

Control Display Unit For A HI-4422 Electric Field Probe
EE 552 Project Design Lab

 i

The design elements of this project are entirely the original work of the authors, except
as follows:

��Clock Divider code "clkdiv.vhd" was modified from reference [5]
��VGA code “countxy.vhd”, “syncgen.vhd”, “title.vhd”, “char_set.mif”,

“ic_test.mif” was modified from reference [6]

Signatures:

John-Michael Carolan Graeme Fricke

Christopher Kowalski

Name: E-mail address:
John-Michael Carolan jcarolan@ee.ualberta.ca
Graeme Fricke gfricke@freenet.edmonton.ab.ca
Christopher Kowalski cmk4@ualberta.ca

Abstract

The Government of Canada requires that human exposure to radio frequency
electromagnetic fields be limited (see
www.hc-sc.gc.ca/ehp/ehd/catalogue/rpb_pubs/99ehd237.htm). It is therefore necessary to
determine the strength of these fields in cases where safety may be compromised. The
purpose of this project is to design and construct a control/display unit (CDU) for the
Holaday HI-4422 isotropic electric field probe. The CDU takes readings in from the
probe and display the results onto a VGA monitor. As well a safety device comprising of
a strobe light and a two-tone siren built by the Aerospace Engineering Test Establishment
(AETE), is activated if the electric field is above a predefined tolerance limit.

 ii

Table of Contents
Achievements 1

Description of Operation 2

FPGA Data Sheet 8

Resource Requirements 10

Experimental Results 10

References 11

Diagram of Design Hierarchy 12

 1

1.0 Achievements

A control and display unit for a Holaday HI-4422 electric field probe has been
successfully built. The following are the achievements required to accomplish this:

A functional RS-232 / HI-4422 probe controller with parity checking, handshaking
signals and code conversion has been successfully coded and tested in simulation and in
hardware. A signal can be correctly sent to the probe and the signal sent back from the
probe is properly received. This was tested by sending various commands to the probe
and checking if one of the desired characters was returned.

The ability to get input from a PS/2 keyboard and convert the received scan code has
been fully coded and tested in both simulation and in hardware. Test code,
keydisplay.vhd, was used to display the scan code sent from the keyboard upon a key
press on two 7-segment LED displays. The scan code displayed was the hexadecimal
representation of the scan code.

That the monitor output is what I designed it to be is something that I regard as an
achievement, as this is something that I haven’t attempted before. Although I have based
the code upon previous EE552 projects (the logic analyzer and the dice race), I’m using a
higher resolution and more variable output, so I’m pleased that the underlying logic
works properly.

In order to reduce the number of logic cells used by this project, it was necessary to carry
out some optimization. I was able to achieve this by reducing the number of conditions
required to determine the display, by using case statements where previous groups had
used if-then statements and by minimizing the size of the additions used to calculate
ROM addresses from screen coordinates. Since this was a divergence from previous code
and since it produced significant results, I consider this an achievement, prosaic though it
may be.

In creating the Command Display Unit (CmdDU), two major factors needed to be
considered: time, and size. A major achievement was meeting these two goals. The ideal
design of the Command Display Unit would be a custom microprocessor core, which
would run instructions from memory. A problem with this is time. To construct a
microprocessor with a custom instruction set and architecture would require more time
than what was available. Existing microprocessor cores were available, but used so many
logic cells that the remainder of the project would not fit on a FLEX10K20 FPGA. A tri-
state bus could be used, but would make the flow of sending and receiving data difficult
to ascertain without extensive handshaking signals. Finally, there is the tried and true
state machine method. Using a giant state machine to send and receive information to the
probe, and prepare it for use in the VGA display. This proved to be the most flexible
solution, and gave the best chance of fulfilling the time and size requirements.

 2

2.0 Description of Operation

2.1 General Overview:

The Control-Display Unit (CDU) is designed to interface with a Holaday HI-4422
Isotropic Electric Field Probe, receive a reading from the probe, and display it to a VGA
compatible monitor. External control of the system is accomplished through a PS/2
compatible AT-keyboard or keypad. The probe is capable of a number of different
functions which the user can control. An explanation of these function will follow.

