
Metal Rover

Final Report

Michael Cumming
mcumming@ee.ualberta.ca

Andrew Leung

anleung@ee.ualberta.ca

November 27, 2000

mailto:mcumming@ee.ualberta.ca
mailto:anleung@ee.ualberta.ca

 Introduction

The idea of finding lost treasure left by our pillaging ancestors has crossed all of
our minds at one time or another. Getting rich quick with as little effort as possible is
something we all desire. Fortunately our ancestors were pretty skilled at accidentally
discarding valuables or just burying things for later retreaval. Luckily for us, the treasure
maybe still there while they are not.

A popular tool to hunt for lost treasure from the past is to use a simple metal

detector. The electronics required are quite simple and effective. The main problem is
this metal detector cannot tell scrap metal from gold very easily. Hence, many man-
hours can be spent looking for treasure but only to have a few pieces of scrap metal to
show for it. This project will help one achieve that dream of finding lost treasure but
without all the hours needed to manually search for it.

Problem description

The problem we seek to solve is to overcome the tedious manual searching of
treasure with a metal detector. The most effective way to find this treasure is to find a
map, which our ancestors usually kept to use to return to the treasure. This project is not
about that. The other possibility of finding the treasure is to be using a metal detector and
finding it manually. Now, the most taxing part of using this method is that you have to
manually search through every square inch yourself if you were to buy a metal detector
unit at the local electronics store. Too much work for only a mere chance at unbelievable
riches. The local lottery probably has better odds. The problem we have is: how do we
search through every square inch of my backyard for treasure?

Solution

The implementation strategy we will take to solve this problem will be to
implement a simple metal detector with an autonomous moving robot. The robot will
scan an area for metal with the metal detector and will alert through different means
when metal is found. This is quite a simple and effective solution to the problem at hand.
A robot can be easily programmed and it will do all the manual work of searching with
the metal detector and the user can sit back and have the treasure come to him, literally!

We will implement a simple robot with 2 motors, a metal detector, and a FPGA
board to interface with all the components together and to be the brains of the machine.
A wireless controller will control from a “comfortable” distance and may report its
findings through a monitor after it is complete its search.

Achievements

 Keypad

 The Keypad, like all general contact switches was difficult to implement. A de-
bounce system had to be created to produce clean inputs and a valid pulse that could be
read by the transmitter system.

 Rangefinders

 The sharp GP2DO2 rangefinder input and output serial communications proved to
be too complicated to implement. It had timing requirements that were too detailed and
specific and tests with the devices could not produce valid results.

 Clock Divider

 The clock divider implemented in other projects used various means to create
timing signals which were based on complicated processes using if-then statements and
the main clock to produced longer pulses. Our project required millisecond clocking for
the slower components and as such the general and simple method we used was the
implement an lpm counter with 16 bits width with all the bits set as individual output
ports. This produced a much more stable output.

 Stepper Motor Drive Controller Interface

 The stepper motor circuitry used SGS Thompson chips to provide the direct
power control of the four stepper motor phases. The UP1 board is not capable of driving
the motor with the necessary current or protect itself against the back emf surges of the
motor phases. The controller accepts 4 main inputs that when grounded change the
action of the motor. The controls are direction, reset, step, and full or half step. The step
signal requires microsecond pulses to be sent to the controller at millisecond rates so the
motors will drive smoothly and at no more then 300 steps per second. This is the limit of
these and most stepper motors.

 Power Supply

 For the remote systems on the motor a battery system was required to provide
power to the UP1 board, the radio transmitter and receiver, the motors and the metal
detector. The power requirements for the systems was about 0.75 Amp while the motors
were in operation.

 Body Design

 Though the concept and design of the body mechanics was our own, credit must
go to the electrical machine shop for the fabrication of the parts. The system would not
be able to be implemented without their help.

 RF Transmitter and Receiver System

 The Ramsey TXE-433 and RXD-433 were poorly documented and much
experimentation was require to allow the system to work. The input and output required
buffering to move the data correctly. The lpm FIFO buffer was difficult to implement
and required a great deal of work to drive.

