EE552 Final Report

EE 552 Final Report

Driver’'sEd

Raymond Sung, 345630
Patrick Chan, 225463
Jason Mah, 354665
Andrew Sung, 364189

December 6, 1999

EE552 Final Report

F AN =3 I 7 N O 4
CURRENT FEATURE SET IMPLEMENTEDcitttttiiiiieiiittttiieessiesstsseesssesssssnesssesssssesssrsssseeeseessne. 4
Sensor Data Collection and Telemetry TranSmiSSION.........ooiviiiiereniee e 4
Base Sation Telemetry Reception and Data ProCESSINGcoiveeiieiiieiiieeesiie e 5
DESCRIPTION OF OPERATIONttt 5
[(O O Y = B T i €\ 6
ACCELEROMETER DESIGN ...ciiitttiiiiiiiiiiitiiisieeesieestbis s s e e s s s esabb s s essseea bbb s eessesa bbb s eeesseas bbb eeesseessbbaasses 6
OPTICAL ENCODER DESIGNiiiiieiiiiiii i ettt e e e s e eet s s s e e s e e e bbb s s e s s s esa bbb s e e e s s e s s bbb s eassees bbb seesseensses 6
DATA PATH CONTROLLER ..cttttutiietiittttiei s e ee s seetbbasseessssesbbasseesssees bbbt seesssessbbaseesssessbbaassesssessbbaansseasaes 7
[=l = N[0T0] 0] = = TR 7
PROXIMITY AND COMPASS DESIGN ...cvvuuuiiiiiiiiietiiiiiiieeseeettiis s e e e s s eetb bt s e s s st esbbb s eessseasbbassssssessbbaansseasaes 8

[NS TN I = =TT 8
FPGA ChOICE ... 8
ClOCK FrOOUENCYttt ettt ettt ettt ettt sa et e e et et e be e e ebbe e sabe e s abe e e abe e e abee e snbeesnbeesnbeeeanes 9
BASE STATION DESIGN ...ttt aas 9
[l 0] (0 0] 0] =S TRTRR 9

[N A N S TR 11

N G A 14
KKEYPAD INTERFACE CODE ..uttuuiiiiiiiiittiii i eeestettbs s s e e st sestbaasses st ees bbb s esass e s bbb s eesssessbbaaseesssessbbaaseesaaes 14
ESTIMATION/ MEASUREMENT OF TOTAL LOGIC CELL USED....cooiiiiieee 15
B ASE STATION .. iittttiiiiii ittt e e et e e e e et e et s e eees e e et b s seessee s bbb eeas s e s b bbb s eessses s bbb eeessens bbb aeasaes 15

[(O O = TR 16
MAXIMUM SPEED.ot e e e e e e s naaas 16
B ASE STATION ..t ittttiiii i ittt e e e e et et e e e e e e ea b st eess e e s bbbt s eessee s bbb s e ess s e e bbb s eessses s bbb seeessees bbb saeaaaes 16

[(O .Y = TR 16
HARDWARE COMPONENT INTEGRATION ... s 16
ACCELEROMETER DESIGN ...ccvttuuiiiiiiiiittiiiiieessiestbbisseeesssesbbaasssesssessbaa s eessses s bbb eesssesabbbaseesseessbaannsss 16
(000 V] =7 ST 18
PROXIMITY DETECTION ...ciittttuiiiiiiiittttiieieeessiestsi s essseessba s seesseesssaa s eesstessbaaatesssesssbaaseesssesssssnsaessnes 19
(@] N 107N I = N0]] = = SRR 20
R HARDWARE DESIGN ...ccvtttuiiiiiiiiettitie e eesseettsisssessseestbasssssseessbsa s eesssessbbaa s eesssessbbaaseesssesssssnsaeasaes 20

