the Appendix is obtained by simplifying figure 5 which is from reference [2], Computational
RAM: Implementing Processorsin Memory.

Figure 6 istaken from references [2, 4].

Debounce.vhd code is taken from EE 552 course Application notes

http://www.ee.ual berta.ca/~elliott/ee552/studentA ppNotes/1999 w/keypad/debounce.vhd

Display_7seg.vhd codeis reused from EE 552 Lab 4 Part 3

Shahid Aslam Khan Sue Ann Ung Satneev Bhamra

12/05/01 2 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

ABSTRACT

The following report documents the project specifications to implement C.RAM on an FPGA.
C.RAM (computational random access memory) is a fast paralel processor that uses a SIMD
architecture. The C.RAM accepts single instruction stream into parallel processing units to
perform multiple data operations. The design of the processor is to be implemented on a UP1
board and an Altera FLEX10k20 chip.

In this report a detailed description of the architectura components of C.RAM is provided.
Details of the design and operation, requirements for the FPGA and signd and pin-out
descriptions are al outlined. A genera discussion of our testing method is found later in the
document. Finally the complete design documentation of the entire project and completed and
working VHDL code is referenced.

This document shows that we were partialy successful in implementing C.RAM on an FGPA.
We were able to see correct results for the addition instruction and some other simple instructions
we had set out to build, however, we did not receive correct results for the multiplication of two
four bit numbers. We were successful in combining additional processing elements into an array
to have C.RAM work in true SIMD fashion.

C.RAM was designed to run with a 25MHz clock signal, and used 344/1152 (30%) of the
AlteraFlex10k20 logic cdlls.

12/05/01 3 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

C-RAM DATA SHEET

C.RAM Features:

Processing Element Array
256 Instruction ALU : 8 x 1 MUX
3 x 1-hit Registers
Controller
Sequencer
Decoder
Memory
256 x 16 bit instruction ROM initidized by .mif file
256 x 1 bit data RAM initiaized by .mif file
/0
7 segment display to show results of PE elements and memory
LCD display to show instruction set in the ROM.

Designed to run at 25 MHz clock signal
C.RAM* used 30 % of Altera Flex10K20 logic cdlls.

* Tota logic cell valueisfor only one PE

Instruction Set:

The following table outlines the current instruction set used by C-RAM

Instruction Syntax Description Result

Sum A+B Addition of two four-bit [Correct
numbers

Subtraction B-A Subtraction of two four- |Incorrect
bit numbers using 2's
complement

Multiplication BxA Unsigned product of two |Incorrect
four-bit numbers

Chip Information:

12/05/01 4 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

The C-RAM design takes up 344 logic cdlsin tota. Thisiswith implementing only one PE, if
we increase the number of PEsin the array, the number of logic cells used will increase
proportionally. Our estimates show that we can safely add up to 30 PEs into our design.

Module Logic Cells required|Performance

PE (1) 12 (1 %) 113.63 MHz
PE (2) 36 (3 %) 113.63 MHz
Controller 78 (6%) 125.00 MHz
I/0 254 (22%) 22.83 MHz
Total* 344 (30 %) 22.17 MHz

PE*: only one PE

Memory Addressing and Output

C-RAM contains two separate memory blocks, one for storing instructions and one reading and
writing data. Each ingtruction is 16 bits long, and is of two types: a memory address for the PE
to receive data from and an operational code for the PE to perform. The MSB of the instruction
determines between these two types of ingructions. If the flag bitis="1" then the ingtruction is
an OpCode. If theflag bit =0, the ingtruction code is designated as a memory address in the
RAM. Datais pre-set into the RAM as one bit on each addressline. Dataisfed from the
designated address in the RAM to the PE one bit at atime.

I/O Signals and Pins

The table below describes each the input and output pins used on the UP-1 board. There are two
inputs from push buttons to start the C.RAM and the LCD. There are 3 inputs, one from the
clock oscillator on the board, and two input clocks for the CRAM and LCD. Two seven-
segment displays are used for displaying the resultsin the X, Y and Memory. An LCD isused to

display the instruction set stored in the ROM.

10 Signals Input/Output | Pin Number |Description Number of Pins
clock_25MHz In 91 Clock signal provided by on-board 1
oscillator (25.175 MHz)
clock_pb In 28 Clock Signal Button 1
clock lcd In 29 clock signal for LCD (2 x clock_pb) 1
3
display10 Out 6 for segmentl a (resultin X or Y) 1
display1l Out 7 for segment2 b (result in X or Y) 1
display12 Out 8 for segment3 c (result in X or Y) 1
display13 Out 9 for segment4 d (result in X or Y) 1
display14 Out 11 for segment5 e (resultin X or Y) 1
display15 Out 12 for segment6 f (result in X or Y) 1
display16 Out 13 for segment7 g (result in X or Y) 1
7
display20 Out 17 for segmentl a(result in M) 1
display21 Out 18 for segmentl b (result in M) 1
12/05/01 5 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

IO Signals Input/Output | Pin Number |Description Number of Pins
display22 Out 19 for segmentl c (result in M) 1
display23 Out 20 for segmentl d (result in M) 1
display24 Out 21 for segmentl e (result in M) 1
display25 Out 23 for segmentl f (result in M) 1
display26 Out 24 for segmentl g (result in M) 1
7
lcd_data0 Out 65 Output of LCD 1
lcd_datal Out 66 Output of LCD 1
lcd_data2 Out 67 Output of LCD 1
lcd_data3 Out 68 Output of LCD 1
lcd_datad Out 70 Output of LCD 1
lcd_datab Out 71 Output of LCD 1
lcd_datab Out 72 Output of LCD 1
lcd_data7 Out 73 Output of LCD 1
reset_|lcd Out 40 Reset the LCD screen 1
reg_select Out 62 Selects register to be written to 1
lcd_rw Out 63 Read/Write to LCD (set aswrite) 1
Ilcd_nenable Out 64 Enable the LCD 1
12
Total =29
12/05/01 6 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

TABLE OF CONTENTS

DECLARATION OF ORIGINAL CONTENT ..ot 2
A B ST R A T e e e e e 3
C-RAM DATA SHEET ... e 4

INT RODU CT ION . . e 9
B0 I01Y, o] AV =1 o] o TN

A CHIEVEM EN T S e e e e e e e e e e e 10
2.1 The Controller
2.2 The Processing Element
2.3 Memory
2.4 User Interface

DESIGN OVERVIEW
3.0 DESCIiPtioN Of OPEIatiON. .. uvu s st eit et e e et et e e e et e e e e e e v e e e e e e e e 12

DESIGN DETAILS
4.1 The Control UNit (CU)........ce it s it et e et e et e e s eee e et e e e e iee i ee e nee e 1D
O 1 =S 1= T 15
A I L= @0 1 o] = PPN L o
G 31V =01 T] Y2 PSRN I 4
A O N 1Y N o 11 =T (U= S I 4
4.3 ProCessing ElEmMeNt. oot e e e e e e e e e e e e a0 18
L g 1 g1 = = o= D, 0|

SCHEM AT L C e e e e e e e e e 22

TEST BENCHES
T L TSt DENCNES. .. i e e e e 000 23
A ©o 411 o] 1 1= 2
7.3 CoNroller & ROMu it e e e e e e e e e e e e 0000 23

INDEX OF SSIMULATION WAVEFORMSAND VHDL CODES.............co v, 24
S I @0 1) 1= OO RTOP RSP 24
8.2 CONLIOIEr QNG ROM......eiitieiiee ittt ettt e et st eetee e sbeeeete e e beeebeesabeesaseestseesseeebesebeesabeesnreessreeses 25
B.3TESE CASESTON PE........eei ettt ettt et s e e be e st e e s st e e st eeebeeeabeesabeesbeeeabeeenseesabeesareebeean 26
R LS T 01 1= - o = RO 27

REFERENCES. ... o 29

12/05/01 7 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

AP PEN DD X L. e e 30
150 20 o T 33
IS0 22V oo PPN 34
BIC= 0= 2SR o USRS 36
B ICe o T (== Y/ o o USSR 37
L©o g1 (0! [ZAY] oo RSP 41
L0 o (L AV oo IO TP 43
1= 01U o= o S 46
=TT o TN 1= Y oo PSSR 47
oo [o= ot 2= T o o 48
Lo 11 0| Ao 1 S0/ oo TP 49
oo N 3T 51
oo [o TU 1 AR/ oo ST 55
o 1 00 SR 57
TOP_IEVE_2PEVNA. ...ttt et b et et b et e a e sae e bt eaeenreen 58

SIMULATION WAVEFORMS. 220,02

12/05/01

8 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

INTRODUCTION

Computational RAM is a processor-in-memory architecture that makes highly effective use of
internal memory bandwidth [3]. The architecture as described in later sections consists of a
control unit (sequencer) and many Processing Elements (PE). The host processor generates
instructions, which are broadcasted to all Processing Elements. The datain the memory is fetched
to the single bit registers (X, Y) and processed. The truth table is sent to the inputs of the 3to 8
mux. The select lines for the mux are from the registers (X, Y) and one from memory. The 3to 8
mux can support 256 possible instructions. This SIMD paralel processor architectureis
implemented on an FPGA chip.

10 M otivation

There is significant interest in processor implementation in Field Programmable Gate Arrays
(FPGAS). FPGAs are often used for prototyping new designs as it allows the specification of the
function of a system to be simulated and tested before the ASIC is actually fabricated. This saves
time and money, and it alows the possibility of quick redesigning and modifications of existing
designs.

We are proposing to build a C-RAM controller-processing unit using SIMD architecture. The
motivation behind this idea is to “exploit the chips wide internal data paths’ and “the energy
efficiencies that result from better utilization of memory bandwidth and localization of
computations on a millimeter scale” [2]. SIMD architecture alows for fast parallel processing of
data.

12/05/01 9 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

ACHIEVEMENTS

21Top Leve

Thetop level design of C.RAM functioned correctly for certain instruction sets. We found that
correct results were obtained for the addition operation of two four-bit numbers. Other smple
instructions were also functioning correctly in CRAM. However, we were unsuccessful in
implementing a multiplication algorithm on C.RAM. The output did not result in the correct
multiplication of two-four bit numbers.

The top-level design was aso successful in implementing an array of PES. Experiments were
done with different array sizes of PEs, and correct results were obtained for the addition
operation.

2.2 The Controller

The controller was initialy designed as a finite state machine. It contained four main states: idle,
read RAM, write. RAM and Operation. This implementation was found to be faulty. Although
it correctly fetched the instructions from the ROM and sent the corresponding OpCode to the PE
or the memory address to the RAM, timing issues arose. The synchronous controller was writing
to and reading from the RAM in one complete cycle. Although this can be accomplished using
an aynchronous design, for our synchrounous machine, this resulted in incorrect results. The
controller would not read from the correct address, or instructions, which were labelled as
OpCodes were interpreted as addresses.

