
EE 552 2000f 2000-11-24

EE 552 Final Report

Image Indexing Processor

INSTRUCTOR:

Dr. Elliott

GROUP MEMEBERS:

Yuxin Wang, yxwang@ee.ualberta.ca

Yunan Xiang, ynxiang@ee.ualberta.ca

Julien Lamoureux, lamoureu@ee.ualberta.ca

Chuping Liu, chopin@ee.ualberta.ca

 1

TABLE OF CONTENTS

DECLARATION OF ORIGINAL CONTENT...2

ABSTRACT...2

ACHIEVEMENTS ... 3

ALGORITHM INTRODUCTION .. 3
PRINCIPAL OF IMAGE INDEXING .. 3
HISTOGRAM .. 4
VECTOR QUANTIZATION ..4
UNIFORM QUANTIZATION .. 5

DESCRIPTION OF OPERATION.. 5
COMPONENTS ... 6

DATASHEET.. 11
FEATURES ... 11
I/O S IGNALS .. 12

DESIGN HIERARCHY... 13

EXPERIMENTAL RESULTS.. 14
RESOURCE REQUIREMENTS.. 14
SPEED VS. AREA ... 15
64-COLOR VGA D ISPLAY TEST .. 16

VHDL AND SIMULATIONS... 19
VHDL INDEX .. 19
TEST BENCH INDEX... 22
DESIGN VERIFICATION... 23

REFERENCES.. 25

APPENDIX A – DESIGN.. 26
A.1 HIGH LEVEL IMAGE INDEXING PROCESSOR BLOCK D IAGRAM.. 26
A.2 SCHEMATICS ... 26

 2

Declaration of Original Content

The design elements of this project and report are entirely the original work of the
authors except as follows:

• VGA display module refers to reference [11]

• SRAM module will be modified from reference [5,6]

• Parallel port interface refers to reference [12]

Members’ signatures:

Chuping, Julien, Yunan, Yuxin

Abstract
This document describes the design, implementation, and verification of an image-
indexing processor implemented on an Altera Flex10k FPGA , which is mounted on a
UP1 board. A histogram-indexing algorithm is used to compare a query image to a
database of images with the goal of finding the images that most closely match the
query image. The images are sent to the FPGA from a PC through a parallel port,
where they are compared, and then ranked in order of decreasing similarity. After
comparing all the images, the index of the most similar images are displayed on LEDs,
which are also mounted on the UP1 board.

 3

Achievements

1. The top level processor – worked (not implemented in UP1 board yet)

2. Top control unit (TCU) – worked in simulation

3. Indexing Engine – worked in simulaltion

4. Parallel port under Windows NT – worked with real connection from PC to
the board, the transmission rate can reach 734Kbits/sec.

5. Communication between PC and FPGA – worked

6. VGA display – can display 64 color with acceptable flicking at a higher
scanning rate than normal.

7. SRAM – not done yet

Algorithm Introduction

Principal of Image Indexing

The objective of image indexing is to retrieve similar images from an image database
for a given query image (i.e., a pattern image). Each image has its unique feature.
Hence image indexing can be implemented by comparing their features, which are
extracted from the images (see Fig.1). The criterion of similarity among images may
be based on the features such as color, intensity, shape, location and texture, etc.

F e a t u r e D a t a b a s e
F o r m a t i o n

F e a t u r e
e x t r a c t i o n

F e a t u r e e x t r a c t i o n

F e a t u r e c o m p a r i s o n

R e t r i e v i n g & B r o w s i n g

Q u e r y i m a g e R e t r i e v e d i m a g e

Q u e r y
M o d u l e

R e t r i e v a l
M o d u l e

I n p u t
M o d u l e

O r i g i n a l i m a g e

Figure 1 Block diagram of principal of image indexing

 4

Histogram

A histogram is a method used to describe the frequency distribution of a digital signal.
Histograms are composed of multiple bins, with each bin corresponding to a range of
values. The value of each bin is obtained by summing the occurrences of digital
signal samples whose values fall in the domain of that corresponding bin. For
example: An 8-bit gray-level picture is composed of N total pixels whose intensity
values can range from 0 to 255. Using a 16-bin intensity histogram, with even bin
intervals of 16 (here, the bin interval may be variable from 1 to 256), the image’s
intensity frequency distribution can be plotted as shown below (see Fig.2). The
corresponding value of each bin bk, (0≤k≤15), is the number of of pixels nk, whose
intensity value fall in the range of bin bk, i.e.:

0 1 15

, (0 15)

()
k k

k

b n k

n n n n N

= ≤ ≤
+ + + + + =L L

bin bk

b0 b2 b4 b6 b8 b10 b12 b14

pi
xe

l n
um

be
r

n k

Figure 2 A histogram example

Vector Quantization

Vector quantization (VQ) is an efficient compression technique used in digital signal
processing. A digital signal is a sequence of bit vectors. The idea behind VQ is to
map the vectors of a digital signal to a set of vectors, which already exist in the form
of a look-up table (i.e. codebook). The vectors in the codebook are called codewords.
Vectors are mapped by choosing the codeword that most closely matches the original
vector. The criterion for choosing the codeword may change depending on the nature
of the signal in question. By limiting the number of codewords in the codebook, the
original signal is compressed while keeping most of its original characteristics.

