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Abstract 
 
The spatial mouse system is to replace a traditional PS/2 mouse by translating hand movement 
by a user into mouse movement communicated through a PS/2 port to a computer.  A “planar 
mouse pad” consisting of two antennae, one for each dimension, measures an absolute position 
of the hand.  The varying capacitative effects due to the hands’ proximity to the antenna can be 
exploited by a Schmidt trigger based RC circuit to produce a varying oscillating digital signal.  
This oscillating signal, along with button click signals, can be processed by an FPGA into mouse 
movement commands.  The FPGA massages the commands into a format that abides by PS/2 
timing restrictions and mimics a mouse through the PS/2 port to the PC.     
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Achievements 
 
Oscillator Circuit 
 
The operation of the oscillator circuit is fully functional with adequate accuracy to generate a 
signal frequency that is capable of differentiating between discrete proximities of the hand.  
Modifications were made to the circuit to adjust for initial instability of the oscillator.  In particular, 
the resistance and capacitor values were adjusted to provide an idle frequency of ≅ 8.3 MHz. 
 
Design changes have also been made on the operation of the oscillator.  In a previous design 
decision, a matching oscillator was to be constructed for each user manipulated oscillator.  By 
implementing this configuration, the second oscillator would provide a reference frequency that 
would be used in a beat generator with the user-controlled signal.  The resulting beat frequency 
would be of lower frequency and thus components such as counters would require fewer 
resources to implement.  This arrangement was simulated and verified using CAD tools but upon 
implementation in the laboratory, it was found that the user’s manipulation of the oscillator would 
also produce the same effect of the reference oscillator.  A decision was then made to revert back 
to the use of a single oscillator for each axis. 
 
In addition, during the design process various antenna configurations were tested in the lab to 
allow for a both stability and sensitivity to the user.  Experimental observation showed that a steel 
plate provided superior performance over wire antennas.  With the use of a steel plate antenna, a 
user is able to accurately control the frequency of the oscillator. 
 
 
Signal Processor 
 
The design and implementation of the signal processor proceed without major difficulty.  Upon 
initialization by the user, the signal processor will sample the signal for both the x and y axis.  
This frequency will be used as the reference frequency by which all subsequent hand movements 
will be compared against.  The signal processor would then sample ensuing data from the x and y 
oscillators to produce an op-code that will be used to encode mouse movements to the host PC.  
This required that the signal processor be able to distinguish distinct proximity of the users hand 
in reference to the original set location.   
 
The major challenge of designing the signal processor component was to reduce the required 
number of logic blocks to implement the component on the FPGA.  The signal processor contains 
large counters and registers that are required to process the high frequency signals.  As 
mentioned above, the use of a beat frequency generator was unsuccessfully implemented.  To 
help alleviate the larger registers and counters that will be required, the oscillator frequency of the 
user interface was reduced from over 20 MHz to approximately 8.3 MHz.  The reduced frequency 
continued to provide adequate accuracy as well as stability.   
 
In the original design, the signal process was to produce a 4-bit op-code to convey mouse 
movement information to be transmitted to the host PC.  The 4-bit op-code did not provide a 
sufficient number of distinct magnitudes of mouse movements.  The op-code on the final design 
has been expanded to 9-bits to provide a greater range of movement.   A 9-bit op-code is chosen 
because in the PS/2 format of mouse movement packets, a direction bit and 8 magnitude bits 
specify movement in each axis. 
 
Currently not all 9-bits are used but only utilize 5 distinct magnitudes of both positive and negative 
mouse movement.  The implementation of the full 9 bits is to facilitate future developments. 



 
Mouse Commander 
 
The mouse commander is responsible for conveying mouse movement data to the host PC and 
mouse initialization upon host PC startup.  The op-code provided by the signal processor is used 
to transmit data packets to the host conveying mouse movements. 
 
The transmission procedure required the Spatial Mouse to meet strenuous timing requirements.  
The host PC would signal to the Spatial Mouse when it is available to receive data packets.  The 
mouse commander component is responsible for asserting both the data and corresponding clock 
signals on to the PS/2 interface.  The mouse commander must be aware during transmission that 
the host PC has stalled the process and resume transmission upon being signaled by the PC.   
 
In particular, during transmission data being sent to the host PC is to be changed in between the 
rising and falling of the PS/2 clock signal.  To achieve this, a second clock was generated with a 
phase shift from the PS/2 clock in order to allow for this.  Using both simulations and 
experimentation in the lab, timing requirements for transmission was successfully met.  The 
mouse commander is able to accurately control mouse movement to the host PC. 
 
Problems were encountered during the interface demonstration where the mouse commander on 
isolated incidents was observed to send extra data mouse packets to the host PC.  This resulted 
in the lost of control of the mouse pointer.  The cause of this phenomenon was suspected to be 
due to insufficient debouncing of the push button.  After investigation, a decision was made to 
implement the mouse commander in the overall Spatial Mouse design without alteration to the 
design of the mouse commander.  Using simulations and extensive lab investigation, the 
phenomenon as described above was no longer observed.   
 
The design of the mouse command required experimentation in the lab with a traditional PS/2 
mouse to investigate actual mouse behavior.  Upon investigation, the mouse upon power 
produces an initialization sequence to the host computer.  This sequence is required to enable 
the mouse.  This initialization routine was designed and verified using simulations.  Upon 
implementation on the FPGA, the Spatial Mouse is unable to reproduce the same initialization 
routine.  Work is continuing to complete this aspect of the design and currently requires the use of 
a tradition mouse for initialization.  
 
 
Spatial Mouse 
 
The design of the overall Spatial Mouse has been verified with both simulation and interface to a 
host PC with exception to the initialization routine.  A two dimensional mouse has been 
successfully implemented on the FPGA.  The user is able to accurately control mouse movement 
in both axis. 



Description of Operation 
 
This document outlines the development of the Spatial Mouse with a PS/2 communication port.  
Our design is based upon a musical instrument called a Theremin.  A physicist named Leon 
Theremin invented the Theremin in 1919.  This musical instrument allows a user to interact with 
the instrument without actually coming in contact with it.  Instead, the user manipulates the 
instrument through external antennas.  The Theremin had two external antennas through which 
the user was able to control both the pitch and volume of the output by positioning his/her hand 
near the two antennas.   
 
The underlying mechanism by which a Theremin device works is based on the manipulation of a 
frequency oscillator.  An oscillator circuit is implemented but with an antenna.  The oscillatory 
frequency is a function of the resistance and capacitance of the circuit.  When the user interacts 
with the external antenna, the capacitance between the users hand and the antenna is varied as 
the proximity of the hand to the antenna changes.  As a result the circuit’s oscillatory frequency 
changes correspondingly. 
 
The Spatial Mouse system will consist of two protruding antennae through which the user will 
manipulate the mouse. The proximity of the users hand to each antenna will produce a 
corresponding signal in a range of analog frequencies.  The analog signals will be representative 
of mouse movements in the x and y-axis. 
 
The signals will be used as the input to the FPGA.  Thus there will be two signals to be processed 
by the FPGA to represent movement in the x and y-axis respectively.  The FPGA will be 
responsible for determining the frequency of the input signal from the external oscillator circuit.  
Once the frequency is extracted from the input signals, they will be translated to represent mouse 
movements.  The movements of the mouse will be communicated to a PC through the PS/2 port 
that is available on the FPGA board.  It is our goal to demonstrate the functionality of the Spatial 
Mouse through the aid of a visual application such as a video game. 
 
 
Mouse Operation: 
 
The spatial mouse is operated through the use of a controller that the user will have in his/her 
hand while moving in the predefined area.  On the controller there are 3 buttons, mouse enable, 
left-mouse button and right mouse button.  Through this controller, the user initializes and 
enables the Spatial Mouse.  The Spatial Mouse is first initiated by having the user place their 
hand in the neutral position of the “mouse pad” and then depress the mouse enable button.  The 
mouse-enable button initializes the mouse and sets the reference point which subsequent hand 
positions are measured.  The user will have to depress the enable button while using the mouse.  
Once the enable button is released, the users hand movements will no longer control the Spatial 
Mouse, thus this allows the user to free his hand for other tasks without manipulating the Spatial 
Mouse.  This is analogous to allowing the user to take their hand off a real mouse.  If the user 
wants to reengage control of the mouse, he/she will again repeat the initialization routine by 
placing his/her hand in the neutral position and depressing the enable button.   
 
Once the Spatial Mouse is initialized and the enable button is still depressed, the user is able to 
control the movement of the mouse by positioning his/her hand in the defined two-dimensional 
“mouse pad”.  The mouse is operated by absolute position of the users hand within the “mouse 
pad” which is communicated to the PC through the PS/2 port.   
 
Currently, our design allow for the mouse movement in 8 directions and the use of the left and 
right mouse buttons.   
 



Additional features that we plan to implement when the basic goals are met and time permitting 
include: 
 

• Refine mouse movement to more closed imitate the full movement of the mouse seen in 
commercial available products. 

• Addition of axis to design to allow greater control and dimensions of mouse movement. 
• Produce an audible tone that will give feed back to user. 

 
 
Analog Oscillator Circuit: 
 
See attached schematics in the Appendix.  The external analog circuitry includes a Schmitt 
trigger along with a resistor and capacitor.  The antenna will provide a variable capacitance, 
which will alter the frequency of the output on the Schmitt trigger.   
 
PS/2 Protocol: 
 
The mouse and computer communicate via the PS/2 communication.  The PS/2 serial 
communication is asynchronous and includes 2 signals, clock and data.  The two signals are bi-
directional and are open drain.  Normally the signals are held high by a pull up resistor and the 
signal can be pulled low by either the computer host or Spatial Mouse. 
 
The computer host always has priority and controls the state of the data and clock buses.  The 
bus can be in 3 possible states; idle, inhibit or request to send. 
 

Bus State Description 

Idle Both the clock and data lines are allowed to float high.  During this state, the 
mouse is free to transmit data packets to the computer when set.   

Inhibit The clock is held low by the host.  During this state, the Spatial Mouse cannot 
transmit data packets to the host. 

Request to 
send 

The data line is held low and the clock is allowed to float high.  During this 
state, the Spatial Mouse must get ready to receive commands from the host. 

Table 1.  Spatial Mouse Bus States. 

 
Format of Data Packets: 
 
The communication between the host computer and Spatial Mouse is handled through data 
packets of 11 bits long.  Each communication packet includes a start bit, 8-bit data payload, an 
odd parity bit and a stop bit. 
 
 
 
 
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit11 

Start bit 
0 

Data bit 
1 

LSB 

Data bit 
2 
 

Data bit 
3 
 

Data bit 
4 
 

Data bit 
5 
 

Data bit 
6 
 

Data bit 
7 
 

Data bit 
8 

MSB 

Odd 
Parity 

Bit 

Stop Bit 
1 

Figure 1.  PS/2 Data Packet Format 

 
 
 
 



Data Transmission to Host 
 
While the clock and data bus is in the idle state, the Spatial Mouse is allowed to send data 
packets to the host PC communicating mouse movement and button status. 
 
The Spatial Mouse signals the start of a transmission packet by pulling the clock line low and then 
allowing the clock line to float back high 11 times.  The host computer will then sample the data 
line 11 times on the falling edge of the clock.  The Spatial Mouse will shift out the transmission bit 
when the clock signal is high. 
 
The data packets to encode mouse movement and button status is transmitted in 3 consecutive 
packages of 11-bits that follow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.  Mouse movement/button package format. 

 
 
Design Details 
 
 
The implementation is done through design, implementation of individual components.  
Throughout the design process, communication specifications linking each component block are 
determined to ensure correct functionality in the final design.  The main components of the 
Spatial Mouse design are outlined in Figure 3.   
 
Hand-Held Clicker 

• Active low trigger and buttons. 
• The activate trigger will send a continuous logic low signal while depressed.  This signal 

indicates to the digital circuit that the mouse enabled by the user (i.e. when trigger is 
depressed, the mouse is being held and when trigger is released, the mouse is being 
released). 

• The right thumb button will send a logic low signal while depressed.  This button is 
equivalent to a right mouse button. 

• The left thumb button will send a logic low signal while depressed.  This button is 
equivalent to a left mouse button. 

 

 D7 D6 D5 D4 D3 D2 D1 D0 

1st YV XV YS XS 1 0 R L 

2nd X7 X6 X5 X4 X3 X2 X1 X0 

3rd Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

 
L Left Button State (1 = pressed down) 

R Right Button State (1 = pressed down) 

X0-X7 Movement in the X direction 

Y0-Y7 Movement in the Y direction 

XS Direction of the movement in the X axis (1 = UP) 

YS Direction of the movement in the Y axis (1 = LEFT) 

XV,YV Overflow of the movement data bits (1 = overflow has occurred) 

 



Planar Spatial Mouse Pad 
• X-antenna and Y-antenna set up in a planar space perpendicular to the horizon. 
• Each antenna senses the proximity of the user’s hand by capturing the capacitance 

resulting between the hand and antenna.  The varying capacitance due to movement of 
the hand varies the time constant of the oscillating circuit to in turn output oscillations with 
frequencies proportional to hand proximity (in each dimension). 

• Due to possible interference of the oscillator circuits, each oscillator representing the X 
and Y-axis will be alternately switched on and sampled.  The control signals to enable 
each oscillatory is produced by the processor.  
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Figure 3.  Spatial Mouse Components. 

 
Signal Processor 

 
A detailed block diagram of the signal process for one axis is illustrated in Figure 4. 

