
EE552 Final Report

1

EE 552 Final Report

Driver’s Ed

Raymond Sung, 345630
Patrick Chan, 225463
Jason Mah, 354665
Andrew Sung, 364189

December 6, 1999

EE552 Final Report

2

ABSTRACT ... 4

CURRENT FEATURE SET IMPLEMENTED.. 4
Sensor Data Collection and Telemetry Transmission... 4
Base Station Telemetry Reception and Data Processing .. 5

DESCRIPTION OF OPERATION.. 5

RC CAR DESIGN.. 6

ACCELEROMETER DESIGN ... 6
OPTICAL ENCODER DESIGN ... 6
DATA PATH CONTROLLER ... 7
PACKET ENCODER... 7
PROXIMITY AND COMPASS DESIGN .. 8
FLASHING LED'S... 8

FPGA Choice ... 8
Clock Frequency... 9

BASE STATION DESIGN... 9

RF DECODE... 9
DATA ANALYSIS ..11
VGA ...14
KEYPAD INTERFACE CODE ...14

ESTIMATION/ MEASUREMENT OF TOTAL LOGIC CELL USED..15

BASE STATION ...15
RC CAR...16

MAXIMUM SPEED..16

BASE STATION ...16
RC CAR...16

HARDWARE COMPONENT INTEGRATION..16

ACCELEROMETER DESIGN ..16
COMPASS...18
PROXIMITY DETECTION..19
OPTICAL ENCODER...20
RF HARDWARE DESIGN ...20

Antenna Design ...20
VOLTAGE REGULATORS ...21
BUFFERS ..22
KEYPAD[2]..23

RESULTS OF EXPERIMENTS...24

ACCELERATION EXPERIMENT ...24
Radius ...24
Actual..24

DISTANCE EXPERIMENTS..24
VELOCITY EXPERIMENT ...25
PROXIMITY EXPERIMENT..26
DIRECTION EXPERIMENT ..26
VGA EXPERIMENT...26
BASE STATION EXPERIMENTS ...26
RC CAR EXPERIMENTS...27

IC MEASUREMENTS..27

EE552 Final Report

3

REFERENCES: ..30

DECLARATION OF ORIGINAL CONTENTERROR! BOOKMARK NOT DEFINED.

APPENDIX..31

EE552 Final Report

4

Abstract

This project involved the design, implementation and test of a digital telemetry system. The completed
system successfully gathers data from various sensors mounted on a remote controlled vehicle using a field
programmable gate array. The FPGA packetized the data for synchronous transmission over radio
frequency to a remote base station. The base station, which was implemented using a combination of two
field programmable gate arrays, correctly recovered the transmitted data, did the necessary calculations and
displayed the results in real-time on a VGA monitor. The RF transmission scheme was able to disregard
invalid data and functioned correctly even when in close proximity to another system operating at an
identical radio frequency. The collected telemetry data included relatively accurate measurements of the
car's instantaneous velocity, instantaneous acceleration, heading and total distance traveled. Furthermore,
the car's proximity to other objects could be detected at short distances and the results displayed on the
VGA screen. The base station was able to interface to a 4x4 keypad and display user keypresses on the
monitor. The keypad interface allows future expansion of the system for direction and heading control.

Current Feature Set Implemented

The feature set implemented as determined by VHDL simulation and observation of hardware behavior
include: (electrical verification involves measurements with electronics test equipment)

Priority = High is an essential feature.
Priority = Medium/Low are features that can be deleted due to time or space constraints.

System Block Feature Priority
RC Car Acceleration measurement High

Velocity measurement High
Distance measurement High
Heading measurement High
Proximity detection Medium
RF telemetry transmission High
RF movement instruction reception High

Base station Telemetry display on VGA monitor High
Advanced Telemetry Display with Visual Warnings and
Graphics

Low

Keypad Control interface High
Movement instruction / Telemetry storage (RAM) High
RF telemetry reception High
RF movement instruction transmission High

All high priority items outline in the feature set are implemented according to the specifications. The
proximity detection is the only medium priority item that is completed. Currently, the medium and low
priority items are being design to incorporate into the system.

Sensor Data Collection and Telemetry Transmission
Implemented Features
Hardware
§ Acceleration data acquisition using a micro-machined accelerometer as demonstrated by VHDL

simulation and electrical verification

§ Velocity and distance data acquisition using an optical encoder as demonstrated by VHDL simulation,
electrical verification and mechanical mounting

EE552 Final Report

5

§ Proximity sensor data acquisition as demonstrated by VHDL simulation and electrical verification
§ Data path multiplexer and bus logic, Multiple State Machine control logic for sensor interface,

information packetization and data encoding. VHDL timing simulations complete, electrical
verification complete.

Software

§ Multiplexing of sensor data complete as demonstrated by VHDL simulation
§ Encoding and packetization of multiplexed sensor data complete as demonstrated by VHDL simulation
§ Acceleration calculation complete as determined by VHDL simulation
§ Velocity and Distance calculation complete as determined by VHDL simulation
§ Proximity detection system complete as determined by VHDL simulation
§ Compass direction complete as determined by VHDL simulation
§ Directional sensor data collection using digital compass
§ Increase the range of detection for the proximity sensors with the addition of voltage comparator

Base Station Telemetry Reception and Data Processing
Implemented Features
Hardware
§ Keypad recognition by VGA and debounce complete as demonstrated by functional verification
§ RF data reception demonstrated through electrical verification
 Software
§ VGA text and graphics display as verified by direct observation
§ Keypad interface complete as determined by VHDL simulation
§ RF decoding and data recovery
§ Data processing and real-time updates of telemetry data complete as demonstrated by VHDL

simulation
§ User interface in VHDL code complete, no VHDL simulation, verified by direct observation

Description of Operation

The purpose of the RC Car FPGA is to acquire telemetry data from the four different sensors mounted on
the RC car and then send the data through an RF transmitter to the base station. The four sensors, an
accelerometer, an optical encoder, four proximity detectors, and a compass are used to measure the
instantaneous acceleration, the velocity, the distance, the magnetic heading, and the proximity to objects.
There are two outputs from the accelerometer, one for x-acceleration and one for y-acceleration. Both
outputs are pulse width modulated (PWM). A counter within the FPGA is used to count the width of the
pulse. The optical encoder outputs 128 counts per revolution. A counter within the FPGA is used to count
the number of pulses in a specified period, about 55ms. The proximity is detected using opto-electronic
transmitter and receiver circuit. Each of the four proximity outputs is an input to the FPGA and stored in
registers. The compass heading is detected using Hall effect sensors and each of the four outputs is an
input to the FPGA as well.

The flow of signals within the FPGA is shown in the RC Car Flow Diagram found in the appendix. From
this diagram, the data path can be seen. A finite state machine controls the sequence that the data is read
into the packet encoder. The packet encoder then converts the 8-bit parallel data into a packetized serial bit
stream suitable for RF transmission. The RF data will then be transmitted to the base station with
monolithic RF transmitter.