Moreover, if both the sender and receiver of the digital signal have the same
codebook, only the codeword labels of a signal need to be sent through a channel. The
receiver can then reconstruct the signal by matching the received labels to their
corresponding codewords. In this way, VQ allows for efficient transmission and
storing of a signal.

 5

Uniform Quantization

Vector quantization is a very efficient compression technique, however, fully
implementing VQ would place demands for FLEX10K chip. Uniform quantization
(UQ) is a more basic alternative to VQ and is more suitable to this project.

Similar to VQ, UQ uses a codebook, which is also pre-generated. In UQ, the range of
a digital signal is divided into m even intervals. If an input signal vil falls into the lth
interval (1≤l≤m), the value of the output signal vol is assigned the median value of its
interval, to which a label is assigned in the meanwhile.

When processing the input signals, instead of using the original signal value, the
corresponding codeword label is employed. For example: A digital image whose pixel
values range from 0 to 255 is quantized into 16 intervals. The corresponding output
and label assignment of each interval is shown in table 1.

Although UQ cannot achieve the high compression performance as VQ, it can still
save storage space to some degree without much distortion. As the example illustrated,
a 256-level input that required 8 bits, required only 4 bits after even quantization was
employed.

Table 1 A color component distribution range and its quantization outputs and labels

Range Label Output Range Label Output

0 – 15 0 8 128 – 143 8 136

16 – 31 1 24 144 – 159 9 152

32 – 47 2 40 160 – 175 10 168

48 – 63 3 56 176 – 191 11 184

64 – 79 4 72 192 – 207 12 200

80 – 95 5 88 208 – 223 13 216

96 – 111 6 104 224 – 239 14 232

112 – 127 7 120 240 - 255 15 248

Description of Operation

This project consists of an image-indexing algorithm implemented in hardware, which
is interfaced with a personal computer through a parallel port. More Specifically, the
algorithm is implemented on a Flex10k FPGA mounted on a UP1 board. Images are
sent from the personal computer to the FPGA, first a query image, then the candidate
images that make the image database. The candidate images are compared to the
query image using the histogram-indexing algorithm. After processing each image,i.e.,
extracting the distance of each candidate image, the ranks of the images that match

 6

the orginal query image can be displayed on LEDs on the UP1 board. Finally, the
computer or probably the VGA controlled by FPGA will be used to display the
images in the order in which they were ranked. Figure 3 illustrates the overall system.

Parallel port interface
for PC & FPGA

data in
send/receive

control

Project kernel
Image indexing engine

Display retrieved images
on LED or VGA

calculate distance of
histograms

(feature comparison)

calculate & store
histograms

(feature extraction)

rank the distances
(image retrieval)

control
signals

control
signals

control
signals data out

quantization

control
signals

Figure 3 High Level Image Indexing Block Diagram

The image indexing algorithm and hardware interfacing is implemented with three
major components. These components are the Top Control Unit, the Interface Unit,
and the Image-indexing Engine.

Components

Top Control Unit

The top control unit (TCU) controls the two other major components of the image-
indexing processor, i.e., the Interface Unit (IU) and the Image-Indexing Engine (IIE).
The TCU is implemented with a large finite state machine, which has 21 states to
guide the IU and IIE through its various processing stages. See Appendix C.2 for the
state diagram.

Image-Indexing Engine

The image-indexing engine is the heart of the image-indexing processor and it is
implemented in an engine controller together with 5 sub-module blocks. Each block,
apart from the EAB ram, is employed using mini-controller to control the block’s
behavioral data-path. The engine controller controls the states of the whole index
engine and it activate and disable the sub-modules in the appropriate time. Although
there are also some small controllers in the sub-modules, we still call them parts of
data path due to the relationship between them and the engine controller.

Control Path

The control path for the image-indexing engine is a finite state machine (Moore
machine) that changes states based on the primary inputs of the image-indexing

 7

engine, which come from the top control unit and the sub-modules that it controls.
The state machine has 12 states that are used to navigate the sub-modules through its
various processing stages, which are described below. See Appendix A.4 for an
illustration of the state diagram.

Data Path

The image-indexing engine data path does all of the work including the histogram
building, distance calculation, distance sorting and ranking of all input images. The
data path is composed of seven components: memory initialization (whole EAB rams
initialization) module, the query and candidate image histogram builder (combination
of uniform quantization and histogram building), the candidate image histogram ram
initializaion module, the gray-level converter, the distance calculator,the image
ranker, and the ram manager. See Appendix A.5 for an illustration of the data path.

Whole EAB rams initialization module

This block is used to initialize the FPGA’s in ternal memory (EAB cells) before
building any histograms. Each of the memory locations, which are used to store
histograms, are initialized to ‘0’.

The memory initializer is composed of a control path and a datapath. The control path
has three state, namely “idle”, “init”, and “ready”. In the “init” state, a counter is
used the increment an address from 0 to 47, which is used to write “0” into each
memory location occupied by the query histogram. See Appendix A.6 for the control
path.