• Frequency Counter 
o A synchronous counter generates a sampling period T, resetting every T. 
o An asynchronous counter counts the number of oscillations in incoming bitstream 

within period T. 
o A register holds and outputs count, the number of oscillation counts in last period 

T.  The register updates count every period T as long as the enable is on. 
 



• Frequency Comparator 
o When enable initially goes “on”, count is stored in a register (called calibration 

register) where successive counts will be referenced to this stored value.  If 
enable goes “off”, the calibration register will reset and a new value of count will 
be stored the next time enable goes “on”.  

o A comparator circuit subtracts each successive count from the value stored in the 
calibration register every period T.  The determined frequency of subsequent 
samples is compared against set ranges, which determine direction and degree 
of movement.  These ranges are set as generic parameters and can be altered in 
the VHDL code to adjust for varying antenna behavior.  The comparator 
produces a corresponding op-code. 

o Op-code contains 9 bits of information: a direction bit, and 8 bits to express levels 
of movement intensity.  The direction bit maps to the sign of the difference from 
the comparator circuit.  The intensity bits map to a range table from the 
comparator circuit. 

 
 

Figure 4.  Frequency Sampler Block Representation. 

 
 
 
 
 
 
Mouse Commander   
• Dual Phase Clock 

o The dual_phase_clock generates two clock signals that are ¼ period out of 
phase from each other. 

o  A 25.0KHz clock is fed into the dual_phase_clock to yield two 12.5KHz clock 
signals: clock_lead and clock_lag.  To generate the clock_lead signal, a 25.0KHz 
input signal is used to clock a rising edge triggered d-flipflop with inverted q 
feedback to d.  To generate the clock_lag signal, a 25.0KHz input signal is used 
to clock a falling edge triggered d-flipflop with inverted q feedback to d.  Upon 
clock reset, the lead-lag relationship is consistently maintained by allowing the 
flipflops to synchronously reset only on the falling edge of the external clock 
signal (i.e. if external reset asserted high, phase_reset goes high only falling 
edge of clock).  The frequency and phase relationships between the three clocks 
are illustrated below. 

 
 

25 KHz
System
Clock

12.5 kHz
PC

clock

12.5 KHz
Data
clock  

Figure 5.  Dual phase clock timing. 

 
 

Figure 6.  Dual phase clock. 



 
• Master Controller 

o The timing controller massages the mouse movement and button signals into 
serial transmission that adheres to the PS/2 communication protocol.  The 
controller is responsible for the timing and coordination of transmission and 
reception of data.     

 
• Mouse Command Mapper 

o The mapper is responsible for receiving the 9-bit op-code from the signal 
processor unit and translating it into PS/2 mouse data packets. 

 
• Transmitter 

o The mapper will produce the required data packets to be transmitted to the host.  
The transmitter is then responsible for putting the data bits onto the data bus for 
the host computer to read.  The transmitter also initiates timing and assertion of 
the clock bus.  A shift register is used to serially transmit the required data 
packets. 

 
• Tri-state bus 

o The bus and data lines are bi-directional and will have to assert a high 
impedance for a logic high and a ‘0’ for logic low.  The bi-directional clock and 
data bus will require a tristate output.  A pull up in the host is will maintain a logic 
high if not driven. 

 
• Data Transmission Component 

o Built structurally from the transmit_contoller and Tx_shift_register, the transmitter 
works hand-in-hand with the dual_phase_clock to transmit serial data to a PC 
while adhering to the PS/2 timing standards.  The transmit_controller utilizes the 
data_clock  signal generated by the dual_phase_clock to properly synchronize 
the serial data with the 12.5 KHz PC_clock  also generated by the 
dual_phase_clock.  The Tx_shift_register shifts the serial data out on every pulse 
of the 12.5KHz data_clock  but is only allowed to do so when enabled by the 
transmit_contoller. 

 
The following sections outline the mouse to PC data transmission in detail.  
 

 

Figure 7.  PS/2 transmit component. 

Tx_shift_register 
 
The Tx_shift_register is an 11-bit shift register with parallel loading.  When load is asserted high, 
the register is parallel loaded at port d with 11 bits (1 PS/2 packet).  When shift is pulsed, one bit 
is outputted at port q on the pulse’s rising edge while enable_shift must be maintained high for 
any shifting to take place. 
 
The shift_out_register component is described behaviorally.  Initially the load signal is asserted 
high  to load the register with input at port d so that the index value of the 11 bit wide input is set 
to zero pointing to the least significant bit.  An internal 11 bit wide variable is used to hold the 
incoming data so that the data is not lost.  Then once the register detects a rising edge of the shift 
signal it checks if the register has been enabled.  If the “shift enable” signal is high, then the 
register proceeds to shift out one bit at a time starting at bit(0).  After each shift, the index counter 
for the input data is incremented by one so that successive bits can be outputted.  



 
Transmit_Controller 
 
The transmit_controller is required for ensuring proper PS/2 timing of each data frame sent from 
the mouse to the PC.  The transmission timing restrictions for the PS/2 protocol are shown below. 

       
Figure 8.  Transmission timing. 

TIMING PARAMETER DESCRIPTION    MIN. TIME   MAX. TIME 
t1 DURATION OF CLK LOW     30 µSEC    50 µSEC 
t2 DURATION OF CLK HIGH     30 µSEC    50 µSEC 

t3 VALID DATA BEFORE FALLING EDGE OF CLOCK 5 µSEC      
t3 VALID DATA AFTER RISING EDGE OF CLOCK  5 µSEC     

 
The T1 and T2 timing criteria can be met by using a 12.5 KHz (80us) PC_clock .  The other timing 
parameters, T3 and T4, can be satisfied if a new data bit is sent a ¼ period after each rising edge 
of the PC_clock .  Thus, a data_clock  that lags the PC_clock  by a ¼ period could be used to 
trigger each shift of the serial data.  The diagram below illustrates the phase relationships 
between the PC_clock , the data_clock and the serially transmitted data to be shift-triggered by 
the data_clock . 
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start bit bit 0 parity bit stop bitTx
Data

bit 1 bit 7
 

Figure 9.  Data transmission process timing. 

As shown in the previous timing diagram, the mouse initiates the start bit of a byte transmission 
by firstly dropping the floating data line and then dropping the floating clock line.  Similarly, 
termination requires that the mouse firstly allows the data line to float high (as a stop bit) and then 
allow the clock line to float high after the 11th clock pulse.  Governing proper initiation and 
termination, as well as the correct number of bits transmitted is represented in the following state 
diagram for the transmit_controller. 
 
 

Figure 10.  Transmit component state machine. 

For the following description, please refer to the mouse to PC transmission block diagram as well 
as the state diagram above.  The transmit_controller is advanced on the rising edges of the 
25KHz system clock but also needs to look at the 12.5 KHz data_clock  to ensure proper initiation 
of data transmission.  Transmission of an entire byte requires that the Tx_enable is asserted high 
for the entire duration byte transmission.  In the start state, the controller disables shifting in the 
Tx_shift_register and does not allow a clock to be driven onto the PC-mouse clock bus.  The 
controller remains in the start state until Tx_enable is asserted high.  When transmission is 



enabled, the controller moves into the load_data state where it sends a pulse to the 
Tx_shift_register to load next byte packet.  While in this state, the controller checks the 
data_clock .  If data_clock is low, the controller advances to the enable_shift state on the next 
system clock pulse, but if the data_clock is high, the controller will stall in the load_data state for 
one more system clock period.  This timing maneuver ensures that the start bit will be asserted 
before the PC-mouse clock bus is dropped low from its floating high.  In the enable_shift state, 
the controller starts asserting a high on enable_shift of the Tx_shift_register making it sensitive to 
the data_clock shift signal.  Before the next state is reached, the start bit will have been asserted 
on the PC-mouse data bus.  On the next system clock pulse, the controller advances to the 
drive_PC_clock state where starts enabling PC_clock to write onto the PC-mouse clock bus.  
Before the next state is reached, the PC_clock  will have driven the PC-mouse clock bus low for 
the first time.  The controller next enters the shift state where it remains in this state until all 11 
bits have be transmitted.  A counter (shift_count) that increments on each state advance indicates 
to the controller when to enter the stop state.  In the stop state, the shift_enable and data_clock  
are deactivated and a done signal goes high to signify to a higher level entity that the byte 
transmission is complete. 
 

• Receive Command Component 
o The Receive component is used during the initialization routine.   Actual data is 

not captured but used to provide timing of the clock so the host can send an 
initialization command.  Since the initialization routine requires a constant 
response of an acknowledge, the host command is not stored. 

o In the current design of the Spatial Mouse, the ability to receive host commands 
has been disabled.  It was observed that the host does not send commands to 
the mouse during normal operation.  The receiver has been included in the 
design to facilitate future receiving capabilities if required.  
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Figure 11.  PS/2 receive component. 

The receive process is initiated by holding the receive_enable high.  The receive_enable must be 
held high for the duration of the receive process.  Upon detection of a logic ‘0’ on the 
receive_enable signal prior to receiving the full 11-bit packet, the process will abort and no data 
will result. 
 
Upon asserting the receive_enable signal high for the duration of 11 clock cycles, the done signal 
will assert ‘1’ and the 11-bit data package will be available on the data output.  Also, during the 11 



clock cycles of the receive state, the Pc_clock_drive will be asserted high.  The Pc_clock_drive 
signal when asserted will enable an output tri-state buffer to drive the PS/2 clock bus. 
 
The following state machine summarizes the control of the receive component. 
 

start

rx_data

data_done '1'
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data_enable '1'
Pc_clock_drive '1'

 
Figure 12.  Receive component controller. 

The data path of the receive component is comprised of a shift register with an enable input.  Also 
a counter is used to signal the reception of 11-bits of data.  The purpose of the done signal is to 
provide timing for a higher level controller to regulate the reception of commands from the host 
computer and then the transmit the corresponding response.  
 
 



Data Sheet 
 
The Spatial Mouse is designed for a 25.175 MHz crystal oscillator on the UP-1 board. 
 
The external oscillator circuitry is designed for oscillation frequency 8.3 MHz.   
 
The processor component is designed for optimal performance when oscillator frequency is in the 
range of 5-20 MHz. 
 
The following is the pin assignment for the Spatial Mouse implementation on UP1 board. 

 

Name Pin Number 
Pin 

Type Use of Pin 
Reset FLEX_PB1 – pin 

28 
Input Use of one push button on the 

board as it resets the movement 
tracker so user can calibrate 
system to their hand movement.  

X_Data from 
oscillator 

70 Input Input data from oscillator 
regarding movement along x-
axis (position & magnitude). 

X oscillator enable 15 Output Signal to enable x-axis 
oscillator. 

Y_Data from 
oscillator 

75 Input Input data from oscillator 
regarding movement along y-
axis (position & magnitude) 

Y oscillator enable 17 Output Signal to enable y-axis 
oscillator. 

Mouse Active 
Button 

73 Input Enables system to begin 
processing frequency changes 
and translates changes into on-
screen movement.  

Mouse Clock 100 In/Output 
Bi-dir 

Sends the clock pulse of the 
mouse along the PS/2 line to 
communicate with the PS/2 port 
of the computer. 

Mouse Data 98 In/Output 
Bi-dir 

Sends the bitstream containing 
the data regarding on-screen 
movement of the cursor to the 
computer. 

Mouse Left Button 75 Input Input data if user clicks the “left 
button” to indicate an action. 

Mouse Right Button 78  Input Input data if user clicks the 
“right” to indicate an action.  

Table 2.  Pin Assignment for Flex10k 



FPGA Resource Requirements 
 
 
In order to estimate the number of resources required to implement the entire design, a complete 
compilation of the Spatial Mouse design was completed.  The results are shown in the table 
below.  Logic blocks used for internal signals and intermediate registers used in the overall 
Spatial Mouse design. 
 
 
 

Component 
# Logic  
Blocks 

Signal  
Processor 

612 

Mouse Commander 236 
Mouse Mapper 27 
Clock ticked 17 
Spatial Mouse internal 
signals 

72 

Spatial Mouse Total 964 

Figure 13.  Resource usage for final design compilation 



Experimentation Results  
 
 
Analog Oscillator: 
 
Two different oscillator configurations were implemented in the laboratory.   The two oscillator 
configurations are shown below. 
 
 
RC Schmitt Trigger Oscillator 
 

This simple RC circuit produces a periodic square 
waveform.  The frequency of the output waveform is 
controlled by the charging and discharging time of the 
capacitor. 
 
The period of the oscillation can be approximated by: 
 

RCRC
VV
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iss ≈=










−
−

= 0586..1ln  

Experimental results recorded in the lab confirm that the 
oscillation period is described by the above equation. 
 

 
Investigation of user interaction with the circuit was also done through an antenna.  Initial results 
showed little change to oscillator frequency as a user approached the antenna with their hand.  
Subsequent investigation showed that the initial oscillator frequency greatly affects the amount of 
change a user is able to induce on the output frequency. 
 
As the initial idle output frequency of the oscillator is increased, the user is able to exert a great 
degree of change in the oscillator frequency.  Initial oscillator frequencies in the range of 1-50kHz 
resulted in negligible changes in frequency.  As the frequency was further increased by changing 
capacitor and resistor values, it was found that the user is able to change the output frequency by 
approximately 10% when oscillator frequency is in the range of 10-25MHz.   During the 
investigation, it was also found that the oscillation frequency would drift in a small range without 
user interaction due to environmental noise and factors such as temperature.  In the design of the 
frequency counter, we will provide a buffer range in which the frequency may drift without 
translating to mouse movement.  This actual is to be determined with further investigation. 
 
After thorough investigation into suitable antennas, flat metallic plates have been found to give 
the most stable and responsive oscillations from user interface. 
 