EE552 Final Report

6

RC Car Design

Accelerometer Design
To accurately measure the instantaneous acceleration of the RC vehicle, an Analog Devices, ADXL202
accelerometer with digital outputs is used. The advantages of this device include measurement of
acceleration on both the x and y axes and digital outputs, eliminating the need for a A/D converter. Since
the outputs of the accelerometer are pulse width modulated (PWM), a counter within the FPGA is used to
count the width of the high pulse. The period for one complete cycle is set to 10ms using an external
resistor as described in the accelerometer hardware section. The internal clock used to count the width of
the pulse is 500kHz as recommended by the ADXL202 data sheet. Counting of the pulse width is
accomplished by using the outputs of the accelerometer as an enable signal to the counter. Due to the
restriction of the number of logic cells in the FPGA, the actual count of the pulse width is divided down by
32 using a 5-bit counter. The MSB is then used as the input to a 7-bit counter. The value of this counter is
the value that is passed on to the base station for calculation. While this implementation reduces the
accuracy of the accelerometer, the accuracy is only reduced by <2% and is thus deemed acceptable. For
example, if the accelerometer is at rest the duty cycle is 50% which translates into a high pulse of 5ms.
Using a 500kHz clock, this translates into 2500 counts. Dividing this number by 32 results in 78.125, and
thus the 7-bit counter would only register 78, which when multiplied by 32 again results in 2496. This is a
0.16% error. Other values of acceleration will have more % error but all less than 2%.

To further conserve logic cells, the counter alternates between counting the x acceleration and y
acceleration through a finite state machine controlling a 2-to-1 mux that selects between the two
accelerations. For the base station to differentiate between the two accelerations, a bit is passed along with
each set of acceleration data to the base station, thus making each set packet of data sent 8 bits wide. A
state diagram in the appendix illustrates this state machine. Finally, before the data is sent to the data path
multiplexer, the output is registered in a register with enable. The controller for the data path checks the
value of the enable before reading the value of the counter, thus ensuring that the counter value is not
changing when the controller is attempting to read the acceleration value.

Note that while the y acceleration is not currently used by the base station in the calculation of the
acceleration, the y acceleration count is still passed onto the base station for possible future
implementation.

The major design difficulty in designing the module for the accelerometer lies in the limited number of
logic cells in the FPGA. Initially, both accelerations were counted simultaneously and passed onto the base
station. However, the solution of dividing down the count value and using only one counter to count both
accelerations reduces the logic considerably. The other design difficulty involved the different clock
frequencies. This problem is solved using the method described above.

Optical Encoder Design
The optical encoder produces 128 counts per revolution (CPR). A small finite state machine (see appendix)
was used to take the output from the encoder and pass it to the base station. The finite state machine has
two counters. The first counter is a 8-bit counter used to count the number pulses that is outputted by the
encoder. The second counter is a 4-bit counter that counts to 16 and then resets the first counter. The
second counter is used because each packet is 3.72 ms, a interval too short to obtain any accurate data. For
example, if the RC car were travelling at a rate of 20km/h (the approximate maximum speed of the RC car)
and the circumference of the wheel that the optical encoder is mounted is 16cm. By performing some
simple arithmetic, the estimated maximum number of counts per second is ~4444 (or 4.444 counts/ms).
However, the car will probably never operate at this fast. A better operating speed would be about 13 km/h
or about 3 counts/ms. The counter used within the FPGA to count the number of high pulses counts on the
rising edge and the value of the counter is read approximately every ~3.5ms (corresponding to the period of
one complete packet). This translates into ~10 counts/(packet period). At this rate, the calculation at the

EE552 Final Report

7

base station of the distance and velocity would not be meaningful. Thus, it was decided that the distance
and velocity should only be calculated every 16 packets (~59.52ms). So when the counter value has been
read from 16 times, the counter is reset to zero.

As stated above in the accelerometer design section, the biggest challenge in designing the interface for the
optical encoder is the conflicting timing requirements of the two components.

Data Path Controller
The data path controller controls a 4-to-1 mux, which selects the order that the telemetry data is sent to the
packet encoder module. Each input of the 4-to-1 mux is a bus 8-bits wide. The accelerometer value and
the encoder value are both eight bits wide while each of the proximity and compass values are four bits
wide. Thus, the proximity and compass values are concatenated together to form an 8-bit bus. All three
buses form three of the inputs to the 4-to-1 mux. The fourth input is a bus that is tied high and is used for
sending all 1’s when an error occurs. An example of an error occurring is the controller attempting to read
the accelerometer value when the accelerometer state machine is writing to the register. The data path state
machine operates interactively with the packet encoder controller. Three flag signals are sent from the
packet encoder controller indicating which of the three sets of data is needed. The state machine then
selects the appropriate control signals. If an error occurs, the state machine transitions into an error state
where eight 1’s are outputted.
The main design challenges for this module were the timing specifications of the optical encoder and the
accelerometer. Since the accelerometer outputs are PWM, the time between successive cycles varies. This
conflicts with the periodic sampling interval for the optical encoder. Periodic sampling is required for
accurate speed calculation by the base station since speed is a time dependent measurement. Thus, a
system had to be designed that could sample the encoder value periodically yet still sample the pulse width
of every accelerometer cycle. The latter condition, although not essential to the correct calculation of the
acceleration, is still desirable.

Packet Encoder
The RF data packet was formatted so that the receiver at the base station can synchronize with the
incoming data stream using the 16-bit pre-amble. Furthermore, the 8 bit security codes must match on both
ends of the RF link for that particular packet to be accepted. Otherwise, the base station will reject the
current packet and wait for another 16-bit pre-amble. This data-encoding scheme is robust enough to
ensure adequate system operation in the shared communications spectrum. As discussed earlier, the RF
link was implemented using integrated FSK PCB mounting modules. According to the manufacturer's
specifications, the transmitted data had to be run-length limited to 20 ms so that the RF receiver could
accurately recover the bitstream. The run-length is the number of bit-periods that the data remains at a '0'
or a '1.' The total packet length was 58 bits with each bit having a length of 64µs. This translated to a total
packet length of 3.712 ms. Since, the transmissions were synchronous, the preamble "1010 … " stream
would appear every 3.7 ms thus meeting the run-length requirement.

The design of the packet encoder involved three components. The finite state machine was used to control
a data path consisting of a shift register to convert parallel bus data into a serial bitstream to the RF
transmitter, a 5 to 1 multiplexer is used to select from the 5 data sources that needed to be shifted out and
an asynchronous counter. The counter was necessary to allow the state machine to remain in a particular
state until all of the data from the 8-bit bus was shifted out. The control signals Accel Chip Select, Encoder
Chip Select and Prox Chip Select start the Accelerometer, Optical Encoder and Proximity/Compass
Detector state machines when data from those particular sensors are required.

EE552 Final Report

8

Preamble
16 Bits
Length

Used to
synchronize the

clock at the
receiving

basestation to the
incoming RF data

Security Byte
8 Bits

Used to ensure
that transmissions

that are not
originating from
the RC Car are

not interpreted as
valid

2 Bits
Padding

Acceleration
Data (X or Y)

8 Bits

2 Bits
Padding

Raw Data From
Accelerometer

Optical
Encoder Data

8 Bits

2 Bits
Padding

Raw Data From
Optical Encoder

Proximity/
Compass Data

8 Bits

Data From
Proximity and

Compass

2 Bits
Padding

2 Bits
Padding

RF Packet Format

Challenges: It was critical to reduce the size of the state machine since the number of logic cells on the RC
car FPGA was limited. Furthermore, it was determined after several design iterations that the shift register
and state machine would not function properly unless it was coded as a strictly Moore Machine. Therefore
the number of states had to be relatively large.

Proximity and Compass Design
The inputs from the four proximity circuits and the four compass inputs are non-periodic signals that do not
need any control logic to acquire. The proximity sensors will output a high signal when the RC vehicle is
not near to any objects and a low signal when an object is closer than 5cm. The compass will send a low
signal on one or two of the input lines from the compass to the FPGA indicating which direction the RC
vehicle is heading. Both the proximity and the compass inputs are inputted to registers where the data path
controller can sample the signals as required. The registers are used to avoid unwanted signal spikes.
There were no design difficulties in designing for these sensors.

