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1. Achievements

The SafeTalk prototype has been very successful in design, simulation, and implementation.
The experimentation is promising and the outlook for future versions of SafeTalk is positive. The
speech signal has been successfully converted to a digital signal and back into an analog signal.
This milestone set the tone for successes during the remainder of the project.  The transmission
and receiving modules of SafeTalk were the cornerstones in the final result. A universal
asynchronous receive transmitter (UART) simulated properly, and because it was asynchronous it
transmitted and received encrypted data automatically.  As well, the simulations correctly indicate
that the framing and parity error checking mechanism was in place.  Finally, the encryption
module is designed to allow for a stronger algorithm to secure speech data.  The most exciting part
of the encryption module is that the data is not audibly recognizable if converted to analog.  Even
though the cipher that was used is not secure by some standards, your roommate could not tell
what you were saying to your friends on the other line.

The entire design of SafeTalk comprises of many different subsections. A lot of our objectives and
goals were achieved although we must admit that there are still a number of small sub-sections
that has
The achievements obtained throughout the entire duration of our project is briefly explained in the
table below:

COMPILATION
SUCCESSFUL

SIMULATION
WAVEFORM AS

EXPECTED

CODE IMPLEMENTATION WITH
HARDWARE &/OR  FPGA BOARD
WITH CORRECT OUTPUTS

ADC hardware √ √ √
DAC hardware √ √ √
ADC & DAC √ √ √

Compression x x x

Encryption Code (EC) √ √ √
Encryption with ADC √ √ √
Encryption with
Transmission

√ √ √

Decryption Code (DC) √ √ √
Decryption with DAC √ √ √
Decryption with
Receiver

√ √ √

Transmission Code (TC) √ √ √
Receiver Code (RC) √ √ ∼
TC & RC with
controller

√ √ ∼

TC, RC, controller with
FIFO buffer

√ √ ∼

TC & RC with ADC &
DAC hardware

√ ∼

ADC hardware, EC, &
TC

√ √ √

DAC hardware, DC, &
RC

√ × √
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1.1 ADC

The ADC design has hardware and software components.  The hardware component
consists of an analog circuit with 2 operational-amplifiers, one low pass filter, one
Sample & Hold chip, and an ADC0809 chip.  This circuit performs correctly when
connected to the FLEX10K board using the function generator / microphone to generate
an input signal.

The waveforms observed on the oscilloscope are as expected.  Output signals are verified
to be similar to that of the input signal.  Signals like sample, SOC, EOC, and clock
(of the ADC0809) were also probed on the oscilloscope to verify correctness.  These
again match the expected values. The simulation waveforms for the various test cases are
enclosed in this document.

The software component consists of two VHDL programs – input_reader.vhd &
clock_divider.vhd. Both VHDL programs simulated correctly without any
glitches.  Refer to the simulation waveforms enclosed in this document.

Attempts were also made to connect the ADC with the DAC.  The function generator was
used as an input, because the signal it produces is much more consistent a human voice
input.  The output produced by the DAC circuits are exactly identical to that of the input
waveform produced by the function generator except for s slight delay and amplification
in the output signal , thus confirming the fact that the analog-digital-analog conversion
process works.  Although there were some noise interference in the output waveform, the
voices transmitted were relatively audible. The input waveforms used for testing varied
from a sinusoidal wave to a square wave to a triangular waveform, which gave a range of
different inputs to test.  The outputs are identical to that of the input. The clock frequency
used for testing purposes was approximately 840kHz (divisor value for clock_divider.vhd
is 15). When a microphone was used as an input, voices can be heard through the
speaker. Although there was some noise interference, the sound quality was quite
satisfactory. The ADC module functions correctly.

1.2 Encryption/Decryption

The stream cipher operates correctly in both the encryption and decryption stages.  Tests
were performed on the FPGA to ensure its correct operation.  The parallel-to-serial and
serial-to-parallel converters were also successfully interfaced with the input and output,
respectively, of the stream cipher.  Furthermore, the encryption VHDL entity was
successfully connected to the ADC entity.  The tests performed with the ADC hardware
and the FPGA show promising results.  The outputs of the encryptor are non-periodic
square waves that correspond to the binary logic 0’s and l’s that are the expected outputs
of the encryptor.  The decryption VHDL entity was also successfully integrated with the
DAC hardware.  The tests performed show that this compound entity properly decrypts
data.

However, the attempts to integrate these compound entities (i.e. ADC/encryptor and
decryptor/DAC) with the transmitter and receiver, respectively, have not been successful.
As well, integration of the compound entities with the DSP controller is not currently
successful.

It must be noted that the stream cipher in this project is based on linear shift registers.
This type of implementation for the stream cipher is not considered strong security.  The



3

reason for choosing this implementation is that it is simpler than most other stream
ciphers or block ciphers.  So it is fast to implement and is more realistic for the scope of
our project.  It allowed us to complete the encryption/decryption stages and to test it with
the rest of the system.  The limitations of this cipher are noted, and as such, the cipher
entity was built as a completely separate module, so it can more easily be replaced by a
more complex and more secure cipher if time permitted.  The success of completing this
simple cipher used can be regarded as a successful step in fully implementing SafeTalk

1.3 Transmitter/Receive

The UART is used in the transmission of the digital data, which is obtained from the
DAC and encrypted in the FPGA.  The original files obtained from QuickLogic partially
worked.  With some experimentation and testing both the transmitter and receiver
modules were modified to transmit and receive properly in the simulations.  The problem
arises when the code is uploaded to the FPGA and executed.  For reasons that are not
determined the correct reception of data did not occur correctly in spite of the results
obtained from the simulations.  Framing errors and parity errors occurred frequently.  In
the end we were able to get the UART to transmit and receive without errors. The proper
transmission/reception of the data was achieved after careful testing.  The modifications
were made to allow the proper transmission.

1.4 DAC

All of tests performed by the DAC shows that the DAC works successfully. The DAC
accepts an 8-bit digital data and converts it to an analog signal. Using three test cases, we
are able to conclude that the DAC works as expected. Using either the manual switches
from the UP1 board or a counter written in VHDL code as the input, the DAC
successfully converts both digital signals to analog waveforms.

Finally, testing the DAC with the ADC verifies the all conclusions made for the DAC.
The output signal is identical to the input signal (microphone/function generator) except
for some propagation delay and signal amplification. The design and use of the DAC is
verified as a completed step towards the success of SafeTalk.

1.5 Compression/Decompression

When a speech signal is compressed the redundancies in information are removed
because they are not needed to reconstruct the signal. That way only relevant information
is utilized.  The conversion of an audio signal from analog to digital is simple, however,
the data that results in the conversion to digital is large compared to the data needed to
reconstruct it and convert it back to analog.  As a result a large speed modem—64Kbps—
would be required to send all the information. This modem speed can not be obtained
with the resources available therefore compression is needed.

The members did not have any basis as to how compression worked, and therefore
research started at the search engines on the Internet. The outcome of the research is that
knowledge is gained in the areas of speech characteristics and speech compression. The
compression algorithm is an amateur design that reduces the number of bits to represent
the digital speech signal. Samples are converted at 840KHz, so to keep the massive
amounts of data passing through to the UART, 1 in every 8 samples is removed.  This
provides an effective sample of 8KHz.  The design and simulation of the compression is
documented in this document.
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2. Operation

2.1 ADC

The analog-to-digital converter is broken up into the hardware design and the software
design.

For the hardware design, the circuit is divided into 5 sub-sections:
1. Audio Condenser Microphone (AM 242)
2. Analog Operational Amplifiers (LM324)
3. Low Pass Filter (LF351)
4. Sample and Hold (SMP11)
5. A/D converter (ADC0809)

2.1.1
SafeTalk uses a condenser microphone with an internal resistance of approximately 2k�.
It is a NCAT (Noise Canceling and Amplification Technology) microphone for accurate
voice input. According to the specification sheet, the sensitivity of the microphone is –
67dB/uBar, -47dBV/Pascal ± 4dB. The frequency response of the microphone ranges
from 100-16,000Hz.

2.1.2
The microphone signal amplification is done in two stages with a pre-amplifier and an
actual amplifier.  The breakdown of this sub-section into the two amplifiers is done in
order to avoid oscillations and non-ideal operations of the op-amp at very high gain
configurations.  Both amplifier stages are built using an LM324 (Figures 2.1.1, 2.1.2)
single-ended op-amp. The LM324 series DIP consists of four independent, high-gain,
internally frequency compensated operational amplifiers that are designed specifically to
operate from a single power over a wide range of voltages. For our design, a single power
supply set at 5V DC is used to drive the amplifier system. Note that doing this does
indeed limit the positive output to 4.2V, this limitation can be rectified in the A/D
section.
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Figure 2.1.1: Pre-Amplifier Schematic

The pre-amplification (Figure 2.1.1) stage provides the main source of gain for the
amplifier. The op-amp configuration used here is an inverting single-ended amplifier.
The reason the chip is connected to a ±12V power supply instead of a +5V and ground
signal is to account for the clipping that occurred in the outputs of the amplifier.  Both the
capacitors used here are of values 10uF and they provide DC blocking and a signal
ground. The gain for this amplifier is given by the formula (110k/250) = 440.  Note that
the gain value here is theoretical and practical results may differ.

2.1.3

Figure 2.1.2: AmplifierSchematic
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The design for the main amplifier stage (Figure 2.1.2) is very similar to that of the pre-
amplifier stage. However, the only difference is that the 250Ω resistor is replaced with a
1-10kΩ potentiometer that provides the user with the flexibility to adjust the microphone
sensitivity.  The reason we are using +12V and –12V for the power supplies of the chip
instead of +5V and ground in order to achieve a higher voltage range and to avoid
clipping in the waveforms.