Candidate image histogram initialization

Similarly, this component is used to clear the candidate image histogram memory,
whenever we finish the distance calculation for each candidate image. The control
path is implemented in a similar fashion also.

Gray level converter

The gray-level converter converts color image data into a gray-level image equivalent.
This component is only used when the database contains both color and gray-level
images. In this case, all color images are converted to gray -level images to allow for a
comparison. This option can be disabled if not desired.

In our final design, due to the limited number of logic cells of the chip, we cut this
part out during the final integration of all the components.

Uniform quantization & Histogram calculation

The histo gram builder builds an image’s histogram one pixel at a time using uniform
quantization (static codebook has not been adopted due to the time constaint).
Because the histogram is stored in memory, the histogram builder must use registers
to load, add, and then store information, and is therefore not purely combinational as
would be expected by a conventional data-path component. See Appendix A.7 for
datapath and control path.

 8

Distance calculation

The distance calculator sums the total absolute difference between each of the 16 bin
values of the query image and the current image being processed. Please see the
Appendix A.8 for the datapath and control path.

Sorting rank

After obtaining a candidate image’s distance, it is compared to the current list of
smallest distances (insert sorting) and stored in its correct position in the list by the
image ranker. Please see Appendix A.9.

EAB ram manager & Connection

The EAB ram manager is used to control the connection between the functional
modules and the EAB rams. We implemented it by a pure combinational logic, i.e.,
for each pieces of ram block (query histogram ram and current candidate histogram
ram), using several 4 to 1 mux to select the module to be connected to the rams. The 2
bit select signals is actually decoded from 3 control signals come from the engine
manager.

Since there are 12kbits internal ram in FLEX10k, each data width, which we need, is
16 bits and the total ram disk space is no more than 2.5 kbits, 8 pieces of internal ram
had originally been designed. But when we began to instantiate the first piece of ram
for histogram of query image, the actual 768bits ram (3 pieces) with 3 sets of input
and output pins used up all 6 blocks of EABs. That means we couldn’t instantiate all
pieces of ram in our design. We found that not only the capacity of ram will affect the
usage percentage of EABs (as we usually think), but also the number of input and
output IO pins, which means the wider the address and data width, or the more pieces
of rams instances you use, the more EABs will be occupied.

Because no solution was found for this problem, the histograms for the R, G and B
components of one image were combined together by using only one piece of ram
instead of 3 pieces for R,G, B separately. Therefore, we can only use one set of input
and output pins to read and write the ram block sequentially for R, G, B instead of
reading/writing the R,G,B in parallel. Since R,G, B has 16 bins, we will use a 4 bit
address bus (16 words) if we use three ram instances. By combining the three pieces
together, we have to use a 6 bit address bus to represent 48 words. This way,the total
number of pieces of ram was reduced to 4, one for query image histogram, one for
current candidate image histogram, one for distance, and one for rank, but they still
didn’t fit.

Finally, by storing the images’ updated ranks in registers instead of in the internal ram,
enough memory was made available for storing the histograms and distances. The 3
ram instances take all 6 full EAB blocks when only 48(words) × 16(bits) × 3 = 2304
bits are required (Figure 3 and EAB_rams.vhd).

However, in our final design, we end up by using only 2 pieces of internal ram for
query image and candidate image and cut the distance ram off. The distance is
calculated after we get the histogram of each new candidate image and it is directly
used to calculate and update the ranks so that we do not need to store the distances of
each candidate image any more.

 9

Although Altera recommends Cycle-Cycle Dual-Port RAM (csdram) to instantiate the
internal ram for Flex10k family (from Altera website), we still got the foregoing
problems when we use csdram modules. Also, we find that even the percentage of
used EABs decreases a little bit, but we pay the price of using some of the logic cells,
which is not desirable. Another disadvantage of using csdram is that it is dual port
ram, which makes the interface more complicated. We finally decided to use
lpm_ram_dq instead of csdram.

The following figure simply illustrates how our design for EABs carried on.

Ram for
Query
image

datain 16

address 6
we

q

16

Ram for
Candidate

image

datain 16

address 6
we

q

16

Ram
for

distance

datain 16

address 6
we

q

16

Ram for
Query
image

datain 16

address 6
we q

16

Ram for
Candidate

image

datain 16
address 6

we q

16

Ram
for

distance

datain 16

address 6
we q

16

Ram
for

Rank

datain 6

address 4
we q

6

Ram_R

datain 16

address 4

we
q

16

Ram_G

datain 16
address 4

we
q

16

Ram_B

datain 16

address 4

we
q

16

First design only for query image Second Third

Ram for
Query
image

datain 16

address 6
we q

16

Ram for
Candidate

image

datain 16

address 6

we q

16

Final Design

This block is an important part in our indexing engine in that there are three
functional blocks (two memory initialization blocks and the histogram calculater)
need to write data from it and two block needs to read data (histogram builder and
distance calculater).

We have to take care about the connections among these blocks in order to avoid
contension of the data bus and address bus for query image and candidate image,
respectively. Same with the write enable signal “we”.