The controller was redesigned as a simple selector. The finite state machine was abandoned, and
the new selector design was implemented. Instructions from the ROM are fetched, and the
corresponding signals are set. The instruction format is the same; if the MSB =1 the instruction is
deemed an OpCode, if the MSB = 0 the instruction is deemed an address. One further condition
is set in the instruction format, if the second MSB is set asa 1, the controller sets this

address write signal, else, the address_read signd is set high.

Currently, the controller is functioning correctly for al test cases. Simulations are as expected.

12/05/01 10 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

2.3 PE

The PE design is functioning correctly. Simulation results indicate that for all test cases
presented, the PE is working correctly. The PE accepts the OpCode from the controller, and the
corresponding enabling registers. These have been sent as inputs to the PE by the test bench.

The PE then performs the correct operations set by the OpCode and stores the results in the X, y
and memory registers. Note: for the PE component itself, aRAM interface was not used, rather a
simple register was used to act as RAM. Datawas written and read from this register.

2.4 User Interface

The two 7-segment displays connected to the FLEX10K chip is used to show the contents of the
X and Y 1-bit register of the PE. The OpCode going into the PE and the address and enable
signals are shown on the LCD display. The two push buttons connected to the FLEX10K are used
for manua clocking and reset signals. The push button signals are both connected to debounce
circuits. The user interface works as expected.

12/05/01 11 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

DESIGN OVERVIEW

Design Hierarchy

C.RAM
Controller 1/0 SIMD ARRAY Memory
(PE=2) »
Sequencer ROM 7-Seg. LCD ALU Registers RAM

Figure 1. Design Hierarchy

3.0 Description of Operation

The C-RAM is a conventionad memory chip that when used with a SIMD computer, can be
utilized to run paralel processes in applications such as signal and image processing, computer
graphics, databases and CAD [2].

The C-RAM processing module is broken down into four main components: the control unit
(CU), processing eements (PE), memory modules (C-RAMs) and I/O interfaces and modules
such as video displays and keyboards. The CU contains instructions either locally or fetches then
from the host processor and broadcasts each instruction to the PES. These instructions may
include operational codes such as addition or subtraction, and broadcast information. Each PE
acts as an independent arithmetic unit (AU) and performs operations on the local memory.

12/05/01 12 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

A C.RAM computer

CeRAMs
1o |
,\ L -
CeRAM sE53 | E3FE [I0CCSSNG
™|Controlle™ %]D] NNAE
CeRAM Display

Controller

Figure 2: A basic SSIMD-CRAM processing module [3]

w
=

0

v

I

ROM
Address
counter % >
16 LED
Lights
Data RAM
Address
>
debounce >
Controller
< JO0o0o0ooooan
clock PE modules

opcode

Push Button

LED 7 Segment

Figure 3: Block Diagram of the C-RAM Parallel Processor System

12/05/01 13 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

The instructions and address information are first loaded into the ROM before the start of
operation.

The controller will then sequence through the ROM to get instructions and address
information for the PE operations. The PE operations and the contents of the X and Y
registers and the RAM can be seen on the seven- segment display. Instructions issued by
the controller are displayed on the LCD. The clock is input into the system from the push
button.

12/05/01 14 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

DESIGN DETAILS

4.1 The Control Unit (CU)

The CU contains two main components: the sequencer and the controller. The sequencer obtains
instructions stored in the local storage of the CU and passes them onto the controller. The
controller then determines what addresses in the local memory each PE should read from and
write to, the related operational codes (OpCode) and broadcast information the PE must perform.

4.1.1 The Sequencer

The C.RAM sequencer provides the instruction stream to each processing element in the C.RAM.
These instruction words can take the form of an OpCode or an address in memory.

Initially a minimalist sequencer will be designed and tested within the C.RAM. This sequencer
acts a smple program counter to provide instructions to the PE’s and requires no ALU or data-
path. An instruction storage element can be added to this to store multiple routines for the
sequencer. This sequencer style is optimal for many embedded systems such as filtering
continuous streams of datain signal processing applications.

The sequencer program counter selects the instruction in the ROM to be fetched. Each
instruction is 16 bitslong. There are two types of instructions: a memory address where the PE
will perform its operation on and the operational code itself. A flag bit is set to differentiate
between these two types of instructions. The MSB of the instruction indicates the flag bit; if it is
equal to ‘1’ then the instruction is an OpCode. If the flag bit is equd to ‘0’ then the instruction is
amemory address in the RAM. Six bits are reserved as register enable bits, for three registers (X,
Y and Write-Register), memory write-enable bit, and shift Ieft and shift right bits. Shift left and
shift right bits allow for communication between two PEs. Thisinstruction is then passed onto
the controller. The following is an example of the format for each instruction:

OpCode Memory Instruction
1 10101010 000 O0O0O 0 0000000 000000012
T A Enable X T
Enable Y .
Flag Enable Memory Flag Bit
Bit Shift Right
Shift Left
OpCode EnableWrite Address
Register
12/05/01 15 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

T [
Y Y
Sequencer Instruction
Program —t Store CeRAM Instruction
Counter o
Timing
f 2
L

Halt, Restart

Figure 4: Minimalist microcoded sequencer [3]

4.1.2 The Controller

The Controller is based upon a smple decoder implemented in the code by using a case
statement. There are three possible cases based on the two most significant bits of the instruction
fetched by the sequencer. The controller either selects the address to read data from the RAM
(MSBs are 00) or it selects an address to write data back to RAM (if MSBs are O1) or issues an
OpCode and other signasto PE (if MSBs of instruction are none of the above two cases).

So its either the PE if the instruction is an OpCode or to the loca RAM if the instruction isa
memory address.

The controller interprets the instruction as an address or an OpCode and sets the correct signals
corresponding to the instruction. If the flag bit is equal to 1 the controller moves into the
operation state, sets the OpCode for the PE and enables the correct registers. If theflag bitis
equal to 0, the controller moves to the read state, and sets the address bit to the corresponding
address in the instruction and outputs it to the RAM.

In the reset signd is set high, the controller sets al read and write enable flags to zero and hence
datais also set to zero. If theflag =0 then the controller moves to the read state, and issues the
instruction to the local RAM. The eight LSBs are sent to the RAM and the rest of the bits are
masked off. If theflag="1" then the controller moves to the operation state. Here, the MSB is
masked off, and the next eight bits are sent as the OpCode to the PE. The last six bits of the
instruction contain the enabling bits for each of the registers X, Y, and Write-Register. It dso
contains the memory write enable bit and shift left and shift left bits for communication
neighboring PEs.

12/05/01 16 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

8
) —/—» Addressto RAM

Instruction (15 downto 0))
Controller ; /_’ OpCode to PE
Clock > ;

+} Signalsto PE

Figure 5: Controller

We will require two different types of memory blocks, ROM and RAM. The memory
blocks, which are already present on the Flex10k20 will be sufficient for our initial
design of CRAM. The ROM memory block will contain the operational instructions and
memory instructions. These will be fetched by the sequencer and sent to the controller.

RAM memory blocks will be used for reading and writing the data to and from by the PE. Eight
bits comprise each address of the memory block, thus a maximum of 256 lines can be used on the
Flex10K 20.

4.1.3Memory

We will require two different types of memory blocks, ROM and RAM. The memory
blocks, which are aready present on the Flex10k20 will be sufficient for our initial
design of CRAM. The ROM memory block will contain the operational instructions and
memory instructions. These will be fetched by the sequencer and sent to the controller.

RAM memory blocks will be used for reading and writing the data to and from by the PE. Eight
bits comprise each address of the memory block, thus a maximum of 256 lines can be used on the
Flex10K20.

12/05/01 17 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

4.2 C-RAM Architecture

The C-RAM structure will be implemented using the SRAM memory cdlls on the Altera board.
The sense amplifiers at the bottom of each column may not be necessary if we use SRAM cdlls
instead of the traditiond DRAM cdlls that the C-RAM was implemented on.

Row
Decoders Memory Cells

Row
Address

Sense amplifiers and
column decoders

SIMD
* Instruction

PEs

Figure 6: Simplified C-RAM Architecture [4]

Figure 6 shows a simplified C-RAM configuration with the memory cells, sense amplifiers, row
and column decoders and processing e ements (PES). SIMD instructions come from a sequencer
in the main controller. The instructions are then decoded and routed by the individual PES
according to the common SIMD instructions.

4.3 Processing Element (PE)

Figure 7 shows one PE structure that we can use for the C-RAM. As mentioned before the sense
amps may not be necessary when the C-RAM is implemented using SRAM memory cells.

The ALU is a 256 function ALU that is based on an 8-by-1 MUX. The op-code coming from the
main controller in the global ingtruction bus is an 8-bit value that operates on three inputs
commonly from the X, Y registers and the PEs data store. The ALU operation is received as a
truth table in the op-code to the data inputs of the MUX. The ALU supports bit-seria
computation and has left right and wired-AND bussed communication for inter-element (adjacent
PES) operations such as left-right shifting. During the communication between adjacent PES, the
ALU is used to route signals. The output of the ALU goes to the X, Y registers, memory and
write-enable register. The controller detects an operation-complete signal from the PEs and sends
out the next OpCode or instruction for the next operation (see Figure 7) [2, 4].

The write-enable register is used for conditional operation implementations as a handshaking
between the main PE module and its memory store [4].

12/05/01 18 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

Sense amps
and decade

Write
enable —
register

Shift left
- i

] X 1

_.________—_—3 == Shift right

ALU (multiplexer)

8

Global instruction Y

Bus tie
Broadcast bus

Figure 7: Diagram for PE operation with 256 instructions [2]

PE ready signal detected by
host controller

N
Opcode sent to ALU

A

ALU detects opcode

A

ALU routes or computes
operation with data from X, Y
and M (from memory)

A

ALU outputs resultsto X, Y and
memory (through write enable
register)

A

PE sends data computation-
complete flag

Figure 8: Flow Diagram for PE operation [2, 4].

12/05/01 19 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

44 User Interface

Push Button with Debounce

To make the input and output signals dower for the purpose of demonstration of operation, the
input clock is controlled from a Push Button. The push button is debounced before being used as
input clock to the system.

LED 7 Segment Display
The four 7 segment displays on the board are used to indicate the values that arein the X and Y

registers and the ram at a specific clock cycle.

LCD Display

The Optrex DMC 50218 LCD display is used with the two 7-segment LED displays to indicate
the type of ingtructions (OpCode or address) that are being sent to the PEs. Asan instruction is
read from the ROM and processed, the instruction is also displayed on the LCD. The VHDL code
for the LCD display is based on the code from the CDMA group. The code is modified to display
the instructions for the C-RAM processor.

The LCD works on the 25 MHz system clock but the push button increments the different screens
to be displayed. The progress signd is connected to the push button.

To initidize the LCD display, the following steps were used.

RS R/W Data TimeHeld Purpose
0 0 00000000 7 cycles(2.8ms) | Allow LCD to
warm up
0 0 00110000 15 cycles Set display to 1
(6ms) line, 8 bit data
interface
0 0 00001000 1lcyde Turn display off
(0.4 ms)
0 0 00000001 4 cycles Clear display
(1.6 ms)
0 0 00000110 lcyde Set display to
(0.4 ms) increment on
write, no shift
0 0 00001111 4 cycles Move cursor to
(1.6 ms) home position
12/05/01 20 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

EXPERIMENTS

During the course of the project we experimented a few things, which proved to be very
important in determining the exact direction of progress.

