

EE 552 Final Report

Netplexor

Submitted by:
Angela Wong acwong@ualberta.ca
Richard Mao rmao@ualberta.ca
Colin Durocher cdd2@ee.ualberta.ca
Jeffrey Spiers jspiers@yahoo.com
Date: April 2, 2001
Instructor: Duncan Elliott

Declaration of Original Content

The design elements of this project and report are entirely the original work of the authors and have not been
submitted for credit in any other course except as follows:

Figure 1: Typical Twisted-Pair Interface and Supply Filtering taken from [5] pg. 47
Figure 2: MII Data Interface taken from [5] pg. 22
Sram controller code will be modified from sram_controller.vhd [2]
CRC generator code will be modified from vcrc32_8.vhd [12]
Hash test bench will be modified from adder_test.vhd [13]

Abstract

Broadband Internet customers who want to make the Internet available to more than one workstation on their
home/office network typically must pay extra in order to rent multiple IP addresses from their service provider.
With as few as 8 computers sharing the connection, the price of the connection can double. For this reason, many of
these users have turned to a technique called IP masquerading, which allows the seamless sharing of the Internet
connection while looking to the outside world like a single workstation. This usually requires a dedicated computer
with 2 Ethernet cards, typically running the Linux operating system. This is not always easy to setup. The
Netplexor will be an easy to use IP masquerading solution for these users. The prototype as developed in this course
will have certain limitations in order to fit within the space constraints of the Altera FLEX10K20 FPGA device as
well as to meet our team’s time constraints. Curently, a maximum of fifteen computers can be connected to the
Netplexor, and a maximum of 256 different connections (IP’s) can be stored in the IP LUT. These limitations
should be acceptable in the home or small office environment to which this product is targetted.

Table of Contents

Declaration of Original Content 1
Abstract 2
Table of Contents 3
Achievements 4
Description of Operation 5
 Overview 5
 Netplexor Implementation Description 5
 Usage 6
Netplexor Implementation 6
 Ethernet Components 6
 Masquerade Datapath 7
 Masquerade Controller/Datapath Interface 9
Netplexor Datasheet 10
Experiments & Characterizations 14
 Netplexor Area 14
 Buffer Size 14
 CRC Generator Characterization 14
References 15
Datasheets for Chips used 16
Design Verification 17
 Simulations 18
Design Hierarchy 37
Index to VHDL Code 38
VHDL Design 39
Test Bench Index 74
 Test Bench Design 75
 Test Bench Results 78
Schematics 80

Achievements

At this point of the project, we have achieved some of our goals, but others remain to be fulfilled.

Functional

• The two top-level entities, Ethernet and Masquerade, individually compile and simulate with no known
bugs.

o Ethernet simulations indicate the ability to send and receive data and convert it to byte format for
ease of interpretation by Masquerade

o Masquerade has been simulated and appears functional in both the masquerade and demasquerade
directions

• Netplexor, which instantiates the both the Ethernet and Masquerade components compiles, and fits on the

Altera 10K20 FPGA with the proper Synthesis and fitting options selected in MaxPlus II. Netplexor has
been simulated and the whole system appears to function correctly.

• The SRAM interface has been tested in the laboratory and it appears to function properly, though it has not

yet been tested with the Masquerade entity that uses it.
o The test performed involved storing three bytes of data at memory addresses that were set using

DIP switches, then retrieving the correct data from those addresses and displaying them on LEDs.

• The Ethernet module’s receive functionality has been tested in the lab and is known to function correctly.
The transmit functionality was tested as well. While it was possible to confirm that bytes were being
transmitted, the test was inadequate to ensure that the correct bytes were being transmitted.

Untested

• Netplexor has not yet been tested in the lab. Two logistical issues have thus far prevented this:
o Obtaining a full duplex 10 Mbit/s switch for testing and demo purposes has proven to be difficult.

The alternative is to add code to Netplexor to buffer an entire packet before sending it out. In
order to do this, and conform to the IEEE 802.3 standard, Netplexor would have to implement
backoff logic to minimize ethernet collisions. Since only 8% of the Altera 10K20 remains free,
this would be very difficult, if not impossible, to implement.

o In whatever laboratory the Netplexor FPGA is programmed, our group also requires a computer
with software capable of sniffing packets on the network in order to verify that the correct fields in
the ethernet and IP headers are being replaced.