Flashing LED's
After the complete design of the RC Car, about 10 logic cells remained. These 10 cells could not be used
to implement any more features. Thus, a simple controller controlling a bank of LED's at the front of the
RC Car is also added. This bank of LED's adds visual appeal to the RC Car. One benefit from
implementing this feature, is the actual reduction of logic cells in the overall FPGA. Prior to the addition of
the LED controller, different synthesis styles had not been attempted as the project fit on the first synthesis.
After adding the LED controller the project no longer fit into the FPGA. Thus, different compile options
were implemented and a smaller fit was eventually found. There were no design difficulties in designing
the LED controller.

FPGA Choice
The UA7K development board with an EPM7128SLC84-10 FPGA was chosen over the UP1 development
board with an EPF10K20RC240-4 FPGA for two reasons:

1. The MAX7k part is prom memory based rather than the static RAM based implementation of
the FLEX10K20 part. This is important, as it is impractical to reprogram the FLEX10K20
FPGA after every power up since the FPGA is mounted on the RC car and powered from a
battery pack. Due to the use of a battery pack, powering down the RC car whenever the car is
not in use saves power and increases the time that the RC car and data acquisition controller
can be used. If the FPGA had to remain powered even the car is not operated; the battery

EE552 Final Report

9

pack would not last very long before needing a recharge. The need of a frequent recharge
would be very time consuming.

2. The UA7K board is much smaller than the UP1 board. In addition to mounting the FPGA on
the RC car, the four different sensor modules also must be mounted. Due to the size of the
car, it was not practical to mount the sensors and the UP1 board onto the RC car at the same
time.

While the FLEX10K part has many more logic cells, 1152 versus 128, the fact that the MAX7k is flash
based and the smaller size of the UA7K board was deemed more important. Thus, the UA7K board was
chosen over the UP1.

Clock Frequency
The clock frequency chosen for the system was 15.625kHz. This frequency is obtained by dividing down
the 1MHz clock provided by the crystal oscillator on mounted on the UA7K board. This frequency was
chosen for a number of reasons. Firstly, this frequency is divided down 64 times from the 1MHz oscillator.
This is an advantage as 64 is a 2n number, which means that this frequency can be directly obtained by
taking the MSB of a 6-bit counter. Using this approach to divide down a clock saves logic cells, which is at
a premium on the MAX7k128. Secondly, the frequency must be close to a frequency that can be obtained
on the base station FPGA that uses a 25.175MHz crystal oscillator. By dividing down the 25.175MHz
clock by 1611, a frequency of 15.627kHz can be obtained. The 2Hz difference between the two clocks was
deemed close enough. There may be another pair of frequencies that is closer together but finding them
would have been too time consuming and not worth the effort since the two frequencies found meet the
requirements. A third parameter is that since the sensors are acquiring data in the order of milliseconds and
in some cases, in seconds. Therefore, the clock frequency cannot be too fast. On the other hand, a clock
that is too slow would mean slower data transmission and thus slower data processing by the base station.
A fourth parameter is the maximum transmission rate of the RF transmitter, which is 20kbps. This
translates into a maximum frequency of 40kHz. The selected frequency of 15.625kHz is well under that
specification. While a rate that is faster could have been used (say 31.25kHz) and still be under the
maximum transmission rate, 31.25kHz would not meet the second or third design parameters discussed
above.

Base Station Design
The design is broken into three major modules. This was done to provide a framework to start from and to
make it easier to divide the tasks. The three modules consists of the RF decode, data analysis and VGA.
The following design description will also be broken into these modules.

RF decode
Decoding the received RF data involves: 1) using the preamble word to synchronize the incoming data rate
with the clock used to receive the data; 2) checking the security byte for data packet validity; 3) separating
the different bytes of data and storing the three different bytes in separate registers where they can be read
by the data analysis modules.

Preamble Word (preamble_fsm.vhd)

This finite state machine (see appendix for state diagram) checks the first fourteen bits of the preamble
word ("1010_1010_1010_10") to determine the start of the packet. The preamble word is also used to
synchronize the receiving clock with the incoming data rate. This is necessary for two reasons. Firstly,
when the system is initially powered up or after a global reset, the receive clock is at an unknown phase
with respect to the incoming data. This is undesirable due to possible setup and hold timing violations in

EE552 Final Report

10

registers. This could cause some of the bits of the packet to be lost. Secondly, the incoming data rate
7.8126kbps while the receive clock is operating at 15.62694kHz. Ideally, the receive clock should be
double the incoming data rate to prevent clock drift. So, the ideal receive clock frequency should be
15.625kHz. Thus, there is a 1.94Hz clock difference between the actual clock and the ideal clock. This
small difference will cause the clock to drift to the left 8ns with respect to the incoming data every bit that
is received. Eventually, when the clock drifts close enough to a transition in the incoming data the setup
time for storing the bit into a register will be violated. To solve these problems, the receive clock must be
synchronized to the incoming data stream on every packet. Thus, for one complete packet the clock will
drift only ~460ns to the left.

Security Check (security_check.vhd)
This state machine (see appendix for state diagram) verifies whether the security byte matches with
expected data from the RC car. The selected pattern is "10001000." If the security code does not match,
the Security_Corrupted Flag will be set high for the duration of the packet. The flag will continue to be
high until it receives a valid preamble from the RC car in which case the flag will be reset to low.

Data Deocder (data_decoder.vhd)
The entity data_decoder (see appendix for state diagram) is used to transform 8 bits serial data into an 8
bit vector data. It uses a state machine with a clock frequency of 64 us to accomplish the modification of
data. The state machine starts when the packet_decoder entity sends a signal to the data_decoder. This
signal is represents the security signal has been received and the following serial data is valid. When this
occurs, the data_decoder will wait for 2 clock cycles. This two clock cycles is required to ensure that the
two extra of '1' generated by the packet_encoder during the transmission of data over the RF are not read
by the data_decoder. The packet_decoder will then shift the next 8 bits of serial data into a register. This
is accomplished by the use of lpm_shiftreg. The shift register converts the 8 bits serial data into an 8 bits
vector data. This 8 bit vector data is the acceleration data. The next 2 clock cycles will not be read by the
data_decoder. These two bits are the extra bits generated by the packet_encoder. Once again, the next 8
serial bits will be shifted into an 8-bit vector by the lpm_shiftreg. This new 8-bit vector is the distance
data. The following next 2 bits are ignore by the packet_decoder (extra bits). The next 8 bits of serial data
will then be converted into a 8 bits vector by the lpm_shiftreg. This is the direction and proximity warning
data. The last two bits are data are ignored by the packet_decoder (extra bits).

Demux_top (demux_top.vhd)
The demux_top.vhd is used to separate the data collected from the package decoder and pass them into their
respective entities for data calculation. The data collected from the package decoder contains 3 types of
information. The first series of data is a counter, which counts for the length of a pulse width from the
accelerometer. The second set of data is a counter that counts for the distance travel from optical encoder.
The final set of data contains information about the proximity detection and heading direction.

