
LL A M A

LOADABLE LOGIC ADAPTABLE

MACHINE ARCHITECTURE

FINAL REPORT

A P R I L 2 , 2 0 0 1

Wendy Benbow

wbenbow@ee.ualberta.ca

Craig Joly

craig@taipan.mudshark.org

Rob Behm

rbehm@ualberta.ca

L L A M A
FINAL REPORT

D E C L A R A T I O N O F O R I G I N A L C O N T E N T

The design elements of the project and report are entirely the work of the
authors and have not been submitted for credit in any other course except as
follows:

• Table 1 from User Interface section is from Reference [2]
• Application circuit for ML2653 (Ethernet Interface Section) is from

Reference [8]
• Drawing 12 & Drawing 13 in the SRAM section are from Reference [9]
• VHDL code for keypad from StudentAppNotes for Tetris Group (1999_w)
• VHDL code for LCD based on code from Reference [2]
• Drawing 4 is from Reference [4]
• Table 3 & Drawing 15 are based on table 13 and figure 3 in Reference [12]

April 2, 2001 Indexes − Page i

Rob BehmWendy BenbowCraig Joly

L L A M A
FINAL REPORT

A B S T R A C T

In this document, the design and simulation of an an architecture for a
portable FPGA configurater are explained. Called LLAMA, Loadable Logic
Adaptable Machine Architecture, this configurater reads hardware program−
ming/configuration files via a serial or Ethernet link, stores them locally, then
programs/configures any FLEX6000, 8000, 10K or APEX20K FPGA.
LLAMA has been implemented on the FLEX10K20 FPGA on the Altera UP1
board and uses an LCD and keypad for the user to control its operation and
for providing status and feedback to the user.

April 2, 2001 Indexes − Page ii

L LA MA DA T A S H E E T

The LLAMA chip implements a FPGA programmer using both Rs−232 and
Ethernet (or raw bit stream) to acquire programs. These programs are stored in
SRAM until needed for programming. A simple user interface, consisting of a
two−line LCD display and a 16−key keypad, provide control and status display.

FEATURES
• 25.175 MHz external frequency

• Support for Ethernet, Serial, or synchronous bitstream data input

• 2−line LCD and 16−key keypad User Interface

• Stores data on up to 4x32kB SRAM chips(can be non−volatile)

• Programs Altera FLEX 6000, 8000, 10K and APEX 20K FPGAs using Passive
Serial transfer mode.

DEVICE UTILIZATION
LLAMA has been implemented on an FLEX10K20. The utilization of the FPGA
is shown below:

Module Number of Logic
Blocks

Percent of Total LBs

RS232 126 10%

Ethernet 256 22%

User Interface 381 33%

RBF Configurater 115 9%

Total 981 85%

DEVICE PINOUT
LLAMA was implemented on the Altera UP1 board, which provides an internal
clock of 25.175 Mhz. Three banks of external connections are available for
connecting to external hardware, denoted FLEX_EXPAN_A, FLEX_EXPAN_B
and FLEX_EXPAN_C. For simplicity, pins on these connectors will be referred
to Axx (xx denotes pin number)

Module Pin Name UP1 Pin Module Pin Name UP1 Pin

Main nReset PB1 Memory A0 − 14 C15 − 29

Comm RS232In B30 Memory D0 − 7 C30 − 37

Comm RS232Out B32 Memory RE C39

Comm RxE B23 Memory WE C38

Comm RxD B25 Memory CS0 − 3 C40 − 43

Comm RxC B19 Keypad Row0 − 3 A39 − 42

Comm TxE B29 Keypad Col0 − 3 A35 −38

Comm TxD B31 RBF Data A49

Comm TxC B27 RBF DCLK A51

Comm Col B33 RBF NStatus A53

Comm FD B35 RBF ConfDone A55

Comm Lpbk B36 RBF nConfig A50

LCD Enable A18 RBF initDone A52

LCD Select A16

LCD R/W A17

LCD Data0 − 7 A19 − 26

TARGET DEVICE CONNECTIONS

Signal EPF10K20RC240−4 Pin Name

Data 180

nConfig 121

conf_done 2

dclk 179

nstatus 60

msel0, msel1 and nCE should be grounded on the target device.