2.1.4

Figure 2.1.3: Low Pass Filter Schematic

A low pass filter design is added to the ADC design to reduce noise interference.  A low
pass filter allows all frequencies below a certain point, known as the cutoff frequency, to
pass without attenuation while suppressing all frequencies above the cutoff.  The cutoff
frequency is determined by the values of the capacitors C1 and C2 and resistor R1 and
R2. C1 and C2 are equal in value, as are R1 and R2. The cutoff frequency is determined
by the following formula:

Cutoff = 
1

2πRC 

The cutoff frequency we are using is 4kHz (since typical bandwidth of voice signals is
approximately 3kHz). Therefore, rearranging the formula above gives

R4 = 
1

(cutoff)(C)(2π)  = 
1

(4kHz)(10uF)(2π) = 3.98kΩ

The gain of this filter is equal to R4 divided by R3.  The gain for this filter is 3.9kΩ/ 39Ω
= 100 where R4 = 3.9 kΩ and R3 = 39Ω. R1 = R2 = 39Ω. The output at the cutoff
frequency is equal to 0.707 of this circuit’s maximum output.
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Table 2.1.1: LF 351 Pin Connections

Pin Number on
LF351

Signal Name Connected to Reason

4 V+ +12V (Active High) In order for chip to function efficiently
7 V- -12V In order for chip to function efficiently
2 Input- Input of filter Transmit data
3 Input+ Input for filter Transmit data
6 Output SMP11 chip input

(Pin 2- SMP11)
In order to transmit the appropriate
signals for functionality

2.1.5

Figure 2.1.4: Sample and Hold Block Schematic

The sample and hold chip (SMP11) samples rapidly changing inputs (voice waveform) in
order to provide a stable value for the A/D converter over a period of time.  See Figure
2.1.4 for the schematic circuit.

The sample and hold (S&H) chip provides the A/D converter with a stable value over a
certain period of time in order for the A/D chip to perform the conversion efficiently. The
need for the S&H chip is essential in order to provide the A/D chip with a constant value
instead of a rapidly changing input—such as the waveform generated from human voices.
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From the specification sheets, the sample time takes about 1.5us and the hold time is
approximately 100us. It is important to note that the S&H chip requires at least (12V to
operate efficiently although this is not explicitly stated in the specification sheet of the
chip.  For the value of Chold, the typical value of 0.005uF is used. This allows for a
sample time of 0.75us (90% input) on a signal and a maximum of 5V swing. To allow
imperfections of the chip or the circuit, the S&H time is chosen to be 1.5us.

The maximum voltage for the A/D chip is Vcc + 0.3V. Since the S&H chip can output 12
volts at full swing, two protection diodes are added onto the output of the S&H chip as
shown in the figure above to clamp the output between Vcc + Vdiode and Gnd – Vdiode.

The S&H chip requires that the signal be low for hold and high for sample. The duration
of time when the signal is low (hold=100us) is much longer than the duration of time
when signal is high (sample=1.5us). Control of it is done through the VHDL code
entitled input_reader.vhd.

Some important connections for the SMP11 chip are shown in Table 2.1.2.

Table 2.1.2: SMP11 Pin Connections

Pin Number
on SMP11

Signal Name Connected to Reason

9 V+ 5V (Active High) In order for chip to function
efficiently

5 V- Ground In order for chip to function
efficiently

2 Input Output of filter
(Pin 6 – LF351)

Transmit data

7 Output Input, IN0 for ADC0809 Transmit data
14 Sample FLEX10K board In order to receive the appropriate

signals for functionality
11 Hold Capacitor 0.005uF capacitor Chip Requirement

2.1.6

Figure 2.1.5: A/D Converter
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For the A/D conversion, we use the data acquisition component (ADC0809) with an 8 bit
analog-to-digital converter and an 8-channel multiplexer. The 8-bit converter uses
successive approximation as the conversion technique.  The advantage of this chip is that
the 8-channel multiplexer can access any of 8-single-ended analog signals. However, for
our design purposes, we are only using one analog channel input, IN0.The input/outputs
of the chip are as in Table 2.1.3.

Some important facts about the ADC809 signals to familiarize with before
implementation:

CLOCK:
According to the specification sheets for this chip, the input clock can be within the range
of 10kHz to 1280 kHz with the typical frequency of 640kHz. For our design, we have set
the input clock frequency to be approximately 840kHz thus giving us the divisor value
(clock_divider.vhd) of approximately (25.175MHz / (2 * 840kHz) = 15. This frequency
value is chosen so that it may be compatible with the clock frequency of that of the
digital-to-analog converter.

Note that the clock entering the ADC0809 is actually the slow_clock generated from
the program clock_divider.vhd and it is not the actual (central) clock. The reason the
slow_clock is used instead of the main clock generated by the main control (FPGA),
is to enable the ADC0809 and the SMP11 chips to function efficiently (chip limitations).
The slow_clock signal generated by clock_divider.vhd is a factor of (2 * divisor)
slower than the main clock. The slow_clock is also falling-edge triggered as oppose to
that of the main clock that is rising edge triggered.

SOC:
With the SOC signal, the duration of time when the signal is high is shorter than that
when the signal is low (conversion process takes approximately 100us). The signal stays
high for one slow_clock cycle.  The conversion of the analog signal to a digital signal
begins as soon as the SOC signal drops to a zero from a one.

EOC:
At the end of conversion (EOC) the EOC signal goes to a zero. When the conversion
process is taking place, the EOC signal remains at a one.  The state machine remains at
state2 (in_conv) as long as the EOC signal is high.  Note also that the outputs of the data
register are updated one clock cycle before the rising edge of the EOC.

CONVERSION TIME:
It takes 100us for the chip to convert a signal from analog to digital for a 840kHz
frequency clock.

Some important connections for the ADC0809 chip are as follows:
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Table 2.1.3: ADC0809 Pin Connections

Pin Number
on ADC0809

Signal Name Connected to Reason

11 Vcc 5V (Active High) In order for chip to function
efficiently

12 VREF(+) 5V (Active High) In order for chip to function
efficiently

16 VREF(-) Ground In order for chip to function
efficiently

13 Gnd Ground In order for chip to function
efficiently

26 IN0 Analog Input
(Microphone /

Function Generator)
6 SOC FLEX10K Board Programming Needs
7 EOC FLEX10K Board Programming Needs
10 Clock FLEX10K Board To connect to slow_clock

generated by clock_divider.vhd
9 Output Enable 5V (Active High) Outputs fed directly into the

FPGA and not used in the bus
configuration

25, 24, 23 Address Lines 000 IN0 is used as the input channel
22 Address Latch

Enable
5V (Active High) The select lines do not vary
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Figure 2.1.6: Schematic of Complete ADC
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The software section of this A/D basically consists of 2 VHDL programs:
1. clock_divider.vhd
2. input_reader.vhd

The purpose of clock_divider.vhd is to decrease the speed of the central clock by a factor
of (2 * divisor). The inputs for this program are the main clock and reset. The output
consists of the slow_clock signal. The slow_clock signal is generated by the clock
and provides the ADC0809 and the SMP11 chips with the appropriate clock timing to
function efficiently.

The input_reader.vhd is program consists of a finite state machine that controls the
performance of the A/D chip. The design of the state machine is implemented in the
following states.  See Figure 2.1.7 for the state machine.

At the first state, sample_conv, the data is taken in and sampled for 1.5us and
held for 100us.  During sampling, the signal will be high and at hold, the sample
signal will drop to low.

At start_conv, the whole conversion process begins.  Sample is set to zero
to hold the data while the SOC signal is set to one; the chip must hold the data in
a stable value before conversion starts.  Note that conversion starts at the falling
edge of the SOC signal. The SOC signal remains at one only for one complete
period of slow_clock and when the signal drops to zero, that is when the
conversion process will start.  Recall the slow_clock is falling-edge
triggered, therefore when the slow_clock signal goes high, the SOC signal
goes high.  When SOC goes to the value of zero, the SOC signal drops back to
zero as well.

At in_conv, the conversion is taking place. SOC signal is set back to one. Recall
again the EOC signal transitions to 1 when the conversion ends. If EOC is zero,
state remains in state in_conv. Otherwise, state proceeds on to end_conv
state.

At the next falling edge of the slow_clock, the state proceeds from
end_conv to read_conv.  Here bits is assigned to the dummy variable,
hold_out and sample is set back to one.  Finally, at the next falling edge of
slow_clock, state goes back to sample_conv..

Now, the entire cycle repeats itself.
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Figure 2.1.7: FSM Transition Diagram for input_reader.vhd
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2.2 Compression/Decompression

The method used to compress the digital signal removes selected samples from the original signal.
The basis of the compression scheme is the Nyquist Theorem that states a signal can be
successfully recreated if 2 samples per period are taken.  The sampling rate of the ADC is about
840KHz, and for the purpose of this project this rate is too high.  Please refer to the ADC details
for why 840KHz was chosen.  The sample rate that Nyquist suggests is around 6-8KHz which
means that several hundred thousand samples will be removed.

The way that the compressor works is the digital input is received and down sampled for the
benefit of data transfer.  As mentioned in earlier documents an (8 KHz sample rate) X (8 bits per
sample) is 64000 Bits per second.  This is impossible over the phone line, so we need to reduce
this somehow.  The actual sampleing rate is somewhere around 840KHz so every 840,000 samples
one 8-bit sample is allowed to pass through.  This is fine for the quality of the signal at the output
of this application because we are not aiming for quality we are aming for security. With this in
mind the compressor can simply remove  840KHz – 4KHz = 836KHz sample from the signal.

The enable input must be high for the compressor to state doing anything.  Once this is high the
compressor begins to check for valid data.  If the controller lets the compressor know that there is
a problem with the data then this is another sign that the compressor will stop working.

The last two flags are directly related to the valid out signal in that if either of these 2 signals are
clear (low) then the compressor will allow the valid out signal to be low as well.  This is to prevent
the controller from getting ahead of itself and encrypting data that is not available.

The main controller controls the active high enable input. This controls whether the compressor is
on or not.  The valid_in flag is an input that comes from the controller to tell the compressor if the
data is good or not.  If the data is good then the compressor compresses, and vice versa.  Valid in
is active high.  The valid_out flag is an output that the compression stage sets.  When a problem
occurs — i.e. if the input is not valid — then valid_out flag is set.  Valid out is active high.  The
input signal is an 8-bit vector that comes in from the ADC.  When enable is high and the data is
good the 8 bits are allowed into the compression stage and compression takes place.  The output of
the compression stage is an 8-bit vector as well.  This vector holds the sample that is sent to the
encryption stage.

The decompressor works just the opposite of the compressor.  The signal arrives from the
decryption stage and then it is held in a register for a about 836KHz of the input/ADC clock cycle.
Much like the ADC, the decompressor takes a sample and holds it until the next sample arrives at
its input.

