EE 552 2000f 2000-11-24

EE 552 Final Report

lmage I ndexing Processor

INSTRUCTOR:
Dr. Elliott

GROUP MEMEBERS:

Yuxin Wang, yxwang@ee.ualberta.ca

Yunan Xiang, ynxiang@ee.ual berta.ca

Julien Lamoureux, |lamoureu@ee.ualberta.ca

Chuping Liu, chopin@ee.ualberta.ca

TABLE OF CONTENTS

DECLARATION OF ORIGINAL CONTENT ..ottt sttt ssee s ssesbessesesnesbesaenens 2
A BST RACT .ottt ettt s bt e b e s b et et e e b e ae st e st b e b e st ebe e s be b e e ebeebeabe e eReebe b e s eneebeabeseentennene 2
F X O o A = N S 3
ALGORITHM INTRODUCTIONootiiiteiiteicteesietees et sreseeese s sseeesestessesessessssssessesessssensssessss ssesssssenns 3
PRINCIPAL OF IMAGE INDEXING ...cviitiiiieiticieciestessesstessesseesaesbessessassassssessesbessessessessensensessesessesss seessesssssseens 3
RS 1] Y TS 4
VECTOR QUANTIZATION cuettttetaueeuessessesensessessesssessesssssssssesssssansesmsssessessesesssssesessessessessesessessessessssessessensenes 4
UNIFORM QUANTIZATION L...eiuiitisiesesuessessesessesssessssessessensesessessessssessessensasessessessasssssssessesssssessessessassensesesnenses 5
DESCRIPTION OF OPERATION ...ttt sttt sttt bbbt sas st e b ssnssbe b 5
(O] 1 =0] N = N 5SS 6
DA T ASHEET ..ottt ettt et be bt e e e b e e be et e be b ebe b e b e s e b e e be s ebens e abeseennenis 11
[7N =T 1
L@ BTN YT 12
DESIGN HIERARGCHY ...ttt sttt st b b sttt b s b st b et b b e e b srenis 13
EXPERIMENTAL RESULTS. ...ttt sttt sttt st st see bbb ne st be s eneebesbenensebesnennenis 14
RESOURCE REQUIREMENTScuviitiitiiteitieteseestesaessessssssesssssssssessssssesttessssssssssssssssessessssssssseesssssessessessssssens 14
e T IR Y Y S 15
B4-COLOR VGA DISPLAY TEST viiiecieiticeeitiesieitestesseessssssssesssssaessessssssesssssssssssessessssssssessessenses sassssesssnsns 16
VHDL AND SIMULATIONS ...ttt ettt st ss st s b s e bbb s st sbssbesesnsennane 19
WV HDL INDEX ..viitiiteitisteetestestesieessesseesaestesaeessessesssessestessessestestestansensensesssssess seensessesssessessesnsensessenssessessessens 19
TEST BENCH INDEX ...viiuiiieitestesisestesseeieestessesssessessssssessessesssessnessssssessesssssssssssnsensessesssessessessensessessssssessennens 2
DESIGN VERIFICATION w.eeuveiteiteeisesressesssessessessessessessessessessssssssssens sesessesssssessessssssessessssssessessessessessssssessessens 23
L] (N[O s T 25
APPENDIX A —DESIGN ...ttt sttt sre st saa s ssebesresbe s ebesaenseseabeseensstessanens 26
A.1 HIGH LEVEL IMAGE INDEXING PROCESSORBLOCK DIAGRAMeooviitictectecteceesee e eseeee st sreene e 26
A2 SCHEMATICS. c.teiteieeitiereeeestessessssessessesssessesaessessessssssessessssssessesssessessessesssessstessensessessesssessessensessensenns 26

Declaration of Original Content

The design elements of this project and report are entirely the original work of the
authors except as follows:

VGA display module refersto reference [11]
SRAM module will be modified from reference [5,6]
Parallel port interface refersto reference [12]
Members signatures:
Chuping, Julien, Y unan, Yuxin

Abstract

This document describes the design, implementation, and verification of an image
indexing processor implemented on an Altera Flex10k FPGA , which is mounted on a
UP1 board. A histogram-indexing agorithm is used to compare a query image to a
database of images with the goal of finding the images that most closely match the
query image. The images are sent to the FPGA from a PC through a parallel port,
where they are compared, and then ranked in order of decreasing similarity. After
comparing al the images, the index of the most similar images are displayed on LEDS,
which are al'so mounted on the UP1 board.

Achievements

1
2
3.
4

o

. Thetop level processor — worked (not implemented in UP1 board yet)

. Top control unit (TCU) — worked in smulation

Indexing Engine — worked in simulation

Parallel port under Windows NT — worked with real connection from PC to
the board, the transmission rate can reach 734K bits/sec.

Communication between PC and FPGA — worked

VGA display — can display 64 color with acceptable flicking at a higher
scanning rate than normal.

SRAM - not done yet

Algorithm Introduction

Principal of Image Indexing

The objective of image indexing is to retrieve similar images from an image database
for a given query image (i.e., a pattern image). Each image has its unique feature.
Hence image indexing can be implemented by comparing their features, which are
extracted from the images (see Fig.1). The criterion of similarity among images may
be based on the features such as color, intensity, shape, location and texture, etc.