An oscillator using 555-timer was also implemented and found to have the same characteristics 
as the RC Schmitt trigger circuit.  Due to the larger number of discrete components required 
implementing the configuration in comparison to the Schmitt trigger, the Schmitt trigger has been 
chosen as the oscillatory configuration. 
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Simultaneous Use of X and Y-axis oscillator  
 
Initial implementation utilizing both x and y axis simultaneously resulted in cross interference 
between the oscillators.  Manipulation of one oscillator would al cause parallel affects on the other 
oscillator.  Thus to circumvent this problem, each oscillator would be alternately switched on and 
off. 
 
The NAND gate Schmitt triggers provide two inputs.  One would be used for the antenna and the 
other input would be used for an enable signal.  The processor unit would produce 
complementary enable signals so each oscillator would be operated and sampled in alternate 
cycles. 
 
 
PS/2 Computer Interface: 
 
Upon completion of the transmitter and timing controller component, the code was loaded onto 
the FPGA and a subsequently connected to the PS/2 port on a host PC.  A scope was attached 
to both the clock and data lines to observe waveforms.   
 
Up to this point, the entire design process was based upon documentation of the PS/2 protocol 
and lacked solid data.  This allowed us to observe and confirm the data that was presented in the 
documents. 
 
The transmitter was loaded with static data package that would be sent to the computer upon the 
push of a button on the UP-1 board.  Initial trials failed to communicate to the host computer.  
Investigation with the scope on the data and clock lines indicated it was in the idle state.  This 
meant that the computer was ready to accept data packets but our attempts have failed.  Further 
investigation showed that the computer would inhibit the bus for a short period following the 
transmission of each of the 3 data packets. 
 
The timing controller was altered to account for this behavior and on subsequent tests, we were 
able to successfully manipulate the mouse cursor.  Although the data sent to the host was static 
and resulted in the repetition of the set movement, communication to the host was successful. 
 
In the PS/2 protocol documentation, very complex communication between the host to the device 
was outlined, requiring the device to receive and process commands.  Responses would have to 
be sent back to the host based on the commands.  This process was very complex and 
convoluted, requiring much of our design time.  But the interface investigation that was completed 
above, our observations did not show that the computer communicated to the device except 
during initial startup.  Further investigation will be completed and if warranted, the decoder 
component and response generation of the mouse would be greatly reduced. 
 



Design Hierarchy 
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Appendix 
 



Design Verification Index 
 

Component Test Description Result 
   
Mouse Commander 
 

Serial transmission of mouse movement 
bytes to PC. 

Verified with simulation. 
Verified with interface with 
host computer. 

   
Transmitter 
Component 

Timing and transmission of static mouse 
movement data to the host PC.  
Utilization of transmit component and bi-
directional port.   

Verified with simulation. 
Verified with interface with 
host computer. 

   
Receiver component 
 

The functionality to receive and signal 
the completion of single 11-bit package 
of data. 

Verified with simulation. 
 



Mouse Commander 
 
The mouse commander is responsible for the transmission of data packets to the host PC.  The 
signal processor generates a 9-bit op-code, which is used by the mouse commander to transmit 
the corresponding 3 mouse movement bytes to the PC. 
 
The mouse commander is responsible for the timing and continually checks the status of the data 
and clock lines.  After the transmission of a byte, the host computer will inhibit the mouse from 
transmitting the next byte to allow for processing.  The mouse commander initiates the 
transmission of the next byte once the host PC returns to the idle state. 
 
In the test cases, the mouse commander is provided an op-code and transmission is initiated.  
The bus is inhibited after the transmission of each data packet.  Upon returning the bus to the idle 
state, the mouse commander proceeds to transmit the remaining data packets. 

 
The test cases show that the mouse commander properly initiates the transmission of data 
packets and correctly transmits the 3 data packets to the host PC. 
 



Transmitter Component: 
 
The transmitter component is responsible for asserting both the data and clock lines during the 
transmission of data to the computer.  As outlined in the PS/2 protocol, the communication of 
data is through data packages of 11 bytes.   
 
The first test case shows the correct functionality of the transmitter component during operation.  
The start_button signal is held low to initiate transmission of three data packets.  The data is 
asserted on the PC_data_bus starting with the least significant bit.  The sequence of data can be 
verified to be that of the Tx_data_in.  Also,  tx_done is asserted high by the transmitter to signal 
the successful transmission of the data packet. 
 
Following the transmission of the first data packet, the PC_clock_bus is held low to simulate the 
PC.  The PC will inhibit the PC_clock_bus to process the information.  When the PC is ready to 
receive the next packet, the PC_clock_bus is allowed to float high.  The waveform shows the 
subsequent transmission of the remaining two data packets.  Prior to the transmission of a 
packet, the PC_clock_bus is verified to be high. 
 
In the simulation, the data and clock buses are either asserted ‘0’ or ‘Z’, as both buses will float to 
a high logic when high impedance through a pull up in the computer. 



Receiver Component: 
 
The receiver component is to receive a single 11-bit data packet from a serial data-stream.  To 
initiate the receiving process, the receive_enable signal is held high.  This signal must be held 
high for the duration of the process.  In the event that the receive_enable signal is pulled low 
during the receive state, the reception process will restart, erasing all data received so far.  Upon 
the completion of 11 clock cycles, the 11 byte data packet will be available on the output with the 
done signal to logic ‘1’. 
 
The testing of the receiver was done by inputting a pattern of data on the input data stream and 
then asserting the receive_enable signal for various lengths of time to simulate all working 
conditions of the receive component.   
 
The first test case is holding receive_enable high for 11 clock cycles and a 11-bit data package 
should be available on the output port.  Also the done signal should go high. 
 
The second test case is illustrating the receive_enable signal held high for less than 11 clock 
cycles.   
 
The third test case is a repeat of the first test case but also used to show that the system restarts 
and must receive 11 clock cycles in order to produce the next data packet. 
 
The waveform from the testing can be found on the following page.  From the waveform 
simulation, it can be verified that the serial receiving component is fully function. 
 
Optimization for speed is not a concern with this design as the rate at which data transmission 
occurs is set at a predefined value.  The clock in the simulation is 25kHz and is representative of 
actual clock rate used in the PS/2 protocol.



Spatial Mouse: 
 
The test bench tests the functionality of the overall Spatial Mouse design.   The operation of a 
Spatial Mouse is simulated and tested in the following setup. 
 
The test bench comprises of 7 possible input frequencies ranging from 5 MHz to 7 MHz.  The 
frequencies to the x and y input data streams are controlled with an 8-to-1 Multiplexer.  Initially, 
both the x and y input frequencies are set to 6 MHz.  The Spatial Mouse is then activated and 
allowed to initialize.   
 
Following the initialization, the x and y input signals are independently varied and the resulting 
transmission of data packets is verified to expected results.  The test bench includes testing of a 
range of frequencies to produce both positive and negative mouse movements in both x and y 
axis.  In addition, the Spatial Mouse is tested with frequencies in both extremes where the Spatial 
Mouse is expected to remain motionless. 
 



Signal Processor 
 
The processor receives an oscillating signal form the external oscillator (x_bitstream and 
y_bitstream) and translates this frequency into and opcode used by the mouse commander.  An 
activate signal sets the most recently sampled frequency as the reference frequency when first 
asserted and for the remaining duration of its assertion, opcodes are generated by comparison to 
that reference frequency.  A nine bit opcode is generated with the most significant bit indicating 
whether the current frequency is negative or positive relative to the reference frequency and the 
remaining eight bits reflecting the magnitude of difference between the current and reference 
frequencies.  
 
The processor testbench simulates various bitstream frequencies that would otherwise come 
form the external oscillator and verifies that the correct opcodes are generated.  The activate 
signal was asserted two times in the testbench to show two separate calibrations of reference 
frequency.  Upon assertion of the activate signal, the frequencies were varied to show that 
different opcodes are generated appropriately according to the difference range between current 
and reference frequencies.  The clock and various bitstream frequency signals were not included 
on the waveform since they are merely black bars of high frequency that absorb much processing 
resourse to display.  Rather, the frequency select signals (x_select and y_select) are shown to 
reflect the current frequency on the bitstream inputs.           



VHDL Code Index 
 

Component Status 
   
Signal Processor   

Sample_timer.vhd  Compiled 
Range_comparator.vhd  Compiled 
Counter.vhd  Compiled 
Processor.vhd  Compiled 
Processor_pkg.vhd  Compiled 

   
Mouse Commander   

Command_selector.vhd  Compiled 
Byte_selector.vhd  Compiled 
Master_controller.vhd  Compiled 
Mouse_commander.vhd  Compiled 
Rx_data.vhd  Compiled 
Transmitter.vhd  Compiled 
Inverter.vhd  Compiled 
Inverter_with_enable.vhd  Compiled 
Bidir.vhd  Compiled 
Shift_in_reg.vhd  Compiled 
Shift_out_reg.vhd  Compiled 
Transmitter_controller.vhd  Compiled 
Mouse_commander_pkg.vhd  Compiled 
Transmitter_pkg.vhd  Compiled 
Dual_phase_clock.vhd  Compiled 
Dual_phase_clock_pkg.vhd  Compiled 

   
Spatial Mouse   

Spatial_Mouse.vhd  Compiled 
Spatial_Mouse_pkg.vhd  Compiled 
Mouse_command_mapper.vhd  Compiled 
Clock_ticked.vhd  Compiled 
   

Test Benches   
Spatial_mouse_test.vhd  Compiled 
Processor_test.vhd  Compiled 
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Sample_timer.vhd 

---------------------------------------------------------------- 
-- sample_timer.vhd : 
-- 
-- This component pulses the output signal, “enable”, high 
-- for 1 clock cycle out of every “timer_count” (as specified 
-- by a generic) clock cycles. 
-- 
-- Role in Spatial Mouse Processor: 
--  - clears sample timer by pulsing the reset of sample timer 
--  - triggers range comparator computation by pulsing enable 
----------------------------------------------------------------- 
 
library ieee;  
use ieee.std_logic_1164.all;  
 
entity sample_timer is  
generic (timer_count : positive := 250); 
port( 
 clock  : in std_logic; 
 reset  : in std_logic;  
 enable  : out std_logic);  
end sample_timer;  
 
architecture behavioural of sample_timer is  
begin  
 
process  
variable count : natural range 0 to timer_count-1; 
begin  
 wait until rising_edge(clock); 
  if reset = '1' then 
   count := 0; 
      enable <= '0'; 
     else    
   count := count + 1; 
   if count = 0 then 
    enable <= '1'; 
   else 
    enable <= '0'; 
   end if;   
  end if;  
end process;  
 
end behavioural;  
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Range_comparator.vhd 

---------------------------------------------------------------- 
-- range_comparator.vhd : 
-- 
-- This component accepts a number (i.e. count) as a calibration 
-- count that automatically falls into range_zero when 
-- initially enabled.  For the remaining duration of enable 
-- assertion, each successive count clocked in is compared to 
-- the calibration count and is placed into a range relative to  
-- the calibration count.  The range widths are specified as 
-- generics. 
-- 
-- Role in Spatial Mouse Processor:  places sampled frequencies  
-- (counts) into ranges as specified by easily modifiable generics. 
-- Allows for tweaking of digital design to external oscillator 
-- performance.       
-----------------------------------------------------------------  
 
 
library ieee;  
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all;  
use ieee.std_logic_unsigned.all;  
 
entity range_comparator is  
generic ( 
 datawidth  : positive := 10; 
 range_zero  : positive := 100; 
 range_minus2: positive := 100; 
 range_minus1: positive := 100; 
 range_plus1 : positive := 100; 
 range_plus2 : positive := 100); 
port( 
 clock   : in std_logic; 
 enable  : in std_logic; 
 reset   : in std_logic; 
 frequency  : in std_logic_vector(datawidth-1 downto 0); 
   data_out  : out std_logic_vector(8 downto 0));  
end range_comparator;  
 
architecture behaviour of range_comparator is  
begin  
 
process  
 
variable calibrated   : std_logic; 
variable zero_frequency : std_logic_vector(datawidth-1 downto 0); 
variable minus2_min   : std_logic_vector(datawidth-1 downto 0); 
variable minus2_max   : std_logic_vector(datawidth-1 downto 0); 
variable minus1_max   : std_logic_vector(datawidth-1 downto 0); 
variable plus1_min   : std_logic_vector(datawidth-1 downto 0); 
variable plus2_min   : std_logic_vector(datawidth-1 downto 0); 
variable plus2_max   : std_logic_vector(datawidth-1 downto 0); 
 
begin  
 if reset = '1' then 
  data_out <= "000000000"; 
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Range_comparator.vhd 

  calibrated := '0'; 
 elsif rising_edge(clock) then 
  if enable = '1' then 
   if calibrated = '0' then 
    zero_frequency := frequency; 
    calibrated := '1'; 
   else 
    plus2_max := zero_frequency + (range_zero/2) + range_plus1 
         + range_plus2; 
    plus2_min := zero_frequency + (range_zero/2) + range_plus1; 
    plus1_min := zero_frequency + (range_zero/2); 
    minus1_max := zero_frequency - (range_zero/2); 
    minus2_max := zero_frequency - (range_zero/2) 
         - range_minus1; 
    minus2_min := zero_frequency - (range_zero/2)  
         - range_minus1 - range_minus2; 
      
    if frequency > plus2_max then  -- out of range 
     data_out <= "000000000"; 
    elsif frequency > plus2_min then -- in range plus2 
     data_out <= "000000010"; 
    elsif frequency > plus1_min then -- in range plus1 
     data_out <= "000000001"; 
    elsif frequency > minus1_max then -- in range zero 
     data_out <= "000000000"; 
    elsif frequency > minus2_max then -- in range minus1 
     data_out <= "100000001"; 
    elsif frequency > minus2_min then -- in range minus2 
     data_out <= "100000010"; 
    elsif frequency <= minus2_min then  -- below range set 
     data_out <= "000000000"; 
    end if; 
   end if; 
  else 
   calibrated := '0'; 
   data_out <= "000000000"; 
  end if;  
 end if; 
  
end process;  
 
end behaviour;  
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Counter.vhd 