The decompression component has the same IO as the compression component although it is
implemented for decompression.  The main controller controls the active high enable input.  Like
the compression this tells the decompressor whether or not to decompress. The valid in flag
is an input that the main controller uses to let the decompressor know that decompression should
be done.  The valid out flag is set or cleared by the decompressor when data is not good. The
input signal is an 8-bit digitized-decompressed audio signal that comes from the decryption stage
of the application.  The output signal is also an 8-bit decompressed signal that is passed onto the
DAC for conversion back to audio.
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Figure 2.2.1: Compressor/Decompressor Block Diagram

2.3 Encryption/Decryption

For the encryption stage, a stream cipher is used since stream ciphers are more suitable
for hardware implementation and real-time systems where bits of data are received
serially—as in the case of SafeTalk.

Stream ciphers convert plaintext to ciphertext one bit at a time.  The stream cipher
implementation that we use is the XOR algorithm.  Refer to Figure 2.2.1.  In this
implementation, the keystream generator outputs a stream of bits: k1, k2, k3, . . ., ki.  Then
this keystream is XORed with a stream of plaintext bits (p1, p2, p3, . . ., pi) to produce the
stream of ciphertext bits.  This operation is described by the formula:  ci = pi ⊕ ki

To recover the plaintext bits at the decryption end, the ciphertext bits are XORed with an
identical keystream.  This operation is described by:  pi = ci ⊕ ki.

Figure 2.3.1: XOR Stream Cipher [3]
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The feedback shift register is made up of two parts: a shift register and a feedback
function.  The shift register is initialized with n bits (called the key), and each time a
keystream bit is required, all of the bits in the register are shifted 1 bit to the right.  So the
least significant bit is the output bit.  The new left-most bit is computed as the XOR of
certain bits in the register.  This arrangement can potentially produce a 2n-1 bit-long
pseudo-random sequence (referred to as the period) before repeating.  To make this
maximal-period LFSR, the polynomial formed from the tap sequence (bits that are
XORed together) plus the constant 1 must be a primitive polynomial (irreducible
polynomial that divides x2^(n-1)+1, but not xd+1 for any d that divides 2n-1) mod 2.  The
degree of the polynomial is the length of the shift register.

Our implementation uses an 8-bit register with the primitive modulo 2 polynomial
x8+x4+x3+x2+1.  Therefore, the tap sequence consists of bit 8, bit 4, bit 3, and bit 2.  By
XORing these bits together, the resultant LFSR will be maximal length, so it will cycle
through 28-1 values before repeating.  Refer to Figure 2.2.2 below.  Two other shift
registers of length 11 bits and 13 bits are used as well.  The primitive polynomials
modulo 2 are x11+x2+1 and x13+x4+x3+x1+1, respectively.

Figure 2.3.2: 8-bit Long Maximal-Length LFSR [3]

By combining LFSRs of different lengths (i.e. different feedback polynomials), a
keystream generator is made.  To create a maximal length generator, the lengths of the
constituent LFSRs must be relatively prime, and all of the feedback polynomials must be
primitive modulo 2.  Each time a keystream bit is required, the LFSRs are shift once and
an output bit is produced as a function of the output bits of each LFSR.

The keystream generator we use is the Geffe Generator.  This keystream generator uses
three LFSRs combined in a nonlinear manner.  Refer to Figure 2.2.3 below.  Two of the
LFSRs are inputs into a multiplexer, and the third LFSR controls the output of the
multiplexer.  Suppose a1, a2, and a3 are the outputs of the three LFSRs, then the output of
the Geffe generator is the following:

b = (a1 ^ a2) ⊕ ((~a1) ^ a3) where ^ represents “AND”
          ⊕ represents “XOR”
           ~ represents “NOT”

The period of this combination keystream generator is the least common multiple of the
periods of the three generators:

n = n1 * n2 * n3

   = 13 * 11 * 8
   = 1144

b8 b7 b6 b5 b4 b3 b2 b1

Output Bit
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Figure 2.3.3: Geffe GeneratorBlock Diagram  [3]

This keystream generator is used at both ends – encryption and decryption.

Considering the encryption end, there are two inputs to this stage: the data to be
encrypted and a clock.  The data to be encrypted comes from the serial output of the
previous stage.  Likewise, the output from this stage is a serial output consisting of the
encrypted data or ciphertext.  The opposite operations occur at the decryption end.
Again, there are two inputs: the encrypted data and a clock.  The encrypted data is
received serially from the previous stage.  The output of the decryption section is the
decrypted data (i.e. original message).

The stream cipher takes inputs serially and sends outputs serially.  However, to interface
with the other stages an 8-bit parallel-to-serial converter is required at the input and a
serial-to-parallel 8-bit converter is need at the output.  When interfacing the stream cipher
with the other stages, timing as well as incoming and outgoing signals are issues that
must be acknowledged.  To properly account for these factors, the encryption and
decryption stages are considered two completely different entities, whereas before, the
stream cipher designed could be used for either end without making any modifications.

The encryption stage is integrated with the analog-to-digital converter.  The decryption
stage is integrated with the digital-to-analog converter.  There is still a similarity between
the two compound entities.  Both have an 8-bit shift register to convert an 8-bit parallel
input to a serial stream.  The shift register works in the following manner:

 i. The shift register remains in the initial (reset) stage until a data valid signal is
received from the previous stage.

 ii. When a data valid signal is received, the current 8-bit parallel input is stored into
the shift register.

 iii. For 8 clock cycles after receiving the data valid signal, the bits in the register are
shifted such that the least significant bit (LSB) is output.  During this time, the
data valid out signal is asserted and output from the decryption-DAC compound
entity.

 iv. After the 8 clock cycles, the output is no longer valid, so the data valid signal is
deasserted.

2-to-1
Multiplexer

Select

LFSR-2

LFSR-3

b(t)

LFSR-1



18

This serial stream is then put through the stream cipher to be encrypted or decrypted.
After decryption, the output data is changed from a serial stream to an 8-bit parallel
output using a serial-to-parallel converter.  This converter is basically a Moore finite state
machine that waits for 8 valid bits (that should be received in 8 consecutive clock cycles),
and then outputs these 8 bits in parallel on the next clock cycle.  The finite state machine
transition diagram is shown below.

Figure 2.3.4: s_to_p_data_conv FSM Transition Diagram

read1

wait_v

read2

send

read3

read4
read5

read6

read7

valid = 0

reset = 1

rising_edge(clock),valid = 1

rising_edge(clock)

rising_edge(clock)

rising_edge(clock)

rising_edge(clock)

rising_edge(clock)

rising_edge(clock)

rising_edge(clock)

rising_edge(clock),valid = 1

valid = 0
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The difference is that the ADC/encryption compound entity has an additional
component—the ADC input reader.  The way the input reader works is described in
Section 2.1.  There is one modification made to this component.  An extra output signal,
valid_out, is added to indicate to the encryption entity when the data being output
from the ADC is valid.

Using an LFSR-based stream cipher is not considered strong encryption.  The major
downfall is that the key is hard-coded into the LFSRs, so the initial state of the encryption
stage is always the same.  The reason for its use in this project is because it is easy and
fast to implement.  The main concern is to get a working prototype of the SafeTalk
system, even if it is a much simpler version of the one proposed.  Once this is
accomplished, other features such as a stronger encryption algorithm can be
implemented.  Ideally, a more complicated stream cipher, such as RC4, or even a block
cipher, such as DES, would be implemented.

2.4 Transmitter/Receive

For the transmission stage the use of the UART can be confusing at first but is rather
straightforward once an understanding of the UART is acquired.  The UART is the
interface between the modem and the DSP data to be transmitted/received.

This implementation of this UART transmits in blocks of 11 bits; 1 leading low start bit,
1 trailing high stop bit, 1 parity bit and 8 data bits. The UART data format is shown in
Figure 2.4.1.

Figure 2.4.1: UART data format [5]

The transmit and receive line of the UART are held high while no
transmission/reception is taking place.  In the transmission of a sequence the active low
start bit indicates to the receiving UART that a new sequence of data is on its way.  This
causes the receiving UART to take the next 8 bits as the transmitted data and the bit after
that as the parity of these 8 data-bits.  Lastly, a high stop bit is used to indicate the end of
a block.  The parity can be set as even or odd and is used to indicate whether or not there
has been an error in the received data bits.

Note that errors can still occur even if the parity bit indicates no parity errors. For
example, if the transmitted sequence is "11110000" and the parity is set as even, the
parity bit that would be transmitted with the sequence would be '0'.  If the received
sequence is "11101000", the calculated parity of this sequence also equals the transmitted
parity bit of '0', thereby fooling the receiving UART into thinking that there were no
errors in transmission. To test the UART please see Section 8.
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Note: The data is transmitted LSB first. Therefore, if "10101010" is the data to be
transmitted, the transmitted/received data appears as "01010101".  The whole
sequence would therefore be transmitted/received in this order: "00101010101"
for even parity, and "00101010110" for odd parity.

The UART module is composed of 2 modules: the transmitter (Figure 2.3.2) and the
receiver (Figure 2.3.3).  The operation of these two modules is not discussed here (with
the exception of the baud rate clock generator), as it is not required to be able to use the
UART module. For further information concerning this, refer to the UART App Notes
[1] or the respective VHDL code (Appendix E).

Figure 2.4.2: Transmit module [5] Figure 2.4.3: Receive module [5]

In order to use the UART you need to know what baud rate you want to transmit at.  The
transmitter and receiver modules have been designed with a clock divider inside, which
runs 16 times slower than the clock signal sent to it.  Therefore, there should be a clock
divider running at 16 times the baud rate driving the UART modules.

If for example, you want to transmit at 33.6 kbps and the FPGA board runs at 25.175
MHz then:

Baud rate x 16 = 33600 x 16 = 537600
Clock division ratio = 25175000 / 537600 ≈ 46
Clock divisor = 46 / 2 = 23

Therefore, the clock divider used to clock the UART would be 23.  This would give a
transmission rate of about 34.2 kbps. Please see Section 9 for references on clock
dividers.

The implemented UART module has 12 I/O ports, which are used to control it, to get I/O
to and from it, and to determine it’s status.  The signals and their respective descriptions
are included in the Table 2.4.1 below.
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Table 2.4.1: I/O description for the UART [5]

Signal Type Description
mclkx16 Input Master input clock for internal baud rate generation
reset Input Master reset
parityerr output Indicates whether a parity error was detected during the

receiving of a data frame
framingerr output Indicates if the serial data format sent to the rx input did

not match the proper UART data format
overrun output Indicates whether new data sent in is overwriting the

previous data received that has not been read out yet.
rxrdy output Indicates new data has been received and is ready to

be read out.
txrdy output Indicates new data has been written to the transmitter
read Input Active low strobe signal, used for reading data out from

the receiver.
write Input Active low strobe signal, used for writing data in to

transmitter.
datain(7 down to 0) Input Input data bus for sending/receiving data across the

UART
dataout(7 down to
0)

Output Output data bus for sending/receiving data across the
UART

tx Output Transmitter serial output.  Held high when no
transmission occurring and when resetting

rx Input Receiver serial input.  Pulled-up when no transmissions
taking place.