5.1 Initially we didn't try to use mif files for the instructions and thought about feeding them
through keypad but it didn’t turn out to be a good idea. After meeting with Dr. Elliott we
decided to use mif file to store instructions and ream them from ROM. We aso stored the
data to be processed in the mif files.

5.2 Another problem we had was with the controller and it proved to be the hardest part to code.
Initially we experimented with a state machine, which would go though three states (Idle,
read, operation). This idea didn't prove to be too good as it caused timing problems. All
components worked correctly separately but when connected together in the top-level file
caused problems. We tried using four states (Idle, read, write, operation) but this idea didn’t
work too well. Finally we used case statements to change states and worked.

5.3 We initialy used only one PE for the C-Ram computer and later we used two PE’s and two
separate RAMs one for each PE. By our calculations we find that we have :

1152 - 344 (tota cells with one PE) = 808.
5.2.1.1 / 24 (size of logic cellsfor one PE) = 33.6

Thus we can safely add up to 30 PEs to our PE array.
5.4 Algorithms:

5.4.1 The multiplication algorithms did not work properly. We tried taking a four bit number,
and with the use of a counter, looped it to calculate addition N times.

5.4.2 The subtraction algorithm is al'so not providing the correct results. Our results show that
the 2's complement bits that are read back from the RAM are inverted. This provides an
incorrect result.

5.5 Another important feature in this project was working with two clocks, one for reading the
ingtructions from the mif file in ROM. Initidly the clock to read from ROM was set to a
frequency three times less than system clock but it proved not to be a very good idea. Then
we used a clock period of 20ns for the system clock and 40ns for the ROM clock and it
worked. The timing problem was the biggest problem we faced and it was hard to solve. The
time period for ROM clock was set to high value because for one instruction system clock
had to change a couple of states and if clocks with same frequency were used or if only one
clock was used it didn’t give the correct sequence of operations to get the desired resullt.

5.6 The ingtructions mif file was aso experimented a lot since as dl the operations (arithmetic
operations, enable and disable signals) are actually controlled by the instructions form the mif
file. The instructions decide the read and write addresses and a so the op-code for the PE. We
experimented a lot before we finaly came with a correct sequence of instructions to carry out
the things satisfactorily. The problem was enabling and disabling the registers and memory at
correct time.

12/05/01 21 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor

Final Project Report

SCHEMATICS

6.1 Push Buttons

The MAX_PB1 and MAX_PB2 push buttons are used as input clocks to the FPGA. They provide
active-low signals and are pulled-up through 10K ohm resistors. Connections to these signals are
made by inserting one end of the hook-up wire into the push button female header. The other end
of the hook-up wire should be inserted into appropriate female header assigned to the 1/0 pin of

the FPGA device [1].

6.2 LCDs

An Optrex DMC 50218 LCD module is used to display the opcodes sent the PE and addresses for

read and write.

6.3 7-Segment Displays

The following is a schematic connecting the FPGA on the Altera board to three seven segment
display. In our project, we will be using three 7 segment display.

FPGA

X 1Y register

Memory

Register select

Lcd read / write
Enable Signal

Data

7-segment

7 display

7-segment
display

LCD

display

GND

Power

Contrast Control

Figure 9: Hardware Schematic of two seven segment and LCD displays to the FPGA

12/05/01

2

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

TEST BENCHES
7.1 Controller Test Bench

A simple test bench was created to test the controller. (See Page 33) Inputs of clock, reset and an
instruction signals were inputted into the controller and the outputs of OpCode, En_X, En_Y,
En_memory, address rd, address wr and the states of the controller are verified.

Initialy, an address instruction is sent to the controller, from which it is set to read the data. The
controller recognizes the instruction as an address to read from, and enables the address rd signd
for theread cycle. Next, an OpCode instruction is sent to the controller. The controller
recognizes this instruction as an OpCode, by the MSB of the instruction acting asaflag. The
OpCode is sent to the PE and the corresponding registers are enabled in the PE and RAM.
Finaly, an address instruction to write too, is inputted into the controller. The controller
recognizes this instruction as an address to write to by the second MSB of the instruction acting
as aread/writeflag. The controller setstheaddress wr signa to high.

7.2 PE Test Bench

The PE test bench tests the C.RAM PE. (SeePage 36). Inputsof clock, enable x, enable y, m
and OpCode are fed into the test bench and the corresponding outputs of the PE are verified. The
PE receives the OpCode and enabling signals, and then performs the computation. Results are
stored into registers which are enabled and/or the RAM memory. Note: For the test bench the
RAM interface is not being used, rather asimple register is used to act as RAM. Writing and
reading to RAM is verified through this register.

7.3PE Top_Level

The Top_Levd test bench, smply inputs a clock and reset signals into the design. (See Page 38).
The top-level CRAM component uses instructions stored in the ROM and data stored in the RAM
to perform its computations. All the major components: controller and PE are self -contained in
the top-level design, and require no externa inputs. The only input the system requires is the
clock.

12/05/01 23 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

INDEX OF SIMULATION WAVEFORM

8.1 Controller

The controller was thoroughly tested with a number of test cases. The controller functioned
correctly, asit passed from itsinitial state of idle to either the operation state or the read state
depending on the instruction received. On the Controller Waveform 1 in the Appendix an
instruction containing an OpCode and enable bits was sent as an input. The controller received
the instruction and moved into the operation state by correctly identifying the instruction as an
OpCode from the flag bit (whichissetto 1). The controller then set the OpCode signd to the
correct OpCode, in this case OpCode = 10101010 and set the correct enable bits, En_X and
En_Memory.

In Controller Waveform 2 we have sent varied the instructions from those, which are OpCodes to
those, which contain RAM addresses. Again the controller received the ingtruction in theidle
state and then moved into the next state corresponding to the instruction. From O to 500ns, and
instruction = 1101010100001010 was sent into the controller. The controller again correctly
identified this as an OpCode from the flag bit, set the OpCode = 10101010 and initiated the En_X
and En_Memory signalsto high. The controller then returned back into its starting state of idle to
receive the next instruction. Between 500 ns and 1.0 us an instruction = 0000000000000001 is
inputted into the controller. The controller identifies this as an RAM address from the flag bit
and sets the address signal = 00000001. (As mentioned earlier, only the 8 least significant bits
are used as the address, the rest are masked off). Again the controller, then returns to the idle
state to await the next instruction.

We can see that the controller is functioning correctly. It interprets the instruction as either an
OpCode or an address and sets the correct signals corresponding to the instruction. If the flag bit
isequd to 1 the controller moves into the operation state, sets the OpCode for the PE and enables
the correct registers. If the flag bit is equal to O, the controller moves to the read state, and sets
the address bit to the corresponding address in the instruction and outputs it to the RAM.

12/05/01 24 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

8.2 Controller & ROM

The next phase of testing was to test the controller with the ROM. A mif file was created which
contained instructions for the controller and was stored in the ROM. A simple counter was used
to access the ROM and pass on the instructions to the controller. To test the controller working
with the ROM, we simply verified, the outputs of the controller with the instructions in the mif
file.

In Controller + ROM Waveform in the Appendix. The signal “junk” is equal to the instructions in
the mif file and is inputted into the controller. By verifying which instruction is sent against what
signals are outputted, we can determine if the controller and ROM components are functioning
correctly. The firgt ingtruction in the mif file is an address of 0000000000000000. We can see
this on signal junk. The controller moves from the idle state to the read state and interprets the
instruction from the mif file as an RAM address, thus sets the address line = 00000001. The
controller then moves back to the initial state of idle. The next instruction in the mif fileisan
OpCode, junk = 1101010100000010. The controller interprets this instruction as an OpCode, and
moves into the operation state. It then sets the OpCode = 10101010, and setstheEn X =1, as
determined by the instruction. The controller returnsto the idle state. From 200ns to 275ns, an
address instruction = 0000000000000101 is sent to the controller. (Thisis the third instruction in
the mif file). Again we can see the controller movesinto the correct state of read and sets the
address signal to 0000101. Finally, the next instruction in the mif file is an OpCode, and from
275ns to 350ns, instruction = 1101000000000100 (seen as the junk signal) is sent to the
controller. The controller sets the OpCode = 10100000 and setstheEn Y signd = 1.

By verifying the correct outputs of the controller against the instructions in the mif file stored in
the ROM we see that the controller is correctly receiving the instructions from the ROM and
outputting the correct results to either the PE or the RAM.

12/05/01 25 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

8.3 Test casesfor the PE

The PE takes in the OpCode from the controller along with some other signals to enable the
registers (x, y and write enable register) RAM, buses. The controller also sends in the shift right
and shift left signals to the PE. We used internal signals port mapped to outputs to check the
contents of the registers and memory.

We haven't done the RAM interface for writing the data back in to RAM so we are using a

register as RAM and writing data back to that register.
The Enable signals are set manually in this PE simulation but for the top level File

“ram_cont_ram.vhd” al the control signals are generated by the controller.

In the waveform attached in the Appendix we simulated following test cases.

OpCode Operation Other signals | Expected Result Result
Obtained
10101010 load x ory from | Enablexisset|loadthedataat first |x=1
datastored inmif | to high memory location into | asdatain
file X RAM is 1
11110000 writing data back | writeenable | RAM should go to RAM=1
to RAM fromx |issettol logiclasxisl
register
10101010 load x or y form | Enabley isset | Load datafrom next |y =1 asnext
thedatastoredin |to high memory location into | datais 1.
mif file y
10101010 load x ory form | enabley is set | Load datafrom next |y =0 as next
mif file to high location in memory | dataisO
intoy
10100000 Xx=xandm x isenabled to | Datain register x is1 | x register
performsthe and | write the and datain next goes low
operation result of and | memory locationisO |i.e. O
operation in y | so and operation
register givesa0
01100110 y=X Xorm yisenabled |Datainregister xisl |y register
performs an x-or and data in next goes high
operation memory location is 0
SO XOr operation
gives1

Since we changed the controller from State machine to a selector, the following test cases are

simulated to demonstrate that the PE now works better.

12/05/01

26

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

CASEL: (M =1Y)

Reads data from amif file (ram.mif) in the RAM.

The data read from the RAM isinverted and written to register y.
The datain register y is written back to RAM.

The mif files and the simulations for the CASE1 are attached. The mif files are |abeled according
to the data they have. The simulations for the top-level test cases are so arranged that 1% page
shows the whole simulation to see if the result is correct or not. Then in next few pages the
simulation is spread over afew pages to see the instructions and op-code and addresses changing
Clearly.

So for CASEL datain mif fileisread as 0,0,11 and inverted and written to y as 1,1,0,0 and same
is written back to RAM as 1,1,0,0.

CASE2: (ADDITION)

Dataisread from the RAM (B[0]) and sent to register X.