Please see Appendix A.10 for illustration of the multiplexors employed to deal with
the forgoing problem.

Indexing counter

This component is a simple counter which assigns a number to each candidate image
being processed. This number is the images’ label, and this label is displayed on
LEDs when the most similar images are being declared after all the images have been
compared.

Summary: When we integrated all of components together and simulated the top
level VHDL file for engine, we found the engine took so much percent of logic cells
for Flex10k240RC-4 chip. The following table demonstates the comparasion among
the different pixels of image, data width for histogram and distance and the number of
display for rank (without gray level converter).

 10

case # of pixel

 per image

of first
top rank
display

Data width for
histogram and
distance(bits)

Logic cells

(total:1152)

Registered
performance(clock

period:ns)

1 128x96 or
120x90

4 16 1028 (89%) 72.1

2 64x48 4 14 950(82%) 66.6

3 64x48 4 12 870(75%) 60.4

4 64x48 2 12 764(66%) 58.5

Since there are still about more than 200 logic cells to be added for final processor
VHDL file, we take the case 4 to simulate our engine. One should note that in the
following analysis, we still base on the 16 bits data width and 4 rank display.

Interface Unit

The interface unit is used to allow communication between the personal computer and
the UP1 board. The interface requires control logic on at both ends. On the PC side, a
driver is used to control the parallel port. On the FPGA side, a controller will take
over the management of the interface.

PC Side

Because information is sent from the PC to the FPGA uni-directionally, the parallel
port is implemented using the SPP mode. To program the parallel port in SPP mode,
three registers are used. “The port base address (I/O Base) is used to write to the data
lines. The parallel port status register address is at the port base address plus one and
is used to read the status of the parallel port. This will allow for reading the ACK
signal coming from the UP1 board. The parallel port control register is at the port base
address plus two and is used to control the parallel port. This will allow setting the
TRANSFER and STROBE signals” [12]. The parallel port SPP mode register
definitions are as follows:

Label Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data D7 D6 D5 D4 D3 D2 D1 D0

Status /Ack /RESET

Control /TRANSFER IS_HEAD IMGEND /Strobe

FPGA Side

To interface a PC parallel port to the FPGA, 14 pins of the UP1 FPGA are used here.
These pins include 4 input control signals from PC and 2 output status signal back to

 11

PC. In the 4 control signals, one for strobe, one for enable, one for header_data, one
for anImgEnd. The 2 status pin are for Ack and Reset, respectively. The left 8 pins for
input data lines.

The pin layout from the PC parallel port is as follows:

Name Pin Type of Pin Description

STROBE 1 Output Strobe to FPGA

IMGEND 14 Output Tells FPGA a complete image has
been sent

IS_HEAD 16 Output Tells FPGA data port is sending
header information

TRANSFER 17 Output Transfer data (Start/Stop)

Reset 15 Input Reset signal from FPGA

ACK 10 Input Acknowledge from FPGA

Data 2 – 9 Output Data Bit 0 – 7

These pins will connect to the UP1 FPGA as follows:

PC Parallel Port Pin Name UP1 FPGA Pin Name Type of Pin

STROBE pc_c_b0 Input

IMGEND pc_c_b1 Input

IS_HEAD pc_c_b2 Input

TRANSFER pc_c_b3 Input

RESET pc_s_b3 Output

ACK pc_s_b6 Output

Data pc_data_in Input

“The 10 input lines will have to be connected to the UP1 FPGA through 2 74LS245
buffers and the 2 output line will have to be connected through another 74LS245
buffer. This will ensure that the parallel port and FPGA do not damage one
another.”[12]

Datasheet

Features

• Image database are stored in a computer.

 12

• The retrieved images are those which have the smallest distance from the
query image with respect to the color-histogram algorithm.

• Due to the limit of the capacity of the FLEX10K, the size of the image
database is only up to 64. Also, the small number of logic cells restrict the
number of retrieved images. So far, only 2 images can be retrieved.

• When indexing images, all images have to be sent from PC to FPGA through
the parallel port of the PC in SPP mode.

• The query image is the first image to be sent, followed by the all candidate
images ready to be matched to the query one.

• The indices of the retrieved images will be displayed on LEDs. One dip switch
is used to select the different rank number.

I/O Signals

Table 2 - FPGA I/O Pins

Signal Name Type Number of Pins Description

Interface to Parallel Port

PC_data_In In 8 Parallel port data input to FPGA from PC

PC_s_b6 Out 1 Handshaking line between the PC and FPGA
board. Acknowlege the “Strobe” signal from PC.

PC_s_b3 Out 1 Send “reset” signal to PC.

PC_c_b0 In 1 Strobe signal from PC.

PC_c_b1 In 1 “An image end” signal from PC

PC_c_b2 In 1 “Sending header information” signal from PC

PC_cb3 In 1 Starting or stopping to transfer data (i.e.,enable or
disable the FPGA) signal from PC

Interface to LEDs

Position In 1 Used to select different ranking results

LED0, LED1 Out 16 The rank of the retrieved images that will be
displayed in LEDs.