Original image

Input 1
Module Feature
extraction

Feature Database
Formation

Query / A Retrieval
Module Feature comparison Module

| Retrieving & Browsing |

Feature extraction

Query image Retrieved image

Figure 1 Block diagram of principal of imageindexing

Histogram

A histogram is a method used to describe the frequency distribution of a digital signal.
Histograms are composed of multiple bins, with each bin corresponding to a range of
values. The value of each bin is obtained by summing the occurrences of digital
signal samples whose values fall in the domain of that corresponding bin. For
example: An 8-bit gray-level pcture is composed of N total pixels whose intensity
values can range from 0 to 255. Using a 16-bin intensity histogram, with even bin
intervals of 16 (here, the bin interval may be variable from 1 to 256), the image's
intensity frequency distribution can be plotted as shown below (see Fig.2). The
corresponding value of each bin by, (OEKELS5), is the number of of pixels ny, whose
intengity vauefdl intherange of binb,, i.e.:

b =n., (0E£k£15)
(N + 1y +ee b 4o+ = N)

>
»

pixel number n,

by b, b, b by, by, by,

b8
bin b,

Figure 2 A histogram example

Vector Quantization

Vector quantization (VQ) is an efficient compression technique used in digital signal
processing. A digital signal is a sequence of bit vectors. The idea behind VQ is to
map the vectors of adigital signal to a set of vectors, which already exist in the form
of a look-up table (i.e. codebook). The vectors in the codebook are called codewords.
Vectors are mapped by choosing the codeword that most closely matches the original
vector. The criterion for choosing the codeword may change depending on the nature
of the signal in question. By limiting the number of codewords in the codebook, the
original signal is compressed while keeping most of its original characteristics.

Moreover, if both the sender and receiver of the digital signal have the same
codebook, only the codeword labels of asignal need to be sent through a channel. The
receiver can then reconstruct the signal by matching the received labels to their
corresponding codewords. In this way, VQ alows for efficient transmission and
storing of asignal.

Uniform Quantization

Vector quantization is a very efficient compression technique, however, fully
implementing VQ would place demands for FLEX10K chip. Uniform quantization
(UQ) isamore basic dternative to VQ and is more suitable to this project.

Similar to VQ, UQ uses a codebook, which is also pre-generated. In UQ, the range of
a digital signal is divided into m even intervals. If an input signa v, fals into the I
interval (1£1£m), the value of the output signal Vv, is assigned the median value of its
interval, to which alabel is assgned in the meanwhile.

When processing the input signals, instead of using the original signa value, the
corresponding codeword label is employed. For example: A digital image whose pixel
values range from 0 to 255 is quantized into 16 intervals. The corresponding output
and label assignment of each interval is shown in table 1.

Although UQ cannot achieve the high compression performance as VQ, it can still
save storage space to some degree without much distortion. As the example illustrated,
a 256-level input that required 8 bits, required only 4 bits after even quantization was
employed.

Tablel A color component digribution range and itsquantization outputsand labels

Range Label Output Range Label Output
0-15 0 8 128 -143 8 136
16 -31 1 24 144 — 159 9 152
32-47 2 40 160-175 10 168
48 —63 3 56 176 — 191 11 184
64—-79 4 72 192 — 207 12 200
80-95 5 88 208 — 223 13 216
96-111 6 104 224 —-239 14 232
112 -127 7 120 240 - 255 15 248

Description of Operation

This project consists of an image-indexing agorithm implemented in hardware, which
is interfaced with a personal computer through a parallel port. More Specifically, the
algorithm is implemented on a Flex10k FPGA mounted on a UP1 board. Images are
sent from the personal computer to the FPGA, first a query image, then the candidate
images that make the image database. The candidate images are compared to the
query image using the histogram-indexing algorithm. After processing each image,i.e.,
extracting the distance of each candidate image, the ranks of the images that match

the orgina query image can be displayed on LEDs on the UP1 board. Finally, the
computer or probably the VGA controlled by FPGA will be used to display the

images in the order in which they were ranked. Figure 3 illustrates the overdl system.

I I
| Parallel portinterface : |
}I for PC & FPGA Project kernel !
I Image indexing engine |

I
}: sendh?ve) :{
I ngrol datain I
i
I I
I control control / I

ﬂ v VYV Sgnds sgnas control [

’ sgnas I
;i R caculate & store e« | calculate distance of | renk the distances| | !
i quantization histograms histograms (imageretrieval) {:
E —~<P (featureatraction)#» (feature comparison) > {:

I
1: g%rg&osl/ dataout 1

}i Display retrieved images i
i on LED or VGA |

Figure 3 High Leve Image Indexing Block Diagram

The image indexing algorithm and hardware interfacing is implemented with three
major components. These components are the Top Control Unit, the Interface Unit,
and the Image-indexing Engine.

Components
Top Control Unit

The top control unit (TCU) controls the two other major components of the image
indexing processor, i.e., the Interface Unit (IU) and the Image-Indexing Engine (I1E).
The TCU is implemented with a large finite state machine, which has 21 states to
guide the IU and I1E through its various processing stages. See Appendix C.2 for the
State diagram.

Image-Indexing Engine

The image-indexing engine is the heart of the image-indexing processor and it is
implemented in an engine controller together with 5 sub-module blocks. Each block,
apart from the EAB ram, is employed using mini-controller to control the block’s
behavioral datapath. The engine controller controls the states of the whole index
engine and it activate and disable the sub-modules in the appropriate time. Although
there are also some small controllers in the sub-modules, we still call them parts of
data path due to the relationship between them and the engine controller.