The process of transmitting data through the UART begins by first checking the txrdy
line.  A high txrdy signal indicates that new data can be written to the transmitter.  To
write to the transmitter place the data to be transmitted on the datain line.  The data is
then latched into the UART's transmit module by a leading low signal to the write line.
This is all that is required to transmit the data since the UART will take care of the rest.
The next data sequence can be latched once the txrdy line goes high again.

The process of receiving data through the UART begins by waiting for the rxrdy line to
go high.  A high rxrdy indicates that data has been received and is ready to be read out.
To read the data out from the UART's data line assert a low signal to the read line.  This
will latch the received data from the receiver to the dataout line allowing you to read
it.  The parityerr, framingerr, and overrun lines indicate any problems with the
recently received data.  The process of handling these errors will not be discussed here.
Apart from this that is basically all that is required to receive data through the UART.
The next data sequence received can be read out once rxrdy goes high again.

There are 2 FIFO buffers used.  Each attached to the transmitter input and receiver output
respectively.  These help to keep data from being lost.  The UART may not be able to
transmit fast enough and as data is coming in it will probably get lost because the
transmitter cannot read in values while it has not finished transmitting.

The implemented FIFO buffer has 9 I/O ports as described below in the table.
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Table 2.4.2: I/O description for the FIFO [6]

Signal Type Description
Data in data port for data to be enqueued
Wrreq in Active high write request
Rdreq in Active low read request
Clock in clock signal
Sclr in synchronous reset signal
Q output data port for dequeued data
Full output Signal indicating a full FIFO
Empty output Signal indicating an empty FIFO
Usedw output Signal vector indicating number of FIFO locations used

The DSP control is the main controller for all components in the FPGA.  It controls the
UART, the FIFO buffers, the encryption/decryption module, the ADC and the output to
the DAC.  See the figure below for a better understanding.

Figure 2.4.4: DSP Controller module

The ADC is the starting place.  It converts the analog input from a microphone to a
digital format 8-bits wide, which the encryption module takes and processes.  The data is
then loaded into the transmit-FIFO buffer.  Once data is in the FIFO and data is ready to
be sent across the transmission line, the UART transmitter module can de-queue the data.
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The receiving UART module on another FPGA board receives this data and enqueue it in
the receive-FIFO buffer.  The decryption module takes a data block from the FIFO,
decrypts it and loads it into a data register.  From there the data will be output to the
DAC.  Please see Sections 2.3 and 2.5 for more details on decryption and the DAC.

2.5 DAC
The Digital-to-Analog Converter (DAC) converts a digital signal to an analog form. The
DAC designed in this project receives an 8-bit digital data and outputs an analog signal.
Theoretically speaking, the analog signal output from the DAC has to be similar to the
analog signal input except for some signal delay, amplification and noise interference.

For the hardware design the circuit is divided up into the four different sub-sections as
follows:

1. D/A Converter (DAC0806)
2. Operational Amplifier
3. Low Pass Filter (LF 351)
4. Speaker

The D/A converter is an 8-bit monolithic DAC chip which converts an 8-bit digital input
into an analog current. The 8-bit input data ranges from ‘00000000’ to ‘11111111’ (in
binary) which is equivalent to a range of 0 to 255 (in decimal). The LF351 is a JFET
input operational amplifier then converts these currents into analog voltage Vout. The
range of the Vout is from 0V to 9.96V for Vref = 10V according to the equation below:

The schematic diagram of the DAC is as shown in the diagram below. The design of the
DAC is taken from the specification sheet of DAC0808.

Figure 2.5.1 : Block Diagram of DAC

Vout = Vref(A1/2 + A2/4+ A3/8+ A4/16 + A5/32 +A6/64 + A7/128 + A8/256) where Vref=10V
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Design of the Low-pass filter:

The low-pass filter provides a input signal contains no frequency components above the
cutoff frequency of the filter. The cutoff frequency is the maximum frequency passed by
the filter. A simple low-pass filter can be implemented by a RC circuit [2].  A RC circuit
low-pass filter is shown below.

Figure 2.5.2: Low-Pass filter

In telephone communication, the components above 3000Hz are eliminated by a low-pass
filter [4].

Therefore, if the cutoff frequency, B of the low-pass filter is equal to 3000Hz,
for the RC circuit:

CR = 
1

ωo
  for a DC gain of one

CR = 
1

2πB = 5.305e-05

For C = 0.1µF, R = 530Ω.

The block diagram of the entire design of the DAC with a low pass filter to eliminate
noise interference is shown in the diagram below:

Figure 2.5.3: DAC Block Diagram
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2.6 DSP Control

There are inherent delays between each stage, therefore it is necessary to have a
controller to direct the flow of data.  This is made possible by the control signals present
in each of the modules.  The controller supervises and directs the flow of data through
these signals so that no loss of data occurs.  With the exception of the ADC, the
encryptor/decryptor modules the remaining modules are clocked at the baud rate clock
(which is at 16x the desired baud rate) which is running at a speed of about 1.4 MHz.
This translates to a baud rate of about 87.42 kbps.  The encryptor/decryptor are clock at
the speed of the FPGA to reduce the amount of overall delay.  A summary of the control
signal from each module is shown in the table below.

Table 2.6.1: Module control signals

Module Control signals
Encryptor/Decryptor valid_in, valid_out
FIFO wrreq, rdreq, full, empty, usedw
UART read, write, rxrdy, txrdy, parityerr, framingerr, overrun

The encryptor loads and starts encrypting the current data from the ADC once the ADC
module’s valid_out signal goes high.  When encryption has been completed the
encryptor’s valid_out signal switches high signaling the controller that the data can
be loaded into the transmit FIFO.  The last step for transmission is for the UART to send
the data out it’s transmit line.  This is done when the FIFO is not empty and the
UART is ready to transmit (i.e. empty = ‘0’ and txrdy = ‘1’).

The reception of the data is controlled in a similar manner.  The transmitted data is
received at the receiving UART, which loads the received data into the receiving FIFO.
The controller then loads the data from the FIFO to the decryptor, which decrypts the
data and outputs it to a data register.  The data register is connected to the output, which
goes directly to the DAC.  The data register is used to hold the data steady and at a
correct value so that the DAC gets the correct data.

Synchronization is taken care of by the very nature of the design.  This is because each
module is dependent on the data and control signals sent to them from the DSP control.
The DSP control enables each module in succession, as valid data becomes available.  On
the power up of the system, the controller disables all modules.  The FIFO would not load
any data since the DSP control would not let it until valid data arrives.  Since no data is
getting to the transmitting UART, the receiving UART does not receive any data and
therefore would not send any invalid data through the DSP modules to the DAC.  Once
valid data from the ADC is transmitted to the FPGA, processing can commence and the
UART can start sending valid asynchronous data.  Adding a modem to transmit the data
over a phone line shouldn’t affect this procedure in any way.  The modem just modulates
the signal so that it can be transmitted through the phone line and does not change the
transmitted data in any way.
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3. I/O Signals

3.1 ADC

For the input and output descriptions, we will start with the 4 main components of the A/D
followed by the input and output description of the entire circuit.  The 4 major components used in
the A/D design are as follows:

1. LM324
2. LF 351
3. SMP11
4. ADC0809

♦ The LM324 chip consists of four independent, high gain, internally frequency
compensated operational amplifiers which are designed specifically to operate from a
single power supply over a wide range of voltages.  The table below illustrates the input
and output pin connections of the chip.

Table 3.1.1: LM 324 Chip I/O Pins

Lines Pin Number (s)

Output1 1

Input1- 2

Input1+ 3

Output4 14

Input4- 13

Input4+ 12

Power Supply (V+) 4

Gnd 11

♦ The LF 351 chip is a low cost high speed JFET input operational amplifier with an
internally trimmed input offset voltage (BI-FET II™ technology).  The device requires a
low supply current and yet maintains a large gain bandwidth product and a fast slew rate.
The LF351 is pin compatible with the standard LM741 and uses the same offset voltage
adjustment circuitry.

The LF351 may be used in applications such as high speed integrators, fast D/A
converters sample-and-hold circuits and many other circuits requiring low input offset
voltage, low input bias current, high input impedance, high slew rate and wide
bandwidth. The device has low noise and offset voltage drift.

Table 3.1.2: LF 351 Chip I/O Pins

Lines Pin Number (s)

Output 6

Input- 2

Input+ 3

Power Supply (V-) 6

Power Supply (V+) 7
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♦ The SMP-11 is precision sample-and-hold amplifiers that provides high accuracy, a
low droop rate, and the fastest acquisition time required in data acquisition and
signal processing systems. The SMP-11 is essentially a non-inverting unity gain
circuit consisting of two very high input impedance buffer amplifiers connected
together by a diode bridge switch.