2.2 The HI-4422 Probe

The following is a general explanation of the HI-4422 probe’s operation taken from the
User’s manual (see reference 2):

The HI-4422 operates as a controller mode device. That is it only sends data in response
to a command received. The information that the probe sends and receives is in the RS-
232 standard with the following parameters:
 Word Length: 7 bit
 Parity: Odd
 Stop Bits: 1
 Data Rate: 9600 baud

Commands sent to the probe consist of: 1) Command letter

2) Parameters if required
3) A terminating carriage return

Commands from the probe consist of: 1) A “:” start character
 2) Command letter
 3) Data if required
 4) A terminating carriage return

The CDU is capable of sending the following commands to the probe (see the user’s
manual, reference 2, for a complete listing of all commands for the probe and the exact
form they are in):

 3

Axis enable/disable: The X, Y, and Z axis antenna readings can be read independently
or simultaneously in any combination. This command allows the
user to choose which of the axis(es) to take a reading from.

Read Battery Voltage: The HI-4422 has an internal rechargeable battery, this command

tells the probe to send the voltage level.

Read probe data: The probe data is requested from the probe. The data is read in the

“long form” only. (See received signals for information on what is
received).

Set range: The probe has four internal ranges. This command selects the

desired range.

Read Temperature: This command tells the probe to return the external air temperature

in degrees Celsius.

Zero: The HI-4422 needs to be calibrated with a “zero” reference level

upon power up. The command tells the probe that the current
reading is to set as the zero reference level.

The CDU is capable of receiving the following commands from the probe (see the user’s
manual, reference 2, for a complete listing of all commands for the probe and the exact
form they are in):

Bxx.xx : The battery voltage where xx.xx is the voltage.

Dxx.xxuuurrrobaaa: The reading from the probe where:

xx.xx is the reading. The position of the decimal point is
dependent upon the range.

uuu is the units the probe is sending the reading in.
V = V/m; mW2 = mW/cm2; _V2 = [V/m]2. (Underscore
indicates a space)

rrr is not used in this design

o is the over range indicator. N = o.k.; O = over range

b is the battery status. N = safe operating level; W = warning level;
F = fail level

aaa is the axis enable information. E = enabled; D = disabled; the
axis order is X,Y,Z

 4

Rx: The range the probe is in where x is the numerical value

Txxx: The temperature, for this design only the temperature in Centigrade

is displayed.

2.3 RS-232 controller

The RS-232 controller consists of three separately coded components. A serial input
port, a serial output port, and a clock scaler.

The serial input port takes in the serial data one bit at a time and stores the data in a
register. Once one data word has been received the data, with out the start and stop bits,
is sent out a parallel bus. At the same time a “ready” line is raised high, and remains high
until an other input line, “gotdata” is asserted at which time the “ready” line goes low
until another world has been received in.

The serial output port takes in a 7-bit ASCII word in parallel, calculates the correct parity
bit, and then sends the data out serially with a start and stop bit. The data is loaded when
the “load” line is asserted and sent once the "load" signal is lowered. The signal “ready”
goes high once all the data has been sent.

The clock scaler produces two clock signals slower then the system clock. One clock
signal at 9600 Hz is used by the serial output port, and the other clock signal, which is 16
times faster then the clock signal, is used by the serial input port. When reset is asserted,
the two clock signals produced, match the system clock to allow the two serial ports to
reset.

The three above components are connected as follows:

 5

2.4 Probe I/O controller

The probe Input / Output (I/O) controller consists of four different components. The RS-
232 component described above, a parity error checking component, a ASCII-to-vector
converter, and a vector-to-ASCII converter.

The parity checker compares the parity bit received from the serial input port to what
parity should have been received. It takes is a 8-bit vector in parallel and sends out a 7-
bit vector. If the parity is correct the 7-bits sent correspond to the ASCII word received
by the probe I/O controller. If the parity is incorrect then the 7-bits sent is all ones.

Both the ASCII-to-vector and the vector-to-ASCII components function in the same
manner, only they are inverses of each other. A 7-bit ASCII character is received/sent
and a 5-bit vector is send/received. The two components perform the translation between
the ASCII and the 5-bit vector or vise versa. Please see the VHDL code
ascii_to_vector.vhd for a chart showing the conversion done.