 Rover Control System

 The control system for the rover require a lot of thought and
experimentation to make the system work with the complex timing constraints of the
hardware components used in the project. The rover had to operate in either manual
(remote control) or autonomously. The system required a large amount of states to give it
adequate settling time for all signals. Control and conditioning of all signals was a very
time consuming issue and proved the need for a well planned pre-design of the system
into sub-state modules. The large number of states was necessary to allow the pattern of
movement below under autonomous operation. The control system receives information
as to the manual direction (initiated with the “*” on the base station keypad) indicated by
a number (1-9) on the keypad. If a autonomous search pattern is required, the “#” is
pressed and a value (1-9) is then pressed to indicate the square side distance of the pattern
to follow.

Pattern of Motion

FPGA Datasheet
Overview

The chip’s function is as follows:

• Interface to a beat oscillator metal detector
• Interface with Ramsey™ wireless transmitters and receivers
• Interface to stepper motor controllers
• Interface to generic 12 button keypad
• Interface to simple VGA display

Implementation

The VHDL design implemented onto an Altera EPFK20RC240-4 makes the FPGA

into a chip that accepts input from a beat oscillating metal detector, moves itself around
or by remote control and transfers data to and from a bay station via wireless link.

The metal detector is highly sensitive to aluminum cans and metal objects that have a
higher surface area than the search coil. The beat oscillating metal detector operates in
the region of 280KHz to 320KHz. This value is very good for differentiating between the
metal naturally found in the ground and metal actually buried under the ground. This can
be modified to have optimum results in different environments and search item.

The wireless controllers send and receive 4bits of data asynchronously. Upon
receiving a data valid, the chip accepts the data as valid input from the sender. The main
interface from the user is given through a simple 12-button keypad (similar to a
telephone’s keypad 0-9, *, and #.) Information on the robot is sent back to a remote
station and displayed on a simple monitor.

Powered by external Lithium-Ion batteries, the remote metal detector and on-
board components can sustain full operation for 3 continuous hours using 2 1500Wh
batteries. The metal detector can sustain 10 hours of continuous operation on a single
1500Wh Lithium-Ion battery. Other power sources are available for use and performance
will vary.

The IO for the chip is as follows:

Inputs/Outputs (# of inputs/outputs) Description
Wireless Transmitters (5) 4 lines for data, 1 for data valid
Wireless Receivers (5) 4 lines for data, 1 for data valid
Metal Detector (1) For beat frequency from metal detector
Keypad Interface (8) Simple Keypad interface
Stepper Motor controllers (4) Stepper motor interface board
VGA connector (15 [D-sub]) Standard interface to monitor

Specifications of chip:

Specification Value

Main Clock 25.175MHz
Maximum wireless transfer rate 64bps
Maximum stepper rate 90rpm
Metal Detector Sampling Frequency 6.25KHz
Metal Detector Operating Frequency 280KHz to 325 KHz
VGA Display External (through D-sub)
VGA Max Resolution 640x480
VGA Display Max Refresh 60Hz @ 640x480
PS/2 Interface Available [not implemented]
USB Interface None
FireWire None
Ethernet None
DC Input 7 to 12 V RAW
JTAG Input 10-pin female
Operating Altitude 0m to 3000m
Maximum Storage Altitude 5000m
Relative Humidity 20% to 80% non-condensing
Operating Temperature 10o C to 40o C
Storage Temperature -50o C to +60o C

Additional expansion is available through the use of options available on-board

the Altera UP1 board. Please check the UP1 documentation on Altera’s site for more
details.

IO Pin layout of the expansion slots is indicated on the following page:

Utilization of the FLEX_EXPAN_B Connector I/O Pins

Row 1 Pin # Flex Chip Pin Usage Row 2 Pin # Flex Chip Pin Usage
1 RAW 2 GND
3 VCC 4 GND
5 VCC 6 GND
7 No Connection 8 DI1/99
9 DI2/92 10 DI3/210
11 DI4/212 12 DEV_CLR/209
13 DEV_OE/213 14 DEV_CLK2/211
15 109 16 110
17 111 Reset 18 113 Reset
19 114 Half/Full 20 115 Half/Full
21 116 Clock 22 117 Clock
23 118 CW/CCW 24 119 CW/CCW
25 120 26 126
27 127 28 128
29 129 30 131
31 132 32 133
33 134 34 136
35 137 36 138
37 139 38 141
39 142 40 143
41 144 42 146
43 147 44 148
45 149 Bit A 46 151 Bit A
47 152 Bit B 48 153 Bit B
49 154 Bit C 50 156 Bit C
51 157 Bit D 52 158 Bit D
53 159 Enable 54 161 Data Valid
55 162 56 163
57 VCC 58 GND
59 VCC 60 GND