The package decoder will output 8 bits of data into one register and then after 2 clock cycles, 8 bits of new
data will be shifted into the same register. Therefore, the demux_top entity has only 1 clock cycle to read
from the register. When the package decoder is shifting data into the register (using lpm_shiftreg), an
enable signal is set to high. During the time, the enable signal will prevent the demux_top entity from
reading the register. When the enable signal goes low, the demux_top entity will read from the shift register
and transfer the data into either acceleration, distance or direction-proximity register. A state machine
controls the demux_top entity. As a reset signal is received, the state machine is set to the start state, on the
next clock cycle; the state machine will go to the security_state. While inside this state, the package
decoder will be reading in the preamble signals and the security bits. The state machine will enter the next
state only when a high enable signal is detected. As a result the package decoder has now finished reading
the preamble and security bits and is shifting the acceleration bits into a register. The state machine is now
in the accel_state. When 8 clock cycle has passed (the package encoder has shift in 8 bits), the enable
signal will go low which allows the demux_top to transfer the data from the shift register into the
acceleration register. This is the read_accel state and will last only 1 clock cycle. The next state is the
temp_state1. The purpose of this state is to allow the package decoder to read in the 2nd intermediate bits

EE552 Final Report

11

(there are two bits separating the acceleration, distance and direction-proximity bits). The state following
this is the dis_state. This state is similar to the accel_state with the exception of the data being shifted is
the data from the optical decoder. The next state is read_dis, which transfers the data from the shift register
into the distance register in the same manner as the acceleration data, is written into the acceleration
register into the read_accel. The temp_state2 is used to read the 2nd intermediate bit. The next set of states
(dirprox_state, read_dirprox, and temp_state3) function similarly to the accel_state, read_accel, and
temp_state1, with the exception that the data is read into the direction-proximity register.

The most important aspect of the demux_top is the timing of when the data is read. The shift register must
not be accessed by the demux_top when the package decoder is writing data to the register. Otherwise, the
data read will be invalid.

Data Analysis
On board the RC car there are four sensors that output data to the Base station. These are the
accelerometer, optical encoder, compass and proximity sensors. The data collected from these sensors will
be used to calculate the acceleration, velocity, distance, direction and collision detection.

Acceleration (accel.vhd)
The entity accel will calculate the acceleration of the RC car. The input to this entity is the clock (40ns),
the reset signal, an enable and the data input from the packet decoder. The data input from the packet
decoder is first written into an acceleration register every 3.72 ms. Because the register is update so fast, the
acceleration calculation is done every 30 packets (132.6 ms). This way, once the calculation is done, the
VGA monitor can be updated. Whenever the packet decoder writes data into this register, an enable signal
will increment a counter. When the counter reaches 15 (15 because there are two sets of acceleration data:
x and y axis), the accel entity will calculate the acceleration of the RC car, and the counter is reset to 0.
While the counter is incrementing, the old value of the acceleration will be used to display onto the VGA
monitor.

The data receive by the entity accel from the packet decoder is a counter value. This value represents the
length of T1 from the accelerometer. The calculation of the acceleration is based on the formula:

2/81.9
%5.12

%50
2
1

smxT
T

onAccelerati
−

=
where T1 = the length of the pulse width
 T2 = the period of the pulse

First of all, the value obtained from the packet decoder is T1/32. This division is required because of the
process how the data are packaged (as explained in the accelerometer’s data collection). Also, because
MAXPLUSII only allows multiplication or division by a number of based 2 (lpm_division and lpm_multi
are not chosen to reduce the number total logic cells used), the acceleration value obtained by accel entity
is an approximation of the actual acceleration of the RC car. With T2 set to 10.0 ms, and the clock
frequency of the RC car set to 500kHz (2ns), this means that the counter value for T2 is 5000. Thus, the
acceleration formula becomes:

212 /10)39015(/81.9
%5.12

%50
5000

132

smxTsmx

xT

onAccelerati −−≈
−

=
where T1 = the counter from packet decoder

If T1 is 74, the acceleration is equal to zero. If T1 is greater than 74, the acceleration is positive, and if less
than 74, the acceleration is negative. The zero mark is set at T1 = 74 and not (5000/2/32 = 78) is because
the accelerometer requires an offset. When the RC car not moving, the accelerometer is transmitting an
impulse width of 4.6 ms, which translate to 74 in the counter.

EE552 Final Report

12

The data obtained from the acceleration register is an 8 bit std_logic_vector. The first bit (most significant
bit) indicated whether the data represents the x-axis acceleration or y-axis acceleration. A one represents y-
axis acceleration, and a zero represents the x-axis acceleration. The remaining bits represent the
acceleration of the RC car. An error in acceleration data collection occurs when the remaining 7 bits are
"1111111". In this case, the data is ignored, and the old value of the acceleration is displayed on the
monitor.

Once the acceleration of the RC car has been determined, the value of the acceleration has to be divided
(using lpm_divide and divide by 10) into two digits (the ones digit and the tenth digit, i.e. 24 is divided into
2 and 4). These two digits are then passed into the VGA.vhd to be displayed on the monitor.

Attempts have been to reduce the total logic cells used. The original design used lpm_divide and
lpm_multi to calculate the acceleration, but it used too many logic cells. The calculation is then changed to
converting the input signal into integers, computing the acceleration and then converting the answer back to
type signal. This method reduced the total logic cells used.

Challenges: The MAXPLUSII won’t allow the division of any number that is not base 2, if lpm_divide is
not used. Lpm_divide is not used to reduce the number of total logic cell used. Because of this problem,
square root function was not able to execute. Also, the timing of the reading the data is critical. When the
lpm_shiftreg is writing into the acceleration register, it is important for the accel entity not to read the shift
register. The problem of refreshing and displaying on the data onto the VGA monitor provides a concern
initially. The original plan is to update the acceleration data on the VGA monitor whenever there is a
change. This will occur every two packets (7.42 ms). This is too fast for the human eyes to read the data.
Thus, the counter of 30 is added.

Distance (distance.vhd)
The data is an 8 bit std_logic_vector from the optical encoder is used to calculate the distance traveled by
the RC car. The optical encoder itself will generate 128 pulses per one revolution. Since the packets are
sent every 3.72 ms, only the sixteenth packet is used in the calculation. Sixteen was picked, since it was
easy to implement a 2n-bit counter. To accomplish this, a finite state machine is used. The data is
continually sent with each packet but a 4-bit counter holds the process in a counting state until it reaches
“1111” then proceeds to the next state. The new value is then added to the previous value, since the total
distance traveled is the desired result. The sum is then divided by 128 to find the total number of
revolutions. A wheel is physically attached to the encoder; this wheel has a circumference of 16 cm. To
obtain the distance, the circumference of the wheel is multiplied with the total number of revolutions.

A register was implemented to hold the previous distance value to calculate the total distance traveled after
an initial reset. Once the distance of the RC car has been determined, the value is divided by 100 to obtain
a hundredth digit and the remainder is divided by 10 to obtain a tenth and ones digit. E.g. (345 is divided by
100 = 3 and remainder 45, then 45 is divided by 10 = 4 remainder 5). The three digits are then passed to
the VGA.vhd to be displayed on the monitor. An error in distance data collection occurs when the remaining
7 bits are "1111111". In this case, the data is ignored, and the old value of the acceleration is displayed on
the monitor.

One of the difficulties in the design of the distance was to make the system wait for the valid data and then
complete the calculation. Much of the initial code had to be redesign since all the calculations were done

)_tan_(16*
/128

#tan valuecedispreviouscm
revpulses

pulsesceDis +=

EE552 Final Report

13

with lpm_mult and lpm_divide. Using these functions required twice as many logic cells and extremely
long compile and simulation times. Now the data is converted to integer before the calculation and then
back to std_logic_vectors after. This reduces the number of logic cells need and simulation time.