The components are connected as follows:

reset

clock

data

gotdata

ready

serialinput

serialin

reset clock

data

load

ready

serialoutput

serialout

reset fast_clock

clkdiv
slow_clock1

slow_clock2

reset clock

serialinput

serialoutput

gotinput

readinput

serialin_out8

serialout_in

sendoutput

sentoutput

7

rs232.vhd

 6

2.5 Keyboard controller

The keyboard controller consists of two separate components: a key reader, and a scan
code-to-vector converter.

The key reader reads in the 11-bit scan code corresponding to the key that was pressed on
the keyboard. Once all the data has been received the 8-bits representing the key’s scan
code are send out in parallel, and the signal “gotcode” is asserted. The start, stop, and
parity bits are ignored and are not passed out of the key reader.

The scan code-to-vector converter reads in the 8-bit scan code from the key reader when
the signal “transfer” is raised high. The 8-bit code is then converted into a 4-bit vector.
If the received scan code is not one of the desired codes programmed into the scan code-
to-vector unit, then a vector of all ones is sent out. Please see the VHDL code
scancode_to_vector.vhd for a chart showing the conversion done.

The components are connected as follows:

2.6 VGA Display

The operation of a VGA monitor is governed by five signals. Two of these signals, the
horizontal and vertical synchronization signals, control the location of output data on-

ascii

reset clock
transfer done

vector

ascii
to
vector

ascii

reset clock
loaddone

vector

vector
to
ascii

ascii

reset clock
load transfer

asciiout

parity
checkerserialinput

clockreset

readinput

sendoutput

serialout_in

serialoutput

gotinput

sentoutput

serialin_out
rs232

intdone

intserialout

intloaderror

intdataerror

interrout

inttransfer

8

7

7serialinput

serialoutput

NewRecieved

DataRecieved
read

sent

DataToSend

NewToSend

cloc kreset

5

5

reset

key
keyclock

keyboard scancode

gotcode

reset

scancode_
to_vectortransfer

scancode

clock

done

vector
keyboard

keyclock

intscancode

8

inttransfer

vector

done
4

clockreset

 7

screen. The horizontal synchronization signal tells the monitor when to begin displaying
a row of pixels and when to reset itself to the beginning of the row while the vertical
synchronization signal tells the monitor when to change rows or reset itself to the top left-
hand corner of the screen. The other three, the colours red, green and blue, determine the
colour of each pixel. However, the synchronization signals act independently of the
colour signals, so it is necessary for the colour signals to be properly timed - otherwise,
the wrong data will be displayed.

The file probedisplay.vhd incorporates both the timing and data aspects of the VGA
display. This proved to be the most convenient approach to the problem of controlling
the monitor, as it eliminated the need to track signals across multiple entities. Within
probedisplay.vhd, the synchronize process ensures that the synchronization signals are
properly timed; it also generates the horizontal and vertical counters which are used to
determine which pixel is currently active. The rest of the program consists of routines
which produce the appropriate colour for each pixel, depending on the counters.

The 640 x 480 pixel VGA display can be subdivided into 80 x 60 square blocks of 64
pixels, working with the origin at the top left-hand corner of the screen. Consequently,
character display is carried out by defining each block as containing a character or a
blank. The col_address and row_address vectors, which omit the least significant three
bits of the horizontal and vertical counters, determine the current block, while the least
significant three bits of each determine the current pixel within the block.

Pixel colouring is handled through the use of two ROMs. The first of these, chars.mif,
stores characters as 8 by 8 arrays of bits. Each address in the ROM refers to an 8-bit
vector; eight of these vectors defines a character. The second ROM, screenwords.mif,
stores the locations of sequences of characters within chars.mif. The program uses the
row_address and col_address vectors to determine within screenwords.mif which
character to look up in chars.mif; chars.mif, in conjunction with the pixel count within the
current character block, then indicates whether a pixel should be on or off.

The on-screen location is also used to determine the colour of a pixel. Each coordinate is
defined as either white (if the pixel is off) or some specific colour (if the pixel is on).
This is independent of what is actually being written on the screen, and uses a separate
process. A handy side-effect of the white background is that while colours like red and
green must be defined by location, black characters don’t require any such code - defining
an off pixel as white automatically defines an on pixel as black. This cuts dramatically
the number of conditional statements necessary for colour definitions, which in turn
reduces the number of logic cells required.

