

EE 552: Spatial Mouse
Final Report

April 2, 2001

Gordon Young
Jeff Chan
Jim Wong
Vincci Liu

Declaration of Original Content

The design elements of this project and report are entirely the original work of the
authors and have not been submitted for credit in any other course except as

follows:

• Theremin oscillator circuit schematic taken from [2]
• PS/2 mouse protocol and operation taken from [3]

________________________ ________________________
Gordon Young Date Jim Wong Date

________________________ ________________________
Jeffrey Chan Date Vincci Liu Date

Abstract

The spatial mouse system is to replace a traditional PS/2 mouse by translating hand movement
by a user into mouse movement communicated through a PS/2 port to a computer. A “planar
mouse pad” consisting of two antennae, one for each dimension, measures an absolute position
of the hand. The varying capacitative effects due to the hands’ proximity to the antenna can be
exploited by a Schmidt trigger based RC circuit to produce a varying oscillating digital signal.
This oscillating signal, along with button click signals, can be processed by an FPGA into mouse
movement commands. The FPGA massages the commands into a format that abides by PS/2
timing restrictions and mimics a mouse through the PS/2 port to the PC.

Table of Contents

Achievements

Description of Operation

FPGA I/O Pins

Resource Requirement

Design Hierarchy

References

Minutes

Appendix

Design Verification

Test Benches

VHDL Code

Achievements

Oscillator Circuit

The operation of the oscillator circuit is fully functional with adequate accuracy to generate a
signal frequency that is capable of differentiating between discrete proximities of the hand.
Modifications were made to the circuit to adjust for initial instability of the oscillator. In particular,
the resistance and capacitor values were adjusted to provide an idle frequency of ≅ 8.3 MHz.

Design changes have also been made on the operation of the oscillator. In a previous design
decision, a matching oscillator was to be constructed for each user manipulated oscillator. By
implementing this configuration, the second oscillator would provide a reference frequency that
would be used in a beat generator with the user-controlled signal. The resulting beat frequency
would be of lower frequency and thus components such as counters would require fewer
resources to implement. This arrangement was simulated and verified using CAD tools but upon
implementation in the laboratory, it was found that the user’s manipulation of the oscillator would
also produce the same effect of the reference oscillator. A decision was then made to revert back
to the use of a single oscillator for each axis.

In addition, during the design process various antenna configurations were tested in the lab to
allow for a both stability and sensitivity to the user. Experimental observation showed that a steel
plate provided superior performance over wire antennas. With the use of a steel plate antenna, a
user is able to accurately control the frequency of the oscillator.

Signal Processor

The design and implementation of the signal processor proceed without major difficulty. Upon
initialization by the user, the signal processor will sample the signal for both the x and y axis.
This frequency will be used as the reference frequency by which all subsequent hand movements
will be compared against. The signal processor would then sample ensuing data from the x and y
oscillators to produce an op-code that will be used to encode mouse movements to the host PC.
This required that the signal processor be able to distinguish distinct proximity of the users hand
in reference to the original set location.

The major challenge of designing the signal processor component was to reduce the required
number of logic blocks to implement the component on the FPGA. The signal processor contains
large counters and registers that are required to process the high frequency signals. As
mentioned above, the use of a beat frequency generator was unsuccessfully implemented. To
help alleviate the larger registers and counters that will be required, the oscillator frequency of the
user interface was reduced from over 20 MHz to approximately 8.3 MHz. The reduced frequency
continued to provide adequate accuracy as well as stability.

In the original design, the signal process was to produce a 4-bit op-code to convey mouse
movement information to be transmitted to the host PC. The 4-bit op-code did not provide a
sufficient number of distinct magnitudes of mouse movements. The op-code on the final design
has been expanded to 9-bits to provide a greater range of movement. A 9-bit op-code is chosen
because in the PS/2 format of mouse movement packets, a direction bit and 8 magnitude bits
specify movement in each axis.

Currently not all 9-bits are used but only utilize 5 distinct magnitudes of both positive and negative
mouse movement. The implementation of the full 9 bits is to facilitate future developments.

Mouse Commander

The mouse commander is responsible for conveying mouse movement data to the host PC and
mouse initialization upon host PC startup. The op-code provided by the signal processor is used
to transmit data packets to the host conveying mouse movements.

The transmission procedure required the Spatial Mouse to meet strenuous timing requirements.
The host PC would signal to the Spatial Mouse when it is available to receive data packets. The
mouse commander component is responsible for asserting both the data and corresponding clock
signals on to the PS/2 interface. The mouse commander must be aware during transmission that
the host PC has stalled the process and resume transmission upon being signaled by the PC.

In particular, during transmission data being sent to the host PC is to be changed in between the
rising and falling of the PS/2 clock signal. To achieve this, a second clock was generated with a
phase shift from the PS/2 clock in order to allow for this. Using both simulations and
experimentation in the lab, timing requirements for transmission was successfully met. The
mouse commander is able to accurately control mouse movement to the host PC.

Problems were encountered during the interface demonstration where the mouse commander on
isolated incidents was observed to send extra data mouse packets to the host PC. This resulted
in the lost of control of the mouse pointer. The cause of this phenomenon was suspected to be
due to insufficient debouncing of the push button. After investigation, a decision was made to
implement the mouse commander in the overall Spatial Mouse design without alteration to the
design of the mouse commander. Using simulations and extensive lab investigation, the
phenomenon as described above was no longer observed.

The design of the mouse command required experimentation in the lab with a traditional PS/2
mouse to investigate actual mouse behavior. Upon investigation, the mouse upon power
produces an initialization sequence to the host computer. This sequence is required to enable
the mouse. This initialization routine was designed and verified using simulations. Upon
implementation on the FPGA, the Spatial Mouse is unable to reproduce the same initialization
routine. Work is continuing to complete this aspect of the design and currently requires the use of
a tradition mouse for initialization.

Spatial Mouse

The design of the overall Spatial Mouse has been verified with both simulation and interface to a
host PC with exception to the initialization routine. A two dimensional mouse has been
successfully implemented on the FPGA. The user is able to accurately control mouse movement
in both axis.

Description of Operation

This document outlines the development of the Spatial Mouse with a PS/2 communication port.
Our design is based upon a musical instrument called a Theremin. A physicist named Leon
Theremin invented the Theremin in 1919. This musical instrument allows a user to interact with
the instrument without actually coming in contact with it. Instead, the user manipulates the
instrument through external antennas. The Theremin had two external antennas through which
the user was able to control both the pitch and volume of the output by positioning his/her hand
near the two antennas.

The underlying mechanism by which a Theremin device works is based on the manipulation of a
frequency oscillator. An oscillator circuit is implemented but with an antenna. The oscillatory
frequency is a function of the resistance and capacitance of the circuit. When the user interacts
with the external antenna, the capacitance between the users hand and the antenna is varied as
the proximity of the hand to the antenna changes. As a result the circuit’s oscillatory frequency
changes correspondingly.

The Spatial Mouse system will consist of two protruding antennae through which the user will
manipulate the mouse. The proximity of the users hand to each antenna will produce a
corresponding signal in a range of analog frequencies. The analog signals will be representative
of mouse movements in the x and y-axis.

The signals will be used as the input to the FPGA. Thus there will be two signals to be processed
by the FPGA to represent movement in the x and y-axis respectively. The FPGA will be
responsible for determining the frequency of the input signal from the external oscillator circuit.
Once the frequency is extracted from the input signals, they will be translated to represent mouse
movements. The movements of the mouse will be communicated to a PC through the PS/2 port
that is available on the FPGA board. It is our goal to demonstrate the functionality of the Spatial
Mouse through the aid of a visual application such as a video game.

Mouse Operation:

The spatial mouse is operated through the use of a controller that the user will have in his/her
hand while moving in the predefined area. On the controller there are 3 buttons, mouse enable,
left-mouse button and right mouse button. Through this controller, the user initializes and
enables the Spatial Mouse. The Spatial Mouse is first initiated by having the user place their
hand in the neutral position of the “mouse pad” and then depress the mouse enable button. The
mouse-enable button initializes the mouse and sets the reference point which subsequent hand
positions are measured. The user will have to depress the enable button while using the mouse.
Once the enable button is released, the users hand movements will no longer control the Spatial
Mouse, thus this allows the user to free his hand for other tasks without manipulating the Spatial
Mouse. This is analogous to allowing the user to take their hand off a real mouse. If the user
wants to reengage control of the mouse, he/she will again repeat the initialization routine by
placing his/her hand in the neutral position and depressing the enable button.

Once the Spatial Mouse is initialized and the enable button is still depressed, the user is able to
control the movement of the mouse by positioning his/her hand in the defined two-dimensional
“mouse pad”. The mouse is operated by absolute position of the users hand within the “mouse
pad” which is communicated to the PC through the PS/2 port.

Currently, our design allow for the mouse movement in 8 directions and the use of the left and
right mouse buttons.

Additional features that we plan to implement when the basic goals are met and time permitting
include:

• Refine mouse movement to more closed imitate the full movement of the mouse seen in
commercial available products.

• Addition of axis to design to allow greater control and dimensions of mouse movement.
• Produce an audible tone that will give feed back to user.

Analog Oscillator Circuit:

See attached schematics in the Appendix. The external analog circuitry includes a Schmitt
trigger along with a resistor and capacitor. The antenna will provide a variable capacitance,
which will alter the frequency of the output on the Schmitt trigger.

PS/2 Protocol:

The mouse and computer communicate via the PS/2 communication. The PS/2 serial
communication is asynchronous and includes 2 signals, clock and data. The two signals are bi-
directional and are open drain. Normally the signals are held high by a pull up resistor and the
signal can be pulled low by either the computer host or Spatial Mouse.

The computer host always has priority and controls the state of the data and clock buses. The
bus can be in 3 possible states; idle, inhibit or request to send.

Bus State Description

Idle Both the clock and data lines are allowed to float high. During this state, the
mouse is free to transmit data packets to the computer when set.

Inhibit The clock is held low by the host. During this state, the Spatial Mouse cannot
transmit data packets to the host.

Request to
send

The data line is held low and the clock is allowed to float high. During this
state, the Spatial Mouse must get ready to receive commands from the host.

Table 1. Spatial Mouse Bus States.

Format of Data Packets:

The communication between the host computer and Spatial Mouse is handled through data
packets of 11 bits long. Each communication packet includes a start bit, 8-bit data payload, an
odd parity bit and a stop bit.

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit11

Start bit
0

Data bit
1

LSB

Data bit
2

Data bit
3

Data bit
4

Data bit
5

Data bit
6

Data bit
7

Data bit
8

MSB

Odd
Parity

Bit

Stop Bit
1

Figure 1. PS/2 Data Packet Format

Data Transmission to Host

While the clock and data bus is in the idle state, the Spatial Mouse is allowed to send data
packets to the host PC communicating mouse movement and button status.

The Spatial Mouse signals the start of a transmission packet by pulling the clock line low and then
allowing the clock line to float back high 11 times. The host computer will then sample the data
line 11 times on the falling edge of the clock. The Spatial Mouse will shift out the transmission bit
when the clock signal is high.

The data packets to encode mouse movement and button status is transmitted in 3 consecutive
packages of 11-bits that follow

Figure 2. Mouse movement/button package format.

Design Details

The implementation is done through design, implementation of individual components.
Throughout the design process, communication specifications linking each component block are
determined to ensure correct functionality in the final design. The main components of the
Spatial Mouse design are outlined in Figure 3.

Hand-Held Clicker

• Active low trigger and buttons.
• The activate trigger will send a continuous logic low signal while depressed. This signal

indicates to the digital circuit that the mouse enabled by the user (i.e. when trigger is
depressed, the mouse is being held and when trigger is released, the mouse is being
released).

• The right thumb button will send a logic low signal while depressed. This button is
equivalent to a right mouse button.

• The left thumb button will send a logic low signal while depressed. This button is
equivalent to a left mouse button.

 D7 D6 D5 D4 D3 D2 D1 D0

1st YV XV YS XS 1 0 R L

2nd X7 X6 X5 X4 X3 X2 X1 X0

3rd Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

L Left Button State (1 = pressed down)

R Right Button State (1 = pressed down)

X0-X7 Movement in the X direction

Y0-Y7 Movement in the Y direction

XS Direction of the movement in the X axis (1 = UP)

YS Direction of the movement in the Y axis (1 = LEFT)

XV,YV Overflow of the movement data bits (1 = overflow has occurred)

Planar Spatial Mouse Pad
• X-antenna and Y-antenna set up in a planar space perpendicular to the horizon.
• Each antenna senses the proximity of the user’s hand by capturing the capacitance

resulting between the hand and antenna. The varying capacitance due to movement of
the hand varies the time constant of the oscillating circuit to in turn output oscillations with
frequencies proportional to hand proximity (in each dimension).

• Due to possible interference of the oscillator circuits, each oscillator representing the X
and Y-axis will be alternately switched on and sampled. The control signals to enable
each oscillatory is produced by the processor.