Control Path

The control path for the image-indexing engine is a finite state machine (Moore
machine) that changes states based on the primary inputs of the imageindexing

engine, which come from the top control unit and the sub-modules that it controls.
The state machine has 12 states that are used to navigate the sub-modules through its
various processing stages, which are described below. See Appendix A.4 for an
illustration of the state diagram.

Data Path

The image-indexing engine data path does all of the work including the histogram
building, distance calculation, distance sorting and ranking of all input mages. The
data path is composed of seven components: memory initialization (whole EAB rams
initialization) module, the query and candidate image histogram builder (combination
of uniform quantization and histogram building), the candidate image histogram ram
initializaion module, the gray-level converter, the distance calculator,the image
ranker, and the ram manager. See Appendix A.5 for an illustration of the data path.

Whole EAB ramsiinitialization module

This block is used to initialize the FPGA’s internal memory (EAB cells) before
building any histograms. Each of the memory locations, which are used to store
histograms, areinitializedto ‘0.

The memory initializer is composed of a control path and a datapath. The control path
has three state, namely “idle’, “init”, and “ready”. In the “init” state, a counter is
used the increment an address from O to 47, which is used to write “0” into each
memory location occupied by the query histogram. See Appendix A.6 for the control
path.

Candidate image histograminitialization

Similarly, this component is used to clear the candidate image histogram memory,
whenever we finish the distance calculation for each candidate image. The control

path isimplemented in a similar fashion aso.
Gray level converter

Thegray-level converter converts color image datainto a gray-level image equivalent.
This component is only used when the database contains both color and gray-level
images. In this case, al color images are converted to gray -level images to allow for a
comparison. This option can be disabled if not desired.

In our final design, due to the limited number of logic cells of the chip, we cut this
part out during the final integration of all the components.

Uniform quantization & Histogram cal culation

The histogram builder builds an image’s histogram one pixel at a time using uniform
quantization (static codebook has not been adopted due to the time constaint).
Because the histogram is stored in memory, the histogram builder must use registers
to load, add, and then store information, and is therefore not purely combinational as
would be expected by a conventional data-path component. See Appendix A.7 for
datapath and control path.

Distance calculation

The distance calculator sums the total absolute difference between each of the 16 bin
values of the query image and the current image being processed. Please see the
Appendix A.8 for the datapath and control path.

Sorting rank

After obtaining a candidate image's distance, it is compared to the current list of
smallest distances (insert sorting) and stored in its correct position in the list by the
image ranker. Please see Appendix A.9.

EAB ram manager & Connection

The EAB ram manager is used to control the connection between the functiona
modules and the EAB rams. We implemented it by a pure combinational logic, i.e.,
for each pieces of ram block (query histogram ram and current candidate histogram
ram), using several 4 to 1 mux to select the module to be connected to the rams. The 2
bit select signals is actualy decoded from 3 control signals come from the engine
manager.

Since there are 12kbits internal ram in FLEX 10k, each data width, which we need, is
16 bits and the total ram disk space is no more than 2.5 kbits, 8 pieces of internal ram
had originally been designed. But when we began to instantiate the first piece of ram
for histogram of query image, the actual 768bits ram (3 pieces) with 3 sets of input
and output pins used up all 6 blocks of EABs. That means we couldn’t instantiate all
pieces of ram in our design. We found that not only the capacity of ram will affect the
usage percentage of EABs (as we usualy think), but also the number of input and
output 10 pins, which means the wider the address and data width, or the more pieces
of rams instances you use, the more EABswill be occupied.

Because no solution was found for this problem, the histograms for the R, G and B
components of one image were combined together by using only one piece of ram
instead of 3 pieces for R,G, B separately. Therefore, we can only use one set of input
and output pins to read and write the ram block sequentially for R, G, B instead of
reading/writing the R,G,B in pardlel. Since R,G, B has 16 hins, we will use a 4 bit
address bus (16 words) if we use three ram instances. By combining the three pieces
together, we have to use a 6 bit address bus to represent 48 words. This way,the total
number of pieces of ram was reduced to 4, one for query image histogram, one for
current candidate image histogram, one for distance, and one for rank, but they still
didn’t fit.

Finaly, by storing the images’ updated ranks in registers instead of in the internal ram,
enough memory was made available for storing the histograms and distances. The 3
ram instances take all 6 full EAB blocks when only 48(words) ~ 16(bits) = 3 = 2304
bits are required (Figure 3 and EAB_rams.vhd).

However, in our final design, we end up by using only 2 pieces of internal ram for
guery image and candidate image and cut the distance ram off. The distance is
calculated after we get the histogram of each new candidate image and it is directly
used to calculate and update the ranks so that we do not need to store the distances of
each candidate image any more.

Although Altera recommends Cycle-Cycle Dual-Port RAM (csdram) to instantiate the
internal ram for Flex10k family (from Altera website), we still got the foregoing
problems when we use csdram modules. Also, we find that even the percentage of
used EABs decreases a little bit, but we pay the price of using some of the logic cells,
which is not desirable. Another disadvantage of using csdram is that it is dual port
ram, which makes the interface more complicated. We finally decided to use
[pm_ram_dq instead of csdram.