NC0 chould be left unconnected.

L L A M A
FINAL REPORT

T A B L E O F C O N T E N T S

DECLARATION OF ORIGINAL CONTENT...I

ABSTRACT...II

LLAMA DATASHEET..3
Features..3
Device Utilization...3
Device Pinout...3

OVERVIEW...1

ACHIEVEMENTS...2
Communications...2
Memory..3
Configurater...3
UI...4

DESIGN DETAILS..5
Communications...8

RS−232..8
RS−232 Receiver..10

RS232 Transmitter...11
Ethernet interface..12

External Memory..16
SRAM...16

RBF Configurater...18
User Interface..20

Keypad..22
LCD...23

EXPERIMENTS...24
Configuring with RBF..24
UI...24
JBC Programming..24

REFERENCES...26

APPENDIX A: PIN LIST

APPENDIX B: VHDL CODE

APPENDIX C: SIMULATIONS AND TEST CASES

APPENDIX D: SCHEMATICS

APPENDIX E: DATA SHEETS

April 2, 2001 Table of Contents

L L A M A
FINAL REPORT

O V E R V I E W

FPGAs are often used for prototyping and for research projects. They are
very useful and convenient because hardware can be written to them and
debugged without spending large sums of money to fabricate an ASIC, only
to discover that there’s a mistake in the design. Unfortunately, several
popular types of FPGAs are volatile, so the programming or configuration
information must be reloaded every time the device is powered up. The
LLAMA project aims to fix that, by designing a portable FPGA configurater
that will both allow FPGAs to be truly reconfigured "in the field", without the
presence of a PC, and to allow quick reconfiguration of an FPGA after
power−on.

A prototype LLAMA device has been implemented on a FLEX10K20
FPGA. This is a volitle implemention, but if time and resources permitted, the
LLAMA could be implemented on a non−volitle FPGA which would make it
much more useful in the field.

April 2, 2001 Final Report − Page 1

L L A M A
FINAL REPORT

A C H I E V E M E N T S

COMMUNICATIONS

The hardware for the ethernet was connected as shown in the application
note, and worked on the first attempt. A link light was established, and valid
data was clocked into LLAMA, only for the data portion of the packet. When
a RBF file was split into 1500 byte pieces, and transmitted in ethernet frames
to LLAMA, it was read correctly into SRAM, and then programmed onto the
target board.

The RS232 receiver was simple to connect, and also functioned as
expected, once a correct pinout was found for the RS232 connector (there was
some confusion between Data Terminal Equipment and Data Communica−
tions Equipment in our references). Serial bytes could be programmed into
SRAM one at a time by typing on the keyboard, or an entire RBF file could
be transferred into SRAM using a common terminal program, such as
HyperTerm.

The top level communications file detects activity on both the ethernet and
the serial, and requests a memory lock. The data is then read from the source
(ethernet or serial) into SRAM, until the user indicates that the transmission is
finished (recommended to wait for about 5 seconds for a 28K file). The
rational for this design was the random nature of the transfer; there was no
way of determining whether the transmission was complete or not, since
another packet (either serial or ethernet) could still be coming when the
current packet was done. It was simpler and less resource intensive to let the
user signal the user interface when the transmission was complete than to
parse the file to find an end of file.

April 2, 2001 Final Report − Page 2

L L A M A
FINAL REPORT

MEMORY

Memory simulates and runs flawlessly, including a locking mechanism to
only allow only the module that owns the lock to access memory. The
configuration module will send a request for memory and wait for an
acknowledgment before it attempts to retrieve data for configuring a target.
Due to the inability of the ethernet device to pause transmission, the ethernet
module does not wait for an acknowledgment. The memory module itself
keeps the ethernet module from writing to main memory and those bytes will
be lost. The memory module successfully accesses multiple SRAM chips
based on requests from the UI.