Master Controller

Frequency
Counter

Frequency
Comparator

Hand Proximity
Oscillating Circuit

X-
antenna

Y-
antenna

X_oscillation Y_oscillation

X_count(countwidth downto 0)

clock

X_data(3 downto 0)

count

bitstream
enable

enable
count

clock

Frequency
Counter

Frequency
Comparator

Y_count(countwidth downto 0)

clock

Y_data(3 downto 0)

count

enable

enable
count

clock
data_out data_out

bitstream

X_bitstream Y_bitstream

activate

Right
Thumb
Button

Hand-Held Clicker

Left
Thumb
Button

Activate
Trigger

Signal Processor

Planar Spatial Mouse Pad

Mouse Commander

Digital System on FPGA

R_button L_button

System
Clock

mouse_active R_button L_button

PS/2 Port Data and
Clock Pins

Mouse
Command Mapper

X_move

Y_move

Clock
Divider

clock_in

clock_out

clock

state_advance

clock

Debouncer

bounce(1) bounce(2)

debounce(1) debounce(2)

R_button L_button

Receive
Component

Transmit
Component

Figure 3. Spatial Mouse Components.

Signal Processor

A detailed block diagram of the signal process for one axis is illustrated in Figure 4.

• Frequency Counter
o A synchronous counter generates a sampling period T, resetting every T.
o An asynchronous counter counts the number of oscillations in incoming bitstream

within period T.
o A register holds and outputs count, the number of oscillation counts in last period

T. The register updates count every period T as long as the enable is on.

• Frequency Comparator
o When enable initially goes “on”, count is stored in a register (called calibration

register) where successive counts will be referenced to this stored value. If
enable goes “off”, the calibration register will reset and a new value of count will
be stored the next time enable goes “on”.

o A comparator circuit subtracts each successive count from the value stored in the
calibration register every period T. The determined frequency of subsequent
samples is compared against set ranges, which determine direction and degree
of movement. These ranges are set as generic parameters and can be altered in
the VHDL code to adjust for varying antenna behavior. The comparator
produces a corresponding op-code.

o Op-code contains 9 bits of information: a direction bit, and 8 bits to express levels
of movement intensity. The direction bit maps to the sign of the difference from
the comparator circuit. The intensity bits map to a range table from the
comparator circuit.

Figure 4. Frequency Sampler Block Representation.

Mouse Commander
• Dual Phase Clock

o The dual_phase_clock generates two clock signals that are ¼ period out of
phase from each other.

o A 25.0KHz clock is fed into the dual_phase_clock to yield two 12.5KHz clock
signals: clock_lead and clock_lag. To generate the clock_lead signal, a 25.0KHz
input signal is used to clock a rising edge triggered d-flipflop with inverted q
feedback to d. To generate the clock_lag signal, a 25.0KHz input signal is used
to clock a falling edge triggered d-flipflop with inverted q feedback to d. Upon
clock reset, the lead-lag relationship is consistently maintained by allowing the
flipflops to synchronously reset only on the falling edge of the external clock
signal (i.e. if external reset asserted high, phase_reset goes high only falling
edge of clock). The frequency and phase relationships between the three clocks
are illustrated below.

25 KHz
System
Clock

12.5 kHz
PC

clock

12.5 KHz
Data
clock

Figure 5. Dual phase clock timing.

Figure 6. Dual phase clock.

• Master Controller

o The timing controller massages the mouse movement and button signals into
serial transmission that adheres to the PS/2 communication protocol. The
controller is responsible for the timing and coordination of transmission and
reception of data.

• Mouse Command Mapper

o The mapper is responsible for receiving the 9-bit op-code from the signal
processor unit and translating it into PS/2 mouse data packets.

• Transmitter

o The mapper will produce the required data packets to be transmitted to the host.
The transmitter is then responsible for putting the data bits onto the data bus for
the host computer to read. The transmitter also initiates timing and assertion of
the clock bus. A shift register is used to serially transmit the required data
packets.

• Tri-state bus

o The bus and data lines are bi-directional and will have to assert a high
impedance for a logic high and a ‘0’ for logic low. The bi-directional clock and
data bus will require a tristate output. A pull up in the host is will maintain a logic
high if not driven.

• Data Transmission Component

o Built structurally from the transmit_contoller and Tx_shift_register, the transmitter
works hand-in-hand with the dual_phase_clock to transmit serial data to a PC
while adhering to the PS/2 timing standards. The transmit_controller utilizes the
data_clock signal generated by the dual_phase_clock to properly synchronize
the serial data with the 12.5 KHz PC_clock also generated by the
dual_phase_clock. The Tx_shift_register shifts the serial data out on every pulse
of the 12.5KHz data_clock but is only allowed to do so when enabled by the
transmit_contoller.

The following sections outline the mouse to PC data transmission in detail.

Figure 7. PS/2 transmit component.

Tx_shift_register

The Tx_shift_register is an 11-bit shift register with parallel loading. When load is asserted high,
the register is parallel loaded at port d with 11 bits (1 PS/2 packet). When shift is pulsed, one bit
is outputted at port q on the pulse’s rising edge while enable_shift must be maintained high for
any shifting to take place.

The shift_out_register component is described behaviorally. Initially the load signal is asserted
high to load the register with input at port d so that the index value of the 11 bit wide input is set
to zero pointing to the least significant bit. An internal 11 bit wide variable is used to hold the
incoming data so that the data is not lost. Then once the register detects a rising edge of the shift
signal it checks if the register has been enabled. If the “shift enable” signal is high, then the
register proceeds to shift out one bit at a time starting at bit(0). After each shift, the index counter
for the input data is incremented by one so that successive bits can be outputted.

Transmit_Controller

The transmit_controller is required for ensuring proper PS/2 timing of each data frame sent from
the mouse to the PC. The transmission timing restrictions for the PS/2 protocol are shown below.

Figure 8. Transmission timing.

TIMING PARAMETER DESCRIPTION MIN. TIME MAX. TIME
t1 DURATION OF CLK LOW 30 µSEC 50 µSEC
t2 DURATION OF CLK HIGH 30 µSEC 50 µSEC

t3 VALID DATA BEFORE FALLING EDGE OF CLOCK 5 µSEC
t3 VALID DATA AFTER RISING EDGE OF CLOCK 5 µSEC

The T1 and T2 timing criteria can be met by using a 12.5 KHz (80us) PC_clock . The other timing
parameters, T3 and T4, can be satisfied if a new data bit is sent a ¼ period after each rising edge
of the PC_clock . Thus, a data_clock that lags the PC_clock by a ¼ period could be used to
trigger each shift of the serial data. The diagram below illustrates the phase relationships
between the PC_clock , the data_clock and the serially transmitted data to be shift-triggered by
the data_clock .

25 KHz
System
Clock

PC
clock

Data
clock

start bit bit 0 parity bit stop bitTx
Data

bit 1 bit 7

Figure 9. Data transmission process timing.

As shown in the previous timing diagram, the mouse initiates the start bit of a byte transmission
by firstly dropping the floating data line and then dropping the floating clock line. Similarly,
termination requires that the mouse firstly allows the data line to float high (as a stop bit) and then
allow the clock line to float high after the 11th clock pulse. Governing proper initiation and
termination, as well as the correct number of bits transmitted is represented in the following state
diagram for the transmit_controller.

Figure 10. Transmit component state machine.

For the following description, please refer to the mouse to PC transmission block diagram as well
as the state diagram above. The transmit_controller is advanced on the rising edges of the
25KHz system clock but also needs to look at the 12.5 KHz data_clock to ensure proper initiation
of data transmission. Transmission of an entire byte requires that the Tx_enable is asserted high
for the entire duration byte transmission. In the start state, the controller disables shifting in the
Tx_shift_register and does not allow a clock to be driven onto the PC-mouse clock bus. The
controller remains in the start state until Tx_enable is asserted high. When transmission is

enabled, the controller moves into the load_data state where it sends a pulse to the
Tx_shift_register to load next byte packet. While in this state, the controller checks the
data_clock . If data_clock is low, the controller advances to the enable_shift state on the next
system clock pulse, but if the data_clock is high, the controller will stall in the load_data state for
one more system clock period. This timing maneuver ensures that the start bit will be asserted
before the PC-mouse clock bus is dropped low from its floating high. In the enable_shift state,
the controller starts asserting a high on enable_shift of the Tx_shift_register making it sensitive to
the data_clock shift signal. Before the next state is reached, the start bit will have been asserted
on the PC-mouse data bus. On the next system clock pulse, the controller advances to the
drive_PC_clock state where starts enabling PC_clock to write onto the PC-mouse clock bus.
Before the next state is reached, the PC_clock will have driven the PC-mouse clock bus low for
the first time. The controller next enters the shift state where it remains in this state until all 11
bits have be transmitted. A counter (shift_count) that increments on each state advance indicates
to the controller when to enter the stop state. In the stop state, the shift_enable and data_clock
are deactivated and a done signal goes high to signify to a higher level entity that the byte
transmission is complete.

• Receive Command Component
o The Receive component is used during the initialization routine. Actual data is

not captured but used to provide timing of the clock so the host can send an
initialization command. Since the initialization routine requires a constant
response of an acknowledge, the host command is not stored.

o In the current design of the Spatial Mouse, the ability to receive host commands
has been disabled. It was observed that the host does not send commands to
the mouse during normal operation. The receiver has been included in the
design to facilitate future receiving capabilities if required.

Rx Component
Data Path

Rx Component
Control Path

enable

data_done

receive_enable

done data[10..0]

11

12.5kHz
clock

data_stream

Pc_clock_
drive

Figure 11. PS/2 receive component.

The receive process is initiated by holding the receive_enable high. The receive_enable must be
held high for the duration of the receive process. Upon detection of a logic ‘0’ on the
receive_enable signal prior to receiving the full 11-bit packet, the process will abort and no data
will result.

Upon asserting the receive_enable signal high for the duration of 11 clock cycles, the done signal
will assert ‘1’ and the 11-bit data package will be available on the data output. Also, during the 11

clock cycles of the receive state, the Pc_clock_drive will be asserted high. The Pc_clock_drive
signal when asserted will enable an output tri-state buffer to drive the PS/2 clock bus.

The following state machine summarizes the control of the receive component.

start

rx_data

data_done '1'

receive_enable '0'

receive_enable '1'

data_enable '1'
Pc_clock_drive '1'

Figure 12. Receive component controller.

The data path of the receive component is comprised of a shift register with an enable input. Also
a counter is used to signal the reception of 11-bits of data. The purpose of the done signal is to
provide timing for a higher level controller to regulate the reception of commands from the host
computer and then the transmit the corresponding response.

Data Sheet

The Spatial Mouse is designed for a 25.175 MHz crystal oscillator on the UP-1 board.

The external oscillator circuitry is designed for oscillation frequency 8.3 MHz.

The processor component is designed for optimal performance when oscillator frequency is in the
range of 5-20 MHz.

The following is the pin assignment for the Spatial Mouse implementation on UP1 board.

Name Pin Number
Pin

Type Use of Pin
Reset FLEX_PB1 – pin

28
Input Use of one push button on the

board as it resets the movement
tracker so user can calibrate
system to their hand movement.

X_Data from
oscillator

70 Input Input data from oscillator
regarding movement along x-
axis (position & magnitude).

X oscillator enable 15 Output Signal to enable x-axis
oscillator.

Y_Data from
oscillator

75 Input Input data from oscillator
regarding movement along y-
axis (position & magnitude)

Y oscillator enable 17 Output Signal to enable y-axis
oscillator.

Mouse Active
Button

73 Input Enables system to begin
processing frequency changes
and translates changes into on-
screen movement.

Mouse Clock 100 In/Output
Bi-dir

Sends the clock pulse of the
mouse along the PS/2 line to
communicate with the PS/2 port
of the computer.

Mouse Data 98 In/Output
Bi-dir

Sends the bitstream containing
the data regarding on-screen
movement of the cursor to the
computer.

Mouse Left Button 75 Input Input data if user clicks the “left
button” to indicate an action.

Mouse Right Button 78 Input Input data if user clicks the
“right” to indicate an action.

Table 2. Pin Assignment for Flex10k

FPGA Resource Requirements

In order to estimate the number of resources required to implement the entire design, a complete
compilation of the Spatial Mouse design was completed. The results are shown in the table
below. Logic blocks used for internal signals and intermediate registers used in the overall
Spatial Mouse design.

Component
Logic
Blocks

Signal
Processor

612

Mouse Commander 236
Mouse Mapper 27
Clock ticked 17
Spatial Mouse internal
signals

72

Spatial Mouse Total 964

Figure 13. Resource usage for final design compilation

Experimentation Results

Analog Oscillator:

Two different oscillator configurations were implemented in the laboratory. The two oscillator
configurations are shown below.

RC Schmitt Trigger Oscillator

This simple RC circuit produces a periodic square
waveform. The frequency of the output waveform is
controlled by the charging and discharging time of the
capacitor.