The following figure smply illustrates how our design for EABs carried on.

i datain 16 datain 16
datain 16 Ram for Ramfor 6
ﬁ" 16 ﬁ‘
?’L’ 16 address 6 Query |
addr Ram R +> Weﬁ‘ image ﬁ ad% ?nLqmé £ .
/A . T W oy
We > datain 16
dataLﬂJﬁ7n- Ram for ﬁ’ Ram for 16
addiessBy Condiddle 4715;> datain 16 address6 Qey |/
d%f;, _we 4] image 7 Remfor | 16 — A imee
r q X we q
addr rRemG | 1 ajdxsﬁ7, Cadidate |~ T,
we 7 B 7 I‘a]n 16 - ‘ we imege a
> K g 8 detain 16
addvr\;m | di;(;ce 7 .q Ran_ for 16
i - datain 16 address6 Candidete | /'
datain 16 ﬁ p
16 . ﬁ} Ram 16 we image q
addres8 Ram B daan6 | Ram address6 for YAREN >
- —'L> addces47;; for | 6 we 4 > distance
_— q —ue 7yl Rak 7 qg —»
i Fina Design
First design only for query image Second Third

This block is an important part in our indexing engine in that there are three
functional blocks (two memory initialization blocks and the histogram calculater)
need to write data from it and two block needs to read data (histogram builder and
distance calculater).

We have to take care about the connections among these blocks in order to avoid
contension of the data bus and address bus for query image and candidate image,
respectively. Same with the write enable sgnd “we’.

Please see Appendix A.10 for illustration of the multiplexors employed to deal with
the forgoing problem.

Indexing counter

This component is a simple counter which assigns a number to each candidate image
being processed. This number is the images label, and this label is displayed on
LEDs when the most similar images are being declared after all the images have been
compared.

Summary: When we integrated all of components together and simulated the top
level VHDL file for engine, wefound the engine took so much percent of logic cells
for Flex10k240RC-4 chip. The following table demonstates the comparasion among
the different pixels of image, data width for histogram and distance and the number of
display for rank (without gray level converter).

case #of pixe #of firse | Datawidthfor Logiccels Registered
) toprank | histogram and _ performance(clock

perimage | giglay | distance(bits | (totd:1152) period:ng)

1 128x9%6 or 4 16 1028 (89%) 72.1
120x90

2 64x48 4 14 950(82%) 66.6
3 64x48 4 12 870(75%) 60.4
4 64x48 2 12 764(66%) 58.5

Since there are still about more than 200 logic cells to be added for final processor
VHDL file, we take the case 4 to smulate our engine. One should note that in the
following anaysis, we till base on the 16 bits data width and 4 rank display.

Interface Unit

The interface unit is used to allow communication between the personal computer and
the UP1 board. The interface requires control logic on at both ends. On the PC side, a
driver is used to control the parallel port. On the FPGA side, a controller will take
over the management of the interface.

PC Sde

Because information is sent from the PC to the FPGA uni-directionally, the parallel
port is implemented using the SPP mode. To program the parallel port in SPP mode,
three registers are used. “The port base address (1/0 Base) is used to write to the data
lines. The parallel port status register address is at the port base address plus one and
is used to read the status of the paralel port. This will alow for reading the ACK
signal coming from the UP1 board. The parallel port control register is at the port base
address plus two and is used to control the parallel port. This will alow setting the
TRANSFER and STROBE signals’ [12]. The paralel port SPP mode register
definitions are asfollows:

Label Bit 7 Bit 6 Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Data D7 D6 D5 D4 D3 D2 D1 DO
Status JAck /IRESET
Control ITRANSFER IS_HEAD IMGEND /Strobe
FPGA Sde

To interface a PC parallel port to the FPGA, 14 pins of the UP1 FPGA are used here.
These pins include 4 input control signals from PC and 2 output status signal back to

10

PC. In the 4 control signals, one for strobe, one for enable, one for header_data, one
for animgEnd. The 2 status pin are for Ack and Reset, respectively. The left 8 pinsfor
input datalines.

The pin layout from the PC paralé port is as follows:

Name Fin Type of Pin Description

STROBE 1 Output Strobe to FPGA

IMGEND 14 Output Tels FPGA acomplete image has
been sent

IS HEAD 16 Output Tells FPGA data port is sending
header information

TRANSFER 17 Output Transfer data (Start/Stop)

Reset 15 Input Reset signal from FPGA

ACK 10 Input Acknowledge from FPGA

Data 2-9 Output DataBit0—-7

These pins will connect to the UP1 FPGA as follows:

PC Pardld Port Pin Name UP1 FPGA Pin Name Type of Pin
STROBE pc_c b0 Input
IMGEND pc_c bl Input

IS HEAD pc_c b2 Input
TRANSFER pc_c b3 Input
RESET pc_s b3 Output
ACK pc_s b6 Output
Data pc_daa in Input

“The 10 input lines will have to be connected to the UP1 FPGA through 2 74LS245
buffers and the 2 output line will have to be connected through another 74LS245
buffer. This will ensure that the paralel port and FPGA do not damage one
another.”[12]

Datasheet

Features

Image database are stored in a compuiter.

11

The retrieved images are those which have the smallest distance from the
query image with respect to the color-histogram agorithm.

Due to the limit of the capacity of the FLEX10K, the size of the image
database is only up to 64. Also, the small number of logic cells restrict the
number of retrieved images. So far, only 2 images can be retrieved.

When indexing images, all images have to be sent from PC to FPGA through
the paralle port of the PC in SPP mode.

The query image is the first image to be sent, followed by the all candidate
images ready to be matched to the query one.

The indices of the retrieved images will be displayed on LEDs. One dip switch
is used to select the different rank number.

I/O Signals

Table2- FPGA 1/O Pins

Signa Name Type Number of Pins Description

Interface to Pardld Port

PC data In In 8 Pardle port datainput to FPGA from PC

PC s b6 Out 1 Handshaking line between the PC and FPGA
board. Acknowlege the “ Strobe” signal from PC.