CONFIGURATER

The configurater was originally envisioned to be a JTAG programmer and
configurater that could work with any IEEE1149.1 compatible device. It
would load JBC (Jam ByteCode) files, interpret them and send JTAG
commands over a JTAG serial interface to configure/program the target
device. Due to the nature of the JBC file, this was much more difficult to
implement than originally expected. The JBC file is set up as instructions to a
virtual machine[10], which should simplify the interpreting, but the data
referencing seemed very complicated. It was decided that time would be
more effectively spent making a simple, more limited configuration scheme
work than deciphering the intricacies of data referencing in the JBC file.

The latest iteration uses RBF files in a passive parallel synchronous
configuration scheme for Altera FLEX 6000, 8000, 10K and APEX 20K
devices. The module simulated perfectly, but there were problems program−
ming to a target device. The target would immediately give an error when
configuration was attempted. It was assumed that the documentation’s[12]
reference to a "low to high transition on the nCONFIG pin" mean an active
high pulse. Study of a waveform included (see Drawing 15) in the document
showed that this actually referred to the rising edge of an active low pulse.

April 2, 2001 Final Report − Page 3

L L A M A
FINAL REPORT

The module’s state machine was also refined to give it more possible waiting
states to better deal with signals from the target device. Configuration of a
target device has been demonstrated and verified.

UI

The keypad and LCD both work as desired. The messages for displaying
on the LCD are stored on an EAB ROM instead of the initial implementation
that used combinational logic. This nearly halved the size of the UI module
and allows messages to be more easily changed.

April 2, 2001 Final Report − Page 4

L L A M A
FINAL REPORT

D E S I G N D E T A I L S

The LLAMA architecture allows a hardware configuration file to be
created on a computer in a program such as Max+Plus II, uploaded to the
LLAMA, then used to configure another FPGA whenever desired. If more
than one configuration file has been loaded onto the LLAMA board, the user
will be able to select between the different files via a simple user interface,
consisting of an LCD display and a small keypad.

This architecture is broken into different modules, each of which interfaces
with the other modules via the core as shown in the design hierarchy in
Drawing 1. The core is responsible for transferring data between and
providing control signals to the other modules. Configuration files are trans−
ferred into the LLAMA board either by an RS−232 serial or Ethernet connec−
tion. A small application for the host computer will need to be created to
support either of these data transfer methods, and implement a protocol
compatible with LLAMA. Once the configuration file is read from the
computer, it is stored in local RAM. After the transfer is complete and veri−

April 2, 2001 Final Report − Page 5

Drawing 1: Design Hierarchy

L L A M A
FINAL REPORT

fied with an 8−bit checksum, it can be written to permanent storage. The user
can then connect a target board, and select the configuration file to be used
via the user interface (LCD and keypad). Configuration of the target board is
then carried out using the RBF configuration module. A block diagram
showing this arrangement is shown in Drawing 2.

In total, the LLAMA device consists of four main modules:

• Communications (Serial and Ethernet)

• External Memory (SRAM)

• RBF Configurater

• User Interface

COMMUNICATIONS

RS−232

One simple method of loading the configuration data from a computer onto
the LLAMA board is via a serial connection utilizing the RS−232 protocol.
This is an established and reliable technology that will provide a common
interface to almost all current computers. In general, both 9−pin and 25−pin

April 2, 2001 Final Report − Page 6

Drawing 2: Block Diagram of LLAMA System

L L A M A
FINAL REPORT

serial cables exist, but our device will implement only the 9−pin standard, as
is most common for non−modem serial applications.

The RS−232 standard specifies a "non return to zero" encoding scheme for
the serial data. In specific, logic ’1’ levels are encoded with negative volt−
ages, and positive voltages correspond to a logic ’0’.[3] The exact specifica−
tions are in Table 1.

Logic Level RS−232 Transmit Specifi−
cation

RS−232 Receive Specifi−
cation

’0’ +5 to +15 V +3 to +15 V

’1’ −5 to −15 V −3 to −15 V

Table 1: RS232 Level Specifications

Clearly, these logic levels are not compatible with those used in the FPGA,
and a conversion will be necessary. The LT1080 was chosen as a good solu−
tion, due to its use of charge pumps to generate the required voltage levels
from a single +5 V supply. The schematic for this connection may be seen in
Drawing 16 (Page 19).