Control Signals

Push_to_done In 1 Push the FLEX_PB1 to end the indexing task.

Reset In 1 Reset

Clock_Sys In 1 System Clock

 13

Design Hierarchy

Image
Indexing
Processor

Header/data splitter

Interface

Indexing
Engine

Top
Control Unit

Controller

Pixel_register

RGB seperator

Color_gray converter

Engine controller

EQ+Histogram

Distance

Parallel port

Header_decoder

Ranking

LED display

Compiled,
simulated

(test bench used),
No error

Compiled, simulated
No error Compiled,simulated

No error

Compiled, simulated
No error

Compiled, simulated,
No error

Compiled, simulated
No error

Compiled, simulated
No error

Compiled, simulated
No error

Compiled
Simulated

(test bench used)
No error

Compiled, simulated
No error

Compiled, simulated
No error

Compiled, simulated
No error

Compiled, simulated
No error

Compiled(without
gray level converter),

simulated
No error

Compiled, simulated
No error

Compiled, simulated
No error

Memory Initialization Compiled, simulated
No error

Candidate mem. Initialization
Compiled, simulated

No error

Figure 4 Diagram of design hierarchy

 14

Experimental Results

Resource Requirements

Table 3 - Logic Cell Requirements and Registered Performance for Algorithm Components

Entity/Component Logic Cells Required

Registered
Performance or

Max. Matrix Delay

(unit: ns)

Controller 131 44.8

Header/Data Splitter 33 13.9

Header Information
Decoder

7 11.1
Top Control Unit

Pixel Register 69 19.9

Subtotal: Top Control Unit 234 44.6

RGB separate 18 10

Color-gray converter 256 19.8

Engine controller 16 10.0

Internal ram 0 8.6

Candidate memory
clear

37 20.3

Memory initialization 37 20.3

Histogram 224 25.3

Distance 346 71.4

Indexing Engine

Ranking 207 74.0

Subtotal: Image Indexing Engine 1141 74.1

Parallel Port Interface 13 16.9

LEDs Controller 68 8.2 Interfaces

LEDs 32 30.5

Clock Demultiplier 2 8

Total (without the gray-level converter) 1054 106.5

Note: the engine part is based on the 16 bits data width and 4 rank display.

 15

Speed vs. Area

The speed of the image-indexing processor depends mostly on the design of the
image-indexing engine. Most of the engine’s components are directly in the
processors critical path. Some of the engine’s components, namely the Histogram
Builder and Ranker can be implemented to increase speed in exchange for more area,
or decrease area at the expense of speed.

The Histogram Builder could be implemented to build the R, G, and B histograms
either concurrently or sequentially. A concurrent implementation would increase the
component’s throughput by a factor of three (3 color components), but would increase
its area consumption by an equal factor. In the last report, the R, G, B histograms
were built concurrently, however this time they are built sequentially to save area.

In the preliminary design of the image-indexing datapath, the image ranking was done
after all of the images’ distances had been tabulated. This involved storing both the
distance and the index of each of the 64 images into memory, and then sorting them.
This scheme required allot of memory, as well as considerable time at the end of the
indexing process. A second, more suited solution was devised, where the sorting of
the images occurs after each of their distances were calculated. This type of sorting is
done concurrently when the histogram building is occuring, thus eliminating the long
delay at the end of the indexing process. Also, by keeping only the N best results, it
became feasible to store the distance and index of each image in registers rather than
in internal memory, which is already in very low supply.

For each new distance value calculated the ranking algorithm must insert the value
into the appropriate position of the list and then shift the all of the values below that
position down by one. This implementation is fast because the value to be held at each
position in the list is chosen concurrently. This differs from software
implementations where the CPU must traverse through memory in a sequential
manner to sort a list. After compiling this implementation, a problem revealed itself.
The area required for each position in the list was 90 cells. This is quite high and
wouldn’t allow us to keep track of very many image rankings. Further analysis of the
design was required.

A revised implementation, which is implemented using RTL rather than behavioral
achieves the identical speed, but requires significantly less area. The savings in the
area is accomplished by sharing a comparator between each stage of the ranking list.
In the preliminary implementation, each stage compared both (above > new) and
(current > new). Upon inspection, it can be seen that both the current and above
values are compared to the new value. So by placing a single comparator between
each stage, it can be used as the above comparator for the stage below it, and as the
current comparator for the stage above it. This is clearly illustrated in appendix C.5.

 16

64-Color VGA Display Test

Introduction

A standard VGA monitor contains of a grid of pixels typically 480 rows and 640
columns. Each pixel can display various colors, depending on the state of the red,
green and blue signals (R, G and B) . A VGA monitor also has an internal clock that
determines when each pixel is refreshed, typically 25.175 MHz. The refresh behavior
of the monitor is partially controlled by the horizontal and vertical synchronization
signals. After the first pixel is refreshed, the monitor refreshes the remaining pixels in
the row in the raster scan mode. When the monitor receives a horizontal
synchronization signal, it retraces and then starts to refresh the second row also in
raster scan mode. By repeating this process until the scan reaches the bottom of the
monitor, the monitor will receive a vertical synchronization signal and retrace back to
the first pixel (top left corner). Although stated above that normally the monitor only
scans 640 pixels each row, actually it uses 800 clock periods of which 640 are used to
scan the pixels which can be seen on the screen. The remaining 160 clock periods are
used to retrace back (moving the CRT from the end of the row to the beginning) and
also the synchronization. A similar process applies to the vertical synchronization,
which uses 525 instead of 480 horizontal synchronization pulses. So the screen
refresh frequency is typically 60 Hz.