The sample-time and hold characteristics are provided in the specification sheets in
the Appendix together with a complete diagram of the pin connections.   The table
below states the input/output lines and their corresponding pin numbers:

Table 3.1.3: SMP-11 Chip I/O Pins

Lines Pin Number (s)

Input 2

Output 7

Voltage Source (+ve) 9

Voltage Source (-ve) 5

Hold Capacitor (CH) 11

Logic Control, VLC 13

S & H Control 14

Null Input Offset 3, 4

♦ The ADC0809 is a 28-pin “skinny” DIP chip with MUX made by National
Semiconductor.  The ADC0809 offers high speed, high accuracy, minimal
temperature dependence, excellent long-term accuracy and repeatability, and
consumes minimal power. The table below states the input/output lines and their
corresponding pin numbers:

Table 3.1.4: ADC0809 Chip Input Pins

Lines Pin Number

Input0 26

Input1 27

Input2 28

Input3 1

Input4 2

Input5 3

Input6 4

Input7 5

Input Select 25,24,23

SOC
(start conversion)

6

Output enable 9

Address latch enable
(ALE)

22

Clock 10
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Table 3.1.5: ADC0809 Chip Output Pins

Lines Pin Number

Output (2-1)  *MSB 21

Output (2-2) 20

Output (2-3) 19

Output (2-4) 18

Output (2-5) 8

Output (2-6) 15

Output (2-7) 14

Output (2-8)  *LSB 17

Conversion Done Signal (EOC) 7

Space Intentionally Left Blank
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Figure 3.1.1: Pin Connection Diagram of the A/D with Inputs and Outputs of Circuit
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3.4 DAC

The tables below show all the pin numbers for the DAC 0806 and LF351

Table 3.4.1: DAC0806 Input pin numbers

Digital Input Line Pin number
A1 5
A2 6
A3 7
A4 8
A5 9
A6 10
A7 11
A8 12

Table 3.4.2: DAC0806 Pin Label

Lines Pin number
Vcc  (power supply voltage 5V) 13
Vee (power supply voltage -15V) 3
Vref(+) reference voltage 14
Vref(-)   reference voltage 15
GNC 2
Io(output) 4
NC(note2) 1
Compensation 16

Table 3.4.3: Pin Label for LF351

Pin Label Pin number
Input(-) 2
Input(+) 3
V- (Vee=-15V) 4
NC 8
V+ (Vcc=15V) 7
Output(Vout) 6
Balance 1, 5

 Below is the schematic wiring diagram of the chips DAC 0806 and LF351:
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Figure 3.4.1: +10V output Digital to Analog Converter Schematic [1]

The analog voltage samples a staircase waveform from the D/A converter. A low-pass
filter then filters this waveform, and the result is a smooth waveform.
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4. Design Hierarchy

The overview of the VHDL entities of SafeTalk is shown in Figure 3.1. Basically, the SafeTalk
design consists of a controller that controls all the entities of the sub-sections. The controller is
essential to the design  since some of the entities run on different clock frequencies and hence, we
need the controller to provide synchronism.

The Encryption/Decryption module is broken up into two stages.  See figure 3.3.1
1. ADC & Encryption

- adc_cipher_connect.vhd (interfaces the ADC hardware with the
encryption algorithm)

- input_reader.vhd
- stream_cipher.vhd

2. Decryption & DAC  (interfaces the DAC hardware with the decryption algorithm)
     - dac_cipher_connect.vhd

- stream_cipher.vhd

The UART Transmit module is broken up into one stage.
1.  txmit – responsible for transmitting data and ensure proper framing and data parity

The UART Receive module is broken up into one stage.
1. rxcver – accepts correct data from UART transmitter.  See Section 2.3 for details.

Note : All VHDL codes stated above compiles without errors or bugs.

dsp_ctrl.vhd

SAFE TALK

txmit.vhd rxcver.vhd

adc_cipher_connect.
vhd

input_reader.vhd

dac_cipher_connect.
vhd

stream_cipher.vhd

ADC &
Encryption Decryption &

DAC

UART
ReceiveUART

Transmit

stream_cipher.vhd
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Figure 4.1: Design Hierarchy

Figure 4.2.1: ADC/Encryption & Decryption/DAC Hierarchy

Note that the shaded part is included in the adc_cipher_connect entity but not the dac_cipher_connect
entity.
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5. FPGA Resources

5.1 ADC

The logic cells required for each component in the ADC is given below:

Table 5.2.1: Logic Cells for Encryption/Decryption

Component Number of Logic Cells Used
clock_divider (ADC) 6
input_reader (ADC) 30

5.2 Encryption/Decryption

The logic cells required for each component in the stream cipher is given below:

Table 5.2.1: Logic Cells for Encryption/Decryption

Component Number of Logic Cells Used
Shift_reg 39

S_to_p_data_conv 38
Stream_cipher 38

Combining these components (and in the case of encryption, the ADC components) the
higher level entities require the number of logic cells listed below:

Table 5.2.2: Logic Cells for Encryption/Decryption

Entity Number of Logic Cells Used
adc_cipher_connect 138
dac_cipther_connect 113

Total 251/1152 (22%)

5.3 Transmitter/Receive

The logic cells required for each component in the transmitter/receive is given below:

Table 5.3.1 Logic Cells for Tx/Rx

Entity Number of Logic Cells Used
UART 78

FIFO (2) 486
Total 564/1152 (49%)

Total logic cells used: 886/1152  (76%)
(dsp_ctrl.vhd – including all components)
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6. Experimentation

6.1 Transmitter/Receive

Experiments were performed to test the different transmission rates that are attainable.
Three different rates were tested as listed below.

- Baud rate of 98.3kbps framing and parity errors occurred.
- Baud rate of 87.4kbps framing and parity errors also occurred.

It was found that although simulations showed that this rate was attainable, real life
testing on the FPGA proved differently

The UART receiver module would not receive properly on the FPGA board but
simulated properly in MAX+Plus II.  With experimentation we were able to get the
FPGAs to receive the transmitted data without any framing or parity errors.  At first it
was suspected that the transmission speed was set too high.  This was not the case after
testing it at lower speeds of about 9600 bps.  We know that the UART transmits the start
bit then the data with the LSB first.  What we discovered is that if the LSB is a zero the
receiver will not receive correctly.  On the other hand, if the LSB is a one the data is
received correctly.  This finding allowed us to transmit and receive correctly by setting
the LSB as always one.  This does not affect the sample since it is at the LSB position.
The difference between a one or a zero in the LSB would not change the analog signal by
very much.  This would not be the case for the MSB.

The FIFO buffers that we used are 16x8-bits.  This took up 243 logic cells, which is quite
a large number.  We tried to reduce this by decreasing the size from 16 to 8 but that only
decreased the overall usage of logic cells by about 30.  As a result we decided to stay
with a 16 level FIFO.

6.2 Compression/Decompression

The compression and decompression modules were researched extensively and with the
help of Dr. Elliott an algorithm that breaks down the audio signal into high frequencies
and low frequencies.  Figure 6.2.1 shows how this breakdown occurs.  As well the
following logic of how this is implemented is shown in Figure 6.2.2.

Figure 6.2.1: Breakdown of 8-bit digital signal (compression)
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Figure 2.5.2: Automatic Gain Adjuster

The design of the automatic gain adjuster was suggested to us by Dr. Elliott for use in the
compression of the digital speech signal.  Figure 2.5.2 shows the gain adjuster with the
low frequency bits sampled at 1 in every 8 normally sampled bits, and 4 bits for every
high order bits.
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8. Research

8.1 Compression/Decompression

Compression and decompression of an audio signal is not used in SafeTalk for several
reasons that were researched and due to a lack of time was not implemented. The
conversion of an audio signal from analog to digital is simple however the data that
results in the digital signal is large compared to the data needed to reconstruct it and
convert it back to analog.  As a result a large speed modem—64Kbps—would be
required to send all the information. This modem speed could not be obtained therefore
compression is needed.  Several algorithms were researched and are reported below for
the reasons why they were considered and why they were rejected.

The members did not have any basis as to how compression worked, and therefore
research started at the search engines on the Internet.  The progression of compression
knowledge started with file data compression—lossless compression—and turned to
adaptive differential pulse code modulation (ADPCM) with A-law and Mu-law—lossy
compression.  The group assumed that compression of an audio signal was researched
before, therefore, research continued for longer periods than reasonable for this project.

Arithmetic coding is a function of the probability of a digital sample and it’s
encoding interval range.  This compression takes a value and gives it a range
that is between 0 and 1. The way arithmetic encoding works is that each 8-bit
digital value is given a probablility—for example 00000000 has a 10%
probablilty of showing up.  Next this probablility would be given an interval—in
the range from 0 to 1.  The problem with this is that using digital logic we could
not get the interval to break up into 256 segments nicely.  Although
consideration was given to developing a different range value, the assumption
was that other algorithms were already developed and this would require more
work that was needed.

Run-length Coding was looked at as being a viable compression technique.  It
works best with redundant data that is repeated, and initially voice seemed to be
something that was repeated enough that this could be used. The reason for this
assumption was because the sample rate was very high—8KHz—so in terms of
the sample rate being much, much higher than an average speech sample the
redundancies could be reduced using this algorithm.

It turns out that this lossless algorithm could not be used because of the nature of
audio sample.  As well, the 8-bit sample does not have many redundant bits—as
images might have; therefore the run-length encoding was disregarded.

A form of compression—called dictionary method—uses combinations of data
and represents this as a smaller section of data.  On the Internet various
algorithms were found, and in particular the Lempel-Ziv algorithms were
considered.  This is a lossless algorithm that seemed the best case, and steps
were taken to deepen the understanding of LZ algorithms.  A version of LZ is
called LZA seemed the most likely because the decompression time was
virtually zero, so with the delay that we had in transmission, this was the first
compression technique that started.  C code was available for this and the initial
compilations took place.
It was then pointed out that this was a lossless compression technique and
lossless was not needed for audio compression.
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Baffled at this point, a small investigation of how people in general perceive
speech.  What was found was that at high frequencies—above 2KHz—the
human ear uses envelope detection.  This was good to know, considering the
sampling rate could reconstruct signals that were up to 3.5KHz.  Digital data
that was changing faster than 2KHz might not need to be accurate to reconstruct
the exact signal.

In continuing with research, Dr. Elliott introduced a method that utilized
dynamic amplifier control. The way the algorithm works is that the audio signal
is seperated into high amplitude and low amplitude.  The most significant bits
(MSB) of the 8-bit audio signal dominate the high amplitudes. Likewise the
least significant bits dominate the lower amplitudes. These two modes can be
signified with a switch so that when people are going to shout then the higher 4
bits could be used. The resulting bits over a modem would be 4bits/sample *
8000 sample/sec = 32Kbps, which could work over a phone line.
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10. Test Case Index

This section of the report basically describes all the test cases and simulations performed
on all the sub-sections.

10.1 ADC

Test case 10.1.1:

Simulation of input_reader.vhd under normal conditions.
Set EOC =’1’- End of conversion hence continue proceeding to next state of
finite state machine. Set nreset =’1’- No reset wanted for this test case.Focus
observation on next_state that runs from one state to the other continuously
on the simulation waveform.

Test Case 10.1.2:

Simulation waveform when the EOC signal is set to zero in the middle of the
conversion i.e. conversion is not done yet. Focus observation on next_state
of simulation waveform. State remains at state 2 as long as the EOC signal is
zero. State resumes to state 3 when EOC is set to one.

Test Case 10.1.3:
Simulation waveform the signal EOC is set to zero for the entire duration.  Focus
observation once more at next_state. State remains at state 2.