The period of the oscillation can be approximated by:

RCRC
VV
VV

RCT
fss

iss ≈=

−
−

= 0586..1ln

Experimental results recorded in the lab confirm that the
oscillation period is described by the above equation.

Investigation of user interaction with the circuit was also done through an antenna. Initial results
showed little change to oscillator frequency as a user approached the antenna with their hand.
Subsequent investigation showed that the initial oscillator frequency greatly affects the amount of
change a user is able to induce on the output frequency.

As the initial idle output frequency of the oscillator is increased, the user is able to exert a great
degree of change in the oscillator frequency. Initial oscillator frequencies in the range of 1-50kHz
resulted in negligible changes in frequency. As the frequency was further increased by changing
capacitor and resistor values, it was found that the user is able to change the output frequency by
approximately 10% when oscillator frequency is in the range of 10-25MHz. During the
investigation, it was also found that the oscillation frequency would drift in a small range without
user interaction due to environmental noise and factors such as temperature. In the design of the
frequency counter, we will provide a buffer range in which the frequency may drift without
translating to mouse movement. This actual is to be determined with further investigation.

After thorough investigation into suitable antennas, flat metallic plates have been found to give
the most stable and responsive oscillations from user interface.

An oscillator using 555-timer was also implemented and found to have the same characteristics
as the RC Schmitt trigger circuit. Due to the larger number of discrete components required
implementing the configuration in comparison to the Schmitt trigger, the Schmitt trigger has been
chosen as the oscillatory configuration.

C

R

Schmitt Trigger

Vout

Simultaneous Use of X and Y-axis oscillator

Initial implementation utilizing both x and y axis simultaneously resulted in cross interference
between the oscillators. Manipulation of one oscillator would al cause parallel affects on the other
oscillator. Thus to circumvent this problem, each oscillator would be alternately switched on and
off.

The NAND gate Schmitt triggers provide two inputs. One would be used for the antenna and the
other input would be used for an enable signal. The processor unit would produce
complementary enable signals so each oscillator would be operated and sampled in alternate
cycles.

PS/2 Computer Interface:

Upon completion of the transmitter and timing controller component, the code was loaded onto
the FPGA and a subsequently connected to the PS/2 port on a host PC. A scope was attached
to both the clock and data lines to observe waveforms.

Up to this point, the entire design process was based upon documentation of the PS/2 protocol
and lacked solid data. This allowed us to observe and confirm the data that was presented in the
documents.

The transmitter was loaded with static data package that would be sent to the computer upon the
push of a button on the UP-1 board. Initial trials failed to communicate to the host computer.
Investigation with the scope on the data and clock lines indicated it was in the idle state. This
meant that the computer was ready to accept data packets but our attempts have failed. Further
investigation showed that the computer would inhibit the bus for a short period following the
transmission of each of the 3 data packets.

The timing controller was altered to account for this behavior and on subsequent tests, we were
able to successfully manipulate the mouse cursor. Although the data sent to the host was static
and resulted in the repetition of the set movement, communication to the host was successful.

In the PS/2 protocol documentation, very complex communication between the host to the device
was outlined, requiring the device to receive and process commands. Responses would have to
be sent back to the host based on the commands. This process was very complex and
convoluted, requiring much of our design time. But the interface investigation that was completed
above, our observations did not show that the computer communicated to the device except
during initial startup. Further investigation will be completed and if warranted, the decoder
component and response generation of the mouse would be greatly reduced.

Design Hierarchy

S
pa

tia
l M

ou
se

si
m

ul
at

ed
 -

no
 k

no
w

n
bu

gs

P
ro

ce
ss

or

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

M
ou

se
C

om
m

an
de

r
si

m
ul

at
ed

 -
no

kn
ow

n
bu

gs

C
ou

nt
er

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

R
an

ge
C

om
pa

ra
to

r
si

m
ul

at
ed

 -
no

kn
ow

n
bu

gs

M
as

te
r C

on
tro

lle
r

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

R
x

D
at

a

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

Tr
an

sm
itt

er

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

S
am

pl
e

Ti
m

er

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

Tr
an

sm
itt

er
C

on
tro

lle
r

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

B
yt

e
S

el
ec

to
r

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

C
om

m
an

d
S

el
ec

to
r

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

D
ua

l P
ha

se
 C

lo
ck

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

M
ap

pe
r

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

C
lo

ck
 D

iv
id

er

si
m

ul
at

ed
 -

no
kn

ow
n

bu
gs

References

[1] Dr. Duncan Elliott. EE552 Course Home Page. 2001.
http://www.ee.ualberta.ca/~elliott/ee552/

[2] Lindsay Reid & Brendan Dougan Digital Theremin Circuit. Internet. 2000.
http://www.physics.gla.ac.uk/~kskeldon/PubSci/exhibits/E9/

[3] Nicola Asuni Hardware Resources Internet. 2000. http://www.technick.net

[4] Max Maxies Pages. Internet. 2000. http://www.maxiespages.com/

[5] Altera Corp. UP-1 & Flex10K Documentation/Datasheets Internet. 2000.
http://www.ee.ualberta.ca/~elliott/ee552/AlteraDoc/

[6] Synaptics, Inc. Synaptics TouchPad Interfacing Guild. Internet. 1998.
 http://www.synaptics.com/decaf/utilities/tp-intf2-4.PDF

Appendix

Design Verification Index

Component Test Description Result

Mouse Commander

Serial transmission of mouse movement
bytes to PC.

Verified with simulation.
Verified with interface with
host computer.

Transmitter
Component

Timing and transmission of static mouse
movement data to the host PC.
Utilization of transmit component and bi-
directional port.

Verified with simulation.
Verified with interface with
host computer.

Receiver component

The functionality to receive and signal
the completion of single 11-bit package
of data.

Verified with simulation.

Mouse Commander

The mouse commander is responsible for the transmission of data packets to the host PC. The
signal processor generates a 9-bit op-code, which is used by the mouse commander to transmit
the corresponding 3 mouse movement bytes to the PC.

The mouse commander is responsible for the timing and continually checks the status of the data
and clock lines. After the transmission of a byte, the host computer will inhibit the mouse from
transmitting the next byte to allow for processing. The mouse commander initiates the
transmission of the next byte once the host PC returns to the idle state.

In the test cases, the mouse commander is provided an op-code and transmission is initiated.
The bus is inhibited after the transmission of each data packet. Upon returning the bus to the idle
state, the mouse commander proceeds to transmit the remaining data packets.

The test cases show that the mouse commander properly initiates the transmission of data
packets and correctly transmits the 3 data packets to the host PC.

Transmitter Component:

The transmitter component is responsible for asserting both the data and clock lines during the
transmission of data to the computer. As outlined in the PS/2 protocol, the communication of
data is through data packages of 11 bytes.

The first test case shows the correct functionality of the transmitter component during operation.
The start_button signal is held low to initiate transmission of three data packets. The data is
asserted on the PC_data_bus starting with the least significant bit. The sequence of data can be
verified to be that of the Tx_data_in. Also, tx_done is asserted high by the transmitter to signal
the successful transmission of the data packet.

Following the transmission of the first data packet, the PC_clock_bus is held low to simulate the
PC. The PC will inhibit the PC_clock_bus to process the information. When the PC is ready to
receive the next packet, the PC_clock_bus is allowed to float high. The waveform shows the
subsequent transmission of the remaining two data packets. Prior to the transmission of a
packet, the PC_clock_bus is verified to be high.

In the simulation, the data and clock buses are either asserted ‘0’ or ‘Z’, as both buses will float to
a high logic when high impedance through a pull up in the computer.

Receiver Component:

The receiver component is to receive a single 11-bit data packet from a serial data-stream. To
initiate the receiving process, the receive_enable signal is held high. This signal must be held
high for the duration of the process. In the event that the receive_enable signal is pulled low
during the receive state, the reception process will restart, erasing all data received so far. Upon
the completion of 11 clock cycles, the 11 byte data packet will be available on the output with the
done signal to logic ‘1’.

The testing of the receiver was done by inputting a pattern of data on the input data stream and
then asserting the receive_enable signal for various lengths of time to simulate all working
conditions of the receive component.

The first test case is holding receive_enable high for 11 clock cycles and a 11-bit data package
should be available on the output port. Also the done signal should go high.

The second test case is illustrating the receive_enable signal held high for less than 11 clock
cycles.

The third test case is a repeat of the first test case but also used to show that the system restarts
and must receive 11 clock cycles in order to produce the next data packet.

The waveform from the testing can be found on the following page. From the waveform
simulation, it can be verified that the serial receiving component is fully function.

Optimization for speed is not a concern with this design as the rate at which data transmission
occurs is set at a predefined value. The clock in the simulation is 25kHz and is representative of
actual clock rate used in the PS/2 protocol.

Spatial Mouse:

The test bench tests the functionality of the overall Spatial Mouse design. The operation of a
Spatial Mouse is simulated and tested in the following setup.

The test bench comprises of 7 possible input frequencies ranging from 5 MHz to 7 MHz. The
frequencies to the x and y input data streams are controlled with an 8-to-1 Multiplexer. Initially,
both the x and y input frequencies are set to 6 MHz. The Spatial Mouse is then activated and
allowed to initialize.

Following the initialization, the x and y input signals are independently varied and the resulting
transmission of data packets is verified to expected results. The test bench includes testing of a
range of frequencies to produce both positive and negative mouse movements in both x and y
axis. In addition, the Spatial Mouse is tested with frequencies in both extremes where the Spatial
Mouse is expected to remain motionless.

Signal Processor

The processor receives an oscillating signal form the external oscillator (x_bitstream and
y_bitstream) and translates this frequency into and opcode used by the mouse commander. An
activate signal sets the most recently sampled frequency as the reference frequency when first
asserted and for the remaining duration of its assertion, opcodes are generated by comparison to
that reference frequency. A nine bit opcode is generated with the most significant bit indicating
whether the current frequency is negative or positive relative to the reference frequency and the
remaining eight bits reflecting the magnitude of difference between the current and reference
frequencies.

The processor testbench simulates various bitstream frequencies that would otherwise come
form the external oscillator and verifies that the correct opcodes are generated. The activate
signal was asserted two times in the testbench to show two separate calibrations of reference
frequency. Upon assertion of the activate signal, the frequencies were varied to show that
different opcodes are generated appropriately according to the difference range between current
and reference frequencies. The clock and various bitstream frequency signals were not included
on the waveform since they are merely black bars of high frequency that absorb much processing
resourse to display. Rather, the frequency select signals (x_select and y_select) are shown to
reflect the current frequency on the bitstream inputs.

VHDL Code Index

Component Status

Signal Processor

Sample_timer.vhd Compiled
Range_comparator.vhd Compiled
Counter.vhd Compiled
Processor.vhd Compiled
Processor_pkg.vhd Compiled

Mouse Commander

Command_selector.vhd Compiled
Byte_selector.vhd Compiled
Master_controller.vhd Compiled
Mouse_commander.vhd Compiled
Rx_data.vhd Compiled
Transmitter.vhd Compiled
Inverter.vhd Compiled
Inverter_with_enable.vhd Compiled
Bidir.vhd Compiled
Shift_in_reg.vhd Compiled
Shift_out_reg.vhd Compiled
Transmitter_controller.vhd Compiled
Mouse_commander_pkg.vhd Compiled
Transmitter_pkg.vhd Compiled
Dual_phase_clock.vhd Compiled
Dual_phase_clock_pkg.vhd Compiled

Spatial Mouse

Spatial_Mouse.vhd Compiled
Spatial_Mouse_pkg.vhd Compiled
Mouse_command_mapper.vhd Compiled
Clock_ticked.vhd Compiled

Test Benches
Spatial_mouse_test.vhd Compiled
Processor_test.vhd Compiled

VHDL Code – Appendix A3

Sample_timer.vhd

--
-- sample_timer.vhd :
--
-- This component pulses the output signal, “enable”, high
-- for 1 clock cycle out of every “timer_count” (as specified
-- by a generic) clock cycles.
--
-- Role in Spatial Mouse Processor:
-- - clears sample timer by pulsing the reset of sample timer
-- - triggers range comparator computation by pulsing enable

library ieee;
use ieee.std_logic_1164.all;

entity sample_timer is
generic (timer_count : positive := 250);
port(
 clock : in std_logic;
 reset : in std_logic;
 enable : out std_logic);
end sample_timer;

architecture behavioural of sample_timer is
begin

process
variable count : natural range 0 to timer_count-1;
begin
 wait until rising_edge(clock);
 if reset = '1' then
 count := 0;
 enable <= '0';
 else
 count := count + 1;
 if count = 0 then
 enable <= '1';
 else
 enable <= '0';
 end if;
 end if;
end process;

end behavioural;