PC_s b3 Out 1 Send “reset” signal to PC.

PC c b0 In 1 Strobe signal from PC.

PC c bl In 1 “Animage end” sgnd from PC

PC c b2 In 1 “Sending header information” signal from PC

PC cb3 In 1 Starting or stopping to transfer data (i.e.,enable or
dissble the FPGA) sgnd from PC

Interface to LEDs

Postion In 1 Used to sdlect different ranking results

LEDO, LED1 Out 16 The rank of the retrieved images that will be
displayed in LEDs.

Control Signds

Push to_done In 1 Push the FLEX_PB1 to end the indexing task.

Reset In 1 Reset

Clock_Sys In 1 System Clock

12

Design Hierarchy

Image
Indexing
Pr ocessor

Compiled
Simulated
(test bench used)
No error

Compiled, smulated,
—>] Controller Noerror
. Compiled, smulated
™ Header/data splitter mp;\l o ;rg:u
Top
Control Unit N Fixdl_register Comp;\lI ed, smulated
Compiled, o error
smulated Compiled, smulated
(test bench used), — No error
No eer Compiled, smulated
mpiled, smu
—>| RGB seperator | pN o aror
Compiled, smulated
—>| Color_gray converter | pN o arror
—> Enginecontroller Comp:\llid,;g:ul ated
Inde>§ing i Compiled, smulated
Engine —> EQtHistogram No error
Compiled(without - ;
gray level converter), 7 Distance Comp;\ljed, Simulated
. o error
smulated
No error . Compiled, smulated
) RELITE No error
—> Memory Initidization Comp;\llid;;:g:ul aed
L—»{ Candidate mem Initialization Comp;llid';rg:”'aed
Compiled, smulated - ISmoiaed
No error Compiled,amulat
|—> Parallel port No error
Interface - :
|_’ LED di Compiled, smulated
i No error

Figure 4 Diagram of desgn hierarchy

13

Experimental

Results

Resource Requirements

Table 3- Logic Cel Requirements and Registered Performancefor Algorithm Components

Regigered
Performance or
Entity/Component Logic Cdls Required Max. Matrix Delay
(unit:)
Controller 131 448
Hesder/Data Splitter 33 139
Top Contral Unit Heeder Information . 11
Decoder
Pixel Register 69 19.9
Subtotd: Top Control Unit 234 44.6
RGB separate 18 10
Color-gray converter 256 19.8
Enginecontroller 16 10.0
Internal ram 0 8.6
Indexing Engine Cardidae memory 37 203
Memory initidization 37 20.3
Histogram 224 253
Digance 346 714
Ranking 207 74.0
Subtotd: Imege Indexing Engine 1141 74.1
Pardld Port Interface 13 16.9
Interfaces LEDs Controller 68 82
LEDs 32 30.5
Clock Demultiplier 2 8
Totd (without the gray-leve converter) 104 106.5

Note the engine part is based on the 16 hits datawidth and 4 rank display.

Speed vs. Area

The speed of the imageindexing processor depends mostly on the design of the
imageindexing engine. Most of the engine€'s components are directly in the
processors critical path. Some of the engine's components, namely the Histogram
Builder and Ranker can be implemented to increase speed in exchange for more area,
or decrease area at the expense of speed.

The Histogram Builder could be implemented to build the R, G, and B histograms
either concurrently or sequentially. A concurrent implementation would increase the
component’ s throughput by a factor of three (3 color components), but would increase
its area consumption by an equa factor. In the last report, the R, G, B histograms
were built concurrently, however this time they are built sequentialy to save area.

In the preliminary design of the image indexing datapath, the image ranking was done
after al of the images distances had been tabulated. This involved storing both the
distance and the index of each of the 64 images into memory, and then sorting them.
This scheme required alot of memory, as well as considerable time at the end of the
indexing process. A second, more suited solution was devised, where the sorting of
the images occurs after each of their distances were calculated. This type of sorting is
done concurrently when the histogram building is occuring, thus eliminating the long
delay at the end of the indexing process. Also, by keeping only the N best results, it
became feasible to store the distance and index of each image in registers rather than
ininterna memory, which isaready in very low supply.

For each new distance value calculated the ranking dgorithm must insert the value
into the appropriate position of the list and then shift the all of the values below that
position down by one. This implementation is fast because the value to be held at each
position in the list is chosen concurrently. This differs from software
implementations where the CPU must traverse through memory in a sequential
manner to sort alist. After compiling this implementation, a problem revealed itself.
The area required for each position in the list was 90 cells. This is quite high and
wouldn’'t allow us to keep track of very many image rankings. Further analysis of the
design was required.

A revised implementation, which is implemented using RTL rather than behavioral
achieves the identical speed, but requires significantly less area. The savings in the
area is accomplished by sharing a comparator between each stage of the ranking list.
In the preliminary implementation, each stage compared both (above > new) and
(current > new). Upon inspection, it can be seen that both the current and above
values are compared to the new value. So by placing a single comparator between
each stage, it can be used as the above comparator for the stage below it, and as the
current comparator for the stage above it. Thisis clearly illustrated in appendix C.5.