Datais read from the RAM (A[0]) and its ANDED with dataaready in X and sentto Y.
Datain X is XOR with datain RAM (A[Q]) and written into and X aswell asinto RAM.
RAM is disabled for Writing.

These steps arerepeated three more times with one additional step and we get the
final sum of two four bit numbers.

The Data in the mif file(ram_sum.mif) is B= 1001 and A = 1001

The sum being one bit at atime and written back to RAM should be Sum =0010

We get 0010, which is the correct result therefore C-RAM is working properly.

Since we changed the controller from State machine to a selector it seemsto work better.

8.4 User Interface (7 Segment LEDs and L CD)

Clock Divider:
The clock divider takes in the 25MHz system clock as input and outputs the required clock speed
needed for the circuits. In our system, only the debounce circuit needs to work on a 100Hz clock.

Debounce on the Push Buttons: The output of the debounce changes only when the push button
is held for longer than the debounce period (1us).

7 segment LEDs. The LEDs are simulated using the code from Lab 3 where a counter is used to
display vaues onto the LEDs.

LCD
The LCD module takes in the 25MHz system clock and run it through a delay to get the right
timing for the LCD to initialize and to display characters from the amif file.

12/05/01 27 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor

Final Project Report

Index to the Simulation Waveforms Page number
Controller 63
Controller & ROM Simulation 64
C-RAM Simulation (PE=1) M =1Y 66
C-RAM Simulation (PE = 1) Addition 67
C-RAM Simulation (PE = 2) Addition 68
Index to the Code
Design File Description Compile | Function Comments Page number
Correctly
Display_7seg | Decoder to display | Yes Yes
.vhd correct outputs on
the 7-segment 58
display
Debounce Circuit used to Yes Yes
debounce the
pushbutton input 46
LCD LCD display Yes Yes
50
Pe_dp_loop.v | Thisfilecontains | Yes Yes Takesthe OpCode
hd the architecture and the enable
for the PE control signalsas | 51
inputs, and outputs
the mux result to
the corresponding
registers or
memory
Rom_control. | Thisfilecontains | Yes Yes Instructions are
vhd the architecture stored in amif file
for the controller located in the 58
and the ROM ROM and are fed
sequentially to the
controller. The
controller
interprets these
insructions as
either an address
or and OpCode.
top_level.vhd | Thisisthetop- Yes Yes Thisisthetop
levd file level file
connecting the containing all the
Rom + Controller modules of 37
+ PE + RAM C.RAM. Datais
being read from
RAM, operated on
by the OpCode,
and being written
back into RAM.
12/05/01 28 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

REFERENCES
[1] Altera Corporation (1997). UP1 Board Documentation

[2] Elliott, Duncan G., Stumm, Michael, Snelgrove, W. Martin, Cojocaru,
Chrigtian, McKenzie, Robert (1999). Computational RAM: Implementing
Processors in Memory. (p32 — 41) |EEE Design and Test of Computers January-March 1999

[3] Elliott, Duncan G. (1998). Computational RAM: A Memory — SMD Hybrid
PhD Thesis, The University of Toronto.

[4] AKlilu, Noah, Elliott, Duncan G., Wickman, Curtis A. A Tightly Coupled Hybrid SMD/S D

System.
MSc Thesis, The University of Alberta

[5] Luker, Jarrod. RISC System Implementation in a FPGA [Online]. Available:
vailablehttp://cegt201.bradley.edu/~rekul/msee_project/documents/risc_fpga pr oposa.pdf

[6] Bender, Tim, Chan, Eric (1999). Data Compression Co-processor.
Avalable:http://www.ee.ual berta.ca/~€lliott/ee552/projects/1999 w/dataCompression/
[1991, March 29].

[7] Rivest, Micheal, Lawson, Kelly and Eriksen, Charlene (1999). uCMK
Microprocessor.Available:http://www.ee.ua berta.ca/~€el li ott/ee552/projects/1999 w/microproces
sor/report.ntml [1999, March 30].

[8] Benbow, Wendy, Behm, Rob and Joly, Craig (2001). LLAMA Loadable Logic Arcade
Machine Architecture. Avaliable:
http://wvww.ee.ualberta.ca/~el liott/ee552/projects/2001_w/llamal (2001, April 2)

[9] Cheung, Eric, Cheng, Fdlicia, Li, David and Kwan, Tim. (2000). SRAM Interfacing Basics
[Onling].
Available:
http://www.ee.ua berta.ca/~€lliott/ee552/studentA ppNotes/2000 w/interfacing/sram_basics/
Sram.html [2001, February 10].

12/05/01 29 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

APPENDI X

12/05/01 30 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

VHDL Codes

12/05/01 31 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filenane: tester.vhd

-- Descripton: Testbench for controller

-- By: CRAM Group (referenced from EE 552 O ass Not es)
-- Date: Novenber 12, 2001

library ieee;
use ieee.std logic_1164.all;

entity tester is

end tester;

architecture test of tester is
-- send instructions to controller and verify results

conponent control 2

generi c(
total : positive := 15;
size : positive :=7);
port (
clock, reset : in std_logic;
instruction : in std_logic_vector (total downto 0);

address_rd, address_wr : out std_logic_vector (size downto 0);
opcode : out std_logic_vector (size downto 0);
En_X, En_Y, En_nenory : out std_| ogic;

selectl, doutl : out std_logic_vector(1l downto 0);

En_Wite_Reg, Shift_R Shift_L, Bus_Enable : out std_logic

)

end conponent;

signal clock, reset : std_logic;
signal instruction : std_|logic_vector(total downto 0);

begi n

control check : control 2
port nmap(
cl ock => cl ock,
reset => reset,
instruction => instruction

)

clock_period : process
begi n

clock <= "'0";

wait for 40 ns;

clock <= "'1";

wait for 40 ns;
end process clock_peri od;

instruction_test : process

begi n
-- instructions for addition of two 4 bit nunbers.

12/05/01 32 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

wait for 120 ns;
instruction <= "0000000000000000"; -- test for address
wait for 120 ns;
instruction <= "1101010100000010"; -- test for opcode
wait for 120 ns;
instruction <= "0000000000000100"; --test for address
wait for 120 ns;
instruction <= "1101000000000100"; -- test for opcode

wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;
i nstruction <= "1000000000000000"; -- test for opcode
wait for 120 ns;
i nstruction <= "0000000000000001"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
instruction <= "00000000000000101"; -- test for address
wait for 120 ns;

instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;
instruction <= "0000000000000010"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
instruction <= "0000000000000110"; -- test for address
wait for 120 ns;

instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;

instruction <= "0000000000000011"; --test for address
wait for 120 ns;
instruction <= "1011001100000010"; -- test for opcode
wait for 120 ns;

instruction <= "1100010000000100"; --test for opcode
wait for 120 ns;
i nstruction <= "0000000000000111"; -- test for address
wait for 120 ns;

instruction <= "1111011000000100"; --test for opcode
wait for 120 ns;
instruction <= "1010110100001010"; -- test for opcode
wait for 120 ns;

instruction <= "1000000000000000"; --test for opcode
wait for 120 ns;

end process instruction_test;
end test;

12/05/01

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filenanme: tester2.vhd

-- Descripton: Testbench for PE

-- By: CRAM Group (referenced from EE 552 C ass Notes)
-- Date: Novenber 12, 2001

library ieee;
use ieee.std_|l ogic_1164. al |

entity tester2 is
end tester2;
architecture test2 of tester2 is
-- send instructions to controller and verify results
conponent pe_dp_I| oop
port (clock, enable_x,enable_y, wite_enable: in std_|ogic;
bus_enabl e, shift _right,shift_left : in std_|logic;

opcode : in std_logic_vector(7 downto 0);

mtest : out std_logic_vector(0 downto 0);
m in std_| ogic_vector(0 downto 0);

x_int,y_int,mux_d : out std_|logic_vector (0 downto 0)
--data_written_back_t oRAM
)

end conponent;

signal clock, enable_x, enable_y, bus_enable, wite_enable : std_|l ogic;
signal shift_right, shift_left, m: std_|logic;
signal opcode : std_logic_vector(7 downto 0);

begi n

pe_check : pe_dp_l oop
port map(
cl ock <= clock
enabl e_x <= enabl e_x,
enabl e_y <= enabl e_y,
bus_enabl e <= bus_enabl e,
shift_right <= shift_right,
shift _left <= shift_left,

m<=m
opcode <= opcode
)
clock_period : process
begi n
clock <="'0'
wait for 40 ns;
clock <= "1";
wait for 40 ns
end process cl ock_peri od;
opcode_test : process
12/05/01 34 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

begi n
wait for 150 ns;
opcode <= "10101010"; -- test for opcode
enable x <= "'1';
m<="'1";

wait for 150 ns;
opcode <= "1111000"; -- test for opcode
wite enable <= '1';

wait for 150 ns;
opcode <= "10101010";
enable y <= '1';
m<="'1";

wait for 150 ns;
opcode <= "10100000";
enable_x <= "'1';
m<="'0";

wait for 150 ns;
opcode <= "01100110";

enable y <= '1';
m<="0";

end process opcode_test;

end test2;

12/05/01 35 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filenanme: tester3.vhd

-- Descripton: Testbench for top-level design of CRAM
-- By: CRAM Group (referenced from EE 552 O ass Not es)

-- Date: Novenber 12, 2001

library ieee;
use ieee.std logic_1164.all;

entity tester3 is
end tester3;

architecture test3 of tester3 is

-- send instructions to controller and verify results

conponent top_level is
port (clock,reset: in std_logic;

Instruction : out std_|ogic_vector(15 downto 0);

di spl ayl, di spl ay2, di spl ay3: out std_l ogi c_vector(6 downto 0);
RAM val ue_read : out std_logic_vector (0 downto 0);

RAM val ue_written : out std_logic_vector (0 downto 0);

Xreg, yreg, muxout, muxin : out std_logic_vector(0 dowto 0);
wite_ad,read_ad : out std_logic_vector(7 downto 0);

enx, eny, RAM we, Bus_Enable :

);

end conponent top_| evel;

signal clock, reset : std_ul ogic;
begi n

top_l evel _check : top_level
port map(
cl ock => cl ock,
reset => reset

)

clock_period : process
begi n
clock <= "'0";
wait for 50 ns;
clock <= "1";
wait for 50 ns;

end process cl ock_peri od;

--- reset process not used currently.
--reset _test : process
--begin
--reset <="'1";
-- reset <= '0'; after 5 ns
-- wait for 1 ns;
--end process

end test3;