To properly interface with a PC, some form of flow control must be used.
Hardware signals CTS, RTS, DCD, etc are used for this. Since this is a low
performance application (ie. Not strongly bi−directional) these lines are
merely connected in a loopback function, as shown in Drawing 3[4]. In this
manner, the remote computer takes care of its own flow control, freeing us
from dealing with it.

April 2, 2001 Final Report − Page 7

L L A M A
FINAL REPORT

When a transmission is not in progress, the data line is held at logic 1
(negative voltage). The start of a transmission is signaled by the data line
switching to a logic 0. This is called the "start bit", and data will follow this
bit at a predefined rate (typically 9600 bits/sec). The end of a transmission is
indicated by one or more stop bits[3][5] (one for LLAMA). This is summa−
rized in Drawing 4.

We chose a transfer rate of 115200 bits/second to reduce transfer times.
The reception of data is triggered by the arrival of the start bit. Once the start
bit is detected, data follows at the data bit rate [3]. A 115200 Hz counter with
an enable is used to time transmission. Once the start bit is detected, the
counter is started, and the data bits are shifted into an 8 bit serial−parallel
converter for conversion to bus width. Once a whole byte is accumulated, it
is sent to permanent storage.

RS−232 REC EI V E R

The receiver takes the ingress bitstream, converts it to a 8−bit parallel
stream, and places it on the data bus. Appropriate addressing and flow

April 2, 2001 Final Report − Page 8

Drawing 3: Serial Loopback Connections

Drawing 4: Serial Bitstream

L L A M A
FINAL REPORT

control will be handled by the core. A block diagram of the receiver is as
follows:

The combinational logic in the state machine controls the flow of bits to
the shift register, ensuring that only valid data is copied to the bus. When the
system is idle or a complete byte of information has not been received, then
no data is wrote to the bus (controlled via signals to the core).

A clock is provided to both the
shift register (which also has an
enable, controlled by the state
machine) and the state machine at 16
times the bit rate. For example, for
115200 baud, a 184 MHz clock is
provided.

The state machine is structured as
shown in Drawing 6. When there is no
transmission in progress, the sender holds the
data line high (from a logic level − the actual
voltage on the RS232 line is negative). This
corresponds to a wait_start state. When the
sender begins a transmission, it is indicated
by a "start bit". The detection of the leading
edge of a start bit triggers a state transition to
the got_start. The state machine waits in this
state for 24 clock cycles (8 clocks cycles to
get to the approximate middle of the start bit,
then 16 more to get to the middle of the first
data bit) then transitions to the data_xfer
state. At this point the shift register is
enabled, and eight bits are shifted in, at 1/16th of the clock rate (the bit rate).
After eight bits have been received, the state machine transitions to the
wait_stop state. If a valid stop bit is detected, the bus is signaled that there is
valid data. Whether a stop bit was received or not, the state machine transi−
tions to the wait_start state.

April 2, 2001 Final Report − Page 9

Drawing 6: RS232 Receiver − State
Machine

Drawing 5: RS232 Receiver − Block
Diagram

L L A M A
FINAL REPORT

RS232 TR A N S M I TTE R

A transmitter was implemented to allow feedback to the serial user, as well
as for sending configuration data to a BitBlaster connected to a target device.
Currently, it is attached to the receiver, and echoes any data sent to the FPGA
back out. There is a slight delay between reception of the original signal and
transmission of the signal, approximately 8 clock cycles, to allow the trans−
mitting software on the PC time to catch up. The transmitter is more
straightforward than the receiver − a start bit and a stop bit are added to the
input data stream, and then they are shifted out of a shift register. This is
summarized in the following block diagram:

The State Machine controls the shift register, allowing it to shift out data only
when there is valid data coming in from the bus. This is controlled by the
core.