Test Case 10.1.4:

Simulation waveform when reset is set to zero. Note that reset is active low.
Focus observation on next_state that returns to the initial state,
sample_conv when the nreset signal is low.

Test Case 10.1.5:

For testing purposes of clock_divider.vhd, we will set the divisor value
to 1. This will decrease the normal clock period rate by a factor of 2 times.

Test Case 10.1.6:

The ADC and DAC are connected together.  A function generator is used to
produce an input to the system. Output waveform is identical with the input
waveform.

Test Case 10.1.7:

The ADC and DAC are connected together.  An analog voice signal is used as
am input through a microphone, and the output is observed on the oscilloscope
and heard through the speakers. Output waveform is similar to the input
waveform except for some amplification and noise interference.
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10.2 Encryption/Decryption

Test Case 10.2.1:

All three LFSRs are tested in the same manner.  Each LFSR is seeded with a
hard-coded key, the enable line is always high, and a clock with a 20.0ns period
is used.  After every clock cycle, the LFSR outputs one bit.  The value of this
bit, as well as the value stored in the register, is compared with the results
obtained by hand.

Test Case 10.2.2:

During simulation of the keystream generator, the enable line is always high and
the clock has a period of 20.0ns.  After every clock cycle, the keystream
generator outputs one bit.  The value of this bit is compared with the results
obtained by hand.

Test Case 10.2.3:

The stream cipher is simulated.  Plaintext bits feed serially into one input of the
register, and the keystream feeds serially into the other register input.  The
register latches 1 bit from each input at the rising edge of every clock cycle.
Then the two bits are XORed to produce a ciphertext bit.  The output is
compared with the results obtained by hand.

Test Case 10.2.4:

The complete stream cipher (with the serial-to-parallel converter) is simulated.
Inputs are fed serially, the encrypted output is sent 8 bits in parallel.

10.3 Transmitter/Receive

Test Case 10.3.1:

Transmit module testing (txmit.vhd)
The testing of the transmitter was done by sending the transmitter the
required signals and data.  Once the parallel input data of the
transmitter module is sent out of the serial line, the two values can be
compared for validation.  During the testing of the transmit module the
baud rate clock was set to divide the master clock by 4.

Test Case 10.3.2:

Receive module testing (rxcver.vhd)
The testing of the receiver module was similar to the testing of the
transmitter module.

Test Case 10.3.3:

DSP module testing (dsp_ctrl.vhd)
The testing of the DSP control transmitter was done by giving it
parallel input of 6 different values.  The serial output obtained were
then compared to the parallel input values to ensure proper
transmission has taken place.
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Test Case 10.3.4:

The testing of the DSP receiver control was similar but with the input as serial
and the output as parallel.   The inputs were compared to the outputs to
determine the validity of the reception.

Test Case 10.3.5:
Testing of the entire project began with the simulations.  The sub-components
including the ADC controller, the encryption/decryption, and
transmission/reception are all connected appropriately.  Testing of the project
was similar to testing the dsp controller without the encryption/decryption.  With
the added encryption/decryption modules, which are clocked at a different speed
than the other modules, careful attention has to be considered concerning timing
issues.  With the testing through simulations, it was verified that the project
works as it should.

10.4 DAC

Test Case 10.4.1:

A simple VHDL program that provides an 8-bit digital input to the DAC by
using switching is used.  Each switch represented different input bit. Therefore,
when all the switches were on, the digital input of the DAC would be 11111111.
The result voltage Vout from the LF351 would be equal to Vout= 10V(1/2 +1/4
+1/8 +1/16 +1/32 +1/64 +1/128 +1/256)= 9.96V according the formula that
given from the datasheet of the chips.

Test Case 10.4.2:

An 8-bit counter is used to produce digital inputs for the DAC.  The counter is
constructed by VHDL code. The program produces 8-bit binary numbers to
input to the DAC. The counter counts up from 0 to 255 and then counts down
from 255 back to 0.  Again the results are compared with the values determined
by the Vout formula.

Test Case 10.4.3:

The ADC and DAC are connected together.  A function generator is used to
produce an input to the system. Output waveform is identical with the input
waveform.

Test Case 10.4.4:

The ADC and DAC are connected together.  An analog voice signal is used as
am input through a microphone, and the output is observed on the oscilloscope
and heard through the speakers. Output waveform is similar to the input
waveform except for some amplification and noise interference.
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11. Design Verification

To provide a concise explanation of the sequential steps performed to the various sub-sections, the
flowchart below depicts clearly the overall process:

Testing Steps of Overall Project

ADC and DAC Test
(refer to ADC and DAC Testing

Steps)

Encrption and DecryptionTest
(refer to Encrption and Decryption

Testing Steps)

Transmission Test
(refer to Transmission Design

Testing Steps)

SafeTalk Works
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11.1 ADC

The flowchart below describes the sequential testing cases for the ADC and DAC:

Start
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11.1.1 Testing the Hardware

Connect the hardware to the function generator as the input waveform. Assign the pin assignments
on the FLEX20K board as follows:

Signal Pin Number Hole Number Signal Pin Number Hole Number
Bit(0) 55 23 Data_out(0) 72 35
Bit(1) 56 24 Data_out(1) 73 36
Bit(2) 61 25 Data_out(2) 74 37
Bit(3) 62 26 Data_out(3) 74 38
Bit(4) 63 27 Data_out(4) 76 39
Bit(5) 64 28 Data_out(5) 78 40
Bit(6) 65 29 Data_out(6) 79 41
Bit(7) 66 30 Data_out(7) 80 42
Nreset - 28 Sample 83 45
NEOC 81 43 Slow_clock 101 56
SOC 82 44 Gnd Gnd 60

Then, the frequency desired is adjusted. The desired amplitude can also be fixed. Probe the EOC,
SOC, sample and the clock signal with the oscilloscope probe. Observe waveform on the
oscilloscope.
Finally, the divisor value on the VHDL code clock_divider.vhd is changed. Increasing the divisor
would mean that the blinking of the LEDS would be faster. Decreasing it makes the LED blinks
really quickly.

Results
Output waveform is similar to the input waveform generated by the function oscillator for all
cases. Circuit testing a success.

11.1.2 Testing the VHDL code clock_divider.vhd:

Using the divisor value of 2, the slow_clock will be 2 times slower than the regular clock.

Results:
Slow_clock waveform is indeed slower than the period of clock by 2 times.

11.1.3 Testing the VHDL code input_reader.vhd:

Test case 1:

Waveform 1: Simulation under normal conditions.
Set EOC=’1’- End of conversion hence continue proceeding to next state of finite state
machine.  Set nreset=’1’- No reset wanted for this test case.  Focus observation on
next_state that runs from one state to the other continuously on the simulation
waveform (as expected).

Test Case 2:

Waveform 2: Simulation waveform when the EOC signal is set to zero in the middle of the
conversion i.e. conversion is not done yet. Focus observation on next_state of
simulation waveform. State remains at state 2 as long as the EOC signal is zero. State
resumes to state 3 when EOC is set to one.
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Test Case 3:

Waveform 3: Simulation waveform the signal EOC is set to zero for the entire duration.
     Focus observation once more at next_state. State remains at state 2.

Test Case 4:

Waveform 4:  Simulation waveform when reset is set to zero. Note that reset is active low.
Focus observation on next_state that returns to the initial state, sample_conv
when the reset signal is low.

Results:
All results of the 4 waveforms are as expected. Code input_reader.vhd is correct.

11.1.4 Testing the ADC with DAC hardware:

Combining the A/D to the D/A, we used the function generator as an input waveform going into
the A/D. The outputs produced by the D/A circuit are exactly similar to that of the input waveform
produced by the function generator. The clock frequency used was approximately 840kHz. This is
due to the design limitations of the DAC circuit. Listed below are some of the test cases done
using the function generator:

The plots below illustrate the waveforms observed from the oscilloscope:

Period of Waveform
into ADC

Period of
Waveform from
DAC

Time delay of the
output from
DAC(phase shift
between the input
and output)

Frequency of
the Input
Waveform
(Hz)

Input Voltage
into ADC (Vpeak-

to-peak)

(Hz) (ms)

Output Voltage
received at DAC
(Vpeak-to-peak)

(Hz) (ms)
1 10 1 10 100 4.76 10 100 384.6Hz(2.6ms)
2 100 1 100 10 2.88 100 10 90.91Hz(11ms)
3 1000 1 1000 1 1.02 1000 1 2kHz(500us)

The plots below illustrate the waveforms observed from the oscilloscope:
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Trial 2:

Input and Output waveform for freq.=100Hz
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Trial 3:

Input and Output waveform for freq.=1000Hz
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Note : These graphs are plotted using MicroSoft Excel and the waveforms (lines) produced are very much
more fine than the ones observed on the oscilloscope. Due to noise interference and other disturbances that
occurred with the input signal, the sinusoidal waveform seen on the oscilloscope is courser and ‘dirtier’
than the ones plotted using Excel.

The amplitudes of the input signal for the test cases 1 are fixed equal to 1Vpeak-to-peak.The input
and output waves are tested by probing the signals with the oscilloscope probe. The amplitude of
the output voltage is greater than the input wave due to the fact of the amplifier. The waveform
shows that the  frequency of the output waveform is the same as the input wave. However, there is
a phase shift between the input and output signal , it was found that the phase shift is due to the
time delay of the output and the delay became larger as the input signal frequency increased. Test
cases was performed up to 1000Hz due to limitations of the ADC circuit. All of the input signals
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with frequency greater than 3KHz will cutoff since the low-pass filter in the DAC was designed to
have a cut-off frequency of 3000Hz which is the bandwidth used in telephone communications.

11.2 Encryption/Decryption

The flowchart below describes the sequential testing cases for the encryption/decryption
algorithm:

Start
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Debug code. Re-
compile and re-

simulate waveform
to ensure

correctness.

Debug code. Re-
compile and re-

simulate waveform
to ensure

correctness.
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----------------------------------
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All three LFSRs are tested in the same manner.  Each LFSR is seeded with a hard-coded
key, the enable line is always high, and a clock with a 20.0ns period is used.  After every
clock cycle, the LFSR outputs one bit.  The value of this bit, as well as the value stored in
the register, is compared with the results obtained by hand.  These comparisons are
summarized in the tables below.