Further Work

• Netplexor should respond to ARP packets
• Netplexor should implement DHCP in order to automatically request an IP from the ISP. Currently,

the user must recompile Netplexor after changing a constant in Masq_pkg.vhd.
• Netplexor should drop any packets which are not IP packets addressed to its MAC.

Description of Operation
Overview

On an IP based network like the Internet, every node in the network must have its own IP address. Due to the
limited number of addresses and the immense growth of the network over the last decade, IP addresses are becoming
more and more expensive. Currently, cable and ADSL providers charge about $5.00 per address / month. It is
therefore desirable to share IP addresses where practical. IP masquerading is one way of doing this.

The basic idea behind IP masquerading is to have all connections to the external network pass through a gateway
which substitutes the source address and port number of each TCP/IP packet with its own address and a new port
number. To the external network, all traffic then seems to be coming from a single node on the network even
though multiple computers are actually making requests. In order to properly route packets coming back from the
external network, a table is kept in memory which links the new port number, old port number, and real IP address
together. The gateway can then look at the port number on the incoming packet (which is one it made up), look it up
in the table, and then substitute the destination IP and port fields in the packet with their original values and send the
packet to the appropriate node on the internal network. An added benefit of this technique is that all connections
must be initiated by computers on the internal network, leading to a high degree of security from network intrusions.

Netplexor Implementation Description

Due to resource limitations, the initial version of the Netplexor will take a slightly less sophisticated approach to
masquerading. Instead of using the source/destination port numbers to route packets, it will use the
source/destination IP addresses to route packets. This means that the Netplexor will be keeping two lookup tables
implemented in a single 256kb asynchronous SRAM. One will be a set of tuples consisting of <destination IP,
source IP> while the other will be a set consisting of <source IP, source MAC>. When a connection is initiated
from the internal network, Netplexor will examine the ethernet and IP headers and store the <destination IP, source
IP> in the Src IP - Dest IP table and the <source IP, source MAC> in the Src IP – Src MAC table. When a packet is
received from the external network (Internet), its source IP will be examined and compared to each of the
destination IP’s in the table. When a match is found, the destination IP in the packet will be replaced with the
source IP entry in the table. The destination MAC address contained in the ethernet header will also be replaced
with the appropriate MAC from the lookup table so that the ethernet frame can be forwarded to the correct node on
the internal network. A maximum of 16 computers can be connected to the Netplexor and a total of 256 connections
can be stored in the IP LUT. Due to the nature of the hash functions, it is possible that two connections have the
same hash index. The hash function for the IP LUT hashes based on each byte of the external IP. Each of the four
bytes in the ip is XORed together to yield an 8-bit value which is used as the least significant 8 bits of the SRAM’s
15 bit address line. The hash function for the MAC LUT hashes based on the least significant byte of the internal
IP. The upper four bits and lower four bits of this byte are XORed together and used as bits 7 to 3 of the SRAM’s
address line and bits 14 to 8 are preset to ‘1’ so that the MAC LUT is stored in higher addresses of the SRAM. Bits
2 to 0 of the address are determined by the offset value of the MAC to be stored. For instance, the third byte of the
MAC will be stored in address “1111 1111 HHHH 011” where HHHH is the value obtained by XORing IP(7
downto 4) with IP(3 downto 0). This is a very simple hash and where duplicate addresses are found, the old value is
simply replaced. In making this compromise, our design relies on the TCP protocol to ensure communication
reliability where that reliability is needed. Due to the SRAM size, FPGA size, and time constraints of this project,
this is a suitable compromise.

The drawback to this method, and the reason it is considered to be less sophisticated is that two computers on the
internal network cannot simultaneously connect to a single IP on the external network. The motivation for
implementing masquerading in this way is that all routing is done at the network and link layers instead of at a
combination of transport, network, and link layers. This means that the Netplexor will not have to explicitly
understand the TCP, UDP and ICMP protocols in order to handle all types of Internet traffic. The result is a less
complex product implemented in fewer gates.