12/05/01 36

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filenane: top_Il evel . vhd

library ieee;

use ieee.std_|l ogic_1164. al |

use ieee.std _logic_arith.all;
use ieee.std_| ogi c_unsigned. all;

library | pm
use | pm | pm conponents. all;

entity top_level is
generi c(
zero : positive :
size : positive

0;
7);

port (clock,reset: in std_logic
--menory_value : out std_|logic_vector (zero downto 0);
--opcode : out std_logic_vector(size downto 0);
Instruction : out std_l ogic_vector(15 downto 0);
--di splayl, di spl ay2, di spl ay3: out std_logic_vector(size - 1

downto 0);
RAM val ue_read : out std_l ogic_vector (zero downto 0);
RAM val ue_witten : out std_|l ogic_vector (zero downto 0);
-- result : out std_logic_vector(zero downto 0);
Xreg, yreg, muxout, nuxin : out std_|logic_vector(zero downto
0);
write_ad, read_ad, opcode_out : out std_|l ogic_vector(size
downto 0);
enx, eny, RAM we, Bus_Enable : out std_logic
-- En_X, En_Y, junk_we : out std_|logic;
-- En_Wite_Reg, Shift_R Shift_L, Bus_Enable : out
std_l ogic

)

end top_I evel;

architecture structural of top_level is
signal internal _add_rd,internal _add_w,|nt_opcode :
std_l ogi c_vector (size downto 0);
signal internal_enable _nenory : std_logic
signal Int_En_Wite_Reg, Int_Shift_R Int_Shift_L : std_l ogic;
signal Int_Bus_Enable,Int_En_X Int_En_Y : std_| ogic;
signal nenory_value : std_|logic_vector (zero downto 0);
signal xregl, yregl, nuxoutl :std_| ogic_vector(zero downto 0);
signal romdata : std_logic_vector(zero downto 0);
signal RAM value_int : std_|logic_vector(zero downto 0);
--signal Int_RAMdata_in : std_logic;
--signal Int_Wite_Enabl e_Register;

conponent romcontrol is

generi c(
zero : positive := 0;
size : positive := 7);
port (
clock, reset : in std_|ogic;
address_rd, address_w : out std _|ogic_vector (size downto
0);
opcode : out std_logic_vector (size downto 0);
12/05/01 37 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

En_X, En_Y, En_menory : out std_l ogic;
En_Wite_Reg, Shift_R Shift_L, Bus_Enable : out std_|l ogic;
junk : out std_logic_vector(1l5 downto 0)

end conponent rom control;

conponent ron? is

generic (romdata width : positive :=1; -- width of data in rom
romaddress_width : positive := 8;-- width of address in rom
romdata_size : positive := 13); -- nunber of values in rom
PORT(clock : in std_|logic;
addressl : in std_l ogic_vector(7 downto 0);

romdata: out std_|logic_vector(romdata width -1 downto 0));
-- data in address indicated by "counter”
end conponent rong;

conponent ran? is

generic (romdata_width : positive :=1; -- width of data in ram
rom address_width : positive := 8; -- width of address in ram
romdata_size : positive := 13); -- nunber of values in ram
PORT(clock: in std_|logic; --system cl ock
nmenory_address : in std_logic_vector(7 dowto 0)
wite_enable : in std_|logic;

data_to_ram: in std_logic_vector (romdata width -1 downto 0);
ramout : out std_logic_vector(romdata width -1 downto 0))
-- output data
end conponent ran®;

--conponent dgff is

--port (clock,enable : in std_logic;

-- D: in std_|logic_vector(0 downto 0);
-- Q out std_logic_vector(0 downto 0)
=)

-- end conponent dgff;

conponent pe_dp_Il oop
generi ¢(
zero : positive := 0;
size : positive := 7);
port (clock, enabl e_x, enable_y: in std_l ogic;
bus_enabl e, shift_right,shift_left : in std_|logic;
opcode : in std_|logic_vector(size dowmnto 0);
--X,y: in std_logic;
mtest : out std_logic_vector(zero downto 0);
m in std_logic_vector(zero downto 0);
--y: buffer std_l ogic;
x_int,y_int,mux_d : out std_logic_vector(zero downto 0)

end conponent [;e_dp_l oop;

--conmponent display_7seg is

-- generi c(

-- width :positive := 5
--);

-- port (

-- clk : in std_logic;
-- input : in std_logic_vector(3 downto 0);
-- out put: out std_logic_vector(width + 1 downto 0)

--)

-- end conmponent display_7seg;

12/05/01 38 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

--conmponent display7seg2 is
--generic(width :positive := 4;
zero : positive := 0);

-- port(
-- clk: in std_logic;

-- inputl: in std_logic_vector(zero downto 0);
-- input2: in std_logic_vector(zero downto 0);
-- output : out std_logic_vector(width + 2 downto 0)

-)
--end conponent di spl ay7seg2;

begi n

RC _Conponent : rom control
port map(
reset => reset,
Cl ock => cl ock,
--clock_rom=> cl ock_rom

address_rd => internal _add_rd,

address_w => internal _add_wr,
opcode => | nt_opcode,
En_X => Int_En_X,
En_Y => Int_En_Y,

En_nenory => internal _enabl e_nenory,
En_Wite_Reg => Int_En_Wite_Reg,

Shift R=>1Int_Shift_R
Shift L =>Int_Shift L,
Bus_Enabl e => | nt _Bus_Enabl e,
junk => Instruction

)

Rom wi th_data : ron?
port map(
cl ock=>cl ock,
addressl => internal _add_rd,
rom dat a=>menory_val ue
)
R2_Conponent : rang
port map(
cl ock => cl ock,

menory_address => internal _add_wr,
wite_enabl e => internal _enabl e_nenory,

data_t o_ram => muxout 1,
ramout => RAM val ue_int

)

--Data_write_back_RAM dqff

- - port map (cl ock=>cl ock,
- - enabl e=>i nt er nal _enabl e_nenory,

- - D=>nuxout 1,
-- Q=>RAM val ue_i nt
--)

PE : pe_dp_l oop
port map(
cl ock => cl ock,
enable_x => Int_En_X,
enable_y => Int_En_Y,
bus_enabl e => | nt _Bus_Enabl e,

12/05/01 39

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

shift_right => Int_Shift_R
shift_left => Int_Shift_L,
X_i nt=>xregl,

y_int=>yregl,

mux_d=>muxout 1,

opcode => | nt _opcode,

--wr_en_reg_output => Int_Wite_Enabl e_Register,
--wite_reg_en => Int_En_Wite_Reg,

m => nenory_val ue

);

--display_op_3tol: display_7seg
-- port map (

-- cl k => cl ock,

-- i nput =>Int_opcode(w dt h-1 downto 0)
-- out put =>di spl ayl

-- displ ay_op)_7t 04: display_7seg

-- port map (

-- cl k => cl ock,

-- i nput => Int_opcode(size downto wi dth)
-- out put =>di spl ay2

-- display_x_y: display7seg2
-- port map (
-- cl k => cl ock,
-- i nput 1 =>xregl,
-- i nput2 => yregl,
-- out put => di spl ay3
--)

--pl: process(cl ock)
-- begin
- - mux_d<=a;
--mtest<=m
Xreg<=xregl;
yreg<=yregil;
muxout <=nuxout 1;
enx<=lnt _En_X;
eny<=Int _En_Y,
RAM val ue_read <= nenory_val ue;
Bus_Enabl e <= I nt_Bus_Enabl ¢;
RAM val ue_written <= Ramval ue_int
muxi n <= nenory_val ue;
write ad<=internal add w;
read_ad<=i nternal _add_rd;
opcode_out <=| nt _opcode;
-- end process pil;
RAM we <= internal _enabl e_nmenory;
end structural;

12/05/01 40 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Fil enane: control 2. vhd

library ieee;

use ieee.std_|l ogic_1164. all
library | pm

use | pm | pm conponents. al |

package controller_pkg is

conponent control2 is
generi c(
size : positive :=7);

port (
clock, reset: in std_|ogic;
instruction : in std_|ogic_vector (15 downto 0);
address_rd, address_w : out std_logic_vector (size downto 0);
opcode : out std_logic_vector (size downto 0);
En_X, En_Y, En_menory : out std_| ogic;
En_Wite_Reg, Shift_R Shift_L, Bus_Enable : out std_logic
)

end conponent control 2

end package controll er_pkg
library ieee;

use ieee.std_|l ogic_1164. al |

library work;
use wor k. control | er_pkg. al |

library | pm
use | pm | pm conponents. al |

entity control2 is

generi c(
size : positive :=7);
port (
clock, reset : in std_logic
instruction : in std_|l ogic_vector (15 downto 0);

address_rd, address_wr : out std_logic_vector (size downto 0);
opcode : out std_logic_vector (size downto 0);
En_X, En_Y, En_nenory : out std_|ogic;

selectl, doutl : out std_logic_vector(size-6 downto 0);
En_Wite_Reg, Shift_R Shift_L, Bus_Enable : out std_|logic

) .

end entity control 2
architecture m xed of control2 is

signal sel : std_logic_vector(1l downto 0)
signal dout : std_logic_vector(1 downto 0);

begi n

12/05/01 41 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

sel <= instruction(15 downto 14);

process (reset, cl ock)
begin
if reset ='1' then

opcode <= "00000000";
Bus_Enable <= '0';
En_X <="'0";
En_ Y <="'0";
En_menory <= '0';
Shift L <='0";
Shift R<="'0";

En_Wite_Reg<='0

elsif (clock' event and clock = "1") then

case sel is
when "00"=> dout <= "00";
address_rd <= instruction(size downto 0);

when "01"=> dout <= "01";
address_wr <= instruction(size downto 0);

when ot hers => dout <= "10";
opcode <= instruction(14 downto size);

Bus_Enabl e <= instruction(0);
En_X <= instruction(1);

En_Y <= instruction(2);
En_nmenmory <= instruction(3);

Shift_L <= instruction(4);
Shift _R <= instruction(5);
En_Wite_Reg <= instruction(6);

end case;
end if;
end process;

sel ect 1<=sel ;
dout 1<=dout ;

end m xed;

12/05/01 42 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor

Final Project Report

-- Filename: clk_div.vhd
-- Description: clock divider

LIBRARY |EEE;
USE IEEE.STD_LOGIC_1164.ll;

USE IEEE.STD_LOGIC_ARITH.al;
USE IEEE.STD_LOGIC_UNSIGNED.all;

ENTITY clk_divIS

PORT

(
clock_25Mhz
clock_1MHz
clock_100KHz
clock_10KHz
clock_1KHz
clock_100Hz
clock_10Hz
clock_1Hz

- OUT

END clk_div;

ARCHITECTURE aOF clk_div IS

:IN STD_LOGIC;
:OUT STD_LOGIC;
STD_LOGIC;

:OUT STD_LOGIC;
:OUT STD_LOGIC;
:OUT STD_LOGIC;
:OUT STD_LOGIC;
:OUT STD_LOGIC);

SIGNAL count_1Mhz: STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL count_100K hz, count_10K hz, count_1Khz : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL count_100hz, count_10hz, count_1hz: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL clock 1Mhz int, clock_100Khz_int, clock_10Khz int, clock_1Khz int: STD_LOGIC;
SIGNAL clock_100hz_int, clock_10Hz int, clock_1Hz int: STD_LOGIC;

BEGIN
PROCESS
BEGIN

-- Divide by 25

WAIT UNTIL clock_25Mhz'EVENT and clock_25Mhz = '1;

IF count_1Mhz < 24 THEN

count_1Mhz <= count_1Mhz + 1;