Velocity (velocity.vhd)

The instantaneous velocity is also obtained from the optical encoder. From the distance design, it was
stated that only the sixteenth packet had the valid optical encoder data. In the same distance finite state
machine the output signal is sent to the velocity entity with the valid encoder data. Once the data is sent the
velocity calculation can proceed. First, the data is divided by 128 to obtain the number of revolutions, and
then it is multiplied by the circumference of the wheel that is 16 cm. This gives the instantaneous distance,
to calculate the velocity; a reference time value is needed. The time is taken from packet transmission time
of 3.72 ms, which is then multiplied by 16 for every valid data. So the total time is 3.72ms*16 = 0.05952,
take the reciprocal and approximate to 16 1/s. The final velocity is the distance calculated multiplied by 16
and the result is in cm/s.

Again, as in distance, once the velocity of the RC car has been determined, the result is divided by 10 to
obtain a tenth and ones digit. E.g. (45 is divided by 10 = 4 remainder 5). The two digits are then passed to
the VGA.vhd to be displayed on the monitor.

Many of the problems faced in the velocity calculation were carry over from the distance calculation since
distance is an essential component of velocity. Again, the multiplication and division were initially
implemented with LPM modules, but were change to reduce the number of logic cells.

Direction and Proximity Warning (direction.vhd)

The data input to the entity direction is an 8-bit std_logic_vector. This data is used to calculate both the
heading of the RC and the proximity warnings. Both the heading direction and the proximity warnings are
updated every packet (every signal from the packet decoder). The input to this entity is the clock (40ns), the
reset signal, an enable signal and the data input from the package decoder. The data input from the package
decoder is first written into an direction-proximity register every 3.72 ms. Whenever the package decoder
writes data into this register, an enable signal will be set to disable the direction entity in determining the
heading of the RC car. The old value of the acceleration will be used to display onto the VGA monitor.
When the package decoder finishes writing to the direction-proximity register, the direction entity will
obtain the data from the direction-proximity register and calculates the heading of the RC car. If the packet
data contains all ‘1’s, the data is discarded and the previous data is used to display on the VGA monitor.
This is due to the data from the compass is logic high. Therefore, there is no possible way for the data to
contain all ‘1’s.

As mention before, the data stored in the direction-proximity register contains an 8-bit std_logic_vector.
The bits that contain the direction are the last 4 bits. The order of bits is north, east, south, and west (with
north in the most significant bits). An if - else statement is used to separate this 4 bits and converts them
into a 4 bits std_logic_vector (000 = north, 001 = northeast, 010 = east, 011 = southeast, 100 = south, 101 =
southwest, 110 = west, and 111 = northwest). This 3 bits vector will then be passed in to the VGA.vhd to
be displayed onto the monitor.

packets

cm
revpulses

pulses

Velocity
16sec*0390.0

16*
/128

#






=

EE552 Final Report

14

The detection of proximity objects is done at the same time the direction heading of the RC is calculated.
When the 8-bit vector is passed to the direction entity, the 4 most significant bits of the vector contains the
information about the proximity objects. These four bits represent the proximity detection at the front, left,
right, and back of the RC car. A zero represents an object is closed to the RC car, and a one means that the
car is safe from crashing. When these 4 bits are separated, they will be passed into the VGA.vhd to be
displayed onto the monitor.

VGA
Initially, the VGA must synchronize both the vertical and horizontal direction (syncgen.vhd)1. This is
important because not all pixels on the VGA are allowed to be updated at the same time. The pixels on the
VGA are updated one at a time from left to right and from top to bottom. This is accomplished by
count_xy.vhd1. These two files essential drive the refresh sequence for the VGA. The rest of VGA is
broken into two sections, static and dynamic objects. Static is an object that does not change and is
continuously displayed on the monitor, while dynamic are objects that change.

The static objects are implemented first, starting with a blue background (bkgd.vhd). This entity uses
count_xy.vhd to cycle through all the pixels on the screen and sets the output blue pin high, while setting
the green and red pins to low. To display letters on the screen (display.vhd), for example (Driver’s Ed, our
project name), two lpm_rom were used. The first lpm_rom holds a char_set.mif file, which the individual
characters are in binary format. Second lpm_rom holds a different file called d_text.mif, which provides
the ability to group individual characters together to form words. The d_text.mif contains 3 columns. The
first column represents the binary address of the words within the .mif file. The second column uses the
octel system to write the address of each characters I the char_set.mif. The last column is the actual written
words. Again, the entity count_xy.vhd is used to cycle through all the pixels on the screen. A different
process checks the current column address and row address to see if a match is made to output a certain
string in the d_text.mif file. Once a match is found, then a specific message is selected and a color for the
output is chosen.

Dynamic objects are implemented in the same manner as the static objects with minor adjustments to the
input process (combine.vhd). Dynamic objects include such items as the proximity warning, keypad input,
compass heading (N,E,S,W) and the digits for acceleration, velocity and distance. These objects are
refreshed when the new data values are calculated and passed to the VGA component. Two counters cycle
through the x and y position on the display and another process checks the current column and row address.
Once the same column and row address is found, the new data from the requested calculation is taken and
displayed on the monitor. The update of the dynamic characters is relatively straightforward. Since the
data is passed in as a signal, the signal can be used indirectly to update the display. For example, if the
input signal contains the number 4, an offset is added to the signal so that the new signal represents the
location of the number 4 in the char_set.mif. Essentially, the char_set.mif becomes a lookup table for
dynamic objects.

Keypad Interface Code

The keypad interface was designed from scratch using a strictly Moore Machine architecture. This is a
radical departure from the keypad code from the application notes where the hybrid Moore/Mealy
machines with falling edge or double edge clocking were implemented. These application notes were used
as a starting point in the design although the implemented code is significantly different. This was because
the hybrid architectures did not perform well when implemented on the Altera FPGAs.

EE552 Final Report

15

The keydecoder used a common row and column-scanning algorithm. The state machine began by driving
all of the columns to a low value and detecting if any of the rows, which are weakly pulled high with 4.7kΩ
resistors, were driven to zero. If any one row was driven to zero, that would mean that a key was
depressed. The state machine will then wait several clock cycles for the keypad-bouncing transients to die
down and then proceed to determine which key was pressed. It does this by shifting a zero through each
column while keeping the other columns high. When it detects a zero in a particular row, the intersection
of the column driven to zero and the row that has a zero as its input will yield the desired key. The
keyscanning routine then waits for the key to be released by driving all the columns to 0 and waiting for all
of the rows to go to one. The keyscanning routine then starts from the beginning. The resulting keypress is
latched to an output register where the value is held until another keypress is detected. Furthermore, the
keyvalid signal will go high for 1 clock period following the detection of a valid keypress. The recorded
keyvalue will be output to a binary to 7-segment decoder and displayed on the VGA screen as well.

1 1 1
1

1
1

0

0

A simplified Finite State Machine Diagram is as follows. The keydetection phase for Columns 2, 3 and 4
have been omitted since it is very similar to the key detection of Column 1.

The concepts for the implementation of the VGA took awhile to grasp. The student application notes
provided a basis to start from but not enough to generate the desired output initially. Much of the testing
was through trial and error. Adding to the problem, the VGA code would not compile and gave a pointer
error on the computer stations in CEB 342. The VGA code would only compile on the workstation in CEB
540, therefore we were constantly running up and down to compile and view the results.