Usage

Because, in the current prototype of Netplexor, the cable modem MAC address and Netplexor externally visible IP
address are hardcoded, this product is not yet at the stage of development where it would be easily employed by
members of the public – One of the Netplexor project goals. In order to use this prototype, the user would need
access to the source code and programming hardware in order to change these two constants to match their
particular home network. In order to achieve the goal of ease of use, Netplexor would have to initially broadcast
internet-bound frames and sniff the cable modem MAC address from returned packets. It would also need to either
support the whole DHCP protocol or simply sniff DHCP packets to obtain its IP address from the service provider.
Finally, Netplexor would have to respond to ARP packets on the internal network so that computers on that network
could translate Netplexor’s IP address into a MAC address at the ethernet level.

Netplexor Implementation

Ethernet Components

Transmitter

cl
o

ck

cl
r

txdv_4

txdata_8 txdata_48 4

txdv_8

Receiver

cl
o

ck

cl
r

rxdv_4

rxdata_8rxdata_4 84

rxdv_8

Synchronizer

col_sync

rxdv_sync

rxer_sync

txdata_sync

rxclk

txclk

rxdv

col

txen_sync

4

rxdata4

txdata4

cl
o

ck

cl
r

cl
k_

sy
n

c

rxdata_sync4

Error
Detector

rxer_e

txer_i

txer_e

drop

rxer_i

col_i

col_e

sub_sync

cl
k_

in

cl
r

dv_in

data_outdata_in 84

dv_out

cl
k_

o
u

t

sy
n

c_
cl

k

Masquerade Datapath

SRAM
Lookup Table

IP
Checksum
Generator

Ethernet CRC
Generator

MAC
Register

S1

S2

D

CENB

CRC Mux

S1

S4

D

C
2

C
1

ENB

Data Mux

ethernet
rx_data

ethernet
tx_data

Int MAC
Register

Ext Ip to Int
IP Hash

Index

Buffer

S
1

S
2

D

C ENB

ipmux

S1

S2

D

C ENB

chksum_mux

S
1

S
2

D

CENB

LUTMux

IP
Register

Int IP-Int
MAC

Hash Index

S
1

S
2

D

C
EN

B

H
a

s
h_

m
u

x

Datain
 Register

Dataout
 Register

a)

b)

c)

d)

e)

g)

h)

i)

chksum
register

j)

k)
Data Valid

Shift register

l)

rx data valid

tx data valid

f)

Comparator

m)

direction

Data path component descriptions:

a) Data in / data out registers: incoming and outgoing data for transfer from / to Ethernet component.
b) Buffer: Stores frame data until ready for transfer. The current design requires 45 bytes of data to be

buffered.
c) External IP to internal IP hash: Takes in the external IP from the data path and provides the index to

the lookup table to read or write the internal IP depending on the direction. Only the least significant
byte of the IP address will be stored.

d) Internal IP to internal MAC hash: Takes in the internal IP from the IP register and provides the index
to the lookup table to read or write the internal MAC addresses. In order to store all 6 bytes of the
MAC address, the hash function includes a control signal to provide an offset of 6 to the generated
index.

e) Internal MAC register: Holds the internal MAC address from the data path until the hash index has
been calculated for storage into the lookup table, and for comparison with the MAC address of the
router. It can also can be set to the global shared MAC address (the MAC of our externally
transmitting Ethernet transceiver) , which will replace the internal MAC address in the Ethernet frame.

f) SRAM controller: Accesses SRAM where 2 lookup tables are stored. The first contains the least
significant byte of the internal IP address, and the second stores the internal MAC addresses.

g) MAC register: Holds the internal MAC as read from the lookup table or can be set to the global
destination MAC of the router of the external network, for substitution into the Ethernet frame.

h) IP register: Holds the internal IP address for storage into the lookup table, the external IP address for
generating a lookup table index, or the IP address read from the lookup table for calculating the IP
checksum.

i) Checksum register: Holds 8 bit data so that it can be sent to the checksum generator as 16 bits.
j) IP checksum generator: Incrementally calculates the IP header checksum.
k) Ethernet CRC generator: Calculates the CRC to be appended to the Ethernet frame.
l) Receive data valid shift register: The data valid bit is shifted in from the Ethernet receive side, and

shifted out to the Ethernet’s transmit side.
m) Comparator: Compares the source MAC of the incoming packet with the hard coded router MAC to

determine the direction of the packet.