ELSE
count_1Mhz <="00000";
END IF;
IF count_1Mhz <12 THEN
clock_1IMhz_int <='0;
ELSE
clock_1Mhz_int<="1";
END IF;

-- Ripple clocks are used in this code to save prescalar hardware
-- Sync all clock prescalar outputs back to master clock signal

clock_1Mhz <= clock_1Mhz_int;

clock_100Khz <= clock_100Khz_int;

clock_10Khz <= clock_10Khz_int;
clock_1Khz <= clock_1Khz _int;
clock_100hz <= clock_100hz_int;
clock_10hz <= clock_10hz_int;
clock_1hz <= clock_1hz_int;

END PROCESS,

-- Divide by 10
PROCESS

12/05/01 43

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

BEGIN
WAIT UNTIL clock_1Mhz_intEVENT and clock_1Mhz_int =1,
IF count_100Khz /=4 THEN
count_100Khz <= count_100Khz + 1;

ELSE
count_100khz <="000";
clock_100Khz_int <= NOT clock_100Khz_int;
END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_100Khz_intEVENT and clock_100Khz_int ='1";
IF count_10Khz /=4 THEN
count_10Khz <= count_10Khz + 1;

ELSE
count_10khz <="000";
clock_10Khz_int <= NOT clock_10Khz_int;
END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_10Khz_intEVENT and clock_10Khz_int ='1";
IF count_1Khz /=4 THEN
count_1Khz <= count_1Khz + 1,

ELSE
count_1khz <="000";
clock_1Khz_int <= NOT clock_1Khz_int;
END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_1Khz_intEVENT and clock_1Khz_int ='1;
IF count_100hz /=4 THEN
count_100hz <= count_100hz + 1,

ELSE
count_100hz <="000";
clock_100hz_int <= NOT clock_100hz_int;
END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_100hz_intEVENT and clock_100hz_int ='1";
IF count_10hz /=4 THEN
count_10hz <= count_10hz + 1;

ELSE
count_10hz <="000";
clock_10hz_int <= NOT clock_10hz_int;
END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_10hz_intEVENT and clock_10hz int ='1;

12/05/01 44 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

IF count_1hz /= 4 THEN

ELSE

END IF;
END PROCESS;

END &

12/05/01

count_1hz <=count_lhz + 1,

count_1hz <="000";
clock_1hz_int <= NOT clock_1hz_int;

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: debounce.vhd
-- Description: debounce circuit

LIBRARY |EEE;

USE IEEE.STD_LOGIC_1164.dl;

USE |EEE.STD_LOGIC_ARITH.dll;
USE |EEE.STD_LOGIC_UNSIGNED. dll;

-- Debounce Pushbutton: Filters out mechanical switch bounce for around 40Ms.
ENTITY debounce S
PORT (pb, clock_100Hz :IN STD_LOGIC;
pb_debounced :OUT STD_LOGIC);
END debounce;

ARCHITECTURE a OF debounce IS

SIGNAL SHIFT_PB : STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN

-- Debounce clock should be approximately 10ms or 100Hz
PROCESS
BEGIN
WAIT UNTIL (clock_100HZ’EVENT) AND (clock_100Hz ='1");
-- Use a shift register to filter switch contact bounce
SHIFT_PB(2 DOWNTO 0) <= SHIFT_PB(3 DOWNTO 1);
SHIFT_PB(3) <= NOT PB;
IF SHIFT_PB(3DOWNTO 0)="0000" THEN
PB_DEBOUNCED <='0;
ELSE
PB_DEBOUNCED <="1
END IF;
END PROCESS;
END &

12/05/01 46 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: bin_to_led.vhd
-- Description: binary to 7 segment led converter

-- Modified by: Sue Ann Ung
-- Date: September 28, 2001

library ieee;

useieee.std logic_1164.al;

entity bin_to ledis

port (input: in std_logic_vector (3 downto 0);
output: out std_logic_vector (6 downto 0));
end entity bin_to_led;

architecture behavioral of bin_to_ledis

begin

end behavioral;

12/05/01

with input select
output <=

"1000000"
"1111001"
"0100100"
"0110000"
"0011001"
"0010010"
"0000010"
"1111000"
"0000000"
"0010000"
"0001000"
"0000011"
"1000110"
"0100001"
"0000110"
"0001110"
"1000000"

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"0000",
"0001",
"0010",
"0011",
"0100",
"0101",
"0110",
"0111",
"1000",
"1001",
"1010",
"1011",
"1100",
"1101",
"1110,
"1111",

when others;

47

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: lcd_package.vhd

library ieee;
useieeestd logic_1164.all;

package lcd_package is

component lcd_out is
generic(
data out_width: positive:=8;
data_in_width: positive:=9
)i
port(
lcd_data in: instd_logic_vector(data in_width-1 downto 0);

Icd_data_out : out std_logic_vector(data_out_width-1 downto 0);

lcd_register_select, lcd_nenable : out std_logic;

clock, reset : instd_logic;
extra_delay, lcd_latch : in std_logic;
lcd_complete : out std_logic

)i

end component lcd_out;

component segdisplay is
generic(countwidth: positive := 4; segment_width : positive :=7);
port(count: in std_logic_vector(countwidth-1 downto 0);
display: out std_logic_vector(segment_width-1 downto 0)

end' component segdisplay;

component lcd is
generic(
data in_width : positive := 16;
data out_width : positive := 8;
mode_width : positive := 4

port(
- ** external device ports**
Icd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select : out std_logic;
lcd_nenable : out std_logic;
lcd_rw : out std_logic;

- ** internal device ports**
clock : instd_logic;
areset : instd_logic;
- lcd_data in: instd_logic_vector(data in_width-1 downto 0);
lcd_mode: in std_logic_vector(3 downto 0);
lcd_mode chg: instd_logic;
Icd_done: buffer std_logic;
segmentl, segment2: out std_logic_vector(6 downto 0)

end compdnent Icd;

end lcd_package;

12/05/01 48

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-Lab3

-- Filename: count4bit.vhd

-- Description: 4 bit counter with asynchronous reset
- modified from count2bit.vhd

-- Modified by: Sue Ann Ung

-- Date: September 28, 2001

library ieee;

useieee.std logic_1164.al;
useieee.std logic_arith.all;
useieeestd logic_unsigned.all;

entity count4bit is
generic (counterwidth: positive := 4;
segments: positive := 7);

port (clock_25MHz : instd_logic;
manua_clock: instd_logic;
reset : instd_logic;
led: out std_logic_vector (segments-1 downto 0));

end count4bit;

architecture behavior of count4bit is

signd bin : std_logic_vector (counterwidth-1 downto 0);
signal clock_100Hz : std_logic;
signa system clock : std logic;

component bin_to_led
port (input: in std_logic_vector (counterwidth-1 downto 0);
output: out std_logic_vector (segments-1 downto 0));
end component bin_to_led;

component debounce
port (pb : instd_logic;
clock 100Hz: instd_logic;
pb_debounced: out std_logic

end component debounce;

component clk_div

port (clock_25Mhz *IN STD_LOGIC;
clock_1MHz :OUT STD_LOGIC;
clock_100KHz :OUT STD_LOGIC;
clock_10KHz :OUT STD_LOGIC;
clock_1KHz :OUT STD_LOGIC;
clock_100Hz :OUT STD_LOGIC;
clock_10Hz :OUT STD_LOGIC;
clock_1Hz :OUT STD_LOGIC);

end component clk_div;

begin
counter: process (system_clock, reset)
begin
--if rising_edge (system_clock) then
--bin<=hin +'1}
12/05/01 49 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

end behavior;

12/05/01

--elsif reset ='0' then
--bin <= (others =>'0Y);
--end if;

if reset ='0' then
bin <= (others =>'0");
elsif rising_edge (system_clock) then
bin <=bhin +'1;
end if;
end process counter;

whatever : clk_div
port map (
clock_25Mhz => clock_25Mhz,
clock_100Hz => clock_100Hz);

decode: bin_to_led
port map (
input => hin,
output => led);

bounce : debounce
port map (
pb => manual_clock,
clock_100Hz => clock_100Hz,
pb_debounced => system_clock);

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: lcd.vhd
-- Description: LCD Controller Interface

library ieee;

useieeestd logic_1164.all;
useieee.std logic_arith.all;
useieeestd logic_unsigned.all;
library lpm;

use |pm.Ipm_components.all;
library work;

use work.lcd_package.al;

entity lcd is
generic(
data in_width : positive := 16;
data out_width : positive := 8;
mode_width : positive := 4

- ** external device ports**
lcd_data out : out std_logic_vector(data_out_width-1 downto 0);
Icd_register_select : out std_logic;
Icd_nenable : out std_logic;
led_rw : out std_logic;

- ** internal device ports**
clock : in std_logic;
areset : instd_logic;

- lcd data in: instd_logic_vector(data in_width-1 downto 0);
lcd_mode: in std_logic_vector(3 downto 0);
lcd_mode _chg: instd_logic;
Icd_done: buffer std_logic;
segmentl, segment2: out std_logic_vector(6 downto 0)

)
end entity lcd;

-- architecture for Icd entity
architecturelcd_arch of lcd is

type state_type is (mpoweron, initialization, initialization_wait, wait_for_mode, wait_address,
load_address, get_char, display_char, inc_address);

signal state : state type;

constant clr_screen : std_logic_vector(11 downto 0) := X"001"; -- clear thelcd
signal address, mode_address: std_logic_vector(7 downto 0);

signa ch: std_logic_vector(11 downto 0);

signa dsp_done, screen_refresh : std_logic;

signa latch_add, display_enable : std_logic;

signa name_dis, increment : std_logic;

signd lcd_complete, char_valid, delay: std_logic;

signal setup, init_int: std_logic;

signa clock_count, init_time: std_logic_vector(19 downto 0);

signd latch_address, init: std_logic;

begin
led rw <="0"

12/05/01 51 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor

Final Project Report

12/05/01

init_time <= X"5B8D8"; -- used to create a 15ms delay 0x5B8D8
LCD_1: lcd_out
generic map(data_out_width => data_out_width,

data in_width =>9)

port map(lcd_data_in => ch(8 downto 0),

lcd_data_out => Icd_data out,
Icd_register_select => lcd_register_select,
lcd_nenable =>lcd_nenable,

):

clock => clock,
reset => areset,

extra_delay => delay,
led_latch => char_valid,
led_complete => lcd_complete

segl: segdisplay
port map(count => ch(7 downto 4),
display => segment1

);

seg2: segdisplay
port map(count => ch(3 downto 0),
display => segment2

);

startrom: Ipm_rom

generic map(

LPM_WIDTH => 12,
LPM_WIDTHAD => 8,
LPM_FILE =>"lcd.mif"

)
port map(

inclock => clock,
outclock => clock,
address => address,

g=>ch
);

with led_mode select

mode_address <=

"00000101" when "0000",
"00010001" when "0001",
"00101001" when "0010",
"00111100" when "0011",
"01100011" when "0100",
"01001100" when "0101",
"01011000" when "0110",
"10100011" when "0111",

-- poweron
-- command

-- from?