VHDL Code – Appendix A3

Range_comparator.vhd

--
-- range_comparator.vhd :
--
-- This component accepts a number (i.e. count) as a calibration
-- count that automatically falls into range_zero when
-- initially enabled. For the remaining duration of enable
-- assertion, each successive count clocked in is compared to
-- the calibration count and is placed into a range relative to
-- the calibration count. The range widths are specified as
-- generics.
--
-- Role in Spatial Mouse Processor: places sampled frequencies
-- (counts) into ranges as specified by easily modifiable generics.
-- Allows for tweaking of digital design to external oscillator
-- performance.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity range_comparator is
generic (
 datawidth : positive := 10;
 range_zero : positive := 100;
 range_minus2: positive := 100;
 range_minus1: positive := 100;
 range_plus1 : positive := 100;
 range_plus2 : positive := 100);
port(
 clock : in std_logic;
 enable : in std_logic;
 reset : in std_logic;
 frequency : in std_logic_vector(datawidth-1 downto 0);
 data_out : out std_logic_vector(8 downto 0));
end range_comparator;

architecture behaviour of range_comparator is
begin

process

variable calibrated : std_logic;
variable zero_frequency : std_logic_vector(datawidth-1 downto 0);
variable minus2_min : std_logic_vector(datawidth-1 downto 0);
variable minus2_max : std_logic_vector(datawidth-1 downto 0);
variable minus1_max : std_logic_vector(datawidth-1 downto 0);
variable plus1_min : std_logic_vector(datawidth-1 downto 0);
variable plus2_min : std_logic_vector(datawidth-1 downto 0);
variable plus2_max : std_logic_vector(datawidth-1 downto 0);

begin
 if reset = '1' then
 data_out <= "000000000";

VHDL Code – Appendix A3

Range_comparator.vhd

 calibrated := '0';
 elsif rising_edge(clock) then
 if enable = '1' then
 if calibrated = '0' then
 zero_frequency := frequency;
 calibrated := '1';
 else
 plus2_max := zero_frequency + (range_zero/2) + range_plus1
 + range_plus2;
 plus2_min := zero_frequency + (range_zero/2) + range_plus1;
 plus1_min := zero_frequency + (range_zero/2);
 minus1_max := zero_frequency - (range_zero/2);
 minus2_max := zero_frequency - (range_zero/2)
 - range_minus1;
 minus2_min := zero_frequency - (range_zero/2)
 - range_minus1 - range_minus2;

 if frequency > plus2_max then -- out of range
 data_out <= "000000000";
 elsif frequency > plus2_min then -- in range plus2
 data_out <= "000000010";
 elsif frequency > plus1_min then -- in range plus1
 data_out <= "000000001";
 elsif frequency > minus1_max then -- in range zero
 data_out <= "000000000";
 elsif frequency > minus2_max then -- in range minus1
 data_out <= "100000001";
 elsif frequency > minus2_min then -- in range minus2
 data_out <= "100000010";
 elsif frequency <= minus2_min then -- below range set
 data_out <= "000000000";
 end if;
 end if;
 else
 calibrated := '0';
 data_out <= "000000000";
 end if;
 end if;

end process;

end behaviour;

VHDL Code – Appendix A3

Counter.vhd

--
-- counter.vhd :
--
-- A synchronous counter with asynchrounous clear
--
-- Role in Spatial Mouse Processor:
-- - Counts bitstream frequency incoming from external oscillator
-- circuit.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is
generic (counterwidth : positive := 4);
port(
 clear : in std_logic;
 clock : in std_logic;
 q : out std_logic_vector(counterwidth-1 downto 0));
end counter;

architecture behaviour of counter is
begin

process
variable count : std_logic_vector(counterwidth-1 downto 0);
begin
 if clear = '1' then
 count := (others => '0');
 elsif rising_edge(clock) then
 count := count + '1';
 end if;

 -- assign internal variable to output q
 q <= count;
end process;

end behaviour;

VHDL Code – Appendix A3

Processor.vhd

-- processor.vhd :
--
-- The processor counts the frequencies of two incoming bitstreams (two
-- axis) from an external oscillating signal when activated. The
-- successive frequencies relative to the initial frequency counted
-- upon activation are translated into a opcode that reflects mouse
-- movement in two dimensions.
--
-- Outputs complimentary signals to external oscillators to alternate
-- turning each one on and off.
--
-- This file ties the components of the processor together:
-- - 1 sample timer
-- - 2 counters (one for each oscillating axis)
-- - 2 range comparators (one for each oscillating axis)

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.processor_pkg.all;

entity processor is
 generic (
 datawidth : positive := 22; -- counter and comparator widths
 timer_count : positive := 250; -- to generate 10ms enables
 range_minus2: positive := 2000; -- 2000 counts wide ranges
 range_minus1: positive := 2000;
 range_zero : positive := 2000;
 range_plus1 : positive := 2000;
 range_plus2 : positive := 2000);
 port(
 clock : in std_logic;
 reset : in std_logic;
 activate : in std-logic;
 x_bitstream : in std-logic;
 y_bitstream : in std_logic;
 x_opcode : out std_logic_vector(8 downto 0);
 y_opcode : out std_logic_vector(8 downto 0);
 oscillator_enable : buffer std_logic;
 oscillator_enable_inv : buffer std_logic);
end processor;

architecture structural of processor is

-- pulse signal from timer to reset counter and advance sample
signal sample_push : std_logic;
-- sample_push AND reset for clearing counter
signal counter_clear : std_logic;
-- patch signal to connect x_counter to x_comparator
signal x_counter_comparator_signal : std_logic_vector(datawidth-1
downto 0);
-- patch signal to connect y_counter to y_comparator

VHDL Code – Appendix A3

Processor.vhd

signal y_counter_comparator_signal : std_logic_vector(datawidth-1
downto 0);

begin

complimentary_oscillator_enabler : process(sample_push)
begin
 wait until rising_edge(sample_push);
 oscillator_enable <= not oscillator_enable;
end process complimentary_oscillator_enabler;
oscillator_enable_inv <= not oscillator_enable;

counter_clear <= sample_push or reset;

timer : sample_timer
 generic map(timer_count => timer_count)
 port map(
 clock => clock,
 reset => reset,
 enable => sample_push);

x_counter : counter
 generic map(counterwidth => datawidth)
 port map(
 clear => counter_clear,
 clock => x_bitstream,
 q => x_counter_comparator_signal);

x_range_comparator : range_comparator
 generic map(
 datawidth => datawidth,
 range_zero => range_zero,
 range_minus2 => range_minus2,
 range_minus1 => range_minus1,
 range_plus1 => range_plus1,
 range_plus2 => range_plus2)
 port map(
 clock => sample_push,
 enable => activate,
 reset => reset,
 frequency => x_counter_comparator_signal,
 data_out => x_opcode);

y_counter : counter
 generic map(counterwidth => datawidth)
 port map(
 clear => counter_clear,
 clock => y_bitstream,
 q => y_counter_comparator_signal);

y_range_comparator : range_comparator
 generic map(
 datawidth => datawidth,
 range_zero => range_zero,
 range_minus2 => range_minus2,

VHDL Code – Appendix A3

Processor.vhd

 range_minus1 => range_minus1,
 range_plus1 => range_plus1,
 range_plus2 => range_plus2)
 port map(
 clock => sample_push,
 enable => activate,
 reset => reset,
 frequency => y_counter_comparator_signal,
 data_out => y_opcode);

end structural;

VHDL Code – Appendix A3

Processor_pkg.vhd

-- processor_pkg.vhd
--
-- This file contains the declarations for the components required by
-- the processor:
-- - counter
-- - sample_timer
-- - range_comparator

library ieee;
use ieee.std_logic_1164.all;

package processor_pkg is

 component counter is
 generic (counterwidth : positive := 4);
 port(
 clear, clock : in std_logic;
 q : out std_logic_vector(counterwidth-1 downto 0));
 end component counter;

 component sample_timer
 generic (timer_count : positive := 250);
 port(
 clock, reset : in std_logic;
 enable : out std_logic);
 end component sample_timer;

 component range_comparator is
 generic (
 datawidth : positive := 10;
 range_zero : positive := 100;
 range_minus2 : positive := 100;
 range_minus1 : positive := 100;
 range_plus1 : positive := 100;
 range_plus2 : positive := 100);
 port(
 clock, enable, reset : in std_logic;
 frequency : in std_logic_vector(datawidth-1 downto 0);
 data_out : out std_logic_vector(8 downto 0));
 end component range_comparator;

end processor_pkg;

VHDL Code – Appendix A3

Command_selector.vhd

-- command_selector.vhd
--
-- A 2-to-1 vector-mux. The input vector widths are specified by the
-- “datawidth” generic.
--
-- Role in spatial mouse mouse_commander: receives a control signal
-- from master_controller to select between the initialization command
-- or mouse movement command for input into the byte_selector
-- preceding the transmitter.

library ieee;
use ieee.std_logic_1164.all;

entity command_selector is
 generic (
 datawidth : positive := 33);
 port(
 bytes_in : in std_logic_vector(datawidth*2-1 downto 0);
 sel : in std_logic;
 byte_out : out std_logic_vector(datawidth-1 downto 0));
end command_selector;

architecture behavioral of command_selector is

begin

process is

begin
 if sel = '0' then
 byte_out <= bytes_in(datawidth-1 downto 0);
 else
 byte_out <= bytes_in(datawidth*2-1 downto datawidth);
 end if;
end process;

end behavioral;

VHDL Code – Appendix A3

Master_controller.vhd

-- byte_selector.vhd :
--
-- A 4-to-1 vector-mux. The input vector widths are specified by the
-- “bytewidth” generic.
--
-- Role in spatial mouse mouse_commander: receives a control signal
-- from master_controller to select current byte to be transmitted by
-- the transmitter.

library ieee;
use ieee.std_logic_1164.all;

entity byte_selector is
 generic (bytewidth : positive := 11);
 port(
 bytes_in : in std_logic_vector(bytewidth*3-1 downto 0);
 sel: in std_logic_vector(1 downto 0);
 byte_out : out std_logic_vector(bytewidth-1 downto 0));
end byte_selector;

architecture behavioral of byte_selector is

begin

process(sel) is

begin
 if sel = "00" then
 byte_out <= bytes_in(bytewidth-1 downto 0);
 elsif sel = "01" then
 byte_out <= bytes_in(bytewidth*2-1 downto bytewidth);
 elsif sel = "10" then
 byte_out <= bytes_in(bytewidth*3-1 downto bytewidth*2);
 else
 byte_out <= (others => '0');
 end if;
end process;

end behavioral;

VHDL Code – Appendix A3

Master_controller.vhd

-- master_controler.vhd :
--
-- Overall controller for mouse commander. Looks at state of tristate
-- data and clock buses to determine when data transmission can take
-- place. Controls when consecutive bytes are be transmitted based on
-- host inhibit states.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY master_controller IS
 Generic(delay_tx : positive := 5000;
 delay_rx : positive := 300);
 PORT(
 clk : IN STD_LOGIC; -- 25MHz system clock
 reset : IN STD_LOGIC; -- reset system ACTIVE HIGH
 enable: IN STD_LOGIC; -- start statemachine ACTIVE HIGH
 PC_drive_clock: IN STD_LOGIC; -- PS/2 clock bus
 PC_drive_data: IN STD_LOGIC; -- PS/2 data bus
 rx_done: IN STD_LOGIC; -- Rx done receiving
 tx_done: IN STD_LOGIC; -- Tx done sending

 -- Drive PC clock onto bus
 Pc_clock_drive: OUT STD_LOGIC;

 -- Assert dataline low for line control
 rx_line_control: OUT STD_LOGIC;

-- Enable rx data component
 rx_data_comp_enable: OUT STD_LOGIC;

-- Enable tx data component
 tx_data_comp_enable: OUT STD_LOGIC;

-- Select initialization / Mouse data
 data_command_sel: OUT STD_LOGIC;

-- Select data byte to transmit
 data_byte_sel: OUT STD_LOGIC_VECTOR(1 downto 0));
END master_controller;

ARCHITECTURE behavioural OF master_controller IS

TYPE STATE_TYPE IS (ready_rx, rx_wait, rx_data, line_control_data_1,
line_control_data_10, line_control_data_1010, line_control_data_101,
tx_ACK, start_tx,Tx_1, wait_1, Tx_2, wait_2, Tx_3, wait_3,
delay_next_packet);

SIGNAL state: STATE_TYPE;

BEGIN
 PROCESS (clk)
 variable count : integer;
 variable rx_count : integer;
 variable tx_count : integer;
 BEGIN

 if rising_edge(clk) then
 if reset = '1' then
 state <= start_tx;

VHDL Code – Appendix A3

Master_controller.vhd

 else

 CASE state IS

 -- Main transmitt loop
 WHEN start_tx =>
 tx_count:=0;
 IF PC_drive_clock = '1' and PC_drive_data = '1' and
 enable = '1' THEN
 state <= Tx_1;
 END IF;

 WHEN Tx_1 =>
 IF tx_done='1' THEN
 state <= wait_1;
 END IF;

 WHEN wait_1 =>
 IF PC_drive_clock = '1' THEN
 state <= Tx_2;
 END IF;

 WHEN Tx_2 =>
 IF tx_done='1' THEN
 state <= wait_2;
 END IF;

 WHEN wait_2 =>
 IF PC_drive_clock = '1' THEN
 state <= Tx_3;
 END IF;