Problem

Fortunately the clock frequency of the UP1 board used is the same as the VGA
operating frequency. So if in 800*525 clock periods, we send 640*480 signals,
including RGB, i.e., a 640*480 8-color picture data, we can get a steady display of
that picture. However, the picture which can be displayed is limited to 8-color only,
because 3 bits – R, G, B are used to represent the color and each bit can only have two
states – 0 and 1. Therefore there is a big problem: 8-color (3 bits) is too less to display
a natural picture which is generally 16-bit or higher (24-bit for true color) per pixel.

Attempt to reach 64 colors

The solution of the problem is similar to develop a VGA display driver which can
display 64 colors on the screen. In theory, if we can expand the 1-bit RGB to 2-bit
RGB state, we can have a display of 26=64 available colors. The following scheme is
the trick used to have a virtual 2 bit RGB state:

1. The picture data we use for the indexing is true color. It is easy to extract the
RGB data and round them up to have 2 bits with 4 states: 11, 10, 01, 00.

2. We need to find the way to convert the 4 states of each RGB into 2 states: 0 or
1 because the screen can indeed show 8 colors pattern for every refresh screen
(i.e., 1/60 second). But our eyes can be cheated by displaying same data in
slightly different color patterns and acknowledge that the displayed pattern has
64 colors.

3. One example is that we can use a 2-bit counter in 3 states (00, 01 and 10), and
by doing simple logic calculation, the 2-bit RGB data can be converted into 1-
bit states. The counter is increased by 1 at every rising edge of the vertical

 17

sychronization pulse. Then for a 3 continuous refresh screen clock (3*(1/60)
seconds), the monitor receives the signal of the following RGB states:

R or G or B
value

00 01 10 11

00 0 0 0 1

01 0 0 1 1 Counter

10 0 1 1 1

4. The above way actually behaves like that we divide the refresh screen
frequency by 3 into 20 Hz. So another problem appears that the screen is
flicking very heavily to our eyes since only the refresh screen frequency is
higher than about 45 Hz we will not perceiv e the flicking.

5. We have to accelerate the refresh screen frequency by increasing the
horizontal and vertical synchronization frequency. That is, for example, we
will send the horizontal synchronization signal to the monitor every 500
internal clock time instead of 800 and also the vertical synchronization signal
every 300 internal clock time instead of 525.

Test results

The following table lists the comparison of screen display performance for different
parameters used:

fh-synch

(unit:clock period)

f-synch

(unit:horizontal
synchronization

pulse)

Refresh

Rate
Screen Flicking

800 525 60 very heavily

700 451 80 heavily

600 373 112 slightly

560 357 126 acceptable

500 271 186 stable

Comments

(1) Obviously the trick used in this method to display more than 8-color can only
be used to display patterns smaller than about 400*200 pixels, if we want to
have a stable display.

 18

(2) Because of the different properties of display monitor, some monitors can not
accept refresh rate higher than a certain value. This experiment results were
obtained on a Panasonic PanaSync E70i type monitor.

 19

VHDL Code (all are zipped in index.zip file)

VHDL index

1. Top level processor:

• top_proc.vhd – the top level processor

– compiled and simulated with no errors

– The top entity of the whole design

2. Top Control Unit:

• tcu.vhd – TCU

– simulated, no known bugs

– used to control the whole design, a unit in parallel with the
indexing engine unit and interface unit.

• controller.vhd – Controller

– simulated, no known bugs

– used as a component with a finite state machine

• splitter.vhd – Header/data splitter

– simulated, no known bugs

– used as component to split the raw data from PC

• pixel_reg.vhd – Pixel register

– simulated, no known bugs

– used as component to convert the serial 8-bit RGB components,
which are input from PC, to parallel 24-bit pixels, which will be
sent to the indexing engine.

• head_dec.vhd – Header decoder

– simulated, no known bugs

– used to decode the header information comes from PC

3. Indexing Engine Unit:

• engine_1.vhd – top level interface for index engine

– compiled and simulated with no errors

 20

– top level circuit for index engine, including the engine controller
and several sub- modules, data path

• controller_final.vhd – Indexing engine controller

– compiled and simulated with no errors

– controller of the index engine

• index_counter.vhd – counter for index of each candidate image

– compiled and simulated with no errors

– a counter used to keep trace of the index of each candidate image

• EAB_rams1.vhd – EAB ram file

– compiled and simulated with no errors

– used to create two pieces of ram blocks in EAB to store the
histograms for query and candidate images