---------------------------------------------------------------- 
-- counter.vhd : 
-- 
-- A synchronous counter with asynchrounous clear 
-- 
-- Role in Spatial Mouse Processor: 
-- - Counts bitstream frequency incoming from external oscillator  
--   circuit. 
----------------------------------------------------------------- 
 
 
library ieee;  
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all;  
use ieee.std_logic_unsigned.all;  
 
 
entity counter is  
generic ( counterwidth : positive := 4 ); 
port( 
 clear : in std_logic; 
 clock : in std_logic;  
 q   : out std_logic_vector(counterwidth-1 downto 0));  
end counter;  
 
architecture behaviour of counter is  
begin  
 
process  
variable count : std_logic_vector(counterwidth-1 downto 0); 
begin  
 if clear = '1' then 
  count := (others => '0'); 
 elsif rising_edge(clock) then  
  count := count + '1'; 
 end if;   
 
 -- assign internal variable to output q 
 q <= count; 
end process;  
 
end behaviour;
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Processor.vhd 

-----------------------------------------------------------------------
-- processor.vhd : 
-- 
-- The processor counts the frequencies of two incoming bitstreams (two 
-- axis) from an external oscillating signal when activated.  The 
-- successive frequencies relative to the initial frequency counted 
-- upon activation are translated into a opcode that reflects mouse 
-- movement in two dimensions. 
-- 
-- Outputs complimentary signals to external oscillators to alternate  
-- turning each one on and off. 
-- 
-- This file ties the components of the processor together: 
-- - 1 sample timer 
-- - 2 counters (one for each oscillating axis) 
-- - 2 range comparators (one for each oscillating axis) 
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.processor_pkg.all; 
 
 
entity processor is 
 generic ( 
  datawidth  : positive := 22;  -- counter and comparator widths 
  timer_count : positive := 250; -- to generate 10ms enables 
  range_minus2: positive := 2000;  -- 2000 counts wide ranges 
  range_minus1: positive := 2000; 
  range_zero  : positive := 2000;  
  range_plus1 : positive := 2000; 
  range_plus2 : positive := 2000); 
 port( 
  clock   : in std_logic; 
  reset   : in std_logic; 
  activate  : in std-logic; 
  x_bitstream : in std-logic; 
  y_bitstream : in std_logic; 
  x_opcode  : out std_logic_vector(8 downto 0); 
  y_opcode  : out std_logic_vector(8 downto 0); 
  oscillator_enable : buffer std_logic; 
  oscillator_enable_inv : buffer std_logic); 
end processor; 
 
 
architecture structural of processor is 
 
-- pulse signal from timer to reset counter and advance sample 
signal sample_push  : std_logic;  
-- sample_push AND reset for clearing counter 
signal counter_clear : std_logic;  
-- patch signal to connect x_counter to x_comparator 
signal x_counter_comparator_signal : std_logic_vector(datawidth-1 
downto 0); 
-- patch signal to connect y_counter to y_comparator 
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Processor.vhd 

signal y_counter_comparator_signal : std_logic_vector(datawidth-1 
downto 0); 
 
 
begin 
 
complimentary_oscillator_enabler : process(sample_push) 
begin  
 wait until rising_edge(sample_push); 
        oscillator_enable <= not oscillator_enable; 
end process complimentary_oscillator_enabler; 
oscillator_enable_inv <= not oscillator_enable; 
 
counter_clear <= sample_push or reset; 
 
timer : sample_timer 
 generic map(timer_count => timer_count) 
 port map( 
  clock  => clock,      
  reset  => reset,   
     enable => sample_push); 
        
x_counter : counter   
 generic map(counterwidth => datawidth) 
 port map( 
  clear => counter_clear, 
  clock => x_bitstream, 
      q   => x_counter_comparator_signal); 
 
x_range_comparator : range_comparator  
 generic map( 
  datawidth   => datawidth, 
  range_zero   => range_zero, 
  range_minus2 => range_minus2, 
  range_minus1 => range_minus1, 
  range_plus1  => range_plus1, 
  range_plus2  => range_plus2) 
 port map( 
  clock   => sample_push, 
  enable  => activate, 
  reset   => reset, 
  frequency => x_counter_comparator_signal, 
  data_out  => x_opcode);  
 
y_counter : counter   
 generic map(counterwidth => datawidth) 
 port map( 
  clear => counter_clear, 
  clock => y_bitstream, 
      q   => y_counter_comparator_signal); 
 
y_range_comparator : range_comparator  
 generic map( 
  datawidth   => datawidth, 
  range_zero   => range_zero, 
  range_minus2  => range_minus2, 
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Processor.vhd 

  range_minus1  => range_minus1, 
  range_plus1  => range_plus1, 
  range_plus2  => range_plus2) 
 port map( 
  clock   => sample_push, 
  enable   => activate, 
  reset   => reset, 
  frequency => y_counter_comparator_signal, 
  data_out  => y_opcode);  
 
end structural;
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Processor_pkg.vhd 

----------------------------------------------------------------------- 
-- processor_pkg.vhd 
--  
-- This file contains the declarations for the components required by 
-- the processor: 
-- - counter 
-- - sample_timer 
-- - range_comparator 
----------------------------------------------------------------------- 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package processor_pkg is 
 
 component counter is  
  generic (counterwidth : positive := 4); 
  port( 
   clear, clock : in std_logic;  
       q : out std_logic_vector(counterwidth-1 downto 0));  
 end component counter; 
  
 component sample_timer 
  generic (timer_count : positive := 250); 
  port( 
   clock, reset : in std_logic;  
       enable : out std_logic);  
 end component sample_timer;  
 
 component range_comparator is  
  generic ( 
   datawidth : positive := 10; 
   range_zero : positive := 100; 
   range_minus2 : positive := 100; 
   range_minus1 : positive := 100; 
   range_plus1 : positive := 100; 
   range_plus2 : positive := 100); 
  port( 
   clock, enable, reset : in std_logic; 
   frequency : in std_logic_vector(datawidth-1 downto 0); 
      data_out : out std_logic_vector(8 downto 0));  
 end component range_comparator;  
   
end processor_pkg;
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Command_selector.vhd 

----------------------------------------------------------------------- 
-- command_selector.vhd 
-- 
-- A 2-to-1 vector-mux.  The input vector widths are specified by the 
-- “datawidth” generic. 
-- 
-- Role in spatial mouse mouse_commander: receives a control signal 
-- from master_controller to select between the initialization command 
-- or mouse movement command for input into the byte_selector 
-- preceding the transmitter. 
----------------------------------------------------------------------- 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity command_selector is 
 generic ( 
  datawidth : positive := 33); 
 port( 
  bytes_in : in std_logic_vector(datawidth*2-1 downto 0); 
  sel  : in std_logic; 
  byte_out : out std_logic_vector(datawidth-1 downto 0)); 
end command_selector; 
 
architecture behavioral of command_selector is 
 
begin 
 
process is 
 
begin 
 if sel = '0' then 
  byte_out <= bytes_in(datawidth-1 downto 0); 
 else 
  byte_out <= bytes_in(datawidth*2-1 downto datawidth); 
 end if; 
end process; 
 
end behavioral;
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Master_controller.vhd 

----------------------------------------------------------------------- 
-- byte_selector.vhd : 
-- 
-- A 4-to-1 vector-mux.  The input vector widths are specified by the 
-- “bytewidth” generic. 
-- 
-- Role in spatial mouse mouse_commander: receives a control signal 
-- from master_controller to select current byte to be transmitted by 
-- the transmitter.  
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity byte_selector is 
 generic (bytewidth : positive := 11); 
 port( 
  bytes_in : in std_logic_vector(bytewidth*3-1 downto 0); 
  sel: in std_logic_vector(1 downto 0); 
  byte_out : out std_logic_vector(bytewidth-1 downto 0)); 
end byte_selector; 
 
architecture behavioral of byte_selector is 
 
begin 
 
process(sel) is 
 
begin 
 if sel = "00" then 
  byte_out <= bytes_in(bytewidth-1 downto 0); 
 elsif sel = "01" then 
  byte_out <= bytes_in(bytewidth*2-1 downto bytewidth); 
 elsif sel = "10" then 
  byte_out <= bytes_in(bytewidth*3-1 downto bytewidth*2); 
 else 
  byte_out <= (others => '0'); 
 end if; 
end process; 
 
end behavioral; 
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Master_controller.vhd 

----------------------------------------------------------------------- 
-- master_controler.vhd : 
-- 
-- Overall controller for mouse commander.  Looks at state of tristate  
-- data and clock buses to determine when data transmission can take  
-- place.  Controls when consecutive bytes are be transmitted based on 
-- host inhibit states. 
-----------------------------------------------------------------------   
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
ENTITY master_controller IS 
 Generic( delay_tx : positive := 5000; 
      delay_rx : positive := 300); 
 PORT( 
  clk : IN STD_LOGIC; -- 25MHz system clock 
  reset : IN STD_LOGIC; -- reset system ACTIVE HIGH 
  enable: IN STD_LOGIC; -- start statemachine ACTIVE HIGH 
  PC_drive_clock: IN STD_LOGIC; -- PS/2 clock bus 
  PC_drive_data: IN STD_LOGIC; -- PS/2 data bus 
  rx_done: IN STD_LOGIC; -- Rx done receiving 
  tx_done: IN STD_LOGIC; -- Tx done sending 

 -- Drive PC clock onto bus 
  Pc_clock_drive: OUT STD_LOGIC; 

 -- Assert dataline low for line control 
  rx_line_control: OUT STD_LOGIC; 

-- Enable rx data component 
  rx_data_comp_enable: OUT STD_LOGIC; 

-- Enable tx data component 
  tx_data_comp_enable: OUT STD_LOGIC; 

-- Select initialization / Mouse data 
  data_command_sel: OUT STD_LOGIC; 

-- Select data byte to transmit 
  data_byte_sel: OUT STD_LOGIC_VECTOR(1 downto 0)   ); 
END master_controller; 
 
ARCHITECTURE behavioural OF master_controller IS 
 
TYPE STATE_TYPE IS (ready_rx, rx_wait, rx_data, line_control_data_1, 
line_control_data_10, line_control_data_1010, line_control_data_101, 
tx_ACK, start_tx,Tx_1, wait_1, Tx_2, wait_2, Tx_3, wait_3, 
delay_next_packet); 
 
SIGNAL state: STATE_TYPE; 
  
BEGIN 
 PROCESS (clk) 
 variable count : integer; 
 variable rx_count : integer; 
 variable tx_count : integer; 
 BEGIN 
    
  if rising_edge(clk) then 
   if reset = '1' then 
     state <= start_tx; 
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   else 
    
   CASE state IS 
     
    -- Main transmitt loop 
    WHEN start_tx => 
     tx_count:=0; 
     IF PC_drive_clock = '1' and PC_drive_data = '1' and 
        enable = '1' THEN 
      state <= Tx_1; 
     END IF; 
      
    WHEN Tx_1 => 
     IF tx_done='1' THEN 
      state <= wait_1; 
     END IF; 
 
    WHEN wait_1 => 
     IF PC_drive_clock = '1' THEN 
      state <= Tx_2; 
     END IF; 
 
    WHEN Tx_2 => 
     IF tx_done='1' THEN 
      state <= wait_2; 
     END IF; 
 
    WHEN wait_2 => 
     IF PC_drive_clock = '1' THEN 
      state <= Tx_3; 
     END IF; 
 
    WHEN Tx_3 => 
     IF tx_done='1' THEN 
      state <= wait_3; 
     END IF; 
 
    WHEN wait_3 => 
     IF PC_drive_clock = '1' THEN 
      state <= delay_next_packet; 
     END IF; 
      
    WHEN delay_next_packet => 
     IF tx_count = delay_tx THEN 
      state <= start_tx; 
     ELSE 
      tx_count := tx_count + 1; 
     END IF; 
   END CASE; 
  end if; 
  end if; 
 END PROCESS; 
  
 WITH state SELECT 
  tx_data_comp_enable  <= --'1' WHEN tx_ACK,    
     '1' WHEN Tx_1 | Tx_2 | Tx_3, 
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       '0' WHEN others; 
  
 WITH state SELECT 
  data_byte_sel<= --"00" WHEN tx_ACK, 
 "00"  WHEN  Tx_1, 
 "01"  WHEN Tx_2, 
 "10"  WHEN  Tx_3, 
 "00" WHEN others; 
 
 WITH state SELECT 
  data_command_sel <= '1' WHEN start_tx|Tx_1| wait_1 |   
    Tx_2 | wait_2 | Tx_3 | wait_3      
  |delay_next_packet, 
      '0' WHEN others; 
   
 WITH state SELECT 
  rx_data_comp_enable <= --'1' WHEN rx_data, 
      '0' WHEN others; 
               
 WITH state SELECT 
  Pc_clock_drive <= --'1' WHEN rx_data |      
    line_control_data_10 |         
 line_control_data_1 |         
 line_control_data_101,        '0' WHEN others; 
  
 
 WITH state SELECT 
  rx_line_control <= '1' WHEN line_control_data    
       '0' WHEN others;   
        