April 2, 2001 Final Report − Page 10

Drawing 7: RS232 Transmit Block Diagram

L L A M A
FINAL REPORT

As currently connected, the bus connection is made to the output from the
receive shift register, resulting in an echo configuration.

ETHERNET INTERFACE

An Ethernet interface is to be provided with LLAMA for a more accessible
(and faster) means of loading configuration files into permanent storage.
Ethernet is a popular networking technology and comes in a variety of speeds
and cable specifications. The most common varieties are 10 Base−T and 100
Base−T, where the preceding number indicates the speed, in megabits per
second, and the "−T" indicates the use of twisted pair cable. For LLAMA, 10
Base−T was chosen as the access method, as it requires a much slower clock
speed than 100 Base−T.

The 10 Base−T standard, contained in IEEE 802.3, specifies a total of four
wires in the twisted pair cable. Receive and transmit lines are separated into
two half−duplex differential signals to allow elimination of noise.[6]

An Ethernet transceiver derives its clock from the Ethernet packet itself,
which is encoded using Manchester encoding, a bit scheme that requires a
clock at double the data rate. Hence, a 20 Mhz clock is provided by the
Ethernet packet. Rather than perform Manchester Decoding in the FPGA
(which would consume a great deal of logic cells, assuming the FPGA is fast
enough) an external IC was chosen for this task, the ML2653. This IC is
connected via isolation transformers to the twisted pair cable as shown in
Appendix D.

April 2, 2001 Final Report − Page 11

Drawing 8: RS232 Transmit
State Machine

L L A M A
FINAL REPORT

The receive state machine controls the data flow. When RxE (Receive
enable) is first asserted, the state machine skips the first 12 bytes of data (96
bits), ignoring the source and destination address, assuming point−to−point
connection. It then records the packet length, so it knows when to stop
reading data. All data after the length field is assumed to be data, and is
copied to the serial−parallel converter for transfer to memory. If at any time
data flow is interrupted, or RxE goes low, a data fault is sent to the memory
controller, and the packet is erased. This process is summarized in Drawing
9.

Transmit data is shifted out to the
ML2653 at a rate determined by the TxC
(Transmit clock) line that is provided from
the ML2653.

For simplicity, a point to point connection is assumed, with all packets
being broadcast. This eliminates the need to filter packets, a job easiest done
in software. Again, for simplicity, the transmit section is not necessary. A
no−collision environment will be assumed (point−to−point connection) and
no interference or re−sends will be necessary (will be verified at a later date).

April 2, 2001 Final Report − Page 12

Drawing 10: Ethernet Transmit
Flow

Drawing 9: Ethernet Transmit State Machine

L L A M A
FINAL REPORT

There will be a synchronizer
register between the input shift
register and the bus in order to
ensure that signals are clocked to
the main clock domain properly. A
simple state machine will control
shift register as well as signal the
bus that there is data. This is shown
in Drawing 11.

The flow of a typical packet
transmission is:

1. Host initiates transmission. A preamble of alternating 1’s and 0’s is sent
on the twisted wire pair, Manchester encoded

2. The ML2653 recognizes this as the start of a packet, and prepares to
receive data

3. When the preamble is done, the ML2653 asserts RxE (the receive enable)
and starts decoding bits from the line. These bits are then sent on the RxD
line on the rising edge (this is programmable) of RxC, which turned on at
the same time as RxE was asserted

4. When the receiver (FPGA) detects a rising edge on RxE, it starts the shift
register, enabling it to receive data on the rising edge of RxE. When the
eighth bit is shifted in, the synchronizer register is also loaded.

5. When RxE goes low again, the data transmission is presumed complete,
and the last 4 bytes are the checksum to match against the calculated one, if
time and space permits.

April 2, 2001 Final Report − Page 13

Drawing 11: Ethernet Receive Blocks

L L A M A
FINAL REPORT

EXTERNAL MEMORY

SRAM

LLAMA has permanent storage of RBF configuration files in the form of
SRAM. The SRAM system consists on four MOSEL P51256SL−10 chips.
They each require 15 address pins (shared) and 2 control pins (one shared).