15

64-Color VGA Display Test
Introduction

A standard VGA monitor contains of a grid of pixels typicaly 480 rows and 640
columns. Each pixel can display various colors, depending on the state of the red,
green and blue signals (R, G and B) . A VGA monitor aso has an internal clock that
determines when each pixel is refreshed, typically 25.175 MHz. The refresh behavior
of the monitor is partialy controlled by the horizontal and vertical synchronization
signals. After the first pixel is refreshed, the monitor refreshes the remaining pixelsin
the row in the raster scan mode. When the monitor receives a horizonta
synchronization signal, it retraces and then starts to refresh the second row also in
raster scan mode. By repeating this process until the scan reaches the bottom of the
monitor, the monitor will receive a vertical synchronization signal and retrace back to
the first pixel (top left corner). Although stated above that normally the monitor only
scans 640 pixels each row, actually it uses 800 clock periods of which 640 are used to
scan the pixels which can be seen on the screen. The remaining 160 clock periods are
used to retrace back (moving the CRT from the end of the row to the beginning) and
also the synchronization. A similar process applies to the vertical synchronization,
which uses 525 instead of 480 horizontal synchronization pulses. So the screen
refresh frequency istypicaly 60 Hz.

Problem

Fortunately the clock frequency of the UPL board used is the same as the VGA
operating frequency. So if in 800*525 clock periods, we send 640*480 signals,
including RGB, i.e., a 640*480 8color picture data, we can get a steady display of
that picture. However, the picture which can be displayed is limited to 8color only,
because 3 bts— R, G, B are used to represent the color and each bit can only have two
states— 0 and 1. Therefore there is abig problem: 8-color (3 bits) istoo less to display
anatura picturewhich is generaly 16-bit or higher (24-bit for true color) per pixdl.

Attempt to reach 64 colors

The solution of the problem is similar to develop a VGA display driver which can
display 64 colors on the screen. In theory, if we can expand the 1-bit RGB to 2hit
RGB state, we can have a display of 2°=64 available colors. The following scheme is
the trick used to have avirtua 2 bit RGB date:

1. The picture data we use for the indexing is true color. It is easy to extract the
RGB data and round them up to have 2 bits with 4 states: 11, 10, 01, 00.

2. We need to find the way to convert the 4 states of each RGB into 2 states. 0 or
1 because the screen can indeed show 8 colors pattern for every refresh screen
(i.e., 1/60 second). But our eyes can be cheated by displaying same data in
dlightly different color patterns and acknowledge that the displayed pattern has
64 colors.

3. One exampleisthat we can use a 2-bit counter in 3 states (00, 01 and 10), and
by doing simple logic calculation, the 2-bit RGB data can be converted into 1-
bit states. The counter is increased by 1 at every rising edge of the vertical

16

sychronization pulse. Then for a 3 continuous refresh screen clock (3*(1/60)
seconds), the monitor receives the signal of the following RGB dates:

RorGorB
vaue
00 01 10 11
00 0 0 0 1
Counter 01 0 0 1 1
10 0 1 1 1

4. The above way actually behaves like that we divide the refresh screen
frequency by 3 into 20 Hz. So another problem appears that the screen is
flicking very heavily to our eyes since only the refresh screen frequency is
higher than about 45 Hz we will not perceiv e the flicking.

5. We have to accelerate the refresh screen frequency by increasing the
horizontal and vertical synchronization frequency. That is, for example, we
will send the horizontal synchronization signal to the monitor every 500
internal clock time instead of 800 and also the vertical synchronization signal
every 300 internal clock time instead of 525.

Test results

The following table lists the comparison of screen display performance for different
parameters used:

f.synen
Thsnen (unit:horizontal Refresh Screen Flicking
(unit:clock period) | synchronization Rate

pulse)
800 525 60 very heavily
700 451 80 heavily
600 373 112 dightly
560 357 126 acceptable
500 271 186 sable

Comments

(1) Obvioudly the trick used in this method to display more than 8-color can only
be used to display patterns smaller than about 400* 200 pixels, if we want to
have a stable display.

17

(2) Because of the different properties of display monitor, some monitors can not
accept refresh rate higher than a certain value. This experiment results were

obtained on a Panasonic PanaSync E70i type monitor.

18

VHDL Code (all are zipped in index.zip file)

VHDL index
1. Toplevel processor:
top_proc.vhd — the top level processor
— compiled and simulated with no errors
— Thetop entity of the whole design
2. Top Control Unit:
tcu.vhd — TCU
— simulated, no known bugs

— used to control the whole design, a unit in parallel with the
indexing engine unit and interface unit.

controller.vhd — Controller

— simulated, no known bugs

— used as a component with a finite state machine
splitter .vhd — Header/datasplitter

— simulated, no known bugs

— used as component to split the raw data from PC
pixel_reg.vhd — Pixd register

— simulated, no known bugs

— used as component to convert the serial 8bit RGB components,
which are input from PC, to parallel 24-bit pixels, which will be
sent to the indexing engine.

head_dec.vhd — Header decoder
— simulated, no known bugs
— used to decode the header information comes from PC
3. Indexing Engine Unit:
engine_1.vhd — top leve interface for index engine

— compiled and simulated with no errors

19

— top level circuit for index engine, including the engine controller
and several sub- modules, data path

controller_final.vhd — Indexing engine controller

— compiled and ssimulated with no errors

— controller of the index engine
index_counter.vhd — counter for index of each candidate image

— compiled and ssimulated with no errors

— acounter used to keep trace of the index of each candidate image
EAB_ramsl.vhd — EAB ramfile