Masquerade Controller/Datapath Interface

Masq
Control

dv_shift

clockdiv2

chksum _compute

reset

reset

clock

e
xt_

d
ir

Datapath

d
a

ta
 i n

8

d
a

ta
 o

u
t

8
dataend

compare

macreg_ld (x6)

macreg_set

intmacreg_ld (x6)

intmacreg_set

ipreg_ld (x6)

ipreg_set

crc_compute

crc_ld

LUT_nchipen

LUT_nwrten

buf_rreq

buf_wreq

iphash_compute

machash_com pute

mac_offset3

ipmux_sel

hashmux_sel

outmux_sel

chksummux_sel

lutm ux_sel

rlsdatam ux_sel

3

3

5

eth_rxdv

dir
e

th
_

txe
n

sram_nouten

sram_nchipen

sram_nwrten

sram _addrout

sram_databus

15

8

Netplexor Datasheet

Description
 The Netplexor allows multiple internal network computers to share an Internet connection using only one
ISP account, a full duplex switch, and a Cable or DSL modem. To configure Netplexor, users need to determine the
IP address that their ISP has assigned to them as well as the MAC address of their cable or ADSL modem.
Currently, these values must be hardcoded into Masq_pkg.vhd. The Netplexor project must then be recompiled
from the top-level and an FPGA must be programmed. Netplexor should then be placed in the following network
topology using a Class C address space for the internal network.

Full Duplex Switch

NetPlexor Internal Computer
1

Internal Computer
3

Internal Computer
2

Cable Router

Figure 1: Netplexor Usage Diagram

Features
• Allows as many as 16 internal network computers and 256 simultaneous connections to share one ISP

account
• Increased network security since all connections must be initiated by computers on the internal

network
• Compatible with IEEE 802.3 Ethernet: 10BaseT and 10BaseFX
• Supports 10Mbit/s operation with any transceiver that supports 40-pin MII interface
• Maximum Ethernet Diameter: 100m
• Uses Altera Flex10K20 FPGA on UP1 Prototype Board, IDT 71256 SRAM, and IEEE802.3u

compliant Ethernet transceiver

Connector Pinout

RJ45 10BaseT Connector Pinout:

Figure 2: RJ45 connector pin numbering as seen
 looking at the front of a male connector. Ref [15]

Pin Name Description
1 TX+ Transmit Data +
2 TX- Transmit Data -
3 RX+ Receive Data +
4 N/C Not Connected
5 N/C Not Connected
6 RX- Receive Data -
7 N/C Not Connected
8 N/C Not Connected

MII Connector Pinout:

Figure 3: MII connector pin numbering as seen looking into the contacts of a female connector from the mating side. Ref [11]

Pin
Name Description Pin Name Description

1 +5 V VCC 21 +5 V VCC
2 MDIO Not connected 22 COMMON GND
3 MDC Connected to ground

via 1.5 k
�

23 COMMON GND

4 RXD(3) Data nibble being
received

24 COMMON GND

5 RXD(2) Data nibble being
received

25 COMMON GND

6 RXD(2) Data nibble being
received

26 COMMON GND

7 RXD(1) Data nibble being
received

27 COMMON GND

8 RX_DV Receive data valid 28 COMMON GND
9 RX_CLK Receive clock 29 COMMON GND
10 RX_ER Not connected 30 COMMON GND
11 TX_ER Not connected 31 COMMON GND
12 TX_CLK Transmit clock 32 COMMON GND
13 TX_EN Transmit enable 33 COMMON GND
14 TXD(0) Data nibble being

transmitted
34 COMMON GND

15 TXD(1) Data nibble being
transmitted

35 COMMON GND

16 TXD(2) Data nibble being
transmitted

36 COMMON GND

17 TXD(3) Data nibble being
transmitted

37 COMMON GND

18 COL Indicates a collision 38 COMMON GND
19 CRS Not connected 39 COMMON GND
20 +5 V VCC 40 + 5 V VCC

FPGA and UP1 Header Pinouts:

Figure 4: Schematic of FPGA connections to MII interface and SRAM

Pin Name Pin No Hole No Type Description
RESET 28 FLEX_PB1 I Global reset
GND GND A 2 O Ground
GND GND A 60 O Ground
GND GND B 2 O Ground
VCC VCC B 3 O VCC
VCC VCC A 3 O VCC
VCC VCC A 57 O VCC
SYSCLK 91 Global Clock I 25.175 MHz clock
TXCLK 35 A 39 I TXDATA and TXEN are synced to these

clocks
TXEN 31 A 35 O High when TXDATA is valid
TXDATA(3) 9 A 19 O Data nibble being transmitted
TXDATA(2) 15 A 23 O Data nibble being transmitted
TXDATA(1) 20 A 27 O Data nibble being transmitted
TXDATA(0) 24 A 31 O Data nibble being transmitted
RXCLK 39 A 43 I RXDATA and RXDV are synced to these

clocks
RXDV 45 A 47 I High when RXDATA is valid

GND

VCC

COL

TXDATA(3)

TXDATA(2)

TXDATA(1)

TXDATA(0)

TXEN

TXCLK

RXCLK

RXDV

RXDATA(3)

RXDATA(2)

RXDATA(1)

RXDATA(0)

GND

Expansion Slot A

LXT974/975
+5 V

MDIO (n/c)
MDC

RXD(3)
RXD(2)
RXD(1)
RXD(0)
RX_DV

RX_CLK
RX_ER (n/c)
TX_ER (n/c)

TX_CLK
TX_EN
TXD(0)
TXD(1)
TXD(2)
TXD(3)

COL
CRS (n/c)

+5 V
+5 V

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

+5 V

1.5 kOhm

TX+
TX-
RX+
N/C
N/C
RX-
N/C
N/C

Altera
FLEX10K20RC240-4

GND
VCC
SRAM_ADDR(14)
SRAM_ADDR(12)
SRAM_ADDR(7)
SRAM_ADDR(6)
SRAM_ADDR(5)
SRAM_ADDR(4)
SRAM_ADDR(3)
SRAM_ADDR(2)
SRAM_ADDR(1)
SRAM_ADDR(0)
SRAM_DATA(0)
SRAM_DATA(1)
SRAM_DATA(2)
SRAM_DATA(3)
SRAM_DATA(4)
SRAM_DATA(5)
SRAM_DATA(6)
SRAM_NWRTEN
SRAM_DATA(7)
SRAM_ADDR(13)
SRAM_NCHIPEN
SRAM_ADDR(8)
SRAM_ADDR(10)
SRAM_ADDR(9)
SRAM_NOUTEN
SRAM_ADDR(11)

Expansion Slot B

GND
VCC
SRAM_ADDR(14)
SRAM_ADDR(12)
SRAM_ADDR(7)
SRAM_ADDR(6)
SRAM_ADDR(5)
SRAM_ADDR(4)
SRAM_ADDR(3)
SRAM_ADDR(2)
SRAM_ADDR(1)
SRAM_ADDR(0)
SRAM_DATA(0)
SRAM_DATA(1)
SRAM_DATA(2)
SRAM_DATA(3)
SRAM_DATA(4)
SRAM_DATA(5)
SRAM_DATA(6)
SRAM_NWRTEN
SRAM_DATA(7)
SRAM_ADDR(13)
SRAM_NCHIPEN
SRAM_ADDR(8)
SRAM_ADDR(10)
SRAM_ADDR(9)
SRAM_NOUTEN
SRAM_ADDR(11)