END behavioural; 
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----------------------------------------------------------------------- 
-- mouse_commander.vhd :  
-- 
-- Sends standard PS/2 mouse action command or initialization commands 
-- to the host (PC). 
-- 
-- This file ties the mouse_commander components together: 
-- - dual_phase_clock 
-- - command_selector 
-- - byte_selector 
-- - master_controller 
-- - transmitter 
-- - inverter 
-- - inverter_with_enable 
-- - 2x bidir 
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.mouse_commander_pkg.all; 
 
entity mouse_commander is 
 generic ( 
  Tx_datawidth : positive := 11; 
  frames : positive := 3; 
  commandwidth : positive := 33); -- always frames*Tx_datawidth 
 port( 
  clock : in std_logic;    -- 25.175 Mhz clock 
  clock_25_kHz : in std_logic;   -- 25 KHz system clock 
  reset : in std_logic;      
  enable_send_command : in std_logic;  
  command_bytes : in std_logic_vector(commandwidth*2-1 downto 0); 
  PC_clock_bus : inout std_logic; -- tristate buffered clock bus 
  PC_data_bus : inout std_logic); -- tristate buffered data bus  
end mouse_commander; 
 
architecture structural of mouse_commander is 
 
signal Tx_enable : std_logic; 
signal Rx_enable : std_logic; 
signal data_clock: std_logic;  
signal PC_clock : std_logic;   
signal tristate_clock_enable: std_logic; -- pulls clock bus low 
according to transmitter controller 
signal tristate_data_enable: std_logic; -- pulls data bus low 
according to transmitted command bytes 
 
signal Tx_PC_clock_drive : std_logic; 
signal Tx_PC_data_drive : std_logic; 
signal Tx_done : std_logic; 
 
signal Rx_PC_clock_drive : std_logic; 
signal Rx_PC_data_drive : std_logic; 
signal Rx_data_in : std_logic_vector(10 downto 0); 
signal Rx_done : std_logic; 
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signal PC_data_drive : std_logic; 
signal PC_clock_drive : std_logic; 
 
signal byte_select : std_logic_vector(1 downto 0); 
signal byte_signal : std_logic_vector(Tx_datawidth-1 downto 0); 
signal command_select : std_logic; 
signal command_signal : std_logic_vector(commandwidth-1 downto 0); 
 
begin 
 
PC_data_clock_generator : dual_phase_clock 
 port map( 
  reset  => reset, 
  clock_in  => clock_25_kHz, 
  clock_lead  => PC_clock, 
  clock_lag  => data_clock); 
 
command_router : command_selector  
 generic map( 
  datawidth => commandwidth) 
 port map( 
  bytes_in => command_bytes, 
  sel  => command_select, 
  byte_out => command_signal); 
 
byte_router : byte_selector 
 generic map( 
  bytewidth => Tx_datawidth, 
  frames => frames) 
 port map( 
  bytes_in => command_signal, 
  sel   => byte_select,  
  byte_out => byte_signal); 
 
command_frame_controller : master_controller 
 port map( 
  clk   => clock, 
  reset   => reset, 
  enable  => enable_send_command, 
  PC_drive_clock => PC_clock_bus, 
  PC_drive_data => PC_data_bus, 
  rx_done  => Rx_done, 
  tx_done  => Tx_done, 
  Pc_clock_drive => Rx_PC_clock_drive, 
  rx_line_control => Rx_PC_data_drive, 
  rx_data_comp_enable => Rx_enable, 
  tx_data_comp_enable => Tx_enable, 
  data_command_sel => command_select, 
  data_byte_sel => byte_select 
); 
 
byte_receiver : rx_data 
port map( 
data_stream => PC_data_bus, 
enable   => Rx_enable, 
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clk   => PC_clock, 
done    => Rx_done, 
q    => Rx_data_in 
); 
 
byte_transmitter : transmitter 
 generic map( 
  Tx_datawidth => Tx_datawidth) 
 port map( 
  clock    => clock_25_kHz, 
  enable    => Tx_enable, 
  data_clock   => data_clock, 
  data_in    => byte_signal, 
  data_out   => Tx_PC_data_drive, 
  PC_clock_drive => Tx_PC_clock_drive, 
  done     => Tx_done); 
 
PC_data_drive <= Tx_PC_data_drive or Rx_PC_data_drive;  
data_driver_inverter : inverter 
 port map( 
  input   => PC_data_drive, 
  inv_output  => tristate_data_enable); 
   
PC_clock_drive <= Tx_PC_clock_drive or Rx_PC_clock_drive;  
PC_clock_driver_inverter : inverter_with_enable 
 port map( 
  enable   => PC_clock_drive, 
  input   => PC_clock, 
  inv_output  => tristate_clock_enable); 
 
PC_Mouse_data_bus : bidir 
 port map( 
  bidir  => PC_data_bus,  
  enable  => tristate_data_enable); 
  
PC_mouse_clock_bus : bidir 
 port map( 
  bidir  => PC_clock_bus, 
  enable  => tristate_clock_enable); 
 
end structural; 
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---------------------------------------------------------------- 
--  Rx data component 
-- 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
entity rx_data is 
port( 
 data_stream : in std_logic; 
 enable : in std_logic; 
 clk  : in std_logic;   -- 25 kHz Clock 
 done  : out std_logic; 
 q  :  out std_logic_vector(10 downto 0) 
 ); 
end entity rx_data; 
 
architecture mixed of rx_data is 
signal shift_reg_out : std_logic_vector(10 downto 0); 
 
COMPONENT shift_in_reg is 
port( 
  clock  : IN STD_LOGIC ; 
  enable : IN STD_LOGIC ; 
  shiftin : IN STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (10 DOWNTO 0) 
); 
end component shift_in_reg; 
 
 
begin 
 
shift_update: process  
variable count : integer; 
 
begin 
  
 wait until rising_edge(clk); 
  if count=15 then  
   q <= shift_reg_out; 
   done <= '1'; 
   count := 0; 
  else 
   done <= '0'; 
  end if; 
 
  if enable = '1' then 
   count := count +1;  
  end if; 
 
end process shift_update; 
 
rx_buffer: shift_in_reg 
 port map( 
   clock => clk, 
   enable => enable, 
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   shiftin => data_stream, 
   q => shift_reg_out  
   ); 
 
end mixed; 
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----------------------------------------------------------------------- 
-- transmitter.vhd 
-- 
-- Transmits a mouse command byte to host.  PS/2 timing requirements  
-- are enforced. 
----------------------------------------------------------------------- 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.transmitter_pkg.all; 
 
entity transmitter is 
 generic ( 
  Tx_datawidth : positive := 11); 
 port( 
  clock : in std_logic; 
  enable : in std_logic; 
  data_clock : in std_logic; 
  data_in : in std_logic_vector(Tx_datawidth - 1 downto 0); 
  data_out : out std_logic; 
  PC_clock_drive : out std_logic; 
  done : out std_logic); 
end transmitter; 
 
architecture structural of transmitter is 
 
signal load_signal : std_logic; 
signal shift_enable_signal : std_logic; 
 
begin 
 
Tx_timer : transmit_controller   
 generic map(datawidth => Tx_datawidth) 
 port map(  
  Tx_enable => enable,    
  clock => clock,    
  data_clock => data_clock,    
  load_register => load_signal,   
  shift_enable => shift_enable_signal,    
  PC_clock_drive => PC_clock_drive, 
  Tx_done => done);   
  
Tx_shift_register : shift_out_register 
 generic map(datawidth => Tx_datawidth) 
 port map( 
  load => load_signal, 
  shift => data_clock, 
  enable_shift => shift_enable_signal, 
  d =>  data_in, 
  q => data_out); 
 
end structural; 
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----------------------------------------------------------------------- 
-- Inverter 
-- 
----------------------------------------------------------------------- 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY inverter IS 
 
 PORT 
 ( 
  input  : IN STD_LOGIC; 
  inv_output : OUT  STD_LOGIC 
 ); 
  
END inverter; 
 
ARCHITECTURE behavioural OF inverter IS 
BEGIN 
 
 PROCESS (input) 
 BEGIN 
  inv_output <= not input; 
 END PROCESS; 
 
END behavioural; 
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----------------------------------------------------------------------- 
-- Inverter with enable 
-- 
----------------------------------------------------------------------- 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY inverter_with_enable IS 
 
 PORT 
 ( 
  enable : IN STD_LOGIC; 
  input  : IN STD_LOGIC; 
  inv_output : OUT STD_LOGIC 
 ); 
  
END inverter_with_enable; 
 
ARCHITECTURE behavioural OF inverter_with_enable IS 
BEGIN 
 
 PROCESS (enable, input) 
 BEGIN 
  
  IF enable = '0' THEN 
   
   inv_output <= '0'; 
    
  ELSE 
    
   inv_output <= not input; 
 
  END IF; 
   
 END PROCESS; 
END behavioural; 
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----------------------------------------------------------------------- 
-- bi-directional bus 
-- 
----------------------------------------------------------------------- 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
     ENTITY bidir IS 
         PORT( 
             bidir   : INOUT STD_LOGIC; 
             enable  : IN STD_LOGIC 
             ); 
     END bidir; 
 
     ARCHITECTURE behav OF bidir IS 
          
    Begin 
         PROCESS (enable, bidir)           
          BEGIN                        
             IF( enable = '0') THEN 
                 bidir <=  'Z'; 
             ELSE 
                 bidir <= '0';  
             END IF; 
         END PROCESS; 
     END behav;
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----------------------------------------------------------------------- 
-- Shift in Register 
-- 
----------------------------------------------------------------------- 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
LIBRARY lpm; 
USE lpm.lpm_components.all; 
 
ENTITY shift_in_reg IS 
generic( datawidth : positive := 10); 
 PORT 
 ( 
  clock  : IN STD_LOGIC ; 
  enable : IN STD_LOGIC ; 
  shiftin : IN STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (datawidth DOWNTO 0) 
 ); 
END shift_in_reg; 
 
 
ARCHITECTURE SYN OF shift_in_reg IS 
 
 SIGNAL sub_wire0 : STD_LOGIC_VECTOR (datawidth DOWNTO 0); 
 
 
 COMPONENT lpm_shiftreg 
 GENERIC ( 
 LPM_WIDTH  : NATURAL; 
 LPM_DIRECTION : STRING 
 ); 
 PORT ( 
 enable : IN STD_LOGIC ; 
 clock : IN STD_LOGIC ; 
 q : OUT STD_LOGIC_VECTOR (datawidth DOWNTO 0); 
 shiftin : IN STD_LOGIC  
 ); 
 END COMPONENT; 
 
BEGIN 
 q    <= sub_wire0(10 DOWNTO 0); 
 
 lpm_shiftreg_component : lpm_shiftreg 
 GENERIC MAP ( 
  LPM_WIDTH => 11, 
  LPM_DIRECTION => "LEFT" 
 ) 
 PORT MAP ( 
  enable => enable, 
  clock => clock, 
  shiftin => shiftin, 
  q => sub_wire0 
 ); 
 
END SYN;
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----------------------------------------------------------------------- 
-- shift_out_register.vhd  
-- 
-- Output shift register with parallel loading input  
-- Assertion of load signal asynchronously loads register 
-- Rising edge triggered shift only if shift is enabled 
-- Outputs a high by default.  
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
 
entity shift_out_register is 
 generic (datawidth : positive := 11); 
 port( 
  load : in std_logic; 
  shift : in std_logic; 
  enable_shift : in std_logic; 
  d : in std_logic_vector(datawidth-1 downto 0); 
  q : out std_logic); 
end shift_out_register; 
 
architecture behavioral of shift_out_register is 
begin 
 
process(load, shift) is 
 
variable bitcount : integer range 0 to datawidth-1; 
variable d_hold : std_logic_vector(datawidth-1 downto 0); 
 
begin 
 if load = '1' then 
  d_hold := d;     -- load input vector into register 
  bitcount := 0;      -- reset shift count 
 elsif rising_edge(shift) then 
  if enable_shift = '1' then 
   q <= d_hold(bitcount);  -- output next bit 
   bitcount := bitcount + 1; -- increment bit_count 
  else         
   q <= '1';      
  end if;        
 end if; 
end process; 
 
end behavioral; 
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-----------------------------------------------------------------------  
-- transmit_controller.vhd 
--  
-- synchronizes data transmission with system clock 
-- and assertion of data at appropriate clock pulses 
----------------------------------------------------------------------- 
 
library ieee;  
use ieee.std_logic_1164.all;  
 
entity transmit_controller is 
 generic (datawidth : positive := 11); 
    port (  
      Tx_enable : in std_logic; -- enable transmission 
 clock : in std_logic;  -- System clock (25KHz) 
 -- data clock required to initialize proper offset 
      data_clock : in std_logic;  

-- load register with parallel data sitting at register input 
      load_register: out std_logic;  

-- enable data to be shifted out of shift register 
      shift_enable: out std_logic; 

-- enable PC_clock to be asserted on clock bus 
      PC_clock_drive: out std_logic; 
      Tx_done: out std_logic); 
end transmit_controller;  
 
architecture state_machine of transmit_controller is  
  
-- name states  
type state_type is (start, load_data, enable_shift, drive_PC_clock, 
shift, stop);  
signal state : state_type;  
 
begin  
 
process(clock, Tx_enable) 
 
variable shift_count : integer range 0 to datawidth*2; 
variable shift_done : integer range 0 to datawidth*2; 
 
begin  
  
 shift_done := datawidth*2 -1; 
 -- always in start state until Tx_enable = '1' 
 if Tx_enable = '0' then      -- reset state  

     state <= start; 
     shift_count := 0;   
     
    elsif rising_edge(clock) then  
     
  case state is  
   
  -- nothing happens in this state 
  when start =>     
      state <= load_data;  
   shift_count := 0;  
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 -- load_register goes high to signal to register to load data. 
 -- this state checks that the data and PC clocks are in the 
appropriate 
 -- phase of 2 possible cycles to advance to the enable shift state, 
if not, 
 -- the load_register stalls in this state for one more clock pulse.     
  