To read and write data onto the SRAM, the following sequences can be
used[9]:

Write Cycle Read Cycle
1. Assert Address to address bus 1. Assert Address to address bus
2. Assert Write Enable to active
state

2. Assert Output Enable to active state

3. Write Data to data bus 3. Read Data from data bus
4. Pull Write Enable to inactive
state

4. Pull Output Enable back to inactive
state

Table 2: Read and Write Cycles

These sequences are illustrated by the state machines below:

April 2, 2001 Final Report − Page 14

Drawing 12: SRAM Read Cycle

L L A M A
FINAL REPORT

The memory control module has several purposes. It implements a hand−
shaking mechanism so that only one of the configurater or transfer modules
can access the device. The device that wishes to access memory asserts a
request signal high. When memory is free, the control module will assert an
acknowledgment. At this time, the requesting device has access to the
memory.

Since all memory access is to be sequential (start at an address and either
read or write consecutive bits), addresses are also calculated in the memory
module to simplify the logic in modules that require memory and to reduce
redundant processes. When a device has locked the memory, it simply sends
either a data valid or data request pulse and the control module increments the
address and sends a command to the memory module to read the data into or
out of the SRAM.

Do to hardware availability, each configuration file will be stored on a
separate 256kbit SRAM. The user interface will select the desired file (based
on user input) and then select the appropriate chip select to enable/disable the
chips.

April 2, 2001 Final Report − Page 15

Drawing 13: SRAM Write Cycle

L L A M A
FINAL REPORT

RBF CONFIGURATER

The RBF configurater module will configure a target Altera FLEX10K,
FLEX8000, FLEX6000 or APEX2000 device with an RBF configuration file.
The RBF file can be created from an SOF (SRAM Object File) using the
Max+Plus II software.

The RBF configurater is controlled by two signals from the UI module, a
start signal and a stop (abort) signal. The abort signal should be rarely used
because target device configuration takes approximately 1.1s at the RBF
module’s frequency (224kHz).

Three signals are used to configure a target device and another two are
monitored for status signals. The three output signals are a signal to put the
target into configuration mode (nconfig) the configuration data (data), a
configuration clock (dclk). The signals being monitored are conf_done and
n_status, a complete signal and an error signal.

Once the RBF module receives an active high pulse on the start signal, it
sends asserts its memory request signal high. After an acknowledgment is
received, the nconfig pin is pulsed low and the module waits for the target to
release nstatus. When nstatus returns high, the RBF module starts pulsing the
configuration clock (dclk) and sending configuration bits, least significant bit
first, onto the data pin. Once the target device finishes configuring, it pulls
conf_done high. At this signal, the RBF module release memory, stops
placing shifting bits onto the data pin and pulses dclk 16 more times before
returning to a wait state. This sequence is shown in Drawing 14.

April 2, 2001 Final Report − Page 16

L L A M A
FINAL REPORT

The target device timing wave−
forms are shown in Drawing 15 and
the timing parameters are in Table
3. Due to the RBF module’s low
frequency compared to the
maximum frequency of the target
device, all of the values in the table
are honored with no special timing
modifications to the code.

April 2, 2001 Final Report − Page 17

Drawing 14: RBF Configuration State
Machine

Drawing 15: RBF Timing Diagram

L L A M A
FINAL REPORT

Symbol Parameter Min Max Units

tCF2CD nCONFIG low to CONF_DONE low 200 ns

tCF2ST0 nCONFIG low to nSTATUS low 200 ns

tCF2ST1 nCONFIG high to nSTATUS high 4 µs

tCFG nCONFIG low pulse width 2 µs

tSTATUS nSTATUS low pulse width 1 µs

tCF2CK nCONFIG high to first rising edge on DCLK 5 µs

tST2CK nSTATUS high to first rising edge on DCLK 1 µs

tDSU Data setup time before rising edge on DCLK 10 ns

tDH Data hold time after rising edge on DCLK 0 ns

tCH DCLK high time 30 ns

tCL DCLK low time 30 ns

tCLK DCLK period 60 ns

fMAX DCLK maximum frequency 16.7 MHz

Table 3: RBF Timing Parameters

USER INTERFACE

The user interface provides a means for the user to control the LLAMA
board, and will consist of an Emerging Technologies 16x2 LCD display and a
4x4 Series 83 keypad. In order to use the LLAMA, the user must be able to
select the desired file to load, and then start the loading process.