 WHEN Tx_3 =>
 IF tx_done='1' THEN
 state <= wait_3;
 END IF;

 WHEN wait_3 =>
 IF PC_drive_clock = '1' THEN
 state <= delay_next_packet;
 END IF;

 WHEN delay_next_packet =>
 IF tx_count = delay_tx THEN
 state <= start_tx;
 ELSE
 tx_count := tx_count + 1;
 END IF;
 END CASE;
 end if;
 end if;
 END PROCESS;

 WITH state SELECT
 tx_data_comp_enable <= --'1' WHEN tx_ACK,
 '1' WHEN Tx_1 | Tx_2 | Tx_3,

VHDL Code – Appendix A3

Master_controller.vhd

 '0' WHEN others;

 WITH state SELECT
 data_byte_sel<= --"00" WHEN tx_ACK,
 "00" WHEN Tx_1,
 "01" WHEN Tx_2,
 "10" WHEN Tx_3,
 "00" WHEN others;

 WITH state SELECT
 data_command_sel <= '1' WHEN start_tx|Tx_1| wait_1 |
 Tx_2 | wait_2 | Tx_3 | wait_3
 |delay_next_packet,
 '0' WHEN others;

 WITH state SELECT
 rx_data_comp_enable <= --'1' WHEN rx_data,
 '0' WHEN others;

 WITH state SELECT
 Pc_clock_drive <= --'1' WHEN rx_data |
 line_control_data_10 |
 line_control_data_1 |
 line_control_data_101, '0' WHEN others;

 WITH state SELECT
 rx_line_control <= '1' WHEN line_control_data
 '0' WHEN others;

END behavioural;

VHDL Code – Appendix A3

Mouse_commander.vhd

-- mouse_commander.vhd :
--
-- Sends standard PS/2 mouse action command or initialization commands
-- to the host (PC).
--
-- This file ties the mouse_commander components together:
-- - dual_phase_clock
-- - command_selector
-- - byte_selector
-- - master_controller
-- - transmitter
-- - inverter
-- - inverter_with_enable
-- - 2x bidir

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.mouse_commander_pkg.all;

entity mouse_commander is
 generic (
 Tx_datawidth : positive := 11;
 frames : positive := 3;
 commandwidth : positive := 33); -- always frames*Tx_datawidth
 port(
 clock : in std_logic; -- 25.175 Mhz clock
 clock_25_kHz : in std_logic; -- 25 KHz system clock
 reset : in std_logic;
 enable_send_command : in std_logic;
 command_bytes : in std_logic_vector(commandwidth*2-1 downto 0);
 PC_clock_bus : inout std_logic; -- tristate buffered clock bus
 PC_data_bus : inout std_logic); -- tristate buffered data bus
end mouse_commander;

architecture structural of mouse_commander is

signal Tx_enable : std_logic;
signal Rx_enable : std_logic;
signal data_clock: std_logic;
signal PC_clock : std_logic;
signal tristate_clock_enable: std_logic; -- pulls clock bus low
according to transmitter controller
signal tristate_data_enable: std_logic; -- pulls data bus low
according to transmitted command bytes

signal Tx_PC_clock_drive : std_logic;
signal Tx_PC_data_drive : std_logic;
signal Tx_done : std_logic;

signal Rx_PC_clock_drive : std_logic;
signal Rx_PC_data_drive : std_logic;
signal Rx_data_in : std_logic_vector(10 downto 0);
signal Rx_done : std_logic;

VHDL Code – Appendix A3

Mouse_commander.vhd

signal PC_data_drive : std_logic;
signal PC_clock_drive : std_logic;

signal byte_select : std_logic_vector(1 downto 0);
signal byte_signal : std_logic_vector(Tx_datawidth-1 downto 0);
signal command_select : std_logic;
signal command_signal : std_logic_vector(commandwidth-1 downto 0);

begin

PC_data_clock_generator : dual_phase_clock
 port map(
 reset => reset,
 clock_in => clock_25_kHz,
 clock_lead => PC_clock,
 clock_lag => data_clock);

command_router : command_selector
 generic map(
 datawidth => commandwidth)
 port map(
 bytes_in => command_bytes,
 sel => command_select,
 byte_out => command_signal);

byte_router : byte_selector
 generic map(
 bytewidth => Tx_datawidth,
 frames => frames)
 port map(
 bytes_in => command_signal,
 sel => byte_select,
 byte_out => byte_signal);

command_frame_controller : master_controller
 port map(
 clk => clock,
 reset => reset,
 enable => enable_send_command,
 PC_drive_clock => PC_clock_bus,
 PC_drive_data => PC_data_bus,
 rx_done => Rx_done,
 tx_done => Tx_done,
 Pc_clock_drive => Rx_PC_clock_drive,
 rx_line_control => Rx_PC_data_drive,
 rx_data_comp_enable => Rx_enable,
 tx_data_comp_enable => Tx_enable,
 data_command_sel => command_select,
 data_byte_sel => byte_select
);

byte_receiver : rx_data
port map(
data_stream => PC_data_bus,
enable => Rx_enable,

VHDL Code – Appendix A3

Mouse_commander.vhd

clk => PC_clock,
done => Rx_done,
q => Rx_data_in
);

byte_transmitter : transmitter
 generic map(
 Tx_datawidth => Tx_datawidth)
 port map(
 clock => clock_25_kHz,
 enable => Tx_enable,
 data_clock => data_clock,
 data_in => byte_signal,
 data_out => Tx_PC_data_drive,
 PC_clock_drive => Tx_PC_clock_drive,
 done => Tx_done);

PC_data_drive <= Tx_PC_data_drive or Rx_PC_data_drive;
data_driver_inverter : inverter
 port map(
 input => PC_data_drive,
 inv_output => tristate_data_enable);

PC_clock_drive <= Tx_PC_clock_drive or Rx_PC_clock_drive;
PC_clock_driver_inverter : inverter_with_enable
 port map(
 enable => PC_clock_drive,
 input => PC_clock,
 inv_output => tristate_clock_enable);

PC_Mouse_data_bus : bidir
 port map(
 bidir => PC_data_bus,
 enable => tristate_data_enable);

PC_mouse_clock_bus : bidir
 port map(
 bidir => PC_clock_bus,
 enable => tristate_clock_enable);

end structural;

VHDL Code – Appendix A3

Rx_data.vhd

--
-- Rx data component
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity rx_data is
port(
 data_stream : in std_logic;
 enable : in std_logic;
 clk : in std_logic; -- 25 kHz Clock
 done : out std_logic;
 q : out std_logic_vector(10 downto 0)
);
end entity rx_data;

architecture mixed of rx_data is
signal shift_reg_out : std_logic_vector(10 downto 0);

COMPONENT shift_in_reg is
port(
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC ;
 shiftin : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (10 DOWNTO 0)
);
end component shift_in_reg;

begin

shift_update: process
variable count : integer;

begin

 wait until rising_edge(clk);
 if count=15 then
 q <= shift_reg_out;
 done <= '1';
 count := 0;
 else
 done <= '0';
 end if;

 if enable = '1' then
 count := count +1;
 end if;

end process shift_update;

rx_buffer: shift_in_reg
 port map(
 clock => clk,
 enable => enable,

VHDL Code – Appendix A3

Rx_data.vhd

 shiftin => data_stream,
 q => shift_reg_out
);

end mixed;

VHDL Code – Appendix A3

Transmitter.vhd

-- transmitter.vhd
--
-- Transmits a mouse command byte to host. PS/2 timing requirements
-- are enforced.

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.transmitter_pkg.all;

entity transmitter is
 generic (
 Tx_datawidth : positive := 11);
 port(
 clock : in std_logic;
 enable : in std_logic;
 data_clock : in std_logic;
 data_in : in std_logic_vector(Tx_datawidth - 1 downto 0);
 data_out : out std_logic;
 PC_clock_drive : out std_logic;
 done : out std_logic);
end transmitter;

architecture structural of transmitter is

signal load_signal : std_logic;
signal shift_enable_signal : std_logic;

begin

Tx_timer : transmit_controller
 generic map(datawidth => Tx_datawidth)
 port map(
 Tx_enable => enable,
 clock => clock,
 data_clock => data_clock,
 load_register => load_signal,
 shift_enable => shift_enable_signal,
 PC_clock_drive => PC_clock_drive,
 Tx_done => done);

Tx_shift_register : shift_out_register
 generic map(datawidth => Tx_datawidth)
 port map(
 load => load_signal,
 shift => data_clock,
 enable_shift => shift_enable_signal,
 d => data_in,
 q => data_out);

end structural;

VHDL Code – Appendix A3

Inverter.vhd

-- Inverter
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY inverter IS

 PORT
 (
 input : IN STD_LOGIC;
 inv_output : OUT STD_LOGIC
);

END inverter;

ARCHITECTURE behavioural OF inverter IS
BEGIN

 PROCESS (input)
 BEGIN
 inv_output <= not input;
 END PROCESS;

END behavioural;

VHDL Code – Appendix A3

Inverter_with_enable.vhd

-- Inverter with enable
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY inverter_with_enable IS

 PORT
 (
 enable : IN STD_LOGIC;
 input : IN STD_LOGIC;
 inv_output : OUT STD_LOGIC
);

END inverter_with_enable;

ARCHITECTURE behavioural OF inverter_with_enable IS
BEGIN

 PROCESS (enable, input)
 BEGIN

 IF enable = '0' THEN

 inv_output <= '0';

 ELSE

 inv_output <= not input;

 END IF;

 END PROCESS;
END behavioural;

VHDL Code – Appendix A3

Bi_dir.vhd

-- bi-directional bus
--

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

 ENTITY bidir IS
 PORT(
 bidir : INOUT STD_LOGIC;
 enable : IN STD_LOGIC
);
 END bidir;

 ARCHITECTURE behav OF bidir IS

 Begin
 PROCESS (enable, bidir)
 BEGIN
 IF(enable = '0') THEN
 bidir <= 'Z';
 ELSE
 bidir <= '0';
 END IF;
 END PROCESS;
 END behav;

VHDL Code – Appendix A3

Shift_in_reg.vhd

-- Shift in Register
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY shift_in_reg IS
generic(datawidth : positive := 10);
 PORT
 (
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC ;
 shiftin : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (datawidth DOWNTO 0)
);
END shift_in_reg;

ARCHITECTURE SYN OF shift_in_reg IS

 SIGNAL sub_wire0 : STD_LOGIC_VECTOR (datawidth DOWNTO 0);

 COMPONENT lpm_shiftreg
 GENERIC (
 LPM_WIDTH : NATURAL;
 LPM_DIRECTION : STRING
);
 PORT (
 enable : IN STD_LOGIC ;
 clock : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (datawidth DOWNTO 0);
 shiftin : IN STD_LOGIC
);
 END COMPONENT;

BEGIN
 q <= sub_wire0(10 DOWNTO 0);

 lpm_shiftreg_component : lpm_shiftreg
 GENERIC MAP (
 LPM_WIDTH => 11,
 LPM_DIRECTION => "LEFT"
)
 PORT MAP (
 enable => enable,
 clock => clock,
 shiftin => shiftin,
 q => sub_wire0
);

END SYN;

VHDL Code – Appendix A3

Shift_out_reg.vhd

-- shift_out_register.vhd
--
-- Output shift register with parallel loading input
-- Assertion of load signal asynchronously loads register
-- Rising edge triggered shift only if shift is enabled
-- Outputs a high by default.

library ieee;
use ieee.std_logic_1164.all;

entity shift_out_register is
 generic (datawidth : positive := 11);
 port(
 load : in std_logic;
 shift : in std_logic;
 enable_shift : in std_logic;
 d : in std_logic_vector(datawidth-1 downto 0);
 q : out std_logic);
end shift_out_register;

architecture behavioral of shift_out_register is
begin

process(load, shift) is

variable bitcount : integer range 0 to datawidth-1;
variable d_hold : std_logic_vector(datawidth-1 downto 0);

begin
 if load = '1' then
 d_hold := d; -- load input vector into register
 bitcount := 0; -- reset shift count
 elsif rising_edge(shift) then
 if enable_shift = '1' then
 q <= d_hold(bitcount); -- output next bit
 bitcount := bitcount + 1; -- increment bit_count
 else
 q <= '1';
 end if;
 end if;
end process;

end behavioral;

VHDL Code – Appendix A3

Transmit_controller.vhd

-- transmit_controller.vhd
--
-- synchronizes data transmission with system clock
-- and assertion of data at appropriate clock pulses

library ieee;
use ieee.std_logic_1164.all;

entity transmit_controller is
 generic (datawidth : positive := 11);
 port (
 Tx_enable : in std_logic; -- enable transmission
 clock : in std_logic; -- System clock (25KHz)
 -- data clock required to initialize proper offset
 data_clock : in std_logic;

-- load register with parallel data sitting at register input
 load_register: out std_logic;

-- enable data to be shifted out of shift register
 shift_enable: out std_logic;