  when load_data =>      
      if data_clock = '0' then    
          state <= enable_shift; 
      else  
          state <= load_data;  
      end if; 
       
  -- this state enables the register to shift data out based on the 
data_clock  
  when enable_shift =>  
      state <= drive_PC_clock;  
   shift_count := shift_count + 1; 
 
  -- this state drives the PC_clock onto the clock bus   
  when drive_PC_clock => 
   state <= shift; 
   shift_count := shift_count + 1; 
       
  -- this state allows for continued shifting of the data 
  when shift => 
   if shift_count = shift_done then   
    state <= stop; 
   else 
    state <= shift; 
   end if;    
   shift_count := shift_count + 1; 
   
  when stop => 
   state <= stop;  
     
  end case; 
   
  end if; 
end process;  
 
with state select 
 load_register  <= '1' when load_data, 
     '0' when others; 
with state select 
 shift_enable  <= '1' when enable_shift, 
     '1' when drive_PC_clock, 
     '1' when shift, 
     '0' when others;  
with state select 
 PC_clock_drive  <= '1' when drive_PC_clock, 
     '1' when shift, 
     '0' when others;  
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with state select 
 Tx_done   <= '1' when stop, 
     '0' when others;  
       
end state_machine; 
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----------------------------------------------------------------------- 
-- transmitter_pkg.vhd 
-- 
-- This file contains the declarations for the components required by 
-- the transmitter: 
-- - transmit_controller 
-- - shift_out_register 
-- - inverter 
---------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package transmitter_pkg is 
 
component transmit_controller is  
generic (datawidth : positive := 11); 
port (  
Tx_enable : in std_logic;    
clock : in std_logic;    
data_clock : in std_logic;    
load_register: out std_logic;   
shift_enable: out std_logic;    
PC_clock_drive: out std_logic; 
Tx_done : out std_logic);   
end component transmit_controller;  
 
component shift_out_register is 
generic (datawidth : positive := 11); 
port( 
load : in std_logic; 
shift : in std_logic; 
enable_shift : in std_logic; 
d : in std_logic_vector(datawidth-1 downto 0); 
q : out std_logic); 
end component shift_out_register; 
 
end transmitter_pkg; 
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-- mouse_commander_pkg 
-- 
-- This file contains the declarations for the components required by 
-- the mouse_commander: 
-- - dual_phase_clock 
-- - command_selector 
-- - byte_selector 
-- - master_controller 
-- - transmitter 
-- - inverter 
-- - inverter_with_enable 
-- - 2x bidir 
---------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package mouse_commander_pkg is 
 
component dual_phase_clock is 
 port( 
  reset: in std_logic; 
  clock_in : in std_logic; 
  clock_lead : buffer std_logic; 
  clock_lag : buffer std_logic); 
end component dual_phase_clock; 
 
component transmitter is 
 generic ( 
  Tx_datawidth : positive := 11); 
 port( 
  clock : in std_logic; 
  enable : in std_logic; 
  data_clock : in std_logic; 
  data_in : in std_logic_vector(Tx_datawidth - 1 downto 0); 
  data_out : out std_logic; 
  PC_clock_drive : out std_logic; 
  done : out std_logic); 
end component transmitter; 
 
component inverter_with_enable is 
port( 
enable : IN STD_LOGIC; 
input  : IN STD_LOGIC; 
inv_output : OUT STD_LOGIC); 
end component inverter_with_enable; 
 
component inverter is 
port( 
input  : IN STD_LOGIC; 
inv_output : OUT STD_LOGIC); 
end component inverter; 
 
component bidir is 
port( 
bidir   : inout STD_LOGIC; 
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enable  : in STD_LOGIC 
); 
end component bidir; 
 
component command_controller is 
port( 
clk    : IN STD_LOGIC; 
PC_drive_clock  : IN STD_LOGIC; 
send_command  : IN STD_LOGIC; 
tx_done   : IN  STD_LOGIC; 
enable_tx   : OUT  STD_LOGIC; 
sel      : OUT STD_LOGIC_VECTOR(1 downto 0) 
); 
end component command_controller; 
 
component command_selector is 
generic ( 
datawidth : positive := 33); 
port( 
bytes_in : in std_logic_vector(datawidth*2-1 downto 0); 
sel: in std_logic; 
byte_out : out std_logic_vector(datawidth-1 downto 0)); 
end component command_selector; 
 
component byte_selector is 
generic ( 
frames : positive :=3; 
bytewidth : positive := 11); 
port( 
bytes_in: in std_logic_vector(bytewidth*frames-1 downto 0); 
sel: in std_logic_vector(1 downto 0); 
byte_out : out std_logic_vector(bytewidth-1 downto 0)); 
end component byte_selector; 
 
component rx_data is 
port( 
data_stream : in std_logic; 
enable  : in std_logic; 
clk   : in std_logic; 
done   : out std_logic; 
q    : out std_logic_vector(10 downto 0)); 
end component rx_data; 
 
component shift_in_reg is 
port( 
clk  : in std_logic; 
enable  : in std_logic; 
shiftin  : in std_logic; 
q   : OUT STD_LOGIC_VECTOR (10 DOWNTO 0)); 
end component shift_in_reg; 
 
component master_controller is 
port( 
clk        : IN STD_LOGIC; -- 25MHz system clock 
reset   : IN STD_LOGIC; -- reset system ACTIVE HIGH 
enable  : IN STD_LOGIC; -- start statemachine ACTIVE HIGH 
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PC_drive_clock : IN STD_LOGIC; -- PS/2 clock bus 
PC_drive_data : IN STD_LOGIC; -- PS/2 data bus 
rx_done  : IN STD_LOGIC; -- Rx done receiving 
tx_done  : IN STD_LOGIC; -- Tx done sending 
Pc_clock_drive : OUT STD_LOGIC; -- Drive PC clock onto bus 
rx_line_control : OUT STD_LOGIC; -- Assert dataline low for line 
control 
rx_data_comp_enable : OUT STD_LOGIC; -- Enable rx data component 
tx_data_comp_enable : OUT STD_LOGIC; -- Enable tx data component 
data_command_sel : OUT STD_LOGIC; -- Select initialization / Mouse 
data 
data_byte_sel : OUT STD_LOGIC_VECTOR(1 downto 0) -- Select data 
byte to transmit 
); 
end component master_controller; 
 
end mouse_commander_pkg; 
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-----------------------------------------------------------------------
-- spatial_mouse.vhd  
-- 
-- Overall digital design implemented on FPGA 
----------------------------------------------------------------------- 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.spatial_mouse_pkg.all; 
 
entity spatial_mouse is 
 port( 
  clock : in std_logic;       
  reset : in std_logic;      
  activate : in std_logic; 
  left_button : in std_logic; 
  right_button : in std_logic; 
  x_oscillation : in std_logic; 
  y_oscillation : in std_logic; 
  PC_clock_bus : inout std_logic; 
  PC_data_bus : inout std_logic; 
  oscillator_enable : buffer std_logic; 
  oscillator_enable_inv : buffer std_logic); 
end spatial_mouse; 
 
architecture structural of spatial_mouse is 
 
-- Active Low Signals 
signal not_reset : std_logic; 
signal not_activate : std_logic; 
signal not_left_button : std_logic; 
signal not_right_button : std_logic; 
 
-- Internal signals and patches  
signal clock_25KHz : std_logic; 
signal x_opcode_signal : std_logic_vector(8 downto 0); 
signal y_opcode_signal : std_logic_vector(8 downto 0); 
signal mouse_command_signal : std_logic_vector(32 downto 0); 
signal init_command_signal : std_logic_vector(32 downto 0); 
signal command_signals: std_logic_vector(65 downto 0); -- 
concatenation of mouse command & init command 
 
begin 
 
-- Active Low Conversions 
not_reset <= not reset; 
not_activate <= not activate; 
not_left_button <= not left_button; 
not_right_button <= not right_button; 
 
clock_25KHz_generator : clock_ticked  
 generic map(ticks => 503) 
 port map( 
  clock_in => clock, 
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  reset  => not_reset,  
  clock_out => clock_25KHz);   
  
oscillator_translator : processor 
 generic map( 
  datawidth   => 25,  -- counter and comparator widths 
  rangewidth   => 15, 
  timer_count  => 250,  -- 250 ticks of 25kHz clock to 
generate 10ms enables 
  range_minus2  => 1000, 
  range_minus1  => 1000, 
  range_zero   => 1000,   
  range_plus1  => 1000, 
  range_plus2  => 1000) 
 port map( 
  clock   => clock_25KHz, 
  reset   => not_reset, 
  activate  => not_activate, 
   x_bitstream => x_oscillation,  
  y_bitstream => y_oscillation, 
  x_opcode  => x_opcode_signal, 
  y_opcode  => y_opcode_signal, 
  oscillator_enable => oscillator_enable, 
  oscillator_enable_inv => oscillator_enable_inv); 
 
processor_to_mouse_interface : mouse_command_mapper 
 port map( 
   x_movement   => x_opcode_signal, 
   y_movement   => y_opcode_signal, 
   left_button  => not_left_button, 
   right_button  => not_right_button, 
   mapped_command => mouse_command_signal); 
 
init_command_signal <= "111111111111111111111111111111111"; 
command_signals <= mouse_command_signal & init_command_signal; 
 
mouse_interface : mouse_commander 
 generic map( 
  Tx_datawidth => 11, 
  frames => 3, 
  commandwidth => 33) -- always frames*Tx_datawidth 
 port map( 
  clock => clock, 
  clock_25_kHz => clock_25KHz, 
  reset => not_reset, 
  enable_send_command => not_activate, 
  command_bytes => command_signals, -- command bytes inputted 
here 
  PC_clock_bus => PC_clock_bus,  
  PC_data_bus => PC_data_bus);  
 
end structural; 
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----------------------------------------------------------------------- 
-- spatial_mouse_pkg.vhd 
-- 
-- Contains the major component declarations for the overall digital  
-- design  
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package spatial_mouse_pkg is 
 
component clock_ticked is  
generic (ticks : positive := 503); 
port( 
 clock_in, reset : in std_logic;  
 clock_out : buffer std_logic);  
end component clock_ticked;  
 
component processor is 
 generic ( 
  datawidth  : positive := 22;  -- counter and comparator widths 
  rangewidth  : positive := 15; 
  timer_count : positive := 250; 
  range_minus2 : positive := 2000; 
  range_minus1 : positive := 2000; 
  range_zero  : positive := 2000;  
  range_plus1 : positive := 2000; 
  range_plus2 : positive := 2000); 
 port( 
  clock, reset : in std_logic; 
  activate, x_bitstream, y_bitstream : in std_logic; 
  x_opcode, y_opcode : out std_logic_vector(8 downto 0); 
  oscillator_enable : buffer std_logic; 
  oscillator_enable_inv : buffer std_logic); 
end component processor; 
 
component mouse_command_mapper is 
  port( 
   x_movement : in std_logic_vector(8 downto 0); 
   y_movement : in std_logic_vector(8 downto 0); 
   left_button : in std_logic; 
   right_button : in std_logic; 
   mapped_command : out std_logic_vector(32 downto 0)); 
end component mouse_command_mapper; 
 
component mouse_commander is 
 generic ( 
  Tx_datawidth : positive := 11; 
  commandwidth : positive := 33);  
 port( 
  clock : in std_logic; 
  clock_25_kHz : in std_logic;   
  reset : in std_logic;    
enable_send_command : in std_logic; 
command_bytes : in std_logic_vector(commandwidth*2-1 downto 0); 
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PC_clock_bus : inout std_logic; 
PC_data_bus : inout std_logic); 
end component mouse_commander; 
 
end spatial_mouse_pkg; 
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----------------------------------------------------------------------- 
-- Glue logic between processor and mouse interface  
-- 
-- Maps processor opcode to   
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity mouse_command_mapper is 
  port( 
   x_movement : in std_logic_vector(8 downto 0); 
   y_movement : in std_logic_vector(8 downto 0); 
   left_button : in std_logic; 
   right_button : in std_logic; 
   mapped_command : out std_logic_vector(32 downto 0)); 
end mouse_command_mapper; 
 
architecture logic of mouse_command_mapper is 
 
-- signals for generating correct parity bit 
signal parity1 : std_logic; 
signal parity2 : std_logic; 
signal parity3 : std_logic; 
 
begin 
 
parity1 <= not ('0' xor '0' xor x_movement(8) xor y_movement(8) xor '1' 
  xor '0' xor left_button xor right_button); 
 
parity2 <= not (x_movement(7) xor x_movement(6) xor x_movement(5)  
      xor x_movement(4) 
      xor x_movement(3) xor x_movement(2) xor x_movement(1) xor  
      x_movement(0)); 
 
parity3 <= not (y_movement(7) xor y_movement(6) xor y_movement(5) xor  
      y_movement(4) xor y_movement(3) xor y_movement(2) xor   
      y_movement(1) xor y_movement(0)); 
 
mapped_command <= '1' & parity3 & y_movement(7 downto 0) & '0' 
   & '1' & parity2 & x_movement(7 downto 0) & '0' 
   & '1' & parity1 & "00" & y_movement(8) &     
  x_movement(8) & "10" 
   & right_button & left_button & '0';  
 
end logic; 
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-----------------------------------------------------------------------  
-- clock_ticked.vhd : 
--  
-- Generates a slower clock from a much faster clock. 
-- 
-- Role in Spatial Mouse: generates a 25 KHz system clock that is  
-- useful for meeting PS/2 timing requirements. 
----------------------------------------------------------------------- 
 
library ieee;  
use ieee.std_logic_1164.all;  
 
entity clock_ticked is  
generic (ticks : positive := 503); 
port( 
 clock_in, reset : in std_logic;  
 clock_out : buffer std_logic);  
end clock_ticked;  
 