• mem_init.vhd – ram initialization file

– compiled and simulated with no errors

– used to initialize the internal ram (rams for storing query and
candidate image histograms) each time when a query image is to
be retrieved from a group of candidate images (each operation)

• gray_converter.vhd – Gray level conversion

– compiled and simulated with no errors

– used to generate a gray image histogram by using a color image

• color_hist1. vhd – Color histogram calculation

– compiled and simulated with no errors

– used to build the histogram for color (query and candidate) images

• mem_cand_init. vhd – memory initialization file

– compiled and simulated with no errors

– used to initialize the ram block storing the candidate image each
time a new candidate histogram is to be built

• dist_ctl. vhd – the controller for distance calculation

– compiled and simulated with no errors

– controller for distance calculation of a candidate image

• dist_calculation. vhd – distance calculation

 21

– compiled and simulated with no errors

– behavioural data path used to calculate the distance between a
candidate image and the query image

• distance_top. vhd – distance calculation top level circuit

– compiled and simulated with no errors

– top level circuits for distance calculation, including the controller
and the data path

• dist_rank.vhd – rank calculation

– compiled and simulated with no errors

– used to sort the images in descending order based on their rank

• gray_converter.vhd – convert color to gray level

– compiled and simulated with no errors

– used to convert input data from color to gray level

4. Interface Unit:

• ppi2pc.vhd – Parallel port interface

– implemented

– used to connect the signals between PC and board

• disp_led.vhd – LEDs display controller

– implemented

– used to display rank of image on LEDs

• led_hex.vhd – Led display

– implemented

– used as a component for Led display in testing parallel port

5. System clock demulitplier

• clock_scaledown.vhd – scaledown clock frequency

– implemented

– used to provide clock whose frequency slower than the system
clock in order to meet the design requirement.

 22

6. Used for demo:

• disp_parport_test.vhd – Parallel Port Interface VHDL code for testing

– implemented

– used to test the parallel port in FPGA board

7. 64-color VGA display test unit:

• vga_test.vhd – the top level processor

– implemented

– used to test multiple color display

• syncgen.vhd– synchronous signals generator

– implemented

– used to generate the horizontal and vertivcal synchronous signals

• RGB_gen.vhd – RGB signals generator

– implemented

– used to convert 2-bit R,G,B signals to 1-bit R,G,B signals

• clock_rgb.vhd – Accessory of RGB_gen..vhd

– implemented

– used to convert 2-bit R,G,B signals to 1-bit R,G,B signals

Test bench Index

Top Level Entity Test Bench

1. simu_top_level.vhd – used to simulate the top entity, and test tis performance
after pack all components to a complete image indexing processor. It includes
tow components: “simu_pc component”, “top_proc component”.

2. simu_pc_new.vhd – a component of simu_top_leve.vhd, used to simulate the
PC states and generate the psuedo image data.

TCU Test Bench

3. simu_proc.vhd – used to simulate the top entity, the image indexing
processor, and test the performance of the Top Control Unit (TCU entity)
before pack all components together. It includes “tcu component”, “ppi2pc
component” and 3 simulated components, which are “simu_pc component”,
“simu_index_eng component” and “disp_led component”.

 23

4. simu_pc_old.vhd – a component of simu_proc.vhd, similar to
simu_pc_new.vhd.

5. simu_index_eng.vhd – a component of simu_proc.vhd, used to simulate the
indexing engine states.

6. disp_led_old.vhd – a component of simu_proc.vhd, used to simulate LED
display states.

Design Verification

Comment

Actually, this part of report is only for Index engine. Because, in Mentor Graphics, the
LPM_RAM_DQ module is not available, all test cases for the index engine are based
on and simulated in MaxPlus II.

The most important point of this part is that we have to make sure we can retrieve and
store, i.e., read/write data from/to the EAB rams without and errors. In order to verify
our design, we made the following test efforts. First, we tested whether we can
retrieve the data from the EAB rams initialized with *.mif files. By comparing the
data read from the rams and the data in the *.mif file, the correct reading operation
has been proved. Also, this way we know that the data now in the ram is initialized as
in the *.mif file. Then we went further to check whether our memory initialization file
works. Since we have to initiate the ram blocks to “0” each time when we try to
retrieve a query image (one operation for the whole system), and each time a new
candidate image come in for the candidate memory, the writing (storing) of “0” can
be verified by checking the output port of the ram blocks when writing the data. The
correct initialization has been proved when the output port changed to all “0”s instead
of the data in the *.mif file. Finally, we tested reading/writing the data from/to EAB
rams in one file, as what we build the color image histogram.

After this step, we began to integrate ram blocks together with other components in
our index engine design. Because several sub-modules in the index engine all need to
retrieve and write back data from the EAB rams, several 4-1 mux have been used for
each set of memory data_in, we, address, data_out signals. And we also tested the top
level engine to see whether these sub-modules can get access to the appropriate ram
blocks at the right time and operate correctly.

The simulation waveforms demonstrated that everything worked fine.

Index

1. init_test_1.vhd – used to test whether we can read the data from the EAB
ram blocks. It includes “EABs ram component”, two mif files for query image
data and candidate image data, and a counter to generate the address from 0
to 47.