The variable displays (such as the temperature value and the range indicator) are for the
most part handled in this fashion. However, the memory addresses used to retrieve data
from the ROMs are determined by the states of incoming external signals, so a number of
possible characters are available to each relevant character block on screen. Thus, for
example, any number from 0 to 9 may be displayed in the character block which was
assigned to the first digit of the temperature, dependent on the input signal temp_value1.

 8

The bar graph is handled in a similar manner, although its output is determined on a
pixel-by-pixel basis rather than by initially using character blocks. The current probe
reading (rounded down to the nearest integer) is calculated from the four signal vectors
which specify the four reading digits (in the process varybar). For the appropriate rows
of pixels, if the x-coordinate of a pixel is larger than that of the y-axis but smaller than the
x-coordinate of the y-axis plus the probe reading then that pixel is coloured blue. The
procedure is simple, but the multipliers required to construct the probe reading from its
digits add a significant number of logic cycles (at least 5%) to the project.

probedisplay.vhd, then, outputs three types of data to the VGA monitor:

1. Fixed labels, whose pixel coordinates and addresses in memory are
predetermined;

2. Variable values, whose pixel coordinates are fixed but which access different
memory locations depending on input signals; and

3. The bar graph, whose pixel coordinates are variable but which doesn’t
access the ROMs for its colour.

Although three previous projects (Arkanoid, Dice Race and Logic Analyzer) all
implemented some form of VGA display, their coordinate and synchronization counters
failed when they were incorporated into probedisplay.vhd. It is necessary that the
synchronization signals initially fire at the same time as the first red, green and blue
signals, but simply counting up from zero as in previous projects caused these signals to
be staggered. By delaying the synchronization signals for two clock cycles, the five
signals were moved back into phase with each other.

A more significant problem was that the horizontal counter countX was initially too slow,
resulting in pixels from the start of one character overwriting the first few pixels of the
following character. This problem was solved by implementing a second counter which
was equal to countX + 2 and which took over when countX = 6. Thanks are owed to
John Koob for spotting the solution to this problem.

2.7 Command Display Unit

The Command Display Unit operates in a manner as follows:

1. Resets all registers and control signals on start or reset
2. Sends commands to get information from the probe, and receives and

interprets that information – storing it in appropriate registers for use in the
VGA display.

3. Checks for any keys pressed, and send commands to service them
accordingly.

 9

3. Size of the code (in logic blocks and percentage)

The size of the code as compile on MaxPlusII v9.6 is 407 logic cells, or 35% of the
FLEX10K20.

4. Any experiments you did and their outcome (I.E. reducing states, adders,
compiling upstairs vrs. downstairs)

Speed wasn’t a large consideration, as 1MHz would be sufficient to read information
from the ProbeIO module, however, space was a consideration. When compiling on
MaxPlus2 v9.3, it was found that the amount of spaced used on a FLEX10K20 was 80%
of the available logic cells, which is 35% more than what was available – fitting other
modules on the FPGA. By compiling on v9.6, this was reduced by 45%, and speed was
increased by an average of 6x. Reducing more states further increased speed, but did
little to reduce overall area used on the FPGA.

3.0 FPGA Data Sheet

The CDU was built on an Altera UP1 Education board. Both the EPM7128SLC84-7 and
the EPF10K20RC240-4 FPGAs were utilized in this design. The design incorporates the
use of a VGA monitor via the on board VGA port, a PS/2 keyboard via the on board PS/2
port, a RS-232 connection wired externally from the board, and a strobe / siren box
controlled via an external relay, transistor switch network.

3.1 PS/2 Keyboard

The PS/2 keyboard is connected to the UP1 board via the built in PS/2 connector. The
following table shows the function associated with each key:

User Command Mapped Key Description and Notes
Axis Enable/Disable:
X

7 This is a toggle command. It toggles between
turning on and off the X-axis measurment.

Axis Enable/Disable:
Y

8 This is a toggle command. It toggles between
turning on and off the Y-axis measurment

Axis Enable/Disable:
Z

9 This is a toggle command. It toggles between
turning on and off the Z-axis measurment

Range Select: 1 1 This keys tells the probe to send the reading in
the range upto 10 V/m

Range Select: 2 2 This keys tells the probe to send the reading in

 10

the range upto 30 V/m
Range Select: 3 3 This keys tells the probe to send the reading in

the range upto 100 V/m
Range Select: 4 0 This keys tells the probe to send the reading in

the range upto 300 V/m
Range Select: Next . (Decimal) This keys tells the probe to send the reading in

the next highest range
Zero the Probe + This set the current reading of the probe to be a

zero reference.