The UI is run using a state machine that asks the user for input at nearly
every step. This state machine can be found in Drawing 16 below. By looking
at the table of messages (Table 4) and the state machine diagram one can
easily understand the system. Essentially, the user can see the current active
file (for both loading and downloading), select a new file, load the active file
and receive a message when the file is loaded on the target board. The user

April 2, 2001 Final Report − Page 18

L L A M A
FINAL REPORT

must tell the system when the the system is done loading each configuration
file into the RAM.

April 2, 2001 Final Report − Page 19

Drawing 16: UI State Machine

L L A M A
FINAL REPORT

Msg_code Message

’000’ "Active File: [#]
New File or Load"

’001’ "Load File [#]?
[OK] [Cancel]"

’010’ "Now Loading
[CANCEL]"

’011’ "ABORTED!! Press
[OK] to Continue"

’101’ "Downloading File [#]
[OK] when Done"

The file number [#] is dynamically changed by the system

Table 4: UI States

KEYPAD

The purpose of the key pad is to give the user a means of communicating
with the LLAMA. This keypad consists of a grid of 4 rows and 4 columns.
When a button is pushed, it acts as a switch and completes the circuit between
one of the rows and one of the columns. By using pull up resistors on the
rows, and driving the columns low, when a button is pushed, the input will be
low for detection. The columns can be driven low one at a time as the voltage
of rows is checked. The keypad’s schematic is fairly trivial and can be found
in Appendix D.

The bounce is 4ms at make and 10ms at break[1]. Using a debouncing
period greater than 4ms will ensure that the keypad is read properly.

For the Llama system, the top four keys are designated for selecting the
files, the bottom right key is [OK], the key to the left of that is [CANCEL]
and the bottom right key is [LOAD]. The remaining keys can be used for
more file selects when the system is expanded to hold more configuration
files.

April 2, 2001 Final Report − Page 20

L L A M A
FINAL REPORT

LCD

The LCD display will be used in conjunction with the keypad to enable the
user to communicate with the LLAMA and to see the status of the LLAMA.
The user will be able to see the current active file, select a new file, and run
the configurater. Based on available supplies, the Optrex DMC16207 LCD
has been selected for this project. The VHDL code is based on the code from
the CDMA group, and modified to better suit our needs[2] .

The LCD requires a 2.5kHz clock, therefore, a clock divider was imple−
mented.[2] . The enable signal is pulsed at a rate similar to the clock rate. This
is accomplished by an inverted clock signal.

To initialize the LCD Display, the steps in Table 5 were used: (thanks to
the CDMA group for this!)[2]

 RS R/W Data Time Held Purpose
0 0 00000000 7 cycles (2.8ms) Allow LCD time to warm

up
0 0 00110000 15 cycles (6ms) Set display to 1 line, 8 bit

data interface
0 0 00001000 1 cycle (0.4ms) Turn display off
0 0 00000001 4 cycles (1.6ms) Clear display
0 0 00000110 1 cycle (0.4ms) Set display to increment

on write, no shift
0 0 00001111 4 cycles (1.6ms) Move cursor to home

position

Table 5: LCD Initialization

The messages have all been stored in the internal ROM and are selected
based on the message code received from the system. By saving the messages
in the ROM the number of logic cells utilized by the UI were cut in half.