Estimation/ Measurement of Total Logic Cell used

Base Station
Total Logic Cells Available: 1152 Logic Cells (EPF10K20RC240-4)

All the essential features, as described in the achievements section, have been implemented and
simulated. Due to logic cell constraints, the keypad functionality is moved to the other FPGA available on

EE552 Final Report

16

the UP1 development board. The total logic cell usage from the report generated by MAX+plus II is
1123/1152 (97%).

Total Logic Cells Available: 128 Logic Cells (EPM7128SLC84-7)

This FPGA implements the design for user interface using a keypad. The total logic cell usage
from the report generated by MAX+plusII is 60/128 (46%).

RC Car
Total Logic Cells Available: 128

All the essential features on the RC Car FPGA have been designed and simulated in MAX+plus II.
From the report generated, the number of logic cells used is 115/128 (89%). Some additional features that
could not be implemented due to fitting issues include:

1) An error detection and correction (EDAC) scheme using a linear feedback shift register that
randomly compares bits to check for errors

2) A more accurate accelerometer pulse width count. Currently, the acceleration count is
divided down be 32 before it is sent to the base station. This introducing some round off error
as the acceleration is only accurate to ±31 counts.

Maximum Speed

Base Station
The maximum clock frequency of the base station FPGA as measured by the Registered Performance
Timing Analyzer in MAX+plus II was 3.56MHz. However, this appears to be incorrect as the system uses
multiple clocks. The use of multiple clocks was necessary since the RF receiver receives the data at
7.1825kbps while the calculation and VGA display modules operate at the system clock of 25.175MHz.
Simulation was completed with a clock frequency of 25.175MHz.

RC Car
The maximum clock frequency of the RC car FPGA as measured by the Registered Performance Timing
Analyzer in MAX+plus II was 37.31MHz. This is much faster then the required system performance.
There is no need to increase the system performance since the system operates at an acceptable frequency
already.

Hardware Component Integration

Accelerometer Design
The ADXL202 is a dual axis accelerometer capable of measuring both positive and negative accelerations
to a maximum level of ±2g. For each channel an output circuit converts the acquired analog acceleration
measurement into a duty cycle modulated (or Pulse Width Modulated) output. When the accelerometer is
at rest and completely horizontal to the earth, both axes should normally produce a 50% duty cycle. Due to
processing considerations in the base station, to be discussed later, only the x-axis was used in this project.
Thus only straight-line kinematic acceleration was displayed accurately on the VGA screen. An example
of the accelerometer waveform is as follows:

EE552 Final Report

17

The acceleration is proportional to the ratio of the pulse width and the period or T1/T2. The scale factor, as
specified in the data sheet is 12.5% Duty Cycle change per g. Therefore, the maximum de-acceleration will
be measured as a 25% duty cycle while the maximum acceleration will be measured as a 75% duty cycle.

Before the accelerometer could be used, it had to be configured for operation using several external
components.

The functional diagram of the accelerometer from the Analog Devices data sheet is as follows:

First a small decoupling capacitor DCC of 0.1uF was needed to decouple the IC from noise on the power
supplies.

Next, the bandwidth of the accelerometer needed to be chosen. The bandwidth determines the response
time of the accelerometer. Increasing the bandwidth decreases the response time but also increases noise
the occurrence of white noise. According the data sheet the bandwidth is selected using an appropriate
low-pass filtering capacitor. The equation that governs the bandwidth is simply

X
dB C

fF µ5
3 =−

Since the motion of the RC car was relatively slow, it was decided that using the lowest recommended
bandwidth would be suitable for our application. Using a bandwidth of 10Hz resulted in a low-pass
filtering capacitor value of 0.5uF. Choosing a standard value of 0.47uF met our needs.

The Duty Cycle Modulated Period (sample rate) was set by a single resistor SETR . Since, as will be
discussed later, the FPGA must gather data from different sensors and transmit the entire packet at a
maximum rate of 20kbps; the period was set as high as possible. The equation governing the period was

EE552 Final Report

18

Ω
=

M
R

T SET

125
2

Since the maximum recommended period is 10 ms, we decided to use a 1.2MΩ resistor. This resulted in a
theoretical period of 9.6ms and thus a sampling rate of 104Hz.

The accelerometer has characteristics of white Gaussian noise that contributes equally at all frequencies.
The noise is proportional to the square root of the bandwidth of the accelerometer. Through statistical
methods that are beyond the scope of this report, the resolution accuracy one should be able to achieve a
resolution of approximately 1.9mg.

However, the resolution of the acceleration measurements are also limited by the frequency and number of
bits of the counter. Because of logic cell limitations on the RC Car FPGA and the maximum speed of the
RF transmitter, a counter frequency of 500 kHz was chosen. Furthermore, an effective 7-bit counter was
used. In order to count a pulse that might last a maximum of 7.5ms, the FPGA will use a 12-bit counter.
Then the counter value will be divided by 32 to be placed on the 8-bit data bus. The effective resolution is
51.2mg.

The accelerometer was mounted on the RC Car with the following orientation:
Front of Car

However, as will be discussed in the IC test measurements section, the accelerometer was mounted at a tilt.

Compass
The digital sensor No. 1490 is used as the compass sensor for the RC car. The sensor magnetically
indicates the four Cardinal (N, E, S, W) directions, and by overlapping the four Cardinal directions, shows
the four intermediate (NE, NW, SE, SW) direction. These signals are generated by four Hall effect IC’s.
The following circuit is attached to each Hall effect.

10 K

5 V
5 V

output
signal

The output signal of the hall-effect sensor is a logic low signal. When the particular hall-effect sensor is
not detecting the magnetic north, the output signal is high. When it is detecting the magnetic north, the
signal will go low.

Challenges: The biggest challenges related to the heading direction are using the compass sensor. The pins
layer of the compass sensor is not in the format of an IC chip. It is oriented in the 4 sides with 3 pins a side
(total of 12 pins). This requires bending of some pins. The power and ground pins of the sensor also poses
some problems. The ground is always right beside the power pin. If bending of the pins is required,

EE552 Final Report

19

extreme cautious must be taken to ensure the ground and power pins do not come in contact and short
circuit the sensor. The mounting of the sensor on the RC is major obstacle. At first, the sensor is mounted
on the back of the RC car. When the sensor is being tested, it was discovered that the sensor always
displays one direction. Later, it was found that the inductor coil from the RC motor which lies directly
below the compass sensor creates a magnetic field which interfere with the sensor. The next location of the
sensor to be tested is at the front of the RC car. This location is also proven to be inappropriate because it
too close to the rest of the other circuits (accelerometer, RF transmitter etc). The current produces by the
power and ground lines at the side of the circuit produces a magnetic field, which also interfere with the
compass sensor. The final solution is to elevate the sensor above the RC car thus above the interference of
the magnetic fields produce by the motor and the other circuitry.

Proximity Detection
The proximity detection sensor (QRD 1114 or OMRON EE-SF5) is make up of both the photo reflective
sensors and the voltage comparator. The output signal of the combine sensor is logic low. Normally the
photo reflective sensor will emit light. This light is bounced back into the photo reflective sensor if an
object is in front of the sensor. The reflected light will cause the output signal to go low. The voltage
comparator is used to drive the signal low after a threshold point. The threshold point in the voltage
comparator is set to 0.6 V to increase the sensitivity of the proximity detection. This means that whenever
the input voltage drops from 5 V to 4.4 V, the voltage comparator will output a 0 V signal. Two resistors,
11.5kΩ and 1kΩ , controls the threshold point. If the 11.5kΩ is reduce, the threshold point of the voltage
comparator will increase.