Two signals are received from the keyboard: Data, and the keyboard clock. See 3.5 for a
table of pin connections.

3.2 VGA Monitor

The VGA monitor is connected to the UP1 board via the built in VGA connector. The
signals Red, Green, Blue, Horizontal sync, and Vertical sync are sent to the monitor via
the VGA connector. See 3.5 for a table of pin connections.

3.3 RS-232

One RS-232 signal is received by, and sent by the UP1 board. A serial output is sent on
one wire, and a serial input is received on one wire. Signals to and from the RS-232 /
Probe I/O unit are also sent to and from the EPM7128SLC84-7 (the FPGA were the
probe I/O resides) to and from the EPF10K20RC240-4. Six different signals on 14 wires
were used. The signals sent from the EPM7128S are “DataReceived” (5 wires),
“NewReceived” (1 wire), and “sent” (1 wire). The signals received are: “DataToSend” (5
wires), “NewToSend” (1 wire), and “read” (1 wire). See 3.5 for a table of pin
connections.

3.4 Strobe / Siren Box

Only one signals is sent from the UP1 board to the strobe / siren box; “noise”. See 3.5 for
a table of pin connections.

3.5 Pin Connections

The following table shows the location of connections to the UP1 board.

Name EPM7128S

Pin
EPF10K20
Pin

UP1 Pin Description

 11

Reset 45 66 (Expan
A: 30)

MAX_PB1 A global reset.

keyboard NC 31 PS/2: 3 Serial data from the
keyboard

keyclock NC 30 PS/2: 1 Clock from the keyboard
vga_red NC 236 VGA: 1 Control of the red gun on

the VGA monitor
vga_green NC 237 VGA: 2 Control of the green gun on

the VGA monitor
vga_blue NC 238 VGA: 3 Control of the blue gun on

the VGA monitor
HSync NC 13 VGA: 13 Control of the horizontal

sync on the VGA monitor
VSyn NC 14 VGA: 14 Control of the vertical sync

on the VGA monitor
serialinput 12 NC P2 Serial input from the

external RS-232 circuit
serialoutput 30 NC P2 Serial output from the

external RS-232 circuit
DataToSend0 80 231 Expan_C:

56
Data to be sent out serially.
Bit 0 of 4.

DataToSend1 4 229 Expan_C:
54

Data to be sent out serially.
Bit 1 of 4.

DataToSend2 6 227 Expan_C:
52

Data to be sent out serially.
Bit 2 of 4.

DataToSend3 8 225 Expan_C:
50

Data to be sent out serially.
Bit 3 of 4.

DataToSend4 10 222 Expan_C:
48

Data to be sent out serially.
Bit 4 of 4.

NewToSend 9 220 Expan_C:
46

Handshaking control signal

Sent 11 218 Expan_C:
44

Handshaking control signal

DataRecieved0 44 46 Expan_A:
16

Data received serially.
Bit 0 of 4.

DataRecieved1 46 49 Expan_A:
18

Data received serially.
Bit 1 of 4.

DataRecieved2 48 51 Expan_A:
20

Data received serially.
Bit 2 of 4.

DataRecieved3 50 54 Expan_A:
22

Data received serially.
Bit 3 of 4.

DataRecieved4 52 56 Expan_A:
24

Data received serially.
Bit 4 of 4.

Read 51 62 Expan_A:
26

Handshaking control signal

 12

NewRecieved 49 64 Expan_A:
28

Handshaking control signal

Noise NC 68 Expan_A:
32

Signal to activate the strobe
/ siren box.

4.0 FPGA Resource Requirements

The design is going to be split over the two FPGAs of the UP1 board. The probe IO is
on the MAX7000 FPGA and the controller, VGA display, and the keyboard input are on
the FLEX10K FPGA.

On the MAX7000 FPGA the probe IO component takes up 120/128 logic cells or 93% of
the total number of logic cells.