-- waiting for tx
-- downloading
-- streaming

-- complete msg
-- blank screen

"10000011" when "1000", -- play icon
10001001" when "1001", -- pause icon
"10000110" when "1010", -- stop icon
10001100" when "1011", -- delete? 1=OK
"10011011" when "1100", -- deleted

--when "0110", -- default song
--when"0111", -- default name
mplay when "1000", -- play icon
mpause when "1001", -- pauseicon
mstop when "1010", -- stop icon
mdel_what when "1011", -- delete ?
mdel_done when "1100", -- deleted
"01110001" when others; -- anything else
52

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

with state select
latch add <=
'l when initialization_wait,
'1' when load_address,
'1' when wait_address,
'0' when others;

with state select
Icd done<=
'l when wait_for_mode,
'0' when others;

with state select
char_valid <=
'1' when display_char,
'0' when others;

with state select
name_dis<=
'0' when initialization,
'0" when others;

with state select
init_int <=
'l when initialization_wait,
'"1' when initidization,
'0' when others;

with state select
increment <=
'"1' when inc_address,
'0' when others;

with ch select
delay <=
'1" when clr_screen,
'0' when others;

comb_logic: process (clock, areset)

begin
if areset ='1' then
state <= mpoweron;
elsif rising_edge(clock) then
case state is
when mpoweron =>
state <= initiaization_wait;
when initialization_wait =>
if setup ="1" then
state <= initialization;
else
state <= initialization_wait;
endif;
when initialization =>
state <= get_char;
when wait_for_mode =>
if lcd_mode_chg ="1' then
state <= load_address;
else
state <=wait_for_mode;
endif;
when load_address =>
12/05/01 53

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

state <=wait_address;
when wait_address =>
if mode_address = address then
state <= get_char;
end if;
when get_char =>
state <= display_char;
when display_char =>
if ch =X"100" then
state <=wait_for_mode;
esif lcd_complete="1"' then
state <= inc_address;
else
state <= display_char;
end if;
when inc_address =>
state <= get_char;
end case;
end if;
end process comb_logic;

regs2: process(clock, areset)
begin
if areset ='1' then
address <= (others =>'0");
elsif rising_edge(clock) then
if latch_address="1"and init = '1' then
address <= (cthers =>'0");
elsif latch_address = '1' and name_dis="0' then
address <= mode_address,
esf latch_address='1" and name_dis="1" then
address <= mode_address,
elsif increment ='1' then
address <= address + '1";
endif;
end if;
end process regs2;

init_count: process(clock, areset)
begin
if areset ='1' then
latch_address<="0";
setup <="0;
clock_count <= (others =>"'0");
elsif rising_edge(clock) then
latch_address <= latch_add;
init <= init_int;

if init ='1" then
if clock_count = init_timethen
setup <="1
else
clock_count <= clock_count + '1';
endif;
end if;

end if;
end process init_count;
end architecturelcd_arch;

12/05/01 54 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: lcd_out.vhd

library ieee;

useieeestd logic_1164.all;
useieeestd logic_arith.al;
useieee.std logic_unsigned.all;

entity lcd_out is

generic(
data_out_width: positive:=8;
data in_width: positive := 9

)i

port(
lcd_data in: instd_logic_vector(data in_width-1 downto 0);
lcd_data_out : out std_logic_vector(data_out_width-1 downto 0);
lcd_register_select, lcd_nenable : out std_logic;

clock, reset : instd_logic;
extra_delay, lcd_latch : in std_logic;
lcd_complete : out std logic

)i

end entity lcd_out;

architecture lcd_display of lcd_out is

type state_typeis (wait_for_char, load_data, set_count, wait_time);
signal state : state_type;

signa load_char, clear_count, count_down : std_logic;

signal count, clock_count, time_count : std_logic_vector(15 downto 0);
signd nenable: std_logic;

begin
with extra_delay select
count <=
X"FFFF" when '1', -- used to create 1.5ms delay 0x927C
X"OFFF" when'0', -- used to create 40us delay OX03E8
X"OFFF" when others;
-- X"002F" when '1', -- used to create 1.5ms delay 0x927C
- X"000A" when '0', -- used to create 40us delay Ox03E8
- X"000A" when others;
with state select
nenable <=
‘0" when wait_time, -- used to trigger enable (active low) LCD
'0' when wait_for_char,
'l when others;
with state select
lcd_complete <=
'l when wait_for_char,
'0' when others;
with state select
count_down <=
'l when wait_time,
'0' when others;
12/05/01 55

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

with state select
clear_count <=

'1' when set_count, -- clear the counters and set the time delay
'0' when others;

with state select
load _char <=

'l when load_data, -- used to latch lcd_data intolcd data out
'0' when others;

-- purpose to step through the states of execution
comb_logic : process(clock, reset)
begin
if reset ='1"then -- active high asynchronous reset
state <=wait_for_char;
elsif rising_edge(clock) then
case stateis
when wait_for_char =>
if lcd_latch ="1"then
state <= load_data;
else
state <=wait_for_char;
end if;
when load_data=>
state <=set_count;
when set_count =>
state <=wait_time;
when wait_time =>
if time_count = clock_count then
state <=wait_for_char;
else
state <=wait_time;
end if;
end case;
endif;
end process comb_logic;

process (clock, reset)
begin
if reset ='1" then
time_count <= (others =>"'0");
elsif rising_edge(clock) then
Icd_nenable <= nenable;
if load_char ='1' then
lcd_data_out <=lcd_data_in(7 downto 0);
Icd_register_select <= lcd_data in(8);
elsf clear_count ='1' then
time_count <= (others =>"'0");
clock_count <= count;
esf count_down ="1"then
time_count <=time_count + '1;
end if;
endif;
end process;

end lcd_display;

12/05/01 56 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- Filename: Icd.mif
-- Description: MIF filefor LCD Displays

WIDTH = 12;

DEPTH =17;

ADDRESS _RADIX = DEC;
DATA_RADIX = HEX;
CONTENT BEGIN

--initialize --

0: 001, -- clear screen

1: 03C; --two-lines set function set
2: 00C; -- display-on

3: 006; -- set auto increment cursor or use 014 for cursor/display shift
4: 100; --null

5:001; -- clear screen

6: 143; -C

7:12D; -- hyphen

8: 152; -R

9: 141, - A

10: 14D; --M

11: 120; -- space

12: 147, -G

13:152; --R

14: 14F; --O

15:155; --U

16: 150; --P

17: 0CO; -- nextline

18: 153; --S

19: 148; --H

20: 141; --A

21: 148; --H

22: 149; -1

23 144; -D

24: 120; -- Space
25: 153; --S

26: 155; --U

27: 145; -E

28: 120; -- Space
29; 153; --S

30: 141; -A

31: 154, -T

32: 14E; --N

33 145; -E

34: 145; -E

35: 156; -V

36: 100; -- null
END;

12/05/01 57 C-RAM Parallel Processor

Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

-- top-level file using two PES
-- top_levell.vhd
-- C-RAM group

library ieee;

useieeestd logic_1164.all;
useieee.std logic_arith.all;
useieeestd logic_unsigned.all;

library lpm;
use |pm.Ipm_components.all;

entity top_levellis
port (clock,reset,clock_rom: in std_logic;
Instruction : outstd_logic_vector(15 downto 0);
displayl,display2,display3: outstd_logic_vector(6 downto 0);
RAM_value read,RAM_vaue read? : out std_logic_vector (0 downto 0);
RAM_vaue written,RAM_value written2 : out std_logic_vector (0 downto 0);
Xreg,yreg,muxout,muxin : out std_logic_vector(0 downto 0);
write_ad,read_ad,opcodel : out std_logic_vector(7 downto 0);
enx,eny, RAM_we, Bus_Enable : out std_logic
)i
end top_levell,;

architecture structural of top_levellis

signd internal_add_rd,internal_add wr,Int_opcode : std_logic_vector (7 downto 0);
signd internal_enable_memory : std_logic;

signal Int_En_Write_Reg, Int_Shift_R, Int_Shift_L : std_logic;

signd Int_Bus_EnableInt_En_X,Int_En_Y : std_logic;

signal memory_valuememory_value2 : std_logic_vector (0 downto 0);

signal xregl,yregl,muxoutl,xreg2,yreg2,muxout2 :std_logic_vector(0 downto 0);
signal rom_data,rom_data2 : std_logic_vector(0 downto 0);

signa RAM_value_int,RAM_vaue int2: std logic_vector(0 downto 0);

component rom_control is
port(
clock,reset,clock_rom : in std_logic;
address _rd,address wr : out std_logic_vector (7 downto 0);
opcode : out std_logic_vector (7 downto 0);
En_X, En_Y, En_memory : out std_logic;
En Write Reg, Shift R, Shift L, Bus _Enable : out std logic;
junk : out std_logic_vector(15 downto 0)
)i

end component rom_control;

component ramPEL is

generic (rom_data width : positive :=1; -- width of datain rom
rom_address width : positive := 8; -- width of addressin rom
rom_data_size: positive := 13); -- number of valuesin rom

PORT(clock : instd_logic;
addressl : in std_logic_vector(7 downto 0);
rom_data: out std_logic_vector(rom_data_width -1 downto 0)); -- data in address indicated by "counter"
end component ramPEL,

12/05/01 58 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

component ramPE2 is

generic (rom_data width : positive := 1; -- width of datain rom
rom_address width : positive := 8; -- width of addressin rom
rom_data_size: positive := 13); -- number of valuesin rom

PORT(clock : instd_logic;
addressl : in std_logic_vector(7 downto 0);
rom_data: out std_logic_vector(rom_data width -1 downto 0)); -- datain address indicated by "counter"
end component ramPE2;

component ram2PE1 is

generic (rom_data width : positive :=1; -- width of datain ram
rom_address_width : positive := 8; -- width of addressin ram
rom_data size: positive := 13); -- number of valuesin ram

PORT(clock: instd_logic; --system clock

memory_address: in std_logic_vector(7 downto 0);

write enable: in std_logic;

data to_ram:instd logic_vector (rom_data width -1 downto 0);

ram_out : out std_logic_vector(rom_data_width -1 downto 0)); -- output data
end component ram2PE1;

component ram2PE2 is

generic (rom_data width : positive :=1; -- width of datain ram
rom_address width : positive := §; -- width of addressin ram
rom_data size: positive := 13); -- number of valuesin ram
PORT(clock: instd_logic; --system clock

memory _address: in std_logic_vector(7 downto 0);
write enable: in std_logic;
data to ram:instd logic_vector (rom_data width -1 downto 0);
ram_out : out std_logic_vector(rom_data_width -1 downto 0)); -- output data
end component ram2PE2;

component pe_dp_loop
port (enable_x,enable y,clock: in std_logic;
bus_enable,shift_right,shift_left : in std_logic;
opcode: in std_logic_vector(7 downto 0);
m_test : outstd_logic_vector(O downto 0);
m: instd_logic_vector(0 downto 0);
x_int,y_int,mux_d : out std_logic_vector(0 downto 0)

end component pé_dp_l oop;

component display_7seg is
generic(
width :positive :=5
port(:
clk :instd_logic;
input : in std_logic_vector(3 downto 0);
output: out std_logic_vector(6 downto Q)