— compiled and simulated with no errors

— used to create two pieces of ram blocks in EAB to store the
histograms for query and candidate images

mem_init.vhd — raminitidization file
— compiled and ssimulated with no errors

— used to initialize the internal ram (rams for storing query and
candidate image histograms) each time when a query image is to
be retrieved from a group of candidate images (each operation)

gray_converter.vhd — Gray level conversion

— compiled and simulated with no errors

— used to generate a gray image histogram by using a color image
color_hist1. vhd — Color histogram calculation

— compiled and ssimulated with no errors

— used to build the histogram for color (query and candidate) images
mem_cand_init. vhd — memory initidizationfile

— compiled and ssimulated with no errors

— used to initialize the ram block storing the candidate image each
time a new candidate histogramisto be built

dist_ctl. vhd — the controller for distance calculation
— compiled and simulated with no errors
— controller for distance calculation of a candidate image

dist_calculation. vhd — distance calculétion

20

— compiled and ssmulated with no errors

— behavioural data path used to calculate the distance between a
candidate image and the query image

distance_top. vhd — distance calculation top level circuit
— compiled and ssmulated with no errors

— toplevel circuits for distance calculation, including the controller
and the data path

dist_rank.vhd — rank caculation
— compiled and ssimulated with no errors

— used to sort the images in descending order based on their rank

gray_converter.vhd — convert color to gray leve
— compiled and ssmulated with no errors

— used to convert input data from color to gray level

4. InterfaceUnit:
ppi2pc.vhd — Pardld port interface
— implemented
— used to connect the signals between PC and board
disp_led.vhd — LEDs display controller
— implemented
— used to display rank of image on LEDs
led_hex.vhd — Led display
— implemented
— used asa component for Led display in testing parallel port
5. System clock demulitplier
clock _scaledown.vhd — scaledown clock frequency
— implemented

— used to provide clock whose frequency slower than the system
clock in order to meet the design requirement.

21

6. Usedfor demo:
disp_parport_test.vhd — Paralel Port Interface VHDL code for testing
— implemented
— used to test the parallel port in FPGA board
7. 64-color VGA display test unit:
vga_test.vhd —thetop level processor
— implemented
— used to test multiple color display
syncgen.vhd— synchronous signals generator
— implemented
— used to generate the horizontal and vertivcal synchronous signals
RGB_gen.vhd — RGB signals generator
— implemented
— used to convert 2-bit R,G,B signalsto 1-bit R,G,B signals
clock _rgb.vhd — Accessory of RGB_gen..vhd
— implemented

— used to convert 2-hit R,G,B signalsto 1-bit R,G,B signals

Test bench Index

Top Level Entity Test Bench

1. simu_top_level.vhd — used to simulate the top entity, and test tis performance
after pack all components to a complete image indexing processor. It includes

tow components: “ simu_pc component” , “ top_proc component” .

2. simu_pc_new.vhd — a component of simu_top_leve.vhd, used to simulate the
PC states and generate the psuedo image data.

TCU Test Bench

3. simu_proc.vhd — used to simulate the top entity, the image indexing
processor, and test the performance of the Top Control Unit (TCU entity)
before pack all components together. It ncludes “ tcu component”, “ ppi2pc
component” and 3 simulated components, which are “ simu_pc component” ,
“simu_index_eng component” and “ disp_led component” .

22

4. smu_pc oldvhd - a component of simu_proc.vhd, similar to
simu_pc_new.vhd.

5. simu_index_eng.vhd — a component of simu_proc.vhd, used to simulate the
indexing engine states.

6. disp_led old.vhd — a component of simu_proc.vhd, used to simulate LED
display states.

Design Verification

Comment

Actually, this part of report is only for Index engine. Because, in Mentor Graphics, the
LPM_RAM_DQ module is not available, al test cases for the index engine are based
on and smulated in MaxPlus 1.

The most important point of this part is that we have to make sure we can retrieve and
store, i.e., read/write data from/to the EAB rams without and errors. In order to verify
our design, we made the following test efforts. First, we tested whether we can
retrieve the data from the EAB rams initialized with *.mif files. By comparing the
data read from the rams and the data in the *.mif file, the correct reading operation
has been proved. Also, this way we know that the data now in the ram isinitialized as
in the *.mif file. Then we went further to check whether our memory initialization file
works. Since we have to initiate the ram blocks to “0” each time when we try to
retrieve a query image (one operation for the whole system), and each time a new
candidate image come in for the candidate memory, the writing (storing) of “0” can
be verified by checking the output port of the ram blocks when writing the data. The
correct initialization has been proved when the output port changed to all “0” s instead
of the data in the *.mif file. Finally, we tested reading/writing the data from/to EAB
ramsin one file, aswhat we build thecolor image histogram.

After this step, we began to integrate ram blocks together with other components in
our index engine design. Because several sub-modules in the index engine al need to
retrieve and write back data from the EAB rams, severa 41 mux have been used for
each set of memory data_in, we, address, data_out signals. And we also tested the top
level engine to see whether these sub-modules can get access to the appropriate ram
blocks at the right time and operate correctly.

The simulation waveforms demonstrated that everything worked fine.
Index

1. init_test 1.vhd — used to test whether we can read the data from the EAB
ram blocks. It includes “ EABs ram component” , two mif files for query image
data and candidate image data, and a counter to generate the address from O
to 47.

2. init_test.vhd — used to test whether we can clear the EABs when they have
been initialized by *.mif files firstly. It includes “ EABs ram component” , two
mif files for query image data and candidate image data, “ mem_init_1.vhd

23

component” . After thisfile is executed, the all of the data in EABs should be O
instead of the data in *.mif files.