On the FLEX10K FPGA the breakdown of logic cells required is as follows:

Component Name Number of Logic Cells
Keyboard Control 73/1152 or 6%
Command Control unit 408/1152 or 35%
VGA Output 535/1152 or 46%
Clock divider 001/1152 or 0%
Total 1016/1151 or 88%

5.0 Experimental Results

5.1 Keyboard Implementation

A number of different experiments were preformed with the PS/2 keyboard. First the
correct functioning of the keyboard and keyboard control VHDL code was verified by the
code keydisplay.vhd. This code allowed the scan code sent from the keyboard to be
displayed on two 7-segment LEDs. The following characteristics of the keyboard were
observed:

1. The typematic delay for the keyboard in use has a default value. I.E.
The keyboard will send multiple signals if a key is held down for a
certain length of time, even if no delay time is sent to the keyboard

2. When two keys are pressed one after the other two different results can
occur. If key "a" is pressed and then key "b". The scan code for "a" is
sent and then for "b". If key "b" is released first the keyboard sends F0
(hex) and then the scan code for "b". If, however, "a" is released first,
the keyboard sends F0 (hex), the scan code for "a", and then the can
code for "b".

 13

5.2 RS-232 / Fiber Optic Modem (Holaday part HI-4413P)

The HI-4413P was designed to be used by a computer, as such a few modifications had to
be made. The DTR, RTS, and CTS lines are required to provide power to the modem. If
was found that they had to have a logic 0 (TTL: 0V, RS-232: +3 - +25) on them, not a
logic 1. It was also discovered that the HI-4413P's software was incompatible with the
Windows NT boxes in the lab and could therefore the probe and the HI-4413P could not
be tested by this manner.

5.3 VGA display

I experimented with two different approaches to the VGA counters. The first required
three separate programs - two handled the synchronization signals and the pixel counters
and the third looked after the graphics display. This proved to be unwieldy and difficult
to debug, so I tried incorporating all of the code into a single program. The counter and
synchronization code is quite small relative to the combined code, so I can now see no
reason to use the first method. In fact, I recommend against it - the “complete in one
program” approach works well

5.4 Hyperterminal tests.

A number of tests were preformed with hyperterminal, all of which were unsuccessful
due to the fact that we were unable to get hyperterminal working properly

6.0 References

1. Health Canada: http://www.hc-sc.gc.ca/ehp/ehd/catalogue/rpb_pubs/99ehd237.htm

2. Holaday Industries, HI-4422 Isotropic Electric Field Probe User's Manual, Reversion

A: August 94, Holaday Industries Inc.

3. Beyond Logic Organization: http://www.beyondlogic.org/

4. Altera UP1 Board Data sheet

5. EE 552 Class Notes

6. EE 552 Past Project: Logic Analyzer
 http://www.ee.ualberta.ca/~elliott/ee552/projects/1999_w/logic_analyzer/final_report.
htm

 14

7. Application note provided by Tyler Brandon, Chris Blasko and Kevin Lister
 www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1998f/framebuffVGA/appnot.txt

8. EE 552 application note provided by Hao Luan, Bo Liu and Albert Chan
 www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1998_w/dicerace_video_display

10.0 Diagram of Design Hierarchy

 15

probeIO.vhd

Simulated - No
known bugs

ascii_to_vector.vhd

Simulated - No known
bugs

paritychecker.vhd

Simulated - No known
bugs

rs232.vhd

Simulated - No known
bugs

vector_to_acsii.vhd

Simulated - No known
bugs

serialin.vhd

Simulated - No known
bugs

serialout.vhd

Simulated - No known
bugs

EPM7128SLC84-7

cdutop.vhd

Simulated - No
known bugs

keyboardcontrol.vhd

Simulated - No known
bugs

CmdDu.vhd

Simulated - No known
bugs

probedisplay.vhd

Simulated - No known
bugs

EPF10K20RC240-4

key.vhd

Simulated - No known
bugs

scancode_to_vector.vhd

Simulated - No known
bugs

screenwords.mif

N/A

char.mif

N/A

registerN.vhd

Compiled - no known
bugs.

keycheck.vhd

Compiled - no known
bugs.

register1.vhd

Compiled - no known
bugs.