architecture behaviour of clock_ticked is  
begin  
 
process  
 
variable count : natural range 1 to ticks; 
 
begin  
    wait until rising_edge(clock_in); 
    if reset = '1' then 
     count := 1; 
     clock_out <= '0'; 
    else    
        count := count + 1; 
        if count = ticks then 
          clock_out <= not clock_out; 
        end if; 
 end if;  
end process;  
 
end behaviour;  
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------------------------------------------------------------- 
-- dual_phase_clock.vhd 
--  
-- generates two clocks 1/4 out of phase from each other 
-- the output clocks are 1/2 the frequency of the input clock   
------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.dual_phase_clock_pkg.all; 
 
entity dual_phase_clock is 
 port( 
  reset: in std_logic; 
  clock_in : in std_logic; 
  clock_lead : buffer std_logic; 
  clock_lag : buffer std_logic); 
end dual_phase_clock; 
 
architecture structural of dual_phase_clock is 
 
signal phase_reset : std_logic; -- this signal ensures that data clock 
lags PC clock by 1/4 period 
signal clock_lead_inv, clock_lag_inv : std_logic; 
 
begin 
 
process(clock_in) is    -- this process ensures that data clock 
will lag PC clock by 1/4 period 
begin 
 wait until falling_edge(clock_in); 
 if reset = '1' then 
  phase_reset <= '1'; 
 else 
  phase_reset <= '0'; 
 end if; 
end process; 
 
clock_lead_inv <= not clock_lead; 
clock_lag_inv <= not clock_lag;   
 
lead_clock_generator : d_flipflop_rising 
 port map( 
  clock => clock_in, 
  clear => phase_reset, 
  d => clock_lead_inv, 
  q => clock_lead);   
 
lag_clock_generator : d_flipflop_falling 
 port map( 
  clock => clock_in, 
  clear => phase_reset, 
  d => clock_lag_inv, 
  q => clock_lag);   
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end structural; 
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----------------------------------------------------------------------- 
-- dual_phase_clock_pkg.vhd 
-- 
-- Declarations for components required by dual+phase_clock 
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package dual_phase_clock_pkg is 
 
component d_flipflop_rising is 
port( 
clock, clear : in std_logic; 
d : in std_logic; 
q : out std_logic); 
end component d_flipflop_rising; 
 
component d_flipflop_falling is 
port( 
clock, clear : in std_logic; 
d : in std_logic; 
q : out std_logic); 
end component d_flipflop_falling; 
 
end dual_phase_clock_pkg; 
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----------------------------------------------------------------------- 
-- Spatial Mouse Test Bench 
-- 
-- Tests overall spatial mouse functionality 
----------------------------------------------------------------------- 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity mux_8_to_1 is 
port( 
 in_0 : in std_logic; 
 in_1 : in std_logic; 
 in_2  : in std_logic; 
 in_3 : in std_logic; 
 in_4 : in std_logic; 
 in_5 : in std_logic; 
 in_6  : in std_logic; 
 in_7 : in std_logic; 
 sel  : in std_logic_vector(2 downto 0); 
 output : out std_logic 
); 
end mux_8_to_1; 
 
architecture behav of mux_8_to_1 is 
 
begin 
 
process( sel,in_0,in_1,in_2,in_3,in_4,in_5,in_6,in_7 ) 
 begin 
  case sel is 
   WHEN "000" => 
    output <= in_0; 
 
   WHEN "001" => 
    output <= in_1; 
 
   WHEN "010" => 
    output <= in_2; 
 
   WHEN "011" => 
    output <= in_3; 
 
   WHEN "100" => 
    output <= in_4; 
 
   WHEN "101" => 
    output <= in_5; 
 
   WHEN "110"=> 
    output <= in_6; 
    
   WHEN "111"=> 
    output <= in_7; 
    
   WHEN others => 
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    output <= in_0; 
 
  end case; 
end process; 
 
end behav; 
 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
package test_pkg is  
 
component mux_8_to_1 is 
 port  (  
    in_0 : in std_logic; 
    in_1 : in std_logic; 
    in_2 : in std_logic; 
    in_3 : in std_logic; 
    in_4 : in std_logic;  
    in_5 : in std_logic; 
    in_6 : in std_logic; 
    in_7 : in std_logic; 
    sel  : in std_logic_vector(2 downto 0); 
    output : out std_logic 
   ); 
 end component mux_8_to_1; 
end package test_pkg; 
 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
library work; 
use work.spatial_mouse_pkg.all; 
use work.test_pkg.all; 
 
 
entity spatial_mouse_test is 
end spatial_mouse_test; 
 
architecture mixed of spatial_mouse_test is 
 
-- Frequency generator constants 
constant T_halfclock_25_MHz  : time := 20 ns; 
constant T_halfclock_5_MHz    : time := 100 ns; 
constant T_halfclock_5_75_MHz : time := 86.96 ns; --86.96 ns  
constant T_halfclock_5_85_MHz : time := 85.47 ns; 
constant T_halfclock_6_MHz    : time := 83.3 ns; 
constant T_halfclock_6_15_MHz : time := 81.3 ns; -- 81.1 ns 
constant T_halfclock_6_25_MHz : time := 80 ns; 
constant T_halfclock_7_MHz    : time := 71 ns; 
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constant T_prop: time := 10 ns; -- avoid hold time violations 
 
-- Test input frequencies 
signal clock_25_MHz : std_logic; 
signal osc_freq_5_MHz : std_logic; 
signal osc_freq_5_75_MHz : std_logic; 
signal osc_freq_5_85_MHz : std_logic; 
signal osc_freq_6_MHz : std_logic; 
signal osc_freq_6_15_MHz : std_logic; 
signal osc_freq_6_25_MHz : std_logic; 
signal osc_freq_7_MHz : std_logic; 
 
-- Interface buttons 
signal reset_internal : std_logic; 
signal activate_internal : std_logic; 
signal left_button_internal : std_logic; 
signal right_button_internal : std_logic; 
 
-- control oscillator frequency 
signal x_osc_select : std_logic_vector(2 downto 0); 
signal y_osc_select : std_logic_vector(2 downto 0); 
signal x_osc_internal : std_logic; 
signal y_osc_internal : std_logic; 
 
-- PC bidirectional bus 
signal PC_clock_bus_internal : std_logic; 
signal PC_data_bus_internal : std_logic; 
 
 
component spatial_mouse is 
  port( 
   clock : in std_logic;       
   reset : in std_logic;      
   activate : in std_logic; 
   left_button : in std_logic; 
   right_button : in std_logic; 
   x_oscillation : in std_logic; 
   y_oscillation : in std_logic; 
   PC_clock_bus : inout std_logic; 
   PC_data_bus : inout std_logic 
 ); 
end component spatial_mouse; 
 
 
begin 
 
-- 25 Mhz clock generator 
 clock_gen_25_MHz : process 
 begin 
  clock_25_MHz <= '0'; 
  wait for T_halfclock_25_MHz; 
  clock_25_MHz <= '1'; 
  wait for T_halfclock_25_MHz; 
 end process clock_gen_25_MHz; 
 
-- 5 Mhz clock generator 
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 signal_gen_5_MHz : process 
 begin 
  osc_freq_5_MHz <= '0'; 
  wait for T_halfclock_5_MHz; 
  osc_freq_5_MHz <= '1'; 
  wait for T_halfclock_5_MHz; 
 end process signal_gen_5_MHz; 
 
-- 5.75 Mhz clock generator 
 signal_gen_5_75_MHz : process 
 begin 
  osc_freq_5_75_MHz <= '0'; 
  wait for T_halfclock_5_75_MHz; 
  osc_freq_5_75_MHz <= '1'; 
  wait for T_halfclock_5_75_MHz; 
 end process signal_gen_5_75_MHz; 
 
-- 5.85 Mhz clock generator 
 signal_gen_5_85_MHz : process 
 begin 
  osc_freq_5_85_MHz <= '0'; 
  wait for T_halfclock_5_85_MHz; 
  osc_freq_5_85_MHz <= '1'; 
  wait for T_halfclock_5_85_MHz; 
 end process signal_gen_5_85_MHz; 
 
-- 6 Mhz clock generator 
 signal_gen_6_MHz : process 
 begin 
  osc_freq_6_MHz <= '0'; 
  wait for T_halfclock_6_MHz; 
  osc_freq_6_MHz <= '1'; 
  wait for T_halfclock_6_MHz; 
 end process signal_gen_6_MHz; 
 
-- 6.15 Mhz clock generator 
 signal_gen_6_15_MHz : process 
 begin 
  osc_freq_6_15_MHz <= '0'; 
  wait for T_halfclock_6_15_MHz; 
  osc_freq_6_15_MHz <= '1'; 
  wait for T_halfclock_6_15_MHz; 
 end process signal_gen_6_15_MHz; 
 
-- 6.25 Mhz clock generator 
 signal_gen_6_25_MHz : process 
 begin 
  osc_freq_6_25_MHz <= '0'; 
  wait for T_halfclock_6_25_MHz; 
  osc_freq_6_25_MHz <= '1'; 
  wait for T_halfclock_6_25_MHz; 
 end process signal_gen_6_25_MHz; 
 
-- 7 Mhz clock generator 
 signal_gen_7_MHz : process 
 begin 
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  osc_freq_7_MHz <= '0'; 
  wait for T_halfclock_7_MHz; 
  osc_freq_7_MHz <= '1'; 
  wait for T_halfclock_7_MHz; 
 end process signal_gen_7_MHz; 
 
 
-- Spatial Mouse test subject 
Spatial_mouse_component : component spatial_mouse 
port map( 
 clock => clock_25_MHz,  -- 25 MHz system clock 
 reset => reset_internal,   
 activate => activate_internal, 
 left_button => left_button_internal, 
 right_button => right_button_internal, 
 x_oscillation => x_osc_internal, 
 y_oscillation => y_osc_internal, 
 PC_clock_bus => PC_clock_bus_internal, 
 PC_data_bus => PC_data_bus_internal 
 ); 
 
-- Component to change x input oscillator frequency 
x_osc_input_sel : component mux_8_to_1  
port map( 
 in_0 => osc_freq_5_MHz, 
 in_1 => osc_freq_5_75_MHz, 
 in_2 => osc_freq_5_85_MHz, 
 in_3 => osc_freq_6_MHz, 
 in_4 => osc_freq_6_15_MHz, 
 in_5 => osc_freq_6_25_MHz, 
 in_6 => osc_freq_7_MHz, 
 in_7 => osc_freq_6_MHz, 
 sel => x_osc_select, 
 output => x_osc_internal 
 ); 
 
-- Component to control y input oscillator frequency 
y_osc_input_sel : component mux_8_to_1  
port map( 
 in_0 => osc_freq_5_MHz, 
 in_1 => osc_freq_5_75_MHz, 
 in_2 => osc_freq_5_85_MHz, 
 in_3 => osc_freq_6_MHz, 
 in_4 => osc_freq_6_15_MHz, 
 in_5 => osc_freq_6_25_MHz, 
 in_6 => osc_freq_7_MHz, 
 in_7 => osc_freq_6_MHz, 
 sel => y_osc_select, 
 output => y_osc_internal 
 ); 
 
 
-------------------------------------------------- 
-- Process to activate mouse 
activate_mouse : process 
begin 
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 -- initial startup, reset machine 
 activate_internal <= '1'; 
 reset_internal <= '1'; 
 wait for 1 ms; 
 reset_internal <= '0'; 
 wait for 1 ms; 
 reset_internal <= '1'; 
 wait for 1 ms; 
 
 -- activate mouse  
 activate_internal <= '0'; 
 wait for 60 ms; 
 
 -- deactivate mouse 
-- activate_internal <= '1'; 
-- wait for 20 ms; 
 
 wait; 
end process activate_mouse; 
-------------------------------------------------- 
 
-------------------------------------------------- 
-- process to input oscillator signal 
emu_oscillator : process 
begin 
 
 -- initially 6 MHz osc 
 x_osc_select <= "011"; 
 y_osc_select <= "011"; 
 wait for 3 ms; 
 
 -- x_osc to 6.15 MHz 
 -- y_osc to 5.75 MHz 
 x_osc_select <= "100"; 
 y_osc_select <= "001"; 
 wait for 5 ms; 
 
 
 -- x_osc to 6.25 MHz 
 -- y_osc to 5.85 MHz 
 x_osc_select <= "101"; 
 y_osc_select <= "010"; 
 wait for 5 ms; 
 
 
 -- x_osc to 7 MHz 
 -- y_osc to 5 MHz 
 x_osc_select <= "110"; 
 y_osc_select <= "000"; 
 wait for 5 ms; 
 
 -- x_osc to 5.85 MHz 
 -- y_osc to 6.15 MHz 
 x_osc_select <= "010"; 
 y_osc_select <= "100"; 
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 wait for 5 ms; 
 
 -- x_osc to 5.75 MHz 
 -- y_osc to 6.25 MHz 
 x_osc_select <= "001"; 
 y_osc_select <= "101"; 
 wait for 5 ms; 
 
 -- x_osc to 5 MHz 
 -- y_osc to 7 MHz 
 x_osc_select <= "000"; 
 y_osc_select <= "110"; 
 wait for 5 ms; 
 
 
 wait; 
end process emu_oscillator; 
-------------------------------------------------- 
 
-------------------------------------------------- 
-- process to control Data and Clock bus 
bus_control : process 
begin 
  
 -- Clk and data buses initially '1' 
 -- Mouse in idle state 
 PC_data_bus_internal <= '1'; 
 PC_clock_bus_internal <= '1'; 
-- wait for  1550 us; 
 
-- PC_data_bus_internal <= '1'; 
-- PC_clock_bus_internal <= '0'; 
-- wait for 200 us; 
 