F g 1= 0= T o o PR UTRR 20

V OLTAGE REGULATORSciitttttiiiiie it ettt st e e e s e eet b s e e e s s e e s bt eeeasee s bbb s e eassea bbb s eeessesa bbb eeesseessbbaansss 21
U] = LT RTR 22
KEY PADI .ottt et ettt et et e e e e e e et e e n et e e ereeerenns 23
RESUL TS OF EXPERIMENT S s 24
ACCELERATION EXPERIMENT 1utuuuiiiiiiiittiiiiieeesiestbttsssesssessssaasssesssesssssaasssesssesssaaasssesssesssssssseesseessssnnnsns 24
RAAIUS.....ccooeeeeeee 24
ACLUAL ... 24

DI STANCE EXPERIMENTS. . cttttuiiiiiiiietttiieieeesteestsa s eeesseessba s seessees s b b eeasses bbb sesssessbbaasssesssenssbsansaeasnes 24
VELOCITY EXPERIMENT L..iiiiitttttiiiiieiietttttiseesssestsssssesssesssssassesssessssaaassesssesssaaasaesssesasssasseesseessssnnnsns 25
PROXIMITY EXPERIMENT ..etttttuiiiieiiitttttiieeesstestssssessseesssasaseesseessssaassesssesssssaseesssesssssnssesssesssssnseessse 26
DIRECTION EXPERIMENT ..iittttuiiiiiiiitttttiiieesteestssasessseesssasssessssesssssssstesstesssssnseesssesssssteessseesssanneessne 26
AV 7N = = T Y = TR 26
BASE STATION EXPERIMENTS L.uuiiiiiietttiie i ee et eettbe s s e e st eeabbaa s s s esssesb b b seeasses bbb s eesssessbbaaseesssessbbsanseasnes 26
RC CAR EXPERIMENTS. ..t ttttttuiiiieitiettttsieesstesstssassessstesssaasssesseesssaaa s eesssessbbaa s sesssesssbaasssesssesssssnsaeasaes 27
[C MEASUREMENTS.. ...t s s as s ssss s ssssaas s s snssssssssasssssnnnnnnnnas 27

EE552 Final Report

REFERENCES:ottt s e s r e sb e s e e e r e sne e nane e 30
DECLARATION OF ORIGINAL CONTENTccccovvieieinnn. ERROR! BOOKMARK NOT DEFINED.
APPENDIX L. 31

EE552 Final Report

Abstract

This project involved the design, implementation and test of adigital telemetry system. The completed
system successfully gathers data from various sensors mounted on a remote controlled vehicle using afield
programmable gate array. The FPGA packetized the data for synchronous transmission over radio
frequency to a remote base station. The base station, which was implemented using a combination of two
field programmable gate arrays, correctly recovered the transmitted data, did the necessary cal culations and
displayed the resultsin real-time on a VGA monitor. The RF transmission scheme was able to disregard
invalid data and functioned correctly even when in close proximity to another system operating at an
identical radio frequency. The collected tdlemetry dataincluded relatively accurate measurements of the
car's instantaneous vel ocity, instantaneous accel eration, heading and total distancetraveled. Furthermore,
the car's proximity to other objects could be detected at short distances and the results displayed on the
VGA screen. The base station was able to interface to a 4x4 keypad and display user keypresses on the
monitor. The keypad interface allows future expansion of the system for direction and heading contral.

Current Feature Set Implemented

The feature set implemented as determined by VHDL simulation and observation of hardware behavior
include: (electrical verification involves measurements with electronics test equipment)

Priority = High is an essential feature.
Priority = Medium/Low are features that can be deleted due to time or space constraints.

System Block Feature Priority

RC Car Acceleration measurement High
Vel ocity measurement High
Distance measurement High
Heading measurement High
Proximity detection Medium
RF telemetry transmission High
RF movement instruction reception High

Base station Telemetry display on VGA monitor High
Advanced Telemetry Display with Visual Warnings and Low
Graphics
Keypad Contral interface High
Movement instruction / Telemetry storage (RAM) High
RF telemetry reception High
RF movement instruction transmission High

All high priority items outline in the feature set are implemented according to the specifications. The
proximity detection is the only medium priority item that is completed. Currently, the medium and low
priority items are being design to incorporate into the system.