Challenge: The only difficulty for the proximity warning is the distance of detection. At first, the sensors
can only detect objects if they are less than 1 cm from the object. After purchasing a relatively more
expensive ($1 compared to $6) sensors, and adding a voltage comparator, the detection range of the sensors
increase to 5 to 6 cm. The new sensors play a significant role in the detection range. The front, left and
right sensors are the more expensive sensors, while the back sensor is the original sensor. Although all 4
sensors have the same voltage regulator, the detection ranges are quite difference. The new sensors have a
range of 5 to 6 cm while the original sensor has only 2 to 3 cm range (which have a significant
improvement with the voltage regulator). An even more expensive sensor (~$60), with an amplifier can
improve the detection range even further. But for the purpose of this project, we feel that the present
sensors are justified.

To the FPGA

1 K 1K1K1 K

42 K

5 V

11.5 K

1K

5 V

1K

5 V

EE552 Final Report

20

Optical Encoder
The optical encoder used was the Clarostat-Optical Rotary Encoder 600E, which outputs 128 pulses per
revolution. It has an input power of 5V @ 30 mA and an operating speed range of 300RPM to 3000RPM.

Challenge: Mounting the optical encoder was also a problem. The optical encoder can in a non-standard
package and was difficult to mount onto the RC car. The solution to this problem was to use LegoTM to
make a housing for the optical encoder and implemented a gear and chain system to turn a wheel. Still, we
experienced some slipping with the optical encoder and wheel. Also, was mounted on the rear of the car
creating a problem when backing up. With more time a better design could be implemented so that backing
up the car would not be a problem.

RF Hardware Design
The RF Link was accomplished through the use of PCB mounting modules for both the RF transmitter and
receiver. The RF transmitter module, the ABACOM TXM-418-F was an RF module that accepted serial
digital data and modulated the incoming bitstream using Frequency Shift Keying at 418 MHz. The receiver
module used was an ABACOM SILRX-418-A FM Superheterodyne Receiver which demodulated the FSK
transmission and converted it into a baseband digital signal. A block diagram of the RF link can be
represented as follows:

The RF transmitter/receiver pair was tested for correct function using the pulse width modulated outputs
from the digital accelerometer. Oscilloscopes were connected to both ends of the RF link and it was
observed whether a change of pulse width on the transmitted side was reflected in the same change in
pulse-width on the received side.

Antenna Design
The simplest antenna type was used in this design. The antenna type used was the quarter-wave monopole
cut from 24-gauge wire. The radiation pattern of a quarter wave monopole antenna is as follows.

Using the information gained from several antenna design tutorials it was determined that resonance of a
quarter-wavelength monopole occurs when its length is slightly less than a quarter-wavelength. The
following equation was used to determine the required length of wire:

EE552 Final Report

21

inchesMHzfrequencylength 72.6418
2808

)(
2808 ===

Voltage Regulators
Two different 5 V Voltage Regulators were used. The first voltage regulator is the MAXIM MAX667
which supplies up to 250 mA of output current. Was used on the base station to regulate the 5V for the
Keypad and RF receiver.

The second is the MAXIM MAX 603 which supplies up to 500 mA of output current. A 9.6V RC car
battery powered the system on the RC car. This battery powered all the sensor components and the MAX
7000. This is reason we chose a different voltage regulator.

EE552 Final Report

22

Buffers
A Octal 3-State Noninverting Buffer was used to protect the FPGA from static discharge and human wiring
errors. The buffers were also used to provide a 5-volt drive needed since the FPGA could not only output
3.156V. The MC54/74HC244A buffers were used.

EE552 Final Report

23

Keypad[2]

The keypad is a 4 by 4 Grayhill with 4.7kΩ pull-up resistors on the rows. A diagram below will illustrate
how the keypad was wired:

4.7kΩ

4.7kΩ

4.7kΩ

4.7kΩ

FPGA

F B

E A
Right

 9
Sto
p

D
For
ward

C 8
Left

7

6

5
Back
ward

4

3

2

1

0

EE552 Final Report

24

Results of Experiments

Acceleration Experiment

Using a turntable, the acceleration was tested. The accelerometer circuit and the RC car’s FPGA were
placed on the turntable. When the turntable is turned on, the acceleration of the accelerometer displayed on
the VGA monitor was recorded. The reason measuring the acceleration on a turntable is to measure a
constant acceleration. When an object is rotating around a fixed point at a constant speed and a constant
distance from the fixed point (radius), the object experiences two accelerations, the normal acceleration and
the tangential acceleration. If all the required conditions (constant radius, constant speed around the fixed
point) are true, the normal acceleration will be constant. Thus, the normal acceleration can be calculated
by:

ronAccelerati 2ω=
where ω = angular velocity in rad/s2
 r = distance from the fixed point (radius)

This test will accurately test the acceleration of the accelerometer (since only one acceleration axis is used
to display on the monitor). When the accelerometer is not moving, the acceleration display on the monitor
is 0.3 m/s2. Thus, there is an offset of 0.3 m/s2.

RPM of
turntable Radius

Angular
velocity
rad/s

Theoretic
Acceleration
m/s2

Actual
Acceleration
(on monitor)
m/s2

Actual
Acceleration
(after offset)
m/s2

% error

33 14 cm 3.45576 1.7 1.9 1.6 5.8
45 14 cm 4.7124 3.1 2.9 2.6 12.9

The % error may seem a little high, but the RPM may be too accurate. According to the turntable, the RPM
can be set at 33 and 45. But when the FPGA and the accelerometer circuit are placed on the turntable, the
RPM may be slower than stated. The combine weight of the FPGA and the accelerometer is heavier than
the weight of a record, thus, this will cause the RPM to decrease, which will result in a smaller value for the
angular velocity and the theoretic acceleration and in turn reduces the percentage error. Thus, the data
from the accelerometer can be considered valid.

Distance Experiments
The optical encoder was used for both distance and velocity calculations. Testing the accuracy of the
optical encoder to perform the function of calculating distance was done through the following series of
tests.

Tests
1. Starting from rest, then proceed to 2 meters and stop, take reading from VGA
2. Starting from a constant velocity, then proceed to 2 meters and stop, take reading from VGA
3. Accelerating to starting point, then proceed to 2 meters and stop, take reading from VGA

These tests will accurately test the optical encoder for all possible conditions. The tests were conducted on
a carpet surface to prevent the wheel, which the encoder is attached to, from slipping.

Test Number # of Trials Actual Distance Traveled
(m)

Expected Distance Traveled
(m)

% error

EE552 Final Report

25

1 1 1.79 2.00 11.7
2 1.66 2.00 20.5
3 1.56 2.00 28.2
4 1.89 2.00 5.8
5 1.88 2.00 6.4

Avg 1.76 2.00 13.6
2 1 1.89 2.00 5.8

2 1.65 2.00 21.2
3 1.99 2.00 0.5
4 2.07 2.00 3.4
5 1.97 2.00 1.5

Avg 1.91 2.00 4.7
3 1 1.66 2.00 20.5

2 1.89 2.00 5.8
3 1.94 2.00 3.1
4 1.88 2.00 6.4
5 1.72 2.00 16.3

Avg 1.81 2.00 10.5

From the results it can be concluded that the second test proved to be the most accurate for measuring
distance. In the first test the car started from rest. The optical encoder seem to behave poorly under slow
speeds (>0.5 m/s). Also some slipping could have occurred to produce the higher percent error. In the
accelerating tests, the car was a little hard to control and to keep in a straight line. This was the main cause
of the error. Finally, the test at constant velocity provided the least amount of error since the car was in
motion and the encoder was already moving it gave better results. Still, some error was due to keeping the
car at a constant speed and keeping going in a straight line.