);
end component display_7seg;

component display7seg2 is
--generic(width :positive := 4);

port(
ck: instd_logic;
inputl: in std_logic_vector(0 downto 0);
input2: in std_logic_vector(0 downto 0);
output : out std_logic_vector(6 downto 0)

12/05/01 59 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

)
end component display7seg2;

begin

RC_Component : rom_control

port map(

Rom_with_datal : ramPE1

port map
(

);

Rom_with data2 : ramPE2

port map
(

);

reset => reset,
Clock => clock,
clock_rom => clock_rom,
address_rd => internal_add_rd,
address_wr => internal_add_wr,
opcode => Int_opcode,
En X =>Int_En_X,
En_ Y =>Int_ En Y,
En_memory => internal_enable_memory,
En_Write Reg => Int_En_Write Reg,
Shift R => Int_Shift_R,
Shift_L => Int_Shift_L,
Bus Enable =>Int_Bus Enable,
junk => Instruction
)i

clock=>clock,
addressl => internal_add rd,
rom_data=>memory_value

clock=>clock,
addressl => internal_add rd,
rom_data=>memory_value2

R2_Componentl : ram2PE1
port map(

R2_Component2 : ram2PE2

)

clock => clock,
memory_address => internal_add_wr,

write_enable => internal_enable_memory,

data to_ram => muxout1,
ram_out => RAM_value int

port map(

clock => clock,
memory_address => internal_add wr,

write_enable => internal_enable_memory,

data to_ram => muxout2,
ram_out => RAM_value int2

)
PEL: pe dp_loop
port map(

clock => clock,

enable x => Int_En_X,

enable y =>Int En Y,
bus_enable => Int_Bus _Enable,

12/05/01 60

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

PE2 : pe_dp_loop

shift_right => Int_Shift_R,
shift_left => Int_Shift_L,
X_int=>xreg1,
y_int=>yregl,
mux_d=>muxout1,
opcode => Int_opcode,

m => memory_value

port map(
clock => clock,

enable x => Int_En_X,

enable y =>Int_En_Y,

bus enable=>Int_ Bus Enable,
shift_right => Int_Shift_R,
shift_left => Int_Shift_L,
X_int=>xreg2,

y_int=>yreg2,
mux_d=>muxout2,

opcode => Int_opcode,

m => memory_value2

);

display_op_3tol: display_7seg

port map (
clk => clock,

input =>Int_opcode(3 downto 0) ,
output =>display1

display_op_7to4: display_7seg

port map (
clk => clock,
input => Int_opcode(7 downto 4) ,
output =>display2
)i

display_x_y: display7seg2

end structural;

12/05/01

port map (
clk => clock,

inputl=>xregl,
input2 =>yreg1,
output => display3

xreg<=xregl;

yreg<=yregl;

muxout<=muxout1;

enx<=Int_En_X;

eny<=Int_En_Y;

RAM_value read <= memory_valug;
RAM_value read2 <= memory_valuez;
Bus Enable<=Int_Bus Enable;

RAM _value written <= Ram value int ;
RAM_value written2 <= Ram_value int2;
muxin <= memory_value;
write_ad<=internal_add_wr;

read ad<=interna_add_rd;
opcodel<=Int_opcode;

RAM_we <= internal_enable_memory;

61

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

Simulation Wavefor ms

12/05/01 62 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

Controller Simulation

The controller was thoroughly tested with a number of test cases. The controller
functioned correctly, as it passed from itsinitia state of idle to either the operation state
or the read state depending on the instruction received. On the Controller Waveform 1 in
the Appendix an instruction containing an OpCode and enable bits was sent as an input.
The controller received the instruction and moved into the operation state by correctly
identifying the instruction as an OpCode from the flag bit (whichisset to 1). The
controller then set the OpCode signal to the correct OpCode, in this case OpCode =
10101010 and set the correct enable bits, En_X and En_Memory.

In Controller Waveform 2 we have sent varied the instructions from those, which are OpCodes to
those, which contain RAM addresses. Again the controller received the instruction in the idle
state and then moved into the next state corresponding to the instruction. From 0 to 500ns, and
instruction = 1101010100001010 was sent into the controller. The controller again correctly
identified this as an OpCode from the flag bit, set the OpCode = 10101010 and initiated the En_X
and En_Memory signasto high. The controller then returned back into its starting state of idle to
receive the next instruction. Between 500 ns and 1.0 us an instruction = 0000000000000000 is
inputted into the controller. The controller identifies this as an RAM address from the flag bit
and sets the address signal = 00000001. (As mentioned earlier, only the 8 least significant bits
are used as the address, the rest are masked off). Again the controller, then returnsto theidle
state to await the next instruction.

We can see that the controller is functioning correctly. It interprets the instruction as either an
OpCode or an address and sets the correct signals corresponding to the instruction. If the flag bit
is equal to 1 the controller moves into the operation state, sets the OpCode for the PE and enables
the correct registers. If the flag bit is equal to O, the controller moves to the read state, and sets
the address hit to the corresponding address in the instruction and outputs it to the RAM.

12/05/01 63 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

Controller & ROM Simulation

The next phase of testing was to test the controller with the ROM. A mif file was created
which contained instructions for the controller and was stored in the ROM. A simple
counter was used to access the ROM and pass on the instructions to the controller. To
test the controller working with the ROM, we ssimply verified, the outputs of the
controller with the instructions in the mif file.

In Controller + ROM Waveform in the Appendix. The signal “junk” is equal to the instructionsin
the mif file and is inputted into the controller. By verifying which instruction is sent against what
signals are outputted, we can determine if the controller and ROM components are functioning
correctly. Thefirst instruction in the mif file is an address of 0000000000000000. We can see
thison signal junk. The controller moves from the idle state to the read state and interprets the
instruction from the mif file as an RAM address, thus sets the address line = 00000000. The
controller then moves back to the initial state of idle. The next instruction in the mif fileis an
OpCode, junk = 1101010100000010. The controller interprets this instruction as an OpCode, and
moves into the operation state. 1t then sets the OpCode = 10101010, and setstheEn X =1, as
determined by the instruction. The controller returnsto the idle state. From 200ns to 275ns, an
address instruction = 0000000000000101 is sent to the controller. (Thisis the third instruction in
the mif file). Again we can see the controller movesinto the correct state of read and sets the
address signal to 0000101. Finally, the next instruction in the mif file is an OpCode, and from
275ns to 350ns, instruction = 1101000000000100 (seen as the junk signa) is sent to the
controller. The controller sets the OpCode = 10100000 and setstheEn_Y signd = 1.

By verifying the correct outputs of the controller against the instructions in the mif file stored in
the ROM we see that the controller is correctly receiving the instructions from the ROM and
outputting the correct results to either the PE or the RAM.

12/05/01 64 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

Test casesfor the PE Simulation

The PE takes in the OpCode from the controller aong with some other signals to enable the
registers (X, y and write enable register) RAM, buses. The controller also sends in the shift right
and shift left signals to the PE. We used internal signal's port mapped to outputs to check the
contents of the registers and memory.

We haven't done the RAM interface for writing the data back into RAM so we are using a

register as RAM and writing data back to that register.
The Enable signals are set manually in this PE simulation but for the top level File

“ram_cont_ram.vhd” al the control signals are generated by the controller.

In the waveform attached in the Appendix we simulated following test cases.

OpCode Operation Other signals | Expected Result Result
Obtained
10101010 load x ory from | Enablex isset|load the dataat first |x=1
datastored in mif | to high memory location into | asdatain
file X RAM is1
11110000 writing data back | writeenable | RAM should go to RAM=1
to RAM fromx |issettol logiclasxis1
register
10101010 load x ory form | Enabley isset| Load datafrom next |y =1 asnext
thedatastoredin | to high memory location into | datais 1.
mif file y
10101010 load x ory form | enabley is set | Load datafrom next |y =0 as next
mif file to high location in memory | dataisO
intoy
10100000 Xx=xandm x isenabled to | Datain register x is1 | x register
performstheand | writethe and data in next goes low
operation result of and | memory location isO |i.e. O
operation in 'y | so and operation
register givesaO0
01100110 y=X X0orm yisenabled |Daainregister xisl |y register
performs an x-or and datain next goes high
operation memory location is 0
SO XOr operation
gives 1

Since we changed the controller from State machine to a selector, the following test cases are

smulated to demonstrate that the PE now works better.

12/05/01

C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

C.RAM Simulation (PE =1)

CASEL: (M =!'Y)

Reads data from a mif file (ram.mif) in the RAM.

The dataread from the RAM isinverted and written to register y.
The datain register y is written back to RAM.

The mif files and the smulations for the CASEL are attached. The mif files are |abeled according
to the data they have. The simulations for the top-level test cases are so arranged that 1% page
shows the whole simulation to see if the result is correct or not. Then in next few pages the
simulation is spread over afew pages to see the instructions and op-code and addresses changing
clearly.

So for CASEL datain mif fileisread as 0,0,11 and inverted and written to y as 1,1,0,0 and same
is written back to RAM as 1,1,0,0.

12/05/01 66 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

C.RAM Simulation (PE =1)

ADDITION

Dataisread from the RAM (B[0]) and sent to register X.

Datais read from the RAM (A[0]) and its ANDED with dataaready in X and sentto Y.
Datain X is XOR with datain RAM (A[Q]) and written into and X aswell asinto RAM.
RAM is disabled for Writing.

These steps arerepeated three more times with one additional step and we get the
final sum of two four bit numbers.

The Data in the mif file(ram_sum.mif) is B= 1001 and A = 1001

The sum being one bit at atime and written back to RAM should be Sum =0010

We get 0010, which is the correct result therefore C-RAM is working properly.

Since we changed the controller from State machine to a selector it seemsto work better.

12/05/01 67 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

C-RAM Parallel Processor
Final Project Report

C.RAM Simulation (PE = 2)

ADDITION
For both PEs the following instruction set is the same:

Dataisread from the RAM (B[Q]) and sent to register X.

Datais read from the RAM (A[0]) and its ANDED with data aready in X and sentto Y.
Datain X is XOR with datain RAM (A[0]) and written into and X as well asinto RAM.
RAM isdisabled for Writing.

These steps arerepeated three moretimeswith one additional step and we get the
final sum of two four bit numbers,

The Dataiin the mif fileof PE#1isB= 1111 and A = 1111
The Dataiin the mif file of PE#2isB = 1010 and A = 0101

The sum being one bit a atime and written back to RAM should be Sum #1 = 1110
and sum for PE #2 is. Sum #2 = 1111.

The simulations show that we get aresult of 1110 for PE #1 and 1111 for PE #2, which isthe
correct result therefore C-RAM is working properly.

12/05/01 68 C-RAM Parallel Processor
Shahid, Sue Ann, Satnheev