IDT 71256 SRAM

RXDATA(3) 50 A 49 I Data nibble being received
RXDATA(2) 52 A 51 I Data nibble being received
RXDATA(1) 54 A 53 I Data nibble being received
RXDATA(0) 56 A 55 I Data nibble being received
COL 45 A 15 I Indicates collision
SRAM_ADDR(14) 109 B 15 O Address line
SRAM_ADDR(13) 156 B 50 O Address line
SRAM_ADDR(12) 111 B 17 O Address line
SRAM_ADDR(11) 163 B 56 O Address line
SRAM_ADDR(10) 159 B 53 O Address line
SRAM_ADDR(9) 161 B 54 O Address line
SRAM_ADDR(8) 158 B 52 O Address line
SRAM_ADDR(7) 114 B 19 O Address line
SRAM_ADDR(6) 116 B 21 O Address line
SRAM_ADDR(5) 118 B 23 O Address line
SRAM_ADDR(4) 120 B 25 O Address line
SRAM_ADDR(3) 127 B 27 O Address line
SRAM_ADDR(2) 129 B 29 O Address line
SRAM_ADDR(1) 132 B 31 O Address line
SRAM_ADDR(0) 134 B 33 O Address line
SRAM_DATA(7) 154 B 49 I/O Data from/to SRAM
SRAM_DATA(6) 152 B 47 I/O Data from/to SRAM
SRAM_DATA(5) 149 B 45 I/O Data from/to SRAM
SRAM_DATA(4) 147 B 43 I/O Data from/to SRAM
SRAM_DATA(3) 144 B 41 I/O Data from/to SRAM
SRAM_DATA(2) 142 B 39 I/O Data from/to SRAM
SRAM_DATA(1) 139 B 37 I/O Data from/to SRAM
SRAM_DATA(0) 137 B 35 I/O Data from/to SRAM
SRAM_NCHIPEN 157 B 51 O Active low chip select
SRAM_NWRTEN 153 B 48 O Active low write enable
SRAM_NOUTEN 162 B 55 O Active low output enable

Resource Requirements

The following resources were used when Netplexor was configured on the EPF10K20RC240-4:

Total dedicated input pins used: 3/6 (50%)
Total I/O pins used: 52/183 (28%)
Total logic cells used: 1095/1152 (95%)
Total embedded cells used: 8/48 (16%)
Total EABs used: 1/6 (16%)
Average fan-in: 3.06/4 (76%)
Total fan-in: 3271/4608 (70%)

Electrical Characteristics

Input Power Requirements: +5V to Altera UP1
Absolute Maximum Power Ratings: Tolerance –2 to 7 V

Timing Considerations

As long as RXDV and RXDATA are valid on the rising edge of the RXCLK and TXEN and TXDATA are valid on
the rising edge of the TXCLK then Netplexor will take care of timing concerns such as synchronizing.

Experiments & Characterizations

Netplexor Area
It was necessary to experiment with different optimization settings to make our design fit onto the chip. Various
settings were attempted, however only one combination was able to successfully fit

Area /
Speed
Slider
Setting

Automatic
Fast I/O

Automatic
Register
Packing

Automatic
Open
Drain

Automatic
Implement
in EABs

Try
Harder

Logic Cells
(Out of
1152)

Percentage EABs
(Out of
6)

5 No No No No No Does Not Fit > 100% N/A
0 Yes Yes Yes No No Does Not Fit > 100% N/A
5 Yes Yes Yes No No 1095 95% 1
5 Yes Yes Yes No Yes 1095 95% 1
10 Yes Yes Yes No No Does Not Fit > 100% N/A
5 Yes Yes Yes Yes No N/A N/A Does Not

Fit

Buffer Size
We tested various implementations of the FIFO component in the LPM to use as our buffer. The two that were most
suited for our use was the lpm_fifo and the csfifo. Although Altera recommends using the csfifo, as opposed to
using the lpm_fifo, with FLEX10K devices, this component requires 2 clocks. A regular clock, and another at
double the frequency. Characterizations of these components were necessary to determine if the space savings
would be worth the added complexity of using 2 clock signals. As it turns out the csfifo was much smaller but
slower (T �������	��
	������������������� �	��� ������ "! "�#%$&�('���) *��	��
%)�+,! �	�����-��������! �-�	. �/������	�����%�0 "��	1	�32�14� area is, we decided
to use the csfifo after all.

csfifo (8x45)
Logic Cells Percentage EABs
 42 3% 1

lpm_fifo
Logic Cells Percentage EABs
232 20% 2

CRC Generator Characterization
In order to verify that the CRC generator did indeed generate the correct Ethernet CRC, the outputs of the module in
simulation were compared against the outputs of a C program [14], which implemented the CRC generating
algorithm.