Table 11.2.1: LFSR-8 Test Results
Correct LFSR
Value (Binary)

LFSR Value from
Simulation (Bin)

LFSR Value on
Waveform (Hex)

Correct LFSR
Output (Binary)

LFSR Output
from Simulation

(Bin)
00001000 00001000 08
10000100 10000100 84 0 0
01000010 01000010 42 0 0
10100001 10100001 A1 0 0
11010000 11010000 D0 1 1
11101000 11101000 E8 0 0
01110100 01110100 74 0 0
10111010 10111010 BA 0 0
11011101 11011101 DD 0 0
11101110 11101110 EE 1 1
01110111 01110111 77 0 0
00111011 00111011 3B 1 1
00011101 00011101 1D 1 1
00001110 00001110 0E 1 1
10000111 10000111 87 0 0
11000011 11000011 C3 1 1
01100001 01100001 61 1 1
00110000 00110000 30 1 1
00011000 00011000 18 0 0

Note:  XORing bits 8, 4, 3, and 2 in the LFSR obtain the output bit.
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Table 11.2.2: LFSR-11 Test Results
Correct LFSR
Value (Binary)

LFSR Value from
Simulation (Bin)

LFSR Value on
Waveform (Hex)

Correct LFSR
Output (Binary)

LFSR Output
from Simulation

(Bin)
00000001011 00000001011 00B
10000000101 10000000101 405 1 1
11000000010 11000000010 602 1 1
01100000001 01100000001 301 0 0
00110000000 00110000000 180 1 1
00011000000 00011000000 0C0 0 0
00001100000 00001100000 060 0 0
00000110000 00000110000 030 0 0
00000011000 00000011000 018 0 0
00000001100 00000001100 00C 0 0
00000000110 00000000110 006 0 0
10000000011 10000000011 403 0 0
01000000001 01000000001 201 1 1
00100000000 00100000000 100 1 1
00010000000 00010000000 080 0 0
00001000000 00001000000 040 0 0
00000100000 00000100000 020 0 0
00000010000 00000010000 010 0 0
00000001000 00000001000 008 0 0

Note:  XORing bits 11 and 2 in the LFSR obtain the output bit.

Table 11.2.3: LFSR-13 Test Results
Correct LFSR
Value (Binary)

LFSR Value from
Simulation (Bin)

LFSR Value on
Waveform (Hex)

Correct LFSR
Output (Binary)

LFSR Output
from Simulation

(Bin)
0000000001101 0000000001101 000D
1000000000110 1000000000110 1006 1 1
0100000000011 0100000000011 0803 0 0
1010000000001 1010000000001 1401 1 1
0101000000000 0101000000000 0A00 1 1
0010100000000 0010100000000 0500 0 0
0001010000000 0001010000000 0280 0 0
0000101000000 0000101000000 0140 0 0
0000010100000 0000010100000 00A0 0 0
0000001010000 0000001010000 0050 0 0
0000000101000 0000000101000 0028 0 0
1000000010100 1000000010100 1014 0 0
0100000001010 0100000001010 080A 0 0
1010000000101 1010000000101 1405 0 0
1101000000010 1101000000010 1A02 1 1
1110100000001 1110100000001 1D01 0 0
0111010000000 0111010000000 0E80 1 1
0011101000000 0011101000000 0740 0 0
0001110100000 0001110100000 03A0 0 0

Note:  XORing bits 13, 4, 3, and 1 in the LFSR obtains the output bit.
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The keystream generator entity contains four components:
1. an 8-bit maximal length linear feedback shift register
2. a 11-bit maximal length linear feedback shift register
3. a 13-bit maximal length linear feedback shift register
4. a 2-to-1 multiplexer

The 8-bit LFSR output and the 11-bit LFSR output are used as the inputs to the
multiplexer.  The output of the 13-bit LFSR feeds into the multiplexer select line.  During
simulation of this entity, the enable line is always high and the clock has a period of
20.0ns.  After every clock cycle, the keystream generator outputs one bit.  The value of
this bit is compared with the results obtained by hand as shown in the table below.

Table 11.2.4: Keystream Generator Test Results
Correct Generator Output Bit (Binary) Generator Output Bit from Simulation (Binary)

0 0
1 1
0 0
1 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
0 0
0 0
1 1
0 0
0 0

The stream cipher entity contains two components:
1. a 1-bit 2-input register
2. the key generator
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Plaintext bits feed serially into one input of the register, and the keystream feeds serially
into the other register input.  The register latches 1 bit from each input at the rising edge
of every clock cycle.  Then the two bits are XORed to produce a ciphertext bit.

This entity compiles and simulates correctly.  The test cases used are the following:
1. plaintext stream of all 0's
2. plaintext stream of all 1's
3. plaintext stream pattern of 101010...

The results of these tests are summarized in the tables below.

Table 11.2.5: Plaintext Stream of All 0's Test Case
Plaintext Bit

(Binary)
Keystream Bit (Binary) Correct Ciphertext

(Binary)
Ciphertext from

Simulation (Binary)
0 0 0 0
0 1 1 1
0 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1
0 1 1 1
0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0
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Table 11.2.6: Plaintext Stream of All 1's Test Case
Plaintext Bit

(Binary)
Keystream Bit (Binary) Correct Ciphertext

(Binary)
Ciphertext from

Simulation (Binary)
1 0 1 1
1 1 0 0
1 0 1 1
1 1 0 0
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 0 1 1
1 1 0 0
1 1 0 0
1 0 1 1
1 0 1 1
1 1 0 0
1 0 1 1
1 0 1 1

Table 11.2.7: Plaintext Stream Pattern of 1010... Test Case
Plaintext Bit

(Binary)
Keystream Bit (Binary) Correct Ciphertext

(Binary)
Ciphertext from

Simulation (Binary)
1 0 1 1
0 1 1 1
1 0 1 1
0 1 1 1
1 0 1 1
0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 1
0 0 0 0
1 0 1 1
0 1 1 1
1 1 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 0 1 1
0 0 0 0

The complete stream cipher contains a serial-to-parallel converter.  The input data is fed
serially.  The output is the encrypted data, but it is sent 8 bits in parallel.  The valid_in
line is held high for 8 clock cycles indicating the inputs during that time are valid data.
The output is not considered valid (and therefore, not read) until the valid_out line is
high.
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Table 11.2.8: Plaintext Stream of All 0's Test Case
Plaintext Bit

(Binary)
Correct Ciphertext in Serial

(Binary)
Valid_out Ciphertext from Simulation

(Binary)
0 0 0 00000000
0 1 0 00000000
0 0 0 00000000
0 1 0 00000000
0 0 0 00000000
0 0 0 00000000
0 0 0 00000000
0 0 0 00000000
0 1 00001010
0 0 0 00000000
0 0 0 00000000
0 0 0 00000000
0 1 0 00000000
0 1 0 00000000
0 0 0 00000000
0 0 0 00000000
0 1 0 00000000
0 1 10011000

Table 11.2.9: Plaintext Stream of All 1's Test Case
Plaintext Bit

(Binary)
Correct Ciphertext in Serial

(Binary)
Valid_out Ciphertext from Simulation

(Binary)
1 1 0 00000000
1 0 0 00000000
1 1 0 00000000
1 0 0 00000000
1 1 0 00000000
1 1 0 00000000
1 1 0 00000000
1 1 0 00000000
1 1 11110101
1 1 0 00000000
1 1 0 00000000
1 1 0 00000000
1 0 0 00000000
1 0 0 00000000
1 1 0 00000000
1 1 0 00000000
1 0 0 00000000
1 1 01100111
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Table 11.2.10: Plaintext Random Stream Test Case
Plaintext Bit

(Binary)
Correct Ciphertext in Serial

(Binary)
Valid_out Ciphertext from Simulation

(Binary)
1 1 0 00000000
0 1 0 00000000
1 1 0 00000000
0 1 0 00000000
1 1 0 00000000
0 0 0 00000000
1 1 0 00000000
0 0 0 00000000

1 01011111
0 0 0 00000000
1 1 0 00000000
1 1 0 00000000
0 1 0 00000000
0 1 0 00000000
1 1 0 00000000
0 0 0 00000000
1 0 0 00000000

1 00111110

To test the decryption/DAC compound entity, the input pins are connected to switches
and the output of the DAC is observed using an oscilloscope.  The input (set by the
switches) is treated as encrypted data, and is fed into the decryptor.  After decryption, the
output is fed into the DAC to be converted to analog.  Since the input is constant, the
output should be constant as well.

Two 8-bit signals are input consecutively to ensure that the decryption entity is producing
the correct key stream.  To indicate when the data is valid, a push button is used.  After
inputting two 8-bit binary numbers, the system is reset (using another push button).  This
returns the LFSRs to their initial state.

The table below summarizes the results of the testing.  The input is set using the switches
where a switch that is “on” refers to a logic “1.”  The output is the data that should output
from the decryption entity and is not explicitly checked during the test.  The measured
voltage is the output from the DAC and is observed on the oscilloscope.  The calculated
voltage is the theoretic voltage value of the DAC output, which is determined from the
equation Vo = 10V(A1/2 + A2/4 + . . . + A8/256) where A1-A8 are the inputs to the DAC,
i.e. decrypted data.



56

Table 11.2.11: Decryption/DAC Integration Test Results

Input – Encrypted
Data  (Binary)

Output -- Decrypted
Data  (Binary)

Measured Voltage
(V)

Calculated Voltage
(V)

11110101 11111111 10.20 9.96
10101011 00110011 2.00 1.99

10100000 10101010 6.80 6.64
00000011 10011011 6.20 6.05

00001010 00000000 0.00 0.00
11011000 01000000 2.84 2.50

To test the ADC/Encryption compound entity, a function generator is connected to the
input pins and the output pins are connected to the DAC.  The input waveform before the
ADC and the output waveform after the DAC are observed and compared using the
oscilloscope.  The outputs of the encryption entity are also observed on the oscilloscope.

Each output waveform from the 8 parallel bits of the encryption entity is a non-periodic
square-waveform.  This represents the logic 0s and 1s of the encrypted data.  However,
the rate at which this data is output is much too fast to check or display on LEDs.  The
minimum speed at which the ADC can properly operate is still too fast for the human eye
to see.  Thus, the outputs of the encryptor are fed into the DAC.

The output of the DAC is then compared to the input waveform.  The output is an
irregular, non-periodic waveform.  It does not resemble the input waveform, as expected.
The output of the encryptor should be noise, as confirmed.