-- enable PC_clock to be asserted on clock bus
 PC_clock_drive: out std_logic;
 Tx_done: out std_logic);
end transmit_controller;

architecture state_machine of transmit_controller is

-- name states
type state_type is (start, load_data, enable_shift, drive_PC_clock,
shift, stop);
signal state : state_type;

begin

process(clock, Tx_enable)

variable shift_count : integer range 0 to datawidth*2;
variable shift_done : integer range 0 to datawidth*2;

begin

 shift_done := datawidth*2 -1;
 -- always in start state until Tx_enable = '1'
 if Tx_enable = '0' then -- reset state

 state <= start;
 shift_count := 0;

 elsif rising_edge(clock) then

 case state is

 -- nothing happens in this state
 when start =>
 state <= load_data;
 shift_count := 0;

VHDL Code – Appendix A3

Transmit_controller.vhd

 -- load_register goes high to signal to register to load data.
 -- this state checks that the data and PC clocks are in the
appropriate
 -- phase of 2 possible cycles to advance to the enable shift state,
if not,
 -- the load_register stalls in this state for one more clock pulse.

 when load_data =>
 if data_clock = '0' then
 state <= enable_shift;
 else
 state <= load_data;
 end if;

 -- this state enables the register to shift data out based on the
data_clock
 when enable_shift =>
 state <= drive_PC_clock;
 shift_count := shift_count + 1;

 -- this state drives the PC_clock onto the clock bus
 when drive_PC_clock =>
 state <= shift;
 shift_count := shift_count + 1;

 -- this state allows for continued shifting of the data
 when shift =>
 if shift_count = shift_done then
 state <= stop;
 else
 state <= shift;
 end if;
 shift_count := shift_count + 1;

 when stop =>
 state <= stop;

 end case;

 end if;
end process;

with state select
 load_register <= '1' when load_data,
 '0' when others;
with state select
 shift_enable <= '1' when enable_shift,
 '1' when drive_PC_clock,
 '1' when shift,
 '0' when others;
with state select
 PC_clock_drive <= '1' when drive_PC_clock,
 '1' when shift,
 '0' when others;

VHDL Code – Appendix A3

Transmit_controller.vhd

with state select
 Tx_done <= '1' when stop,
 '0' when others;

end state_machine;

VHDL Code – Appendix A3

Transmitter_pkg.vhd

-- transmitter_pkg.vhd
--
-- This file contains the declarations for the components required by
-- the transmitter:
-- - transmit_controller
-- - shift_out_register
-- - inverter
--

library ieee;
use ieee.std_logic_1164.all;

package transmitter_pkg is

component transmit_controller is
generic (datawidth : positive := 11);
port (
Tx_enable : in std_logic;
clock : in std_logic;
data_clock : in std_logic;
load_register: out std_logic;
shift_enable: out std_logic;
PC_clock_drive: out std_logic;
Tx_done : out std_logic);
end component transmit_controller;

component shift_out_register is
generic (datawidth : positive := 11);
port(
load : in std_logic;
shift : in std_logic;
enable_shift : in std_logic;
d : in std_logic_vector(datawidth-1 downto 0);
q : out std_logic);
end component shift_out_register;

end transmitter_pkg;

VHDL Code – Appendix A3
Mouse_command_pkg.vhd

-- mouse_commander_pkg
--
-- This file contains the declarations for the components required by
-- the mouse_commander:
-- - dual_phase_clock
-- - command_selector
-- - byte_selector
-- - master_controller
-- - transmitter
-- - inverter
-- - inverter_with_enable
-- - 2x bidir
--

library ieee;
use ieee.std_logic_1164.all;

package mouse_commander_pkg is

component dual_phase_clock is
 port(
 reset: in std_logic;
 clock_in : in std_logic;
 clock_lead : buffer std_logic;
 clock_lag : buffer std_logic);
end component dual_phase_clock;

component transmitter is
 generic (
 Tx_datawidth : positive := 11);
 port(
 clock : in std_logic;
 enable : in std_logic;
 data_clock : in std_logic;
 data_in : in std_logic_vector(Tx_datawidth - 1 downto 0);
 data_out : out std_logic;
 PC_clock_drive : out std_logic;
 done : out std_logic);
end component transmitter;

component inverter_with_enable is
port(
enable : IN STD_LOGIC;
input : IN STD_LOGIC;
inv_output : OUT STD_LOGIC);
end component inverter_with_enable;

component inverter is
port(
input : IN STD_LOGIC;
inv_output : OUT STD_LOGIC);
end component inverter;

component bidir is
port(
bidir : inout STD_LOGIC;

VHDL Code – Appendix A3
Mouse_command_pkg.vhd

enable : in STD_LOGIC
);
end component bidir;

component command_controller is
port(
clk : IN STD_LOGIC;
PC_drive_clock : IN STD_LOGIC;
send_command : IN STD_LOGIC;
tx_done : IN STD_LOGIC;
enable_tx : OUT STD_LOGIC;
sel : OUT STD_LOGIC_VECTOR(1 downto 0)
);
end component command_controller;

component command_selector is
generic (
datawidth : positive := 33);
port(
bytes_in : in std_logic_vector(datawidth*2-1 downto 0);
sel: in std_logic;
byte_out : out std_logic_vector(datawidth-1 downto 0));
end component command_selector;

component byte_selector is
generic (
frames : positive :=3;
bytewidth : positive := 11);
port(
bytes_in: in std_logic_vector(bytewidth*frames-1 downto 0);
sel: in std_logic_vector(1 downto 0);
byte_out : out std_logic_vector(bytewidth-1 downto 0));
end component byte_selector;

component rx_data is
port(
data_stream : in std_logic;
enable : in std_logic;
clk : in std_logic;
done : out std_logic;
q : out std_logic_vector(10 downto 0));
end component rx_data;

component shift_in_reg is
port(
clk : in std_logic;
enable : in std_logic;
shiftin : in std_logic;
q : OUT STD_LOGIC_VECTOR (10 DOWNTO 0));
end component shift_in_reg;

component master_controller is
port(
clk : IN STD_LOGIC; -- 25MHz system clock
reset : IN STD_LOGIC; -- reset system ACTIVE HIGH
enable : IN STD_LOGIC; -- start statemachine ACTIVE HIGH

VHDL Code – Appendix A3
Mouse_command_pkg.vhd

PC_drive_clock : IN STD_LOGIC; -- PS/2 clock bus
PC_drive_data : IN STD_LOGIC; -- PS/2 data bus
rx_done : IN STD_LOGIC; -- Rx done receiving
tx_done : IN STD_LOGIC; -- Tx done sending
Pc_clock_drive : OUT STD_LOGIC; -- Drive PC clock onto bus
rx_line_control : OUT STD_LOGIC; -- Assert dataline low for line
control
rx_data_comp_enable : OUT STD_LOGIC; -- Enable rx data component
tx_data_comp_enable : OUT STD_LOGIC; -- Enable tx data component
data_command_sel : OUT STD_LOGIC; -- Select initialization / Mouse
data
data_byte_sel : OUT STD_LOGIC_VECTOR(1 downto 0) -- Select data
byte to transmit
);
end component master_controller;

end mouse_commander_pkg;

VHDL Code – Appendix A3

Spatial_mouse.vhd

-- spatial_mouse.vhd
--
-- Overall digital design implemented on FPGA

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.spatial_mouse_pkg.all;

entity spatial_mouse is
 port(
 clock : in std_logic;
 reset : in std_logic;
 activate : in std_logic;
 left_button : in std_logic;
 right_button : in std_logic;
 x_oscillation : in std_logic;
 y_oscillation : in std_logic;
 PC_clock_bus : inout std_logic;
 PC_data_bus : inout std_logic;
 oscillator_enable : buffer std_logic;
 oscillator_enable_inv : buffer std_logic);
end spatial_mouse;

architecture structural of spatial_mouse is

-- Active Low Signals
signal not_reset : std_logic;
signal not_activate : std_logic;
signal not_left_button : std_logic;
signal not_right_button : std_logic;

-- Internal signals and patches
signal clock_25KHz : std_logic;
signal x_opcode_signal : std_logic_vector(8 downto 0);
signal y_opcode_signal : std_logic_vector(8 downto 0);
signal mouse_command_signal : std_logic_vector(32 downto 0);
signal init_command_signal : std_logic_vector(32 downto 0);
signal command_signals: std_logic_vector(65 downto 0); --
concatenation of mouse command & init command

begin

-- Active Low Conversions
not_reset <= not reset;
not_activate <= not activate;
not_left_button <= not left_button;
not_right_button <= not right_button;

clock_25KHz_generator : clock_ticked
 generic map(ticks => 503)
 port map(
 clock_in => clock,

VHDL Code – Appendix A3

Spatial_mouse.vhd

 reset => not_reset,
 clock_out => clock_25KHz);

oscillator_translator : processor
 generic map(
 datawidth => 25, -- counter and comparator widths
 rangewidth => 15,
 timer_count => 250, -- 250 ticks of 25kHz clock to
generate 10ms enables
 range_minus2 => 1000,
 range_minus1 => 1000,
 range_zero => 1000,
 range_plus1 => 1000,
 range_plus2 => 1000)
 port map(
 clock => clock_25KHz,
 reset => not_reset,
 activate => not_activate,
 x_bitstream => x_oscillation,
 y_bitstream => y_oscillation,
 x_opcode => x_opcode_signal,
 y_opcode => y_opcode_signal,
 oscillator_enable => oscillator_enable,
 oscillator_enable_inv => oscillator_enable_inv);

processor_to_mouse_interface : mouse_command_mapper
 port map(
 x_movement => x_opcode_signal,
 y_movement => y_opcode_signal,
 left_button => not_left_button,
 right_button => not_right_button,
 mapped_command => mouse_command_signal);

init_command_signal <= "111111111111111111111111111111111";
command_signals <= mouse_command_signal & init_command_signal;

mouse_interface : mouse_commander
 generic map(
 Tx_datawidth => 11,
 frames => 3,
 commandwidth => 33) -- always frames*Tx_datawidth
 port map(
 clock => clock,
 clock_25_kHz => clock_25KHz,
 reset => not_reset,
 enable_send_command => not_activate,
 command_bytes => command_signals, -- command bytes inputted
here
 PC_clock_bus => PC_clock_bus,
 PC_data_bus => PC_data_bus);

end structural;

VHDL Code – Appendix A3

Spatial_mouse_pkg.vhd

-- spatial_mouse_pkg.vhd
--
-- Contains the major component declarations for the overall digital
-- design

library ieee;
use ieee.std_logic_1164.all;

package spatial_mouse_pkg is

component clock_ticked is
generic (ticks : positive := 503);
port(
 clock_in, reset : in std_logic;
 clock_out : buffer std_logic);
end component clock_ticked;

component processor is
 generic (
 datawidth : positive := 22; -- counter and comparator widths
 rangewidth : positive := 15;
 timer_count : positive := 250;
 range_minus2 : positive := 2000;
 range_minus1 : positive := 2000;
 range_zero : positive := 2000;
 range_plus1 : positive := 2000;
 range_plus2 : positive := 2000);
 port(
 clock, reset : in std_logic;
 activate, x_bitstream, y_bitstream : in std_logic;
 x_opcode, y_opcode : out std_logic_vector(8 downto 0);
 oscillator_enable : buffer std_logic;
 oscillator_enable_inv : buffer std_logic);
end component processor;

component mouse_command_mapper is
 port(
 x_movement : in std_logic_vector(8 downto 0);
 y_movement : in std_logic_vector(8 downto 0);
 left_button : in std_logic;
 right_button : in std_logic;
 mapped_command : out std_logic_vector(32 downto 0));
end component mouse_command_mapper;

component mouse_commander is
 generic (
 Tx_datawidth : positive := 11;
 commandwidth : positive := 33);
 port(
 clock : in std_logic;
 clock_25_kHz : in std_logic;
 reset : in std_logic;
enable_send_command : in std_logic;
command_bytes : in std_logic_vector(commandwidth*2-1 downto 0);

VHDL Code – Appendix A3

Spatial_mouse_pkg.vhd

PC_clock_bus : inout std_logic;
PC_data_bus : inout std_logic);
end component mouse_commander;

end spatial_mouse_pkg;

VHDL Code – Appendix A3

Mouse_command_mapper.vhd

-- Glue logic between processor and mouse interface
--
-- Maps processor opcode to

library ieee;
use ieee.std_logic_1164.all;

entity mouse_command_mapper is
 port(
 x_movement : in std_logic_vector(8 downto 0);
 y_movement : in std_logic_vector(8 downto 0);
 left_button : in std_logic;
 right_button : in std_logic;
 mapped_command : out std_logic_vector(32 downto 0));
end mouse_command_mapper;

architecture logic of mouse_command_mapper is

-- signals for generating correct parity bit
signal parity1 : std_logic;
signal parity2 : std_logic;
signal parity3 : std_logic;

begin

parity1 <= not ('0' xor '0' xor x_movement(8) xor y_movement(8) xor '1'
 xor '0' xor left_button xor right_button);

parity2 <= not (x_movement(7) xor x_movement(6) xor x_movement(5)
 xor x_movement(4)
 xor x_movement(3) xor x_movement(2) xor x_movement(1) xor
 x_movement(0));

parity3 <= not (y_movement(7) xor y_movement(6) xor y_movement(5) xor
 y_movement(4) xor y_movement(3) xor y_movement(2) xor
 y_movement(1) xor y_movement(0));

mapped_command <= '1' & parity3 & y_movement(7 downto 0) & '0'
 & '1' & parity2 & x_movement(7 downto 0) & '0'
 & '1' & parity1 & "00" & y_movement(8) &
 x_movement(8) & "10"
 & right_button & left_button & '0';

end logic;