Robot Body

Battery Space
(level1)
FPGA Board
(level 2)

Stepper Motor

Stepper Motor

Stepper Motor
Controllers

Caster

Range Sensor
mount points

Metal
Detector
Coil

Experiments and Results

Simulating VGA in Max Plus II v.10.0

In development of the driver for VGA, I wanted to do a test simulation on Max
Plus II to ensure that we would get a good mark on our report with pages and pages of
simulations.

No, really, I wanted to verify that the code works. I had setup on version 10.0 of
Altera’s software (for windows 2000 support) on my machine, which is pretty tough
machine (Dual Celeron 466MHz, 128MB RAM, 40GB hard drive (over 3 drives, 2 of
them being SCSI).)

I hit the simulation run with the system clock at 5.0ns and simulated for 1.0s.
This was not a wise idea.

What happened next was just extremely poor performance and my hard drives
thrashing like they never thrashed before. I was just able to open my task manager to see
what the resource usage was like. I was impressed that virtual memory climbed to
1GB!!! It’s good to know that windows 2000 does support that much RAM, even if it’s
virtual. Once it hit the 1GB mark, Max Plus II crashed. Maybe it can’t address all that
RAM Windows allocated for it.

Anyways, the conclusion to this experiment is that DO NOT SIMULATE A
WHOLE VGA DISPLAY on Max Plus II. I wanted to see what would happen for a
single screen but I couldn’t.

At the end, I ended up trying my code and it worked fine the first time and did the
rest of my development using trial and error. Test benches might work out here but
simulation time would take a long time (640 x 480 = 307,200) and not worthwhile.

16 Colors

Another experiment I wanted to try with the VGA display was to increase the
amount of colors available to the screen. There was an application note on 16 colors on
the VGA by alternating the output using the clock (no half voltages are allowed for
output of the pins, but clocked pulses with 50% duty cycles are allowed and would be
considered ½ of the full voltage).

Implementation of this proved to be tricky, especially from the code provided. The
sample code there is barely operational and does not demonstrate clearly this feature. In
general, the input clock must be reduced so its effects can be more noticeable. This
feature is quite the “hack” and not useful for a real project. Other techniques employed
by other groups have seen to be more useful and provide better results.

 Stepper Motor Timing

 Originally, a finite state machine was used in combination with standard counters
used in the EE552 labs. The counters would not consistantly stop after a set period and
would begin to run continuously. The issue of creating timing for the stepper motor input
to the controller cards required a 5 us low pulse to initiate a step. The pulse needed to be
consistant and regular and had minimum time and maximum times for the delay between
steps and the length of the low pulse. The timing control with the state machine/counter
system was prone to missed time and run-on counting.

 The solution was found by the use of purely RTL code with a chained lpm
counter-comparitor combination. A stable output was produced and the system only
required a 5us clock pulse to work perfectly in symulation.

 Transmitter & Reciever IO Interface

 The documentation for the transmitter and receiver was limited to a schematic a
sentence describing the IO as consisting of a 4 bit word and a valid or enable signal.
There was no information of the speed limitations or other information on the systems.
The slow speed of the transmission required a FIFO buffer to transfer the information.
Unfortunately the compilation of lpm FIFO buffer recommended by Altera would crash
when an attempt to fit it on the chip space. A buffer of 8 x 5bit words was later used and
the system would then compile. The results have been inconsistent and the system is still
prone to faults at this point. The megafunction system in MaxPlus2 is not well
documented and should probably be avoided.

 ROVER Design Hierarchy
Below is the design hierarchy for the remote robot, Rover. Boxes with red text refer to
end hardware components. Blue boxes refer to VHDL code blocks. Rover is to be
powered by itself with its own onboard power.

*Note: red text signifies actual physical components.

Base Station Design Hierarchy
The base station is to provide feedback to the user and also provide an interface to control
Rover.