2. init_test.vhd – used to test whether we can clear the EABs when they have
been initialized by *.mif files firstly. It includes “EABs ram component”, two
mif files for query image data and candidate image data, “mem_init_1 .vhd

 24

component”. After this file is executed, the all of the data in EABs should be 0
instead of the data in *.mif files.

3. init_cand_test.vhd – used to test whether the cand_mem_init component can
work properly. By initialized both query and candidate images with *.mif file,
the query image histogram data in the query ram keep unchanged and the
candidate image histogram has been cleared.

4. index_test_uninit.vhd – used to test whether we can retrieve/store histogram
data from/to EABs with *.mif files in EABs firstly. It includes “EABs ram
component”, two mif files for query image data and candidate image data,
and “color_hist1 component” to read the data out from the ram, add 1, and
write the data back.

5. index_test.vhd –used to test whether we can retrieve/store the histograms
from/to EABs after we clear the memory inistiated with *.mif files firstly. It
includes “EABs ram component”, two mif files for query image data and
candidate image data, “mem_init_1.vhd component” and “color_hist1
component”. This is to verify that the histogram can be build correctly.

6. distance_eab_test.vhd – used to test whether we can retrieve the histogram
data from the EAB rams and calculate the distance between a candidate image
and the query image without any errors. It includes “EABs ram component”,
two mif files for query image data and candidate image data and
“distance_top.vhd component”.

7. hist_dist_top_test.vhd – used to test whether the whole index engine can
work properly. Incorporated with all the modules, i.e., “EABs ram
component”, two mif files for query image data and candidate image data,
initialization module and cand_initializtion module, “distance_top.vhd
component” and “color_hist1.vhd component”, the index engine was tested to
build the histograms for query and candidate images, calculated the distances
for one candidate image.

 25

References

1. B. Furht et al, Video and Image Processing in Multimedia System, Kluwer
Academic

2. J.R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Analysis and
compression, http://disney.ctr.columbia.edu/jrsthesis/thesissmall.html .

3. M.D. Marsicoi et al, Indexing pictorial documents by their content : a survey of
current techniques, Image and Vision Computing 15 (1997) 119-141

4. J.R. Smith et al, Tools and Techniques for Color Image Retrieval,
http://www.ctr.columbia.edu/~jrsmith/html/pubs/tatfcir/color.html

5. Tim Bensler, Eric Chan, Data Compression Co-processor Final Report,
http://www.ee.ualberta.ca/~elliott/ee552/projects/1999_w/dataCompression/

6. Eric Cheung, Felicia Cheng, David Li, Tin Wai Kwan, SRAM Interfacing Basics,
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2000_w/interfacing/sra
m_basics/sram.html

7. Tim Bensler, Eric Chan, RS-232 Serial Port Application Note,
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999_w/RS232/

8. John Koob, Parallel Port Interfacing,
http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/parallel_port/

9. Juan Gabriel Del Cid Portillo, Parallel Printer Port Access through Java,
http://www.geocities.com/Juanga69/parport/

10. F. Idris et al, Image and video indexing using vector quantization, Machine Vision
and Applications (1997) 43-50

11. Hao Luan , Bo Liu and Albert Chan, EE552 APPLICATION NOTE,
http://www.ee.ualberta.ca/~boliu/projects/ee552/ee552.html

12. Rabi Mahapatra, Xilinx Chapter 13 – Parallel Port I/O,
http://www.cs.tamu.edu/course-info/cpsc483/spring98/rabi/xilinx/chap13/chap13

 26

Appendix A – Design

A.1 High Level Image Indexing Processor Block Diagram

(The detailed TCU block diagram is included)

pc_ s_b6

pc_ s_b3

pc_data_in

pc_c_b3

pc_c_b2

pc_ c_b1

pc_ c_b0

reset (FLEX_PB2)

position (FLEX_SW1)

push_button_1 (FLEX_PB1)

pixel_bus

Top Control
Unit (TCU)

byte_in

header/data
splitter

Controller

Image Indexing Engine
(See Appendix A.3

for more details)

LEDs
Display Control

pixel register

LED

Interface to PC
 parallel port nA

ck

nStrobe

nAnImgEnd

header/data
nEnable

data_ready

is_header

split_enable

reg_enable

byte_request

byte_in_valid

pixel_done

display_enable

display_done

data_in header
_info

header info
decoder

header_proc_enable

color

header_proc_done

query

allIm
gE

nd

index_enable

color_gray

query_cand

all_
im

g_end

an_im
g_end

pixel_ready

pixel_request

pixel_received

rank_readyindex_out

pc_data_in

8

24

8

3

6

8

8

A.2 Schematics

External circuit connecting and DB-25 femal connector

PC

Parallel Port (LPT1)

FPGA

74LS245

74LS245
74LS245

status port control port data port

8

4

2

DB-25 Female Connector

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

data_b0
data_b1
data_b2
data_b3
data_b4
data_b5
data_b6
data_b7
stat_b6

ctrl_b1
stat_b3
ctrl_b2
ctrl_b3

ctrl_b0