References

Background information was gathered from the following websites:

[1] T. Bensler and E. Chan. Interfacing External SRAM.
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/SRAM/ (accessed Feb. 6, 2001).

[2] T. Bensler and E. Chan. SRAM Controller.
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/SRAM/ (accessed Jan. 30, 2001).

[3] R. Droms. Dynamic Host Configuration Protocol. ftp://ftp.isi.edu/in-notes/rfc2131.txt (accessed Jan. 21,
2001).

[4] IDT. 71256L Datasheet.
http://www.idt.com/docs/71256L_DS_17524.pdf (accessed Feb. 5, 2001).

[5] Intel. LXT974/LXT975 Datasheet.
ftp://download.intel.com/design/network/products/lan/datashts/24927401.pdf (accessed Feb. 3, 2001).

[6] National Semiconductor. DP83846A DsPHYTER – Single 10/100 Ethernet Transceiver [Preliminary].
 http://www.national.com/pf/DP/DP83846A.html (accessed Jan. 20, 2001).

[7] J. Postel. Internet Protocol. ftp://ftp.isi.edu/in-notes/rfc791.txtRFC Editor (accessed Jan. 21, 2001).

[8] J. Postel. Transmission Control Protocol. ftp://ftp.isi.edu/in-notes/rfc793.txt (accessed Jan. 21, 2001).

[9] M. Smith. Ethernet.
http://www-ee.eng.hawaii.edu/~msmith/XCoNET/Ethernet.htm (accessed Jan. 15, 2001).

[10] University of Hawaii. IEEE 802.3 Ethernet Standard 1996.

[11] University of Hawaii. IEEE 802.3u 10/100 Ethernet Standard 1995.

[12] Vautomation. Vautomation Free Cores. http://www.vautomation.com/free/vcrc32_8.vhd (accessed Jan. 30,
2001).

[13] J. Koob, R. Sung, D. Elliott. Adder_test.vhd.
http://www.ee.ualberta.ca/~elliott/ee552/labs/lab5/adder_test.vhd (accessed Mar. 10, 2001).

[14] C.M. Heard, crc32h.c
http://cell-relay.indiana.edu/cell-relay/publications/software/CRC/32bitCRC.c.html (Accessed Mar16th, 2001).

[15] S. Caplan et al. eSafe Final Report. http://www.ee.ualberta.ca/~elliott/ee552/projects/1998f/esafe/esafe-
final.pdf (accessed Mar.30, 2001).

Datasheets for Chips used

The first pages of the datasheet for the IDT 71256L SRAM are attached. A table of the Flex10K device features is
also attached. For the Ethernet transceiver we are using the Addtron AEF-100MT (100 BaseTX to MII mini-
transceiver). No datasheet is available for this part because it is a completely integrated part. To interface with it
refer to IEEE 802.3u for specifications of the MII transceiver.

Design Verification

Two Simultaneous Connections

This simulation demonstrates the fundamental purpose of Netplexor. Two simultaneous connections are
masqueraded and demasqueraded between two separate internal clients and two separate external Internet servers,
thus “multiplexing” Internet connections.

First, client 1 sends an IP packet destined for server 1. The Netplexor intercepts the packet and modifies
(masquerades) its source MAC address, destination MAC address and source IP address before forwarding it on.
Next, client 2 makes a similar request to server 2. It is also masqueraded by the Netplexor. The response from server
1 is then intercepted on the return path. It is demasqueraded and sent to client 1. The same thing happens for the
response from server 2 to client 2.

The client IP addresses are 4.3.2.35 and 4.3.2.67, and the server IP addresses are 152.186.220.254 and
101.135.169.203. The Netplexor uses IP address 4.3.2.1 both internally and externally. This is the only publicly
known IP address.

The cable/ADSL modem and Netplexor MAC addresses have been hard coded in this prototype design. A
production version of Netplexor would determine the cable/ADSL modem MAC address by monitoring traffic on
the external network. The hard-coded cable/ADSL modem MAC address is 0F:0E:0D:0C:0B:0A and the Netplexor
MAC address is 09:08:07:06:05:04.

A summary of the simulation is presented in the table below. It shows the source and destination MAC and IP
addresses of packets before and after Netplexor masquerades or demasquerades them.