VHDL Code – Appendix A3

Clock_ticked.vhd

-- clock_ticked.vhd :
--
-- Generates a slower clock from a much faster clock.
--
-- Role in Spatial Mouse: generates a 25 KHz system clock that is
-- useful for meeting PS/2 timing requirements.

library ieee;
use ieee.std_logic_1164.all;

entity clock_ticked is
generic (ticks : positive := 503);
port(
 clock_in, reset : in std_logic;
 clock_out : buffer std_logic);
end clock_ticked;

architecture behaviour of clock_ticked is
begin

process

variable count : natural range 1 to ticks;

begin
 wait until rising_edge(clock_in);
 if reset = '1' then
 count := 1;
 clock_out <= '0';
 else
 count := count + 1;
 if count = ticks then
 clock_out <= not clock_out;
 end if;
 end if;
end process;

end behaviour;

VHDL Code – Appendix A3

Dual_phase_clock.vhd

-- dual_phase_clock.vhd
--
-- generates two clocks 1/4 out of phase from each other
-- the output clocks are 1/2 the frequency of the input clock

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.dual_phase_clock_pkg.all;

entity dual_phase_clock is
 port(
 reset: in std_logic;
 clock_in : in std_logic;
 clock_lead : buffer std_logic;
 clock_lag : buffer std_logic);
end dual_phase_clock;

architecture structural of dual_phase_clock is

signal phase_reset : std_logic; -- this signal ensures that data clock
lags PC clock by 1/4 period
signal clock_lead_inv, clock_lag_inv : std_logic;

begin

process(clock_in) is -- this process ensures that data clock
will lag PC clock by 1/4 period
begin
 wait until falling_edge(clock_in);
 if reset = '1' then
 phase_reset <= '1';
 else
 phase_reset <= '0';
 end if;
end process;

clock_lead_inv <= not clock_lead;
clock_lag_inv <= not clock_lag;

lead_clock_generator : d_flipflop_rising
 port map(
 clock => clock_in,
 clear => phase_reset,
 d => clock_lead_inv,
 q => clock_lead);

lag_clock_generator : d_flipflop_falling
 port map(
 clock => clock_in,
 clear => phase_reset,
 d => clock_lag_inv,
 q => clock_lag);

VHDL Code – Appendix A3

Dual_phase_clock.vhd

end structural;

VHDL Code – Appendix A3
Dual_phase_clock_pkg.vhd

-- dual_phase_clock_pkg.vhd
--
-- Declarations for components required by dual+phase_clock

library ieee;
use ieee.std_logic_1164.all;

package dual_phase_clock_pkg is

component d_flipflop_rising is
port(
clock, clear : in std_logic;
d : in std_logic;
q : out std_logic);
end component d_flipflop_rising;

component d_flipflop_falling is
port(
clock, clear : in std_logic;
d : in std_logic;
q : out std_logic);
end component d_flipflop_falling;

end dual_phase_clock_pkg;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

-- Spatial Mouse Test Bench
--
-- Tests overall spatial mouse functionality

library ieee;
use ieee.std_logic_1164.all;

entity mux_8_to_1 is
port(
 in_0 : in std_logic;
 in_1 : in std_logic;
 in_2 : in std_logic;
 in_3 : in std_logic;
 in_4 : in std_logic;
 in_5 : in std_logic;
 in_6 : in std_logic;
 in_7 : in std_logic;
 sel : in std_logic_vector(2 downto 0);
 output : out std_logic
);
end mux_8_to_1;

architecture behav of mux_8_to_1 is

begin

process(sel,in_0,in_1,in_2,in_3,in_4,in_5,in_6,in_7)
 begin
 case sel is
 WHEN "000" =>
 output <= in_0;

 WHEN "001" =>
 output <= in_1;

 WHEN "010" =>
 output <= in_2;

 WHEN "011" =>
 output <= in_3;

 WHEN "100" =>
 output <= in_4;

 WHEN "101" =>
 output <= in_5;

 WHEN "110"=>
 output <= in_6;

 WHEN "111"=>
 output <= in_7;

 WHEN others =>

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 output <= in_0;

 end case;
end process;

end behav;

library ieee;
use ieee.std_logic_1164.all;

package test_pkg is

component mux_8_to_1 is
 port (
 in_0 : in std_logic;
 in_1 : in std_logic;
 in_2 : in std_logic;
 in_3 : in std_logic;
 in_4 : in std_logic;
 in_5 : in std_logic;
 in_6 : in std_logic;
 in_7 : in std_logic;
 sel : in std_logic_vector(2 downto 0);
 output : out std_logic
);
 end component mux_8_to_1;
end package test_pkg;

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.spatial_mouse_pkg.all;
use work.test_pkg.all;

entity spatial_mouse_test is
end spatial_mouse_test;

architecture mixed of spatial_mouse_test is

-- Frequency generator constants
constant T_halfclock_25_MHz : time := 20 ns;
constant T_halfclock_5_MHz : time := 100 ns;
constant T_halfclock_5_75_MHz : time := 86.96 ns; --86.96 ns
constant T_halfclock_5_85_MHz : time := 85.47 ns;
constant T_halfclock_6_MHz : time := 83.3 ns;
constant T_halfclock_6_15_MHz : time := 81.3 ns; -- 81.1 ns
constant T_halfclock_6_25_MHz : time := 80 ns;
constant T_halfclock_7_MHz : time := 71 ns;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

constant T_prop: time := 10 ns; -- avoid hold time violations

-- Test input frequencies
signal clock_25_MHz : std_logic;
signal osc_freq_5_MHz : std_logic;
signal osc_freq_5_75_MHz : std_logic;
signal osc_freq_5_85_MHz : std_logic;
signal osc_freq_6_MHz : std_logic;
signal osc_freq_6_15_MHz : std_logic;
signal osc_freq_6_25_MHz : std_logic;
signal osc_freq_7_MHz : std_logic;

-- Interface buttons
signal reset_internal : std_logic;
signal activate_internal : std_logic;
signal left_button_internal : std_logic;
signal right_button_internal : std_logic;

-- control oscillator frequency
signal x_osc_select : std_logic_vector(2 downto 0);
signal y_osc_select : std_logic_vector(2 downto 0);
signal x_osc_internal : std_logic;
signal y_osc_internal : std_logic;

-- PC bidirectional bus
signal PC_clock_bus_internal : std_logic;
signal PC_data_bus_internal : std_logic;

component spatial_mouse is
 port(
 clock : in std_logic;
 reset : in std_logic;
 activate : in std_logic;
 left_button : in std_logic;
 right_button : in std_logic;
 x_oscillation : in std_logic;
 y_oscillation : in std_logic;
 PC_clock_bus : inout std_logic;
 PC_data_bus : inout std_logic
);
end component spatial_mouse;

begin

-- 25 Mhz clock generator
 clock_gen_25_MHz : process
 begin
 clock_25_MHz <= '0';
 wait for T_halfclock_25_MHz;
 clock_25_MHz <= '1';
 wait for T_halfclock_25_MHz;
 end process clock_gen_25_MHz;

-- 5 Mhz clock generator

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 signal_gen_5_MHz : process
 begin
 osc_freq_5_MHz <= '0';
 wait for T_halfclock_5_MHz;
 osc_freq_5_MHz <= '1';
 wait for T_halfclock_5_MHz;
 end process signal_gen_5_MHz;

-- 5.75 Mhz clock generator
 signal_gen_5_75_MHz : process
 begin
 osc_freq_5_75_MHz <= '0';
 wait for T_halfclock_5_75_MHz;
 osc_freq_5_75_MHz <= '1';
 wait for T_halfclock_5_75_MHz;
 end process signal_gen_5_75_MHz;

-- 5.85 Mhz clock generator
 signal_gen_5_85_MHz : process
 begin
 osc_freq_5_85_MHz <= '0';
 wait for T_halfclock_5_85_MHz;
 osc_freq_5_85_MHz <= '1';
 wait for T_halfclock_5_85_MHz;
 end process signal_gen_5_85_MHz;

-- 6 Mhz clock generator
 signal_gen_6_MHz : process
 begin
 osc_freq_6_MHz <= '0';
 wait for T_halfclock_6_MHz;
 osc_freq_6_MHz <= '1';
 wait for T_halfclock_6_MHz;
 end process signal_gen_6_MHz;

-- 6.15 Mhz clock generator
 signal_gen_6_15_MHz : process
 begin
 osc_freq_6_15_MHz <= '0';
 wait for T_halfclock_6_15_MHz;
 osc_freq_6_15_MHz <= '1';
 wait for T_halfclock_6_15_MHz;
 end process signal_gen_6_15_MHz;

-- 6.25 Mhz clock generator
 signal_gen_6_25_MHz : process
 begin
 osc_freq_6_25_MHz <= '0';
 wait for T_halfclock_6_25_MHz;
 osc_freq_6_25_MHz <= '1';
 wait for T_halfclock_6_25_MHz;
 end process signal_gen_6_25_MHz;

-- 7 Mhz clock generator
 signal_gen_7_MHz : process
 begin

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 osc_freq_7_MHz <= '0';
 wait for T_halfclock_7_MHz;
 osc_freq_7_MHz <= '1';
 wait for T_halfclock_7_MHz;
 end process signal_gen_7_MHz;

-- Spatial Mouse test subject
Spatial_mouse_component : component spatial_mouse
port map(
 clock => clock_25_MHz, -- 25 MHz system clock
 reset => reset_internal,
 activate => activate_internal,
 left_button => left_button_internal,
 right_button => right_button_internal,
 x_oscillation => x_osc_internal,
 y_oscillation => y_osc_internal,
 PC_clock_bus => PC_clock_bus_internal,
 PC_data_bus => PC_data_bus_internal
);

-- Component to change x input oscillator frequency
x_osc_input_sel : component mux_8_to_1
port map(
 in_0 => osc_freq_5_MHz,
 in_1 => osc_freq_5_75_MHz,
 in_2 => osc_freq_5_85_MHz,
 in_3 => osc_freq_6_MHz,
 in_4 => osc_freq_6_15_MHz,
 in_5 => osc_freq_6_25_MHz,
 in_6 => osc_freq_7_MHz,
 in_7 => osc_freq_6_MHz,
 sel => x_osc_select,
 output => x_osc_internal
);

-- Component to control y input oscillator frequency
y_osc_input_sel : component mux_8_to_1
port map(
 in_0 => osc_freq_5_MHz,
 in_1 => osc_freq_5_75_MHz,
 in_2 => osc_freq_5_85_MHz,
 in_3 => osc_freq_6_MHz,
 in_4 => osc_freq_6_15_MHz,
 in_5 => osc_freq_6_25_MHz,
 in_6 => osc_freq_7_MHz,
 in_7 => osc_freq_6_MHz,
 sel => y_osc_select,
 output => y_osc_internal
);

--
-- Process to activate mouse
activate_mouse : process
begin

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 -- initial startup, reset machine
 activate_internal <= '1';
 reset_internal <= '1';
 wait for 1 ms;
 reset_internal <= '0';
 wait for 1 ms;
 reset_internal <= '1';
 wait for 1 ms;

 -- activate mouse
 activate_internal <= '0';
 wait for 60 ms;

 -- deactivate mouse
-- activate_internal <= '1';
-- wait for 20 ms;

 wait;
end process activate_mouse;
--

--
-- process to input oscillator signal
emu_oscillator : process
begin

 -- initially 6 MHz osc
 x_osc_select <= "011";
 y_osc_select <= "011";
 wait for 3 ms;

 -- x_osc to 6.15 MHz
 -- y_osc to 5.75 MHz
 x_osc_select <= "100";
 y_osc_select <= "001";
 wait for 5 ms;

 -- x_osc to 6.25 MHz
 -- y_osc to 5.85 MHz
 x_osc_select <= "101";
 y_osc_select <= "010";
 wait for 5 ms;

 -- x_osc to 7 MHz
 -- y_osc to 5 MHz
 x_osc_select <= "110";
 y_osc_select <= "000";
 wait for 5 ms;

 -- x_osc to 5.85 MHz
 -- y_osc to 6.15 MHz
 x_osc_select <= "010";
 y_osc_select <= "100";

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 wait for 5 ms;

 -- x_osc to 5.75 MHz
 -- y_osc to 6.25 MHz
 x_osc_select <= "001";
 y_osc_select <= "101";
 wait for 5 ms;