In a separate test, a turntable was used to calculate the distance traveled. The wheel was placed on the edge
of the turntable and was 14 cm away from the center. Rotating the turntable 5 times resulted in a total
distance traveled of 4.40 meters.

Distance = 5* (2 * π * 0.14 m) = 4.40 meters

The following is the results of this test:

Trial Number Actual Distance Traveled (m) Expected Distance Traveled (m) % error
1 4.32 4.40 1.9
2 4.42 4.40 0.5
3 4.37 4.40 0.7
4 4.27 4.40 3.0
5 4.51 4.40 2.4
Avg 4.38 4.40 0.5

These results demonstrated the accuracy of the optical encoder without the added human error of driving
the RC car in a straight line.

Velocity Experiment

The velocity was tested in conjunction with the distance in test 2, where we tried to keep the velocity
constant. The following data was obtain from the test:

EE552 Final Report

26

Trial Number Actual Distance
Traveled (m)

Expected
Distance
Traveled

(m)

Time (sec) Actual
Velocity

(m/s)

Expected
Velocity

% error

1 1.89 2.00 1.85 1.02 1.00 7.4
2 1.65 2.00 1.94 0.85 1.00 17.6
3 1.99 2.00 1.97 1.01 1.00 1.0
4 2.07 2.00 1.99 1.04 1.00 3.8
5 1.97 2.00 1.98 0.99 1.00 1.0

Avg 1.91 2.00 1.95 0.98 1.00 2.0

The overall data gather from the optical encoder was quite accurate with little error. The error in the
calculation can be accounted for by the slipping of the wheel, keeping the car straight, and human reaction
time for the stopwatch. The percent error is still within reason and therefore the data is valid.

Proximity Experiment
The proximity detection measurement is done by placing a ruler on the table underneath the sensor and
measuring how far the object is before the sensor detects the object and display the warning message on the
monitor. 3 tests (white surface, reflective surface and non-reflective surface) are done with the room’s
lights on, and one test (white surface) is done when the room is dark.

White Surface Reflective
Surface

Non-Reflective
Surface

White Surface

Front Proximity 5 cm 5.5 cm 3.5 cm 4.5 cm
Left Proximity 5 cm 5.5 cm 3.5 cm 4.5 cm
Right Proximity 5 cm 5.5 cm 3.5 cm 4.5 cm
Rear Proximity 3 cm 3 cm 1 cm 2 cm

Direction Experiment
Comparing the display on the monitor with an actual compass does the test of the compass sensor. The
results show that the compass sensor is working properly.

VGA Experiment
The VGA testing is done by trail and error. The VGA program is downloaded onto the UP1 and display
onto the monitor. The location of the words and pictures are then viewed and adjusted if necessary.

Base station Experiments

Any changes to the default setting in synthesis of speed vs. area trade-offs resulted in over 100% total cell
usage and therefore would not fit into the Flex10K chip. Different settings of global synthesis style also
resulted in over usage of cells. Therefore, no changes were made to the settings. The critical path is
limited by the external hardware, which are the RF receiver and the VGA monitor. Therefore, no formal
calculation could be done.

EE552 Final Report

27

RC Car Experiments
A noticeable reduction in the usage of logic cells was observed when adjusting the synthesis options.
Initially, the speed vs. area optimization level was set to 0 (for most optimized area synthesis). When
normal synthesis style is selected, the project would not compile. When fast was selected the project
compiled but with about 92% logic usage. When the speed vs. area optimization level was set to 2 the
project blocks was reduced to 89% usage. Other levels were attempted but did not yield improved results.
The main objective for using the different compile options was for the most efficient optimization of area
rather than attempting to achieve maximum speed. This is mainly due to the limited number of logic cells
available on the MAX7K. The maximum speed was not a great concern as fast throughput was not
required. Furthermore, external components such as the RF transmitter with a maximum transmission rate
of 20kbps set a limit to the maximum throughput of the FPGA.

IC Measurements

The following diagram shows how the FPGA cannot drive up to the 5V rail when sourcing current to even
a single CMOS load. Therefore a current buffer was deemed necessary. The peak to peak voltage is
3.156V

The next measurement taken is the acceleration in the x direction. This measurement provides us with
insight into the operation of the accelerometer.

EE552 Final Report

28

The sampling rate of the accelerometer was 99.63 Hz with a corresponding Duty Cycle period of 10.04 ms.
The duty cycle, length of the high pules, at rest was 46.8%. This deviated from the theoretical 50% duty
cycle for an accelerometer at rest because of the angle at which the accelerometer was mounted. The
frequency and period can be altered with a change in resistor value. This is explained in the Hardware
Design section.

The following two diagrams show the operation of the proximity sensors and voltage comparators. The
first diagram illustrates the operation of the proximity sensor when no object is detected. The effects of the
fluorescent lights cause the deviation from 0V. As described elsewhere in this document, the voltage level
increases when the infrared light reflects off of an object and is detected by the phototransistor circuit.
However, the voltage will not reach the threshold needed by the FPGA to detect a logic high until the
object was very close to the proximity sensor circuit.

EE552 Final Report

29

The voltage comparators where used to increase the effective range of the proximity sensors. With the
resistor divider network as shown in the Hardware Section, the threshold trip point where the comparator
would go from high to low and signal to the FPGA that an object was detected is at 615.7mV. This
corresponded to an object being within 5cm of the proximity sensor.

EE552 Final Report

30

The final diagram shows the how the packet that is transmitted from the RC car is received by the base

station.

From this diagram we can see that the received signal is slightly delayed when compared to the transmitted
signal. However, the bitstream was recovered exactly. This test was run with both the transmitter and
receiver within 1m of each other.

References:

Student Application notes:
1. VGA: http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/98w/dicerace_video_display
2. Keypad: http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/99w/keypad/keydecoder.html

3. http://www.ee.ualberta.ca/~ee480/hardware/UA7K_UsersManual.pdf
4. http://www.ee.ualberta.ca/~ee480/hardware/UA7K_Helpsheet.pdf
 Written by Steven Sutankayo and Curtis Wickman

Datasheet
5. Abacom Technologies: TXM-4xx-F (5V, 20000bps Transmitter)
6. Abacom Technologies: SILRX Series UHF FM Superhet Receiver Module
7. Analog Devices: ADXL202/210, Accelerometers with Digital Output
8. Clarostat: Optical Rotary Encoders Series: 600, 601H, 601V
9. Dinsmore: Digital Compass Sensor
10. Maxim: MAX667, +5V/Programmable Low-Dropout Voltage Regulator
11. Maxim: MAX603, +5V/Programmable Low-Dropout Voltage Regulator
12. National Semiconductor: LMC6772 Dual Micropower Rail-to-Rail Input CMOS Comparator

With Open Drain Output
13. Motorola: MC54/74HC244A Octal 3 State non inverting Buffer/Line Driver/ Line
 Receiver
14. Grayhill: 12/16 Button Keyboards

EE552 Final Report

31

15. Optoelectronics: ORD1113 Reflective Object Sensor
16. Micrel: MICRF001 Antenna Design Tutorial
17. Omron: EE-SF5-B Compact Reflective Phototransistor Output Insusceptible to

External Interference Light
18. RFM: Application note on encoding and decoding RF

transmissions and packetizing information

Appendix
(not included in web copy)