. init_cand_test.vhd — used to test whether the cand_mem_init component can
work properly. By initialized both query and candidate images with *.mif file,
the query image histogram data in the query ram keep unchanged and the
candidate image histogram has been cleared.

. index_test_uninit.vhd — used to test whether we can retrieve/store histogram

data from/to EABs with *.mif files in EABs frstly. It includes “ EABs ram
component” , two mif files for query image data and candidate image data,
and “ color_histl component” to read the data out from the ram, add 1, and
write the data back.

index_test.vhd —used to test whether we can retrieve/store the histograms
from/to EABs after we clear the memory inistiated with *.mif files firstly. It
includes “ EABs ram component”, two mif files for query image data and
candidate image data, “mem init 1.vhd component” and *“color_histl
component” . Thisis to werify that the histogram can be build correctly.

. distance_eab_test.vhd — used to test whether we can retrieve the histogram
data from the EAB rams and cal cul ate the distance between a candidate image
and the query image without any errors. It includes “ EABs ram component” ,
two mif files for query image data and candidate image data and
“ distance_top.vhd component” .

hist_dist_top_test.vhd — used to test whether the whole index engine can
work properly. Incorporated with all the modules, i.e, “EABs ram
component” , two mif files for query image data and candidate image data,
initialization module and cand_initializion module, “distance top.vhd
component” and “ color_hist1.vhd component” , the index engine was tested to
build the histograms for query and candidate images, calculated the distances
for one candidate image.

24

References

1

10.

11.

12.

B. Furht et a, Video and Image Processing in Multimedia System, Kluwer
Academic

J.R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Analysis and
compression, http://disney.ctr.columbia.edu/jrsthes s'thesissmall.html .

M.D. Marsicoi et a, Indexing pictorial documents by their content : a survey of
current techniques, Image and Vision Computing 15 (1997) 119-141

JR. Smith e d, Tools and Techniques for Color Image Retrieval,
http://www.ctr.columbia.edu/~jrsmith/html/pubs/tatfcir/col or.html

Tim Bender, Eric Chan, Data Compression Co-processor Fina Report,
http://www.ee.ualberta.ca/~elliott/ee552/projects/1999 w/dataCompression/

Eric Cheung, Felicia Cheng, David Li, Tin Wai Kwan, SRAM Interfacing Basics,
http://www.ee.ual berta.ca/~€l liott/ee552/studentA ppNotes/2000_w/interfacing/sra
m_basics/sram.html

Tim Bender, Eric Chan, RS-232 Seria Port Application Note,
http://www.ee.ual berta.ca/~€lliott/ee552/studentA ppNotes/1999 w/RS232/

John Koob, Parallel Port Interfacing,
http://www.ee.ua berta.ca/~dlliott/eeb52/studentA ppNotes/1999f/para el port/

Juan Gabriel Del Cid Portillo, Parallel Printer Port Access through Java,
http://www.geocities.com/Juangab9/parport/

F. Idriset al, Image and video indexing using vector quantization, Machine Vision
and Applications (1997) 43-50

Hao Luan, Bo Liu and Albert Chan, EE552 APPLICATION NOTE,
http://www.ee.ual berta.ca/~boliu/proj ects/ee552/ee552.html

Rabi Mahapatra, Xilinx Chapter 13 — Pardld Port /0,
http://www.cs.tamu.edu/course-info/cpsc483/spring98/rabi/xilinx/chapl3/chapl3

25

Appendix A — Design

A.1 High Level Image Indexing Processor Block Diagram

(The detailed TCU block diagram is included)

| Top Control e e e e e R e e e e
i Unit (TCU)] byte_in
push_button_1 (rLex_py 4 P
7 header/data . .)
o , . i head header info pixel register
pc_data_ing data_in 1 splitter % decoder
#’. %%’ _info
3 1 A A A = A= AT °.
| r |glefe EERIEIE 508
i 1 s - i 5 |5 |° 3 ! és;- g |3 s
Dl = i g g |9 I -3 N P
| 2 ' ? B 5 |5 = ks
—53' i S‘ f N ® % a A A N A 4
pc_c_ | N § nEnable !
pc_c_b2 i | 8 | header/data,
_—
pc_c bl ; 3 nAnlmgEndl Controller
pc_c_bO0 : N -i nStrobe L,
P2 : 7y 7y Yy
< S I O
i Q A
N 32 _§ _%" . wiglels |32z (2
: 2 8 (8 S LED _|2|&lz |& (2|2 |&]|=
] 2 Q |& 8 ENIIRIE (ol il (9
pc_s b6 | la|! I |5 ['s |
PY PR S S A -
: 3|8 |# 2 LBl FIEFIES
i = =
pc_s b3 LrI;D = o v v v v
< T S = . .
! Display Control Image | ndexm_g Engine
reset (g1 Ex_pRo) (See Appendix A.3

position (FLEX sw1)
[l

for more details)

d |

sngpx

A.2 Schematics

External circuit connecting and DB-25 femal connector

DB-25 Female Connector
——T0|
C °% o 1
[
°» 100 |¢— stat b6
{ | on o1 data_b7
o 'O databs
Parallel Port (LPT1) o 70— data b5
60— data b4
status port control port data port ©% 56|, data b3
ctrl_b3 « o 17 —
4 40l data b2
ctrl_b2 «] @ 16 =
30— data_bl
stat_b3_,] @ 15 =
20| 3 data b0
ctrl_bl | o 14 =
\ 4 \1'—> ctrl_b0
v 74L.S245
7418245 8
7415245 2 7
> FPGA
2

26