Summary of Simulation

Client 1 Request Client 2 Request Server 1 Response Server 2 Response
Packet

In Out In Out In Out In Out

Source
MAC

65:87:A9:
CB:ED:0F

0F:0E:0D:
0C:0B:0A

23:76:45:
DC:EF:BA

0F:0E:0D:
0C:0B:0A

09:08:07:
06:05:04

0F:0E:0C:
0C:0B:0A

09:08:07:
06:05:04

0F:0E:0C:
0C:0B:0A

Destination
MAC

A9:CB:ED
:0F:21:43

09:08:07:
06:05:04

A9:CB:ED
:0F:21:43

09:08:07:
06:05:04

0F:0E:0D:
0C:0B:0A

65:87:A9:
CB:ED:0F

0F:0E:0D:
0C:0B:0A

23:76:45:
DC:EF:BA

Source IP 0xC0A80123
192.168.1.35

0x04030201
4.3.2.1

0xC0A80143
192.168.1.67

0x04030201
4.3.2.1

0x98BADCFE
152.186.220.254

0x98BADCFE
152.186.220.254

0x6587A9CB
101.135.169.203

0x6587A9CB
101.135.169.203

Destination
IP

0x98BADCFE
152.186.220.254

0x98BADCFE
152.186.220.254

0x6587A9CB
101.135.169.203

0x6587A9CB
101.135.169.203

0x04030201
4.3.2.1

0xC0A80123
192.168.1.35

0x04030201
4.3.2.1

0xC0A80143
192.168.1.67

Design Hierarchy

Netplexor

Ethernet Masquerade

Datapath Controller

crc
generator

ip checksum
generator

IP Index
Hash

MAC Index
Hash

Buffer

synchronize error_detectRx Tx

SRAM
Controller

SubSync
(x2)

Index to VHDL code

Main Code
Netplexor: top-level file that provides interface between the Ethernet and Masquerade components

- compiled – no errors
Eth_pkg: package with all Ethernet components

- compiled – no errors
Ethernet: Ethernet component that encompasses all the Ethernet functionality for Netplexor

- simulated – no known bugs
Receiver: converts 4-bit rx signal to 8-bit and transmits it every second clock cycle

- simulated – no known bugs
Transmitter: converts 8-bit tx signal to 4-bit transmit data

- simulated – no known bugs
Synchronizer: synchronizes all Ethernet transceiver signals to a common clock

- simulated – no known bugs
Sub Sync: Connects to either internal receive, internal transmit, external receive, or external transmit

- simulated no known bugs
Error-detector: detects and signals errors

- simulated – no known bugs
Masq_pkg: package with all the components and constants required by the Masquerade components

- compiled – no errors
Masquerade: Masquerade component that instantiates the controller and datapath
 - not compiled
Controller: contoller for Netplexor
 - compiled no errors
Datapath: data path for Netplexor.

- compiled but missing checksum generator
IP Index Hash: provides an index to the destination IP to source IP lookup table

- Simulated – no known bugs
MAC Index Hash: provides an index to the source IP to source MAC lookup table

- Simulated – no known bugs
Buffer: used to buffer data until ready for transmission

- conpiled – no errors
IP Checksum

- compiled – no errors

Code for testing:
Repeater => substitutes for masquerader to implement an Ethernet repeater

- Simulated – no known bugs
Memory Test => used to test the interface to the SRAM

- Simulated – no known bugs

Code used from other sources:
SRAM controller=> SRAM interface [2]. Reused code. No modifications required (so far)

- compiled
vcrc32_8=> 8-bit parallel 32-bit CRC generator for Ethernet [12]. Reused code. No modifications required (so far)
 - compiled

VHDL design
- VHDL code for the entities listed above is presented in the next 50+ pages.

Test Bench Index
Hash _Test: Randomly feeds values to the either of the IP Hash or the Mac Hash components. Modified from the
ee552 Lab 5 adder test bench[13].

Schematics

Figure 3: MII Data Interface [5]

FLEX10K20

VCC

GND

addr(14:0)

data_io(7:0)

cs

we

oe

71256L
SRAM

Figure 4: SRAM Interface