-- PC_data_bus_internal <= '1'; 
-- PC_clock_bus_internal <= '1'; 
-- wait for 1100 us; 
 
 
 wait; 
end process bus_control; 
-------------------------------------------------- 
 
-------------------------------------------------- 
-- process to control Mouse buttons 
button_control : process 
begin 
 
 left_button_internal <= '1'; 
 right_button_internal <= '1'; 
-- wait for 12 ms; 
 
 wait; 
 
end process button_control; 
-------------------------------------------------- 
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end mixed;
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----------------------------------------------------------------------- 
-- processor_testbench2.vhd 
-- 
-- Tests processor functionality 
-----------------------------------------------------------------------  
 
library ieee; 
use ieee.std_logic_1164.all; 
library work; 
use work.processor_pkg.all; 
 
entity processor_testbench2 is 
end processor_testbench2; 
 
architecture testbench of processor_testbench2 is 
 
-- internal signals used to dirve or receive signals on/from chip ports 
signal clock : std_logic; 
signal reset : std_logic; 
signal activate : std_logic; 
signal x_bitstream : std_logic; 
signal y_bitstream : std_logic; 
signal x_opcode : std_logic_vector(8 downto 0); 
signal y_opcode : std_logic_vector(8 downto 0); 
 
-- half periods used to generate system clock and simulate bitstreams 
constant T_halfclock : time := 20.0 us; -- half period for 25KHz 
sysem clock 
constant T_6p0 : time := 83.3 ns; -- half period for 6.0 MHz 
bitstream 
constant T_6p1 : time := 82.0 ns; -- half period for 6.1 MHz 
bitstream 
constant T_6p2 : time := 80.6 ns; -- half period for 6.2 MHz 
bitstream 
constant T_6p3 : time := 79.4 ns; -- half period for 6.3 MHz 
bitstream 
constant T_6p4 : time := 78.1 ns; -- half period for 6.4 MHz 
bitstream 
constant T_6p5 : time := 76.9 ns; -- half period for 6.5 MHz 
bitstream 
constant T_6p6 : time := 75.8 ns; -- half period for 6.6 MHz 
bitstream 
constant T_6p7 : time := 74.6 ns; -- half period for 6.7 MHz 
bitstream 
constant T_6p8 : time := 73.5 ns; -- half period for 6.8 MHz 
bitstream 
constant T_6p9 : time := 72.5 ns; -- half period for 6.9 MHz 
bitstream 
constant T_7p0 : time := 71.4 ns; -- half period for 7.0 MHz 
bitstream 
constant T_7p1 : time := 70.4 ns; -- half period for 7.1 MHz 
bitstream 
 
-- various bitream frequencies used for simulation of x_bitstream 
signal bitstream_6p0MHz : std_logic; 
signal bitstream_6p1MHz : std_logic; 
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signal bitstream_6p2MHz : std_logic; 
signal bitstream_6p3MHz : std_logic; 
signal bitstream_6p4MHz : std_logic; 
signal bitstream_6p5MHz : std_logic; 
signal bitstream_6p6MHz : std_logic; 
signal bitstream_6p7MHz : std_logic; 
signal bitstream_6p8MHz : std_logic; 
signal bitstream_6p9MHz : std_logic; 
signal bitstream_7p0MHz : std_logic; 
signal bitstream_7p1MHz : std_logic; 
 
-- control signal used to drive any of various frequencies onto 
x_bitstream 
signal x_select : integer range 0 to 11; 
signal y_select : integer range 0 to 11; 
 
 
begin 
 
-- insert processor component to be tested 
processor_component : processor 
port map( 
 clock => clock, 
 reset => reset, 
 activate => activate, 
 x_bitstream => x_bitstream, 
 y_bitstream => y_bitstream, 
 x_opcode => x_opcode, 
 y_opcode => y_opcode); 
 
-- mux used to drive any of various frequencies onto x_bitstream 
x_bitstream_mux : process(x_select, bitstream_6p0MHz, bitstream_6p1MHz, 
      bitstream_6p2MHz, bitstream_6p3MHz, bitstream_6p4MHz, 
      bitstream_6p5MHz, bitstream_6p6MHz, bitstream_6p7MHz, 
      bitstream_6p8MHz, bitstream_6p9MHz, bitstream_7p0MHz, 
      bitstream_7p1MHz) 
begin 
 case x_select is 
  when 0 => 
   x_bitstream <= bitstream_6p0MHz; 
  when 1 => 
   x_bitstream <= bitstream_6p1MHz;  
  when 2 => 
   x_bitstream <= bitstream_6p2MHz; 
  when 3 => 
   x_bitstream <= bitstream_6p3MHz;  
  when 4 => 
   x_bitstream <= bitstream_6p4MHz; 
  when 5 => 
   x_bitstream <= bitstream_6p5MHz;  
  when 6 => 
   x_bitstream <= bitstream_6p6MHz; 
  when 7 => 
   x_bitstream <= bitstream_6p7MHz;  
  when 8 => 
   x_bitstream <= bitstream_6p8MHz; 



 

 
VHDL Code – Appendix A3 

Spatial_mouse_test.vhd 

  when 9 => 
   x_bitstream <= bitstream_6p9MHz;  
  when 10 => 
   x_bitstream <= bitstream_7p0MHz; 
  when 11 => 
   x_bitstream <= bitstream_7p1MHz;  
 end case; 
end process x_bitstream_mux; 
   
-- mux used to drive any of various frequencies onto y_bitstream 
y_bitstream_mux : process(y_select, bitstream_6p0MHz, bitstream_6p1MHz, 
      bitstream_6p2MHz, bitstream_6p3MHz, bitstream_6p4MHz, 
      bitstream_6p5MHz, bitstream_6p6MHz, bitstream_6p7MHz, 
      bitstream_6p8MHz, bitstream_6p9MHz, bitstream_7p0MHz, 
      bitstream_7p1MHz) 
begin 
 case y_select is 
  when 0 => 
   y_bitstream <= bitstream_6p0MHz; 
  when 1 => 
   y_bitstream <= bitstream_6p1MHz;  
  when 2 => 
   y_bitstream <= bitstream_6p2MHz; 
  when 3 => 
   y_bitstream <= bitstream_6p3MHz;  
  when 4 => 
   y_bitstream <= bitstream_6p4MHz; 
  when 5 => 
   y_bitstream <= bitstream_6p5MHz;  
  when 6 => 
   y_bitstream <= bitstream_6p6MHz; 
  when 7 => 
   y_bitstream <= bitstream_6p7MHz;  
  when 8 => 
   y_bitstream <= bitstream_6p8MHz; 
  when 9 => 
   y_bitstream <= bitstream_6p9MHz;  
  when 10 => 
   y_bitstream <= bitstream_7p0MHz; 
  when 11 => 
   y_bitstream <= bitstream_7p1MHz;  
 end case; 
end process y_bitstream_mux; 
 
-- clock generator 
system_clock_generator : process 
begin 
 clock <= '0'; 
 wait for T_halfclock; 
 clock <= '1'; 
 wait for T_halfclock; 
end process system_clock_generator; 
 
-- 6.0MHz bitstream generator 
bitstream_6p0MHz_generator : process 
begin 
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 bitstream_6p0MHz <= '0'; 
 wait for T_6p0; 
 bitstream_6p0MHz <= '1'; 
 wait for T_6p0; 
end process bitstream_6p0MHz_generator; 
 
-- 6.1MHz bitstream generator 
bitstream_6p1MHz_generator : process 
begin 
 bitstream_6p1MHz <= '0'; 
 wait for T_6p1; 
 bitstream_6p1MHz <= '1'; 
 wait for T_6p1; 
end process bitstream_6p1MHz_generator; 
 
-- 6.2MHz bitstream generator 
bitstream_6p2MHz_generator : process 
begin 
 bitstream_6p2MHz <= '0'; 
 wait for T_6p2; 
 bitstream_6p2MHz <= '1'; 
 wait for T_6p2; 
end process bitstream_6p2MHz_generator; 
 
-- 6.3MHz bitstream generator 
bitstream_6p3MHz_generator : process 
begin 
 bitstream_6p3MHz <= '0'; 
 wait for T_6p3; 
 bitstream_6p3MHz <= '1'; 
 wait for T_6p3; 
end process bitstream_6p3MHz_generator; 
 
-- 6.4MHz bitstream generator 
bitstream_6p4MHz_generator : process 
begin 
 bitstream_6p4MHz <= '0'; 
 wait for T_6p4; 
 bitstream_6p4MHz <= '1'; 
 wait for T_6p4; 
end process bitstream_6p4MHz_generator; 
 
-- 6.5MHz bitstream generator 
bitstream_6p5MHz_generator : process 
begin 
 bitstream_6p5MHz <= '0'; 
 wait for T_6p5; 
 bitstream_6p5MHz <= '1'; 
 wait for T_6p5; 
end process bitstream_6p5MHz_generator; 
 
-- 6.6MHz bitstream generator 
bitstream_6p6MHz_generator : process 
begin 
 bitstream_6p6MHz <= '0'; 
 wait for T_6p6; 
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 bitstream_6p6MHz <= '1'; 
 wait for T_6p6; 
end process bitstream_6p6MHz_generator; 
 
-- 6.7MHz bitstream generator 
bitstream_6p7MHz_generator : process 
begin 
 bitstream_6p7MHz <= '0'; 
 wait for T_6p7; 
 bitstream_6p7MHz <= '1'; 
 wait for T_6p7; 
end process bitstream_6p7MHz_generator; 
 
-- 6.8MHz bitstream generator 
bitstream_6p8MHz_generator : process 
begin 
 bitstream_6p8MHz <= '0'; 
 wait for T_6p8; 
 bitstream_6p8MHz <= '1'; 
 wait for T_6p8; 
end process bitstream_6p8MHz_generator; 
 
-- 6.9MHz bitstream generator 
bitstream_6p9MHz_generator : process 
begin 
 bitstream_6p9MHz <= '0'; 
 wait for T_6p9; 
 bitstream_6p9MHz <= '1'; 
 wait for T_6p9; 
end process bitstream_6p9MHz_generator; 
 
-- 7.0MHz bitstream generator 
bitstream_7p0MHz_generator : process 
begin 
 bitstream_7p0MHz <= '0'; 
 wait for T_7p0; 
 bitstream_7p0MHz <= '1'; 
 wait for T_7p0; 
end process bitstream_7p0MHz_generator; 
 
-- 7.1MHz bitstream generator 
bitstream_7p1MHz_generator : process 
begin 
 bitstream_7p1MHz <= '0'; 
 wait for T_7p1; 
 bitstream_7p1MHz <= '1'; 
 wait for T_7p1; 
end process bitstream_7p1MHz_generator; 
 
test_sequence : process 
begin 
 
 -- 0ms: pulse reset at start 
 reset <= '0'; 
 wait for 9 ms; 
 reset <= '1'; 
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 wait for 1 ms; 
 reset <= '0'; 
 
 -- 10ms: unactivated, x_bitstream = 6.6MHz, y_bitstream = 6.3MHz  
 x_select <= 6; 
 y_select <= 3; 
 wait for 10 ms; 
  
 -- 20ms: activate/calibrate, x_bitstream = 6.6MHz, y_bitstream 
6.3MHz 
 activate <= '1';   
 wait for 10 ms; 
 
 -- 30ms: activated, x_bitstream = 6.6MHz, y_bitstream = 6.3MHz 
 wait for 10 ms; 
 
 -- 40ms: activated, x_bitstream = 6.7MHz, y_bitstream = 6.6MHz 
 x_select <= 7; 
 y_select <= 6; 
 wait for 10 ms; 
 
 -- 50ms: activated, x_bitstream = 6.9MHz, y_bitstream = 6.8MHz 
 x_select <= 9; 
 y_select <= 8; 
 wait for 10 ms; 
 
 -- 60ms: activated, x_bitstream = 7.1MHz, y_bitstream = 6.3MHz 
 x_select <= 11; 
 y_select <= 3; 
 wait for 10 ms; 
    
 -- 70ms: activated, x_bitstream = 6.0MHz, y_bitstream = 7.0MHZ 
 x_select <= 0; 
 y_select <= 10; 
 wait for 10 ms; 
 
 -- 80ms: activated, x_bitstream = 6.3MHz, y_bitstream = 6.0MHz 
 x_select <= 3; 
 y_select <= 0; 
 wait for 10 ms; 
 
 -- 90ms: activated, x_bitstream = 6.5MHz, y_bitstream = 6.0MHz 
 x_select <= 5; 
 y_select <= 0; 
 wait for 10 ms; 
 
 -- 100ms: deactivate, x_bitstream = 6.5MHz, y_bitstream = 6.0MHz 
 activate <= '0'; 
 wait for 10 ms; 
 
 -- 110ms: reactivate/recalibrate, x_bitstream = 6.8MHz, y_bitstream 
= 6.5MHz 
 activate <= '1'; 
 x_select <= 8; 
 y_select <= 5; 
 wait for 10 ms; 
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 -- 120ms: activated, x_bitstream = 6.3MHz, y_bitstream = 6.6MHz 
 x_select <= 3; 
 y_select <= 6; 
 wait for 10 ms; 
 
 -- 130ms: activated, x_bitstream = 6.0MHz, y_bitstream = 6.8MHz 
 x_select <= 0; 
 x_select <= 8; 
 wait for 10 ms; 
 
 -- 140ms: activated, x_bitstream = 7.1MHz, y_bitstream = 6.2MHz 
 x_select <= 11; 
 y_select <= 2; 
 wait for 10 ms; 
 
 -- finish 
 wait for 30 ms; 
 
end process test_sequence; 
 
end testbench; 
 