FPGA Controller
“Main_Controller”

Metal
Detector
Controle

Left Motor
Drive

Metal
Detector

Left
Drive

Right
Drive

Right Motor
Drive

Receiver

Transmitter

Receiver

Transmitter

Clock
Chopper

Step
Driver

Step
Driver

Step
Counter

Step
Counter

FIFO
DC
Buffer

FIFO
DC

VGA
Display

Monitor

12 Key
Keypad
Controller

FPGA Controller
“Base_Station_Controller”

One Time
Buffer

Receiver

Transmitter

Receiver

Transmitter

FIFO DC
Buffer

FIFO DC
Buffer

Keypad

VHDL Design
Below are various design for VHDL code blocks. Specifically it covers the control codes
used for communication between Rover and the base station.

Receiving Data From Rover

Through the wireless controllers, we will pull data from “Rover” on the value of
the metal detector at the particular instance. This value from Rover will display on
screen in a colour. The display of the colour will be different for 2 modes of searching.
In autonomous mode, a grid representing the search area will be shown and as each block
on the grid is passed, the intensity of the metal in the area will be shown on screen with a
colour. In manual mode, only a single block in the middle of the screen will show the
intensity of the metal at that instance.

The state machine flow are below

The receive data flow:

Receive
Metal

wait

receive
sequence

Receive
X

Receive
Y

Update
display

Data =‘F’

Data valid=‘1’

Data valid=‘1’

Data valid=‘1’

Data valid=‘1’

Data valid=‘0’

The updating of the monitor:

In autonomous mode

In manual mode

Sending Data To Rover

Sending data to rover is quite simple. We see when there is a key pressed on the
keypad at the station. When there is a key press, we look up the value in a table and then
send the value out to Rover and return to the reset state.

Reset

Set
RGB

reset

Find
X

Find
Y

Set
RGB

Reset

Interpret
value

Send to
rover

kpin0=‘1’

kpin0=‘0’

Rover
 General Operation

 The state diagram of the rover actions:

Wait

Reset

Begin Pattern

GoManual

GoAutonomous Receive “#”

Receive value
Receive “*”

 Manual Operation

 MoveXSteps

InitiateTurn GoManual

Done=1

Wait

ReceiveValue

Done=1

Reset(not 1-9)

Autonomous Operation

BeginPattern Calculate constants

MoveToStart

TransmitSensor

MoveForward

Turn
Transmit position

Check Reciever

Re-Calculate constants

Reset(not 1-9)

Done=1
Done=1

Done=1

References

1. Steve & Rachel Hagman, “Single IC Metal Detector”, EDN , Dec 1998
2. SGS Thompson Datasheet, “THE L297 STEPPER MOTOR CONTROLLER”,

Application Note
3. “Mobile Robots 2nd Ed.”, J. Jones, A. Flynn, B. Seiger, A K Peters Ltd, 1999

Declaration of Original Content

The design elements of this project and report are entirely the original work of the
authors except as follows:

1. The schematic of the single IC Metal Detector example in Fig. () was taken from
[1]

2. The original circuit design of the Stepper motor controller PCB layout in Fig. ()
was taken from [2]

3. The stepper motor controllers were used in a previous course at the University of
Alberta, EE 582.

4. The design of the body of the robot is original but the credit for its fabrication
goes to Berry in the electrical engineering mechanical shop.

	Final Report
	Introduction
	Problem description
	Solution
	Achievements
	Keypad
	Rangefinders
	Clock Divider
	Stepper Motor Drive Controller Interface
	Power Supply
	RF Transmitter and Receiver System
	Rover Control System

	FPGA Datasheet
	Overview
	Implementation
	Specifications of chip:
	
	
	
	
	Metal Detector Sampling Frequency
	Metal Detector Operating Frequency
	VGA Display
	VGA Max Resolution
	VGA Display Max Refresh
	PS/2 Interface
	USB Interface
	FireWire
	Ethernet
	DC Input
	JTAG Input
	Operating Altitude
	Maximum Storage Altitude
	Relative Humidity
	Operating Temperature
	Storage Temperature

	Robot Body

	Experiments and Results
	Simulating VGA in Max Plus II v.10.0
	16 Colors
	Stepper Motor Timing
	Transmitter & Reciever IO Interface

	ROVER Design Hierarchy
	Base Station Design Hierarchy
	VHDL Design
	Receiving Data From Rover
	Sending Data To Rover

	Rover
	General Operation
	The state diagram of the rover actions:

	Manual Operation
	Autonomous Operation
	References