 -- x_osc to 5 MHz
 -- y_osc to 7 MHz
 x_osc_select <= "000";
 y_osc_select <= "110";
 wait for 5 ms;

 wait;
end process emu_oscillator;
--

--
-- process to control Data and Clock bus
bus_control : process
begin

 -- Clk and data buses initially '1'
 -- Mouse in idle state
 PC_data_bus_internal <= '1';
 PC_clock_bus_internal <= '1';
-- wait for 1550 us;

-- PC_data_bus_internal <= '1';
-- PC_clock_bus_internal <= '0';
-- wait for 200 us;

-- PC_data_bus_internal <= '1';
-- PC_clock_bus_internal <= '1';
-- wait for 1100 us;

 wait;
end process bus_control;
--

--
-- process to control Mouse buttons
button_control : process
begin

 left_button_internal <= '1';
 right_button_internal <= '1';
-- wait for 12 ms;

 wait;

end process button_control;
--

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

end mixed;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

-- processor_testbench2.vhd
--
-- Tests processor functionality

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.processor_pkg.all;

entity processor_testbench2 is
end processor_testbench2;

architecture testbench of processor_testbench2 is

-- internal signals used to dirve or receive signals on/from chip ports
signal clock : std_logic;
signal reset : std_logic;
signal activate : std_logic;
signal x_bitstream : std_logic;
signal y_bitstream : std_logic;
signal x_opcode : std_logic_vector(8 downto 0);
signal y_opcode : std_logic_vector(8 downto 0);

-- half periods used to generate system clock and simulate bitstreams
constant T_halfclock : time := 20.0 us; -- half period for 25KHz
sysem clock
constant T_6p0 : time := 83.3 ns; -- half period for 6.0 MHz
bitstream
constant T_6p1 : time := 82.0 ns; -- half period for 6.1 MHz
bitstream
constant T_6p2 : time := 80.6 ns; -- half period for 6.2 MHz
bitstream
constant T_6p3 : time := 79.4 ns; -- half period for 6.3 MHz
bitstream
constant T_6p4 : time := 78.1 ns; -- half period for 6.4 MHz
bitstream
constant T_6p5 : time := 76.9 ns; -- half period for 6.5 MHz
bitstream
constant T_6p6 : time := 75.8 ns; -- half period for 6.6 MHz
bitstream
constant T_6p7 : time := 74.6 ns; -- half period for 6.7 MHz
bitstream
constant T_6p8 : time := 73.5 ns; -- half period for 6.8 MHz
bitstream
constant T_6p9 : time := 72.5 ns; -- half period for 6.9 MHz
bitstream
constant T_7p0 : time := 71.4 ns; -- half period for 7.0 MHz
bitstream
constant T_7p1 : time := 70.4 ns; -- half period for 7.1 MHz
bitstream

-- various bitream frequencies used for simulation of x_bitstream
signal bitstream_6p0MHz : std_logic;
signal bitstream_6p1MHz : std_logic;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

signal bitstream_6p2MHz : std_logic;
signal bitstream_6p3MHz : std_logic;
signal bitstream_6p4MHz : std_logic;
signal bitstream_6p5MHz : std_logic;
signal bitstream_6p6MHz : std_logic;
signal bitstream_6p7MHz : std_logic;
signal bitstream_6p8MHz : std_logic;
signal bitstream_6p9MHz : std_logic;
signal bitstream_7p0MHz : std_logic;
signal bitstream_7p1MHz : std_logic;

-- control signal used to drive any of various frequencies onto
x_bitstream
signal x_select : integer range 0 to 11;
signal y_select : integer range 0 to 11;

begin

-- insert processor component to be tested
processor_component : processor
port map(
 clock => clock,
 reset => reset,
 activate => activate,
 x_bitstream => x_bitstream,
 y_bitstream => y_bitstream,
 x_opcode => x_opcode,
 y_opcode => y_opcode);

-- mux used to drive any of various frequencies onto x_bitstream
x_bitstream_mux : process(x_select, bitstream_6p0MHz, bitstream_6p1MHz,
 bitstream_6p2MHz, bitstream_6p3MHz, bitstream_6p4MHz,
 bitstream_6p5MHz, bitstream_6p6MHz, bitstream_6p7MHz,
 bitstream_6p8MHz, bitstream_6p9MHz, bitstream_7p0MHz,
 bitstream_7p1MHz)
begin
 case x_select is
 when 0 =>
 x_bitstream <= bitstream_6p0MHz;
 when 1 =>
 x_bitstream <= bitstream_6p1MHz;
 when 2 =>
 x_bitstream <= bitstream_6p2MHz;
 when 3 =>
 x_bitstream <= bitstream_6p3MHz;
 when 4 =>
 x_bitstream <= bitstream_6p4MHz;
 when 5 =>
 x_bitstream <= bitstream_6p5MHz;
 when 6 =>
 x_bitstream <= bitstream_6p6MHz;
 when 7 =>
 x_bitstream <= bitstream_6p7MHz;
 when 8 =>
 x_bitstream <= bitstream_6p8MHz;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 when 9 =>
 x_bitstream <= bitstream_6p9MHz;
 when 10 =>
 x_bitstream <= bitstream_7p0MHz;
 when 11 =>
 x_bitstream <= bitstream_7p1MHz;
 end case;
end process x_bitstream_mux;

-- mux used to drive any of various frequencies onto y_bitstream
y_bitstream_mux : process(y_select, bitstream_6p0MHz, bitstream_6p1MHz,
 bitstream_6p2MHz, bitstream_6p3MHz, bitstream_6p4MHz,
 bitstream_6p5MHz, bitstream_6p6MHz, bitstream_6p7MHz,
 bitstream_6p8MHz, bitstream_6p9MHz, bitstream_7p0MHz,
 bitstream_7p1MHz)
begin
 case y_select is
 when 0 =>
 y_bitstream <= bitstream_6p0MHz;
 when 1 =>
 y_bitstream <= bitstream_6p1MHz;
 when 2 =>
 y_bitstream <= bitstream_6p2MHz;
 when 3 =>
 y_bitstream <= bitstream_6p3MHz;
 when 4 =>
 y_bitstream <= bitstream_6p4MHz;
 when 5 =>
 y_bitstream <= bitstream_6p5MHz;
 when 6 =>
 y_bitstream <= bitstream_6p6MHz;
 when 7 =>
 y_bitstream <= bitstream_6p7MHz;
 when 8 =>
 y_bitstream <= bitstream_6p8MHz;
 when 9 =>
 y_bitstream <= bitstream_6p9MHz;
 when 10 =>
 y_bitstream <= bitstream_7p0MHz;
 when 11 =>
 y_bitstream <= bitstream_7p1MHz;
 end case;
end process y_bitstream_mux;

-- clock generator
system_clock_generator : process
begin
 clock <= '0';
 wait for T_halfclock;
 clock <= '1';
 wait for T_halfclock;
end process system_clock_generator;

-- 6.0MHz bitstream generator
bitstream_6p0MHz_generator : process
begin

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 bitstream_6p0MHz <= '0';
 wait for T_6p0;
 bitstream_6p0MHz <= '1';
 wait for T_6p0;
end process bitstream_6p0MHz_generator;

-- 6.1MHz bitstream generator
bitstream_6p1MHz_generator : process
begin
 bitstream_6p1MHz <= '0';
 wait for T_6p1;
 bitstream_6p1MHz <= '1';
 wait for T_6p1;
end process bitstream_6p1MHz_generator;

-- 6.2MHz bitstream generator
bitstream_6p2MHz_generator : process
begin
 bitstream_6p2MHz <= '0';
 wait for T_6p2;
 bitstream_6p2MHz <= '1';
 wait for T_6p2;
end process bitstream_6p2MHz_generator;

-- 6.3MHz bitstream generator
bitstream_6p3MHz_generator : process
begin
 bitstream_6p3MHz <= '0';
 wait for T_6p3;
 bitstream_6p3MHz <= '1';
 wait for T_6p3;
end process bitstream_6p3MHz_generator;

-- 6.4MHz bitstream generator
bitstream_6p4MHz_generator : process
begin
 bitstream_6p4MHz <= '0';
 wait for T_6p4;
 bitstream_6p4MHz <= '1';
 wait for T_6p4;
end process bitstream_6p4MHz_generator;

-- 6.5MHz bitstream generator
bitstream_6p5MHz_generator : process
begin
 bitstream_6p5MHz <= '0';
 wait for T_6p5;
 bitstream_6p5MHz <= '1';
 wait for T_6p5;
end process bitstream_6p5MHz_generator;

-- 6.6MHz bitstream generator
bitstream_6p6MHz_generator : process
begin
 bitstream_6p6MHz <= '0';
 wait for T_6p6;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 bitstream_6p6MHz <= '1';
 wait for T_6p6;
end process bitstream_6p6MHz_generator;

-- 6.7MHz bitstream generator
bitstream_6p7MHz_generator : process
begin
 bitstream_6p7MHz <= '0';
 wait for T_6p7;
 bitstream_6p7MHz <= '1';
 wait for T_6p7;
end process bitstream_6p7MHz_generator;

-- 6.8MHz bitstream generator
bitstream_6p8MHz_generator : process
begin
 bitstream_6p8MHz <= '0';
 wait for T_6p8;
 bitstream_6p8MHz <= '1';
 wait for T_6p8;
end process bitstream_6p8MHz_generator;

-- 6.9MHz bitstream generator
bitstream_6p9MHz_generator : process
begin
 bitstream_6p9MHz <= '0';
 wait for T_6p9;
 bitstream_6p9MHz <= '1';
 wait for T_6p9;
end process bitstream_6p9MHz_generator;

-- 7.0MHz bitstream generator
bitstream_7p0MHz_generator : process
begin
 bitstream_7p0MHz <= '0';
 wait for T_7p0;
 bitstream_7p0MHz <= '1';
 wait for T_7p0;
end process bitstream_7p0MHz_generator;

-- 7.1MHz bitstream generator
bitstream_7p1MHz_generator : process
begin
 bitstream_7p1MHz <= '0';
 wait for T_7p1;
 bitstream_7p1MHz <= '1';
 wait for T_7p1;
end process bitstream_7p1MHz_generator;

test_sequence : process
begin

 -- 0ms: pulse reset at start
 reset <= '0';
 wait for 9 ms;
 reset <= '1';

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 wait for 1 ms;
 reset <= '0';

 -- 10ms: unactivated, x_bitstream = 6.6MHz, y_bitstream = 6.3MHz
 x_select <= 6;
 y_select <= 3;
 wait for 10 ms;

 -- 20ms: activate/calibrate, x_bitstream = 6.6MHz, y_bitstream
6.3MHz
 activate <= '1';
 wait for 10 ms;

 -- 30ms: activated, x_bitstream = 6.6MHz, y_bitstream = 6.3MHz
 wait for 10 ms;

 -- 40ms: activated, x_bitstream = 6.7MHz, y_bitstream = 6.6MHz
 x_select <= 7;
 y_select <= 6;
 wait for 10 ms;

 -- 50ms: activated, x_bitstream = 6.9MHz, y_bitstream = 6.8MHz
 x_select <= 9;
 y_select <= 8;
 wait for 10 ms;

 -- 60ms: activated, x_bitstream = 7.1MHz, y_bitstream = 6.3MHz
 x_select <= 11;
 y_select <= 3;
 wait for 10 ms;

 -- 70ms: activated, x_bitstream = 6.0MHz, y_bitstream = 7.0MHZ
 x_select <= 0;
 y_select <= 10;
 wait for 10 ms;

 -- 80ms: activated, x_bitstream = 6.3MHz, y_bitstream = 6.0MHz
 x_select <= 3;
 y_select <= 0;
 wait for 10 ms;

 -- 90ms: activated, x_bitstream = 6.5MHz, y_bitstream = 6.0MHz
 x_select <= 5;
 y_select <= 0;
 wait for 10 ms;

 -- 100ms: deactivate, x_bitstream = 6.5MHz, y_bitstream = 6.0MHz
 activate <= '0';
 wait for 10 ms;

 -- 110ms: reactivate/recalibrate, x_bitstream = 6.8MHz, y_bitstream
= 6.5MHz
 activate <= '1';
 x_select <= 8;
 y_select <= 5;
 wait for 10 ms;

VHDL Code – Appendix A3

Spatial_mouse_test.vhd

 -- 120ms: activated, x_bitstream = 6.3MHz, y_bitstream = 6.6MHz
 x_select <= 3;
 y_select <= 6;
 wait for 10 ms;

 -- 130ms: activated, x_bitstream = 6.0MHz, y_bitstream = 6.8MHz
 x_select <= 0;
 x_select <= 8;
 wait for 10 ms;

 -- 140ms: activated, x_bitstream = 7.1MHz, y_bitstream = 6.2MHz
 x_select <= 11;
 y_select <= 2;
 wait for 10 ms;

 -- finish
 wait for 30 ms;

end process test_sequence;

end testbench;