April 2, 2001 Final Report − Page 21

L L A M A
FINAL REPORT

E X P E R I M E N T S

CONFIGURING WITH RBF

Getting the RBF configurater working required a bit of experimentation.
Since there was little documentation on the UP1 board − no schematics or
description of operation − the jumper settings were determined by trial and
error. For configuring the target board using RBF files, the correct setting is
the same as for configuring the Flex10K only (see UP1 documentation)

Even with the correct jumper settings, configuring the target board seemed
very hit and miss − when it was working, it would work for a long time.
When it wasn’t working, it wouldn’t work at all. Eventually, it was deter−
mined that there was a great deal of cross−talk between DCLK and Data on
the RBF configuration interface. Keeping these wires as far apart as the wire
lengths permit, and not allowing them to ever cross, allows programming to
nearly always succeed.

UI

The LCD display was originally designed with the messages being gener−
ated combinationally. The UI took up over half of the total available logic
blocks with only 4 messages. A redesign to use the EABs as a PROM to store
the messages reduced the UI module to approximately a third of the total
available logic block with 10 messages.

JBC PROGRAMMING

The original design of the project called for JBC files to be used to
program the target device instead of RBF files. The advantage of JBC files is

April 2, 2001 Final Report − Page 22

L L A M A
FINAL REPORT

that they support a wide variety of possible target devices and are an industry
standard[10]. Unfortunately, they are bytecode for a virtual machine that
actually does the programming/configuration. VHDL code to interpret the
JBC file was started and reached slightly over 1000 lines. It could follow and
decode the op−code part of the file. However, being a virtual machine, the
data part of the file was not accessed in a way that was easy to convert to
hardware and it was determined that a JBC interpreter would not fit in our
available number of logic blocks, even as a stand−alone, externally controlled
chip.

The RBF file takes the configuration system to the other extreme. It only
supports a narrow range of Altera devices and does not require any inter−
preting. The data is already formatted suitably for the target device and
simply needs to be pulled off of a storage device and streamed to the target
with appropriate control signals.

April 2, 2001 Final Report − Page 23

L L A M A
FINAL REPORT

R E F E R E N C E S

[1] Keypad data sheet

[2] Smith, Jessamyn (CDMA Group) (2000). Optrex DMC16207 LCD Driver
[Online]. Available:
http://www.ee.ualberta.ca/~elliott/552/studentAppNotes/2000_f/ inte−
facing/lcd/ [2001, February 8].

[3] Bensler, Tim and Eric Chan. (1999). RS232 Serial Port [Online]. Available:
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/RS232/
[2001, February 1].

[4]Airborn Electronics, RS232 Connections, and wiring up serial devices [Online]
Available: http://www.airborn.com.au/rs232.html

[5] ARC Electronics. RS232 Data Interface [Online]. Available: http://www.arce−
lect.com/rs232.htm [2001, February 1].

[6] Caplan, Stephen (1998). Ethernet (IEEE 802.3) Overview [Online]. Available:
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1998f/ethernet/ethe
rnet.html [2001, February1].

[7] Gilbert, H. (1995). Basic Tutorial on 10 Mbps Ethernet [Online]. Available:
http://pclt.cis.yale.edu/pclt/COMM/ETHER.HTM [2001, February 1]. © 1995
PCLT.

[8] Micro Linear Devices. (2000). ML2652/ML2653 10Base−T Physical Interface
Chip (Datasheet) [Online]. Available:
http://www.microlinear.com/DS/DS2652_53−01.pdf [2001, February 3]. ©
1998 Micro Linear.

[9] Cheung, Eric, Felicia Cheng, David Li and Tim Kwan. (2000). SRAM Interfacing
Basics [Online]. Available: http://www.ee.ualberta.ca/~elliott/ee552/studen−
tAppNotes/2000_w/interfacing/sram_basics/sram.html [2001, February 10].

[10] Altera Corporation (2000). JAM STAPL Player Source Code ver. 2.1 (see ref
12)

[11]Altera Corporation. (2001). JAM [Online]. Available: http://www.jamisp.com
[2001 February 13].

[12]Altera Corporation. (2000). Configuring APEX 20K, FLEX 10K & FLEX 6000
Devices, ver. 1.03 [Online]. Available:
http://www.altera.com/literature/an/an116.pdf [2001, March 17].

April 2, 2001 Final Report − Page 24