11.3 Transmission/Receive

The flowchart below describes the sequential testing cases for the transmission/receive 
algorithm:
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Test Case 11.3.1

Transmit module testing (txmit.vhd)
The testing of the transmitter was done by sending the transmitter the required
signals and data.  Once the parallel input data of the transmitter module is sent
out of the serial line, the two values can be compared for validation.  During the
testing of the transmit module the baud rate clock was set to divide the master
clock by 4.  This was done to reduce the size/length of the output waveform,
thereby simplifying the verification of the waveform.

The 8-bit data bus was latched to four different values so that the outputs on the
serial transmit line could be validated.  The values used in the tests were EF, A5,
55 and 00.

Table 11.3.1: Parallel Input vs. Serial Output

Expected serial outputParallel input
Start bit 8 data bits Parity bit (even) Stop bit

EF 0 11110111 1 1
A5 0 10100101 0 1
55 0 10101010 0 1
00 0 00000000 0 1

Note: the 8 data bits are transmitted with LSB first.

Test Case 11.3.2

Receive module testing (rxcver.vhd)
The testing of the receiver module was similar to the testing of the transmitter
module.  The receiver module now functions correctly.  It can be seen, from the
waveform, that the data was read in correctly from the serial input and correctly
latched to the receive hold register.

Table 11.3.2: Serial Input vs. Parallel Output

Expected serial input
Start bit 8 data bits Parity bit (even) Stop bit

Parallel output

0 11110111 1 1 EF
0 10100101 0 1 A5
0 10101010 0 1 55
0 00000000 0 1 00

Note: the 8 data bits are received with LSB first.

The data chosen, for the testing of the transmitter and receiver modules, contain
1’s and 0’s in varying orders thereby testing to ensure that the respective
modules can interpret the received/transmitted serial signal.

Test Case 11.3.3

DSP module testing (dsp_ctrl.vhd)
The testing of the DSP control transmitter was done by giving it parallel input of
6 different values.  The serial output obtained were then compared to the parallel
input values to ensure proper transmission has taken place.
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Table 11.3.3: Parallel Input vs.  Serial Output 2
Expected serial outputParallel input
Start bit 8 data bits Parity bit (even) Stop bit

11 0 10001000 0 1
22 0 01000100 0 1
55 0 10101010 0 1
00 0 00000000 0 1
A5 0 10100101 0 1
33 0 11001100 0 1
Note: the 8 data bits are transmitted with LSB first.

The testing of the DSP receiver control was similar but with the input as serial
and the output as parallel.   The inputs were compared to the outputs to
determine the validity of the reception.

Table 11.3.4: Serial Input vs. Parallel Output 2
Serial input

Start bit 8 data bits Parity bit (even) Stop bit
Expected
Parallel output

0 10001000 0 1 11
0 01000100 0 1 22
0 10101010 0 1 55
0 00000000 0 1 00
0 10100101 0 1 A5
0 11001100 0 1 33

Note: the 8 data bits are received with LSB first.

Note that the above DSP module tested contains the UART and FIFO buffers.

11.4 DAC

Test Case1:

In order to test the D/A converter, a simple VHDL code was used to assign the
digital inputs to the DAC0806 chip. Please refer to the VHDL code called
dac.vhd in the Appendix. The dac.vhd is a program that provides an 8-bit digital
input to the DAC by switching the eight switch buttons. The code was
programmed on the EPF10K20 device of the UP1 Education Board. The
FLEX_SW1 switches were used to provide logic-level signals to eight-output
pin on the EPF10K20 device.
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Table 11.4.1 : FLEX_EXPAN_A Signal Names & Device connections

Hole Number
On the up1 board

Pin number for the DAC0806

15 12(LSB)
16 11
17 10
18 9
19 8
20 7
21 6
22 5 (MSB)

The above hole number was connected to the input pins of the DAC0806 chips
according to the pin label of the chips. Each switch represented different input
bit. Therefore, when all the switches were on, the digital input of the DAC
would be 11111111. The result voltage Vout from the LF351 would be equal to
Vout= 10V(1/2 +1/4 +1/8 +1/16 +1/32 +1/64 +1/128 +1/256)= 9.96V according
the formula that given from the datasheet of the chips.

Table 11.4.2: Test cases, test results and the calculated results.

The switches that
were OFF

Digital
input

TEST
RESULT

(measured
values of

Vout)

Calculated
values of
Vout(V)

None(all ON) 11111111 9.98 V 9.96
S8 (Switch-8) 11111110 9.68 V 9.92
S7 ,S8 11111100 9.52 V 9.84
S6, S7, S8 11111000 9.44 V 9.68
S5, S6, S7, S8 11110000 9.40 V 9.37
S4, S5, S6, S7, S8 11100000 8.77 V 8.75
S3, S4,S5, S6, S7, S8 11000000 7.52 V 7.50
S2, S3, S4 S5, S6, S7, S8 10000000 5.91 V 5.00
All 00000000 0.002 V 0.00

The measured voltage values from the test were very close to the calculated
values. This showed that the DAC part worked properly with the switch inputs.

Vout = Vref(A1/2 + A2/4+ A3/8+ A4/16 + A5/32 +A6/64 + A7/128 + A8/256),
where Vref=10V , A1 to A8 represent the 8 digital inputs
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Test Case 2:

The second test of the complete design of the Digital-to-Analog converter
(DAC) is done by input the digital inputs by an 8-bits counter. The counter is
constructed by the VHDL code, and the program is called dsctest.vhd. This
program provides an 8-bits counter, which produces 8-bits binary number input
to the DAC. The counter counts up from 0 to 255 and then counts down from
255 back to 0. The output of the counter is an 8 bits binary number, which will
go to the 8-bits input of the DAC. The final output that produces from the DAC
is an analog signal. The result of the analog signal is a triangular waveform by
inputting the counter digital input.  The triangular waveform is shown on the
oscilloscope in the demonstration and is plotted below:

Output waveform of the DAC
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Figure 11.4.1 : Output from DAC

The signal produced from the DAC shows that as the counter counts up from
zero to 255, the corresponding voltage increase from 0 to about 10V. The output
voltage drops when the counter reaches 255 and then starts to count down. A
clock divider is used in the counter program to control the input time, the input
comes into the DAC with frequency = 25.175MHz/ 10000 = 2517.2Hz. This
frequency can be change by changing the clock divider value.

After the connection of the low-pass filter, the output analog signal from the
filter becomes a smooth signal. The signal is sketched from the oscilloscope and
is shown in the following diagram.

waveform after the Filter
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Figure 11.4.2: Filter Output
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Test Case 3:

Combining the A/D to the D/A, we used the function generator as an input waveform
going into the A/D. The outputs produced by the D/A circuit are exactly similar to that of
the input waveform produced by the function generator. The clock frequency used was
approximately 840kHz. This is due to the design limitations of the DAC circuit. Listed
below are some of the test cases done using the function generator:

Input waveform was a sinusoidal wave.

Period of Waveform
into ADC

Period of
Waveform from

DAC

Time delay of the
output from
DAC(phase shift
between the input
and output)

Frequency of
the Input

Waveform
(Hz)

Input Voltage
into ADC (Vpeak-

to-peak)

(Hz) (ms)

Output Voltage
received at DAC

(Vpeak-to-peak)

(Hz) (ms)
1 10 1 10 100 4.76 10 100 384.6Hz(2.6ms)
2 100 1 100 10 2.88 100 10 90.91Hz(11ms)
3 1000 1 1000 1 1.02 1000 1 2kHz(500us)

The plots below illustrate the waveforms observed from the oscilloscope:

Trial 1:

Input and Output waveform for freq.=10Hz
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Figure 11.4.3

Trial 2:

Input and Output waveform for freq.=100Hz
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Figure 11.4.4
Trial 3:

Input and Output waveform for freq.=1000Hz
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Figure 11.4.5

Note : These graphs are plotted using Microsoft Excel and the waveforms (lines)
produced are very much more fine than the ones observed on the oscilloscope. Due to
noise interference and other disturbances that occurred with the input signal, the
sinusoidal waveform seen on the oscilloscope is courser and ‘dirtier’ than the ones
plotted using Excel.

The amplitudes of the input signal for the test cases 1 are fixed to be equal to
1Vpeak-to-peak.The input and output waves are tested by probing the signals
with the oscilloscope probe. The amplitude of the output voltage is greater than
the input wave due to the fact of the amplifier. The waveform shows that the
frequency of the output waveform is the same as the input wave. However, there
is a phase shift between the input and output signal, due to the propagation
delay. From observation of the results, the delay increases with the input signal
frequency. Test cases was performed up to 1000Hz due to limitations of the
ADC circuit. All of the input signals with frequency greater than 3KHz will
cutoff since the low-pass filter in the DAC and ADC was designed to have a cut-
off frequency of 3000Hz (bandwidth used in telephone communications).

12. VHDL Source Code Index
♦ clock_divider.vhd
♦ input_reader.vhd
♦ comp.vhd
♦ p_out_stream_cipher_pkg.vhd
♦ p_out_stream_cipher.vhd
♦ s_to_p_data_conv.vhd
♦ txmit.vhd
♦ rxcver.vhd
♦ fifo.vhd
♦ dsp_ctrl_pkg.vhd
♦ dsp_ctrl.vhd
♦ dsctest.vhd
♦ dac.vhd



64

13. Test Bench Index

♦ clock_divider_test.vhd
♦ comp_test.vhd
♦ dsp_testbench.vhd
♦ dac_test.vhd
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A. Appendix : Data Sheets

SafeTalk

SafeTalk prototype v1.0
Secure Telecommunications Module

General Description:
SafeTalk is used for secure telecommunication where privacy is desired.

Features:
- Secure telecommunication with a companion

(v1.0 has basic encryption.  Later implementations will incorporate stronger
encryption)
- Asynchronous data transmission using a UART.

Key Specifications:
- 8-bit linear ADC
- 8-bit linear DAC
- Stream cipher encryption/decryption
- Asynchronous data transmission using a UART

Functional Description:
SafeTalk uses an 8-bit linear ADC and DAC for conversion between analog and digital.
The digital signal processing performed includes encryption and decryption of the digital
samples.  With version 1.0 no compression or decompression has been implemented.  As
a result the data rate required for transmission is higher than it should be.  At a sampling
rate of 8000 kHz, the data rate required is about 88 kbps.  The modem that we would use
with SafeTalk would have a data rate of 33.6 kbps.  With compression this data rate
would be achievable.

Logic blocks required:  884