Sensor Data Collection and Telemetry Transmission

Implemented Featur es

Hardware

= Accderation data acquisition using a micro-machined accel erometer as demonstrated by VHDL
simulation and electrical verification

= Vdocity and distance data acquisition using an optical encoder as demonstrated by VHDL simulation,
electrical verification and mechanical mounting

EE552 Final Report

= Proximity sensor data acquisition as demonstrated by VHDL simulation and electrical verification

= Data path multiplexer and buslogic, Multiple State Machine control logic for sensor interface,
information packetization and data encoding. VHDL timing simulations complete, eectrical
verification complete.

Software

Multiplexing of sensor data complete as demonstrated by VHDL simulation

Encoding and packetization of multiplexed sensor data complete as demonstrated by VHDL simulation
Accderation calculation complete as determined by VHDL simulation

Ve ocity and Distance calculation complete as determined by VHDL simulation

Proximity detection system complete as determined by VHDL simulation

Compass direction complete as determined by VHDL simulation

Directional sensor data collection using digital compass

Increase the range of detection for the proximity sensors with the addition of voltage comparator

Base Station Telemetry Reception and Data Processing

Implemented Featur es

Hardware

= Keypad recognition by VGA and debounce complete as demonstrated by functional verification

= RF datareception demonstrated through electrical verification

Software

= VGA text and graphics display as verified by direct observation

= Keypad interface complete as determined by VHDL simulation

» RF decoding and data recovery

= Data processing and real-time updates of telemetry data complete as demonstrated by VHDL
simulation

= Userinterfacein VHDL code complete, no VHDL simulation, verified by direct observation

Description of Operation

The purpose of the RC Car FPGA isto acquire telemetry data from the four different sensors mounted on
the RC car and then send the data through an RF transmitter to the base station. The four sensors, an
accel erometer, an optical encoder, four proximity detectors, and a compass are used to measure the
instantaneous acceleration, the velocity, the distance, the magnetic heading, and the proximity to objects.
There are two outputs from the accelerometer, one for x-acceleration and one for y-acceleration. Both
outputs are pulse width modulated (PWM). A counter within the FPGA is used to count the width of the
pulse. Theoptical encoder outputs 128 counts per revolution. A counter within the FPGA is used to count
the number of pulsesin a specified period, about 55ms. The proximity is detected using opto-electronic
transmitter and receiver circuit. Each of the four proximity outputsis an input to the FPGA and stored in
registers. The compass heading is detected using Hall effect sensors and each of the four outputsis an
input to the FPGA aswell.

The flow of signalswithin the FPGA is shown in the RC Car Flow Diagram found in the appendix. From
this diagram, the data path can be seen. A finite state machine controls the sequence that the dataisread
into the packet encoder. The packet encoder then converts the 8-bit parallel datainto a packetized serial bit
stream suitable for RF transmission. The RF data will then be transmitted to the base station with
monolithic RF transmitter.

EE552 Final Report

RC Car Design

Accelerometer Design

To accurately measure the instantaneous accel eration of the RC vehicle, an Analog Devices, ADXL202
accel erometer with digital outputsisused. The advantages of this device include measurement of
acceleration on both the x and y axes and digital outputs, eliminating the need for a A/D converter. Since
the outputs of the accelerometer are pulse width modul ated (PWM), a counter within the FPGA isused to
count the width of the high pulse. The period for one complete cycleis set to 10ms using an external
resistor as described in the accelerometer hardware section. Theinternal clock used to count the width of
the pulse is 500kHz as recommended by the ADXL202 data sheet. Counting of the pulse width is
accomplished by using the outputs of the accelerometer as an enable signal to the counter. Dueto the
restriction of the number of logic cellsin the FPGA, the actual count of the pulse width is divided down by
32 using a 5-bit counter. The MSB isthen used as the input to a 7-bit counter. The value of this counter is
the value that is passed on to the base station for calculation. While thisimplementation reduces the
accuracy of the accelerometer, the accuracy is only reduced by <2% and is thus deemed acceptable. For
example, if the accelerometer is at rest the duty cycle is 50% which trandates into a high pulse of 5ms.
Using a 500kHz clock, thistrandates into 2500 counts. Dividing this number by 32 resultsin 78.125, and
thus the 7-bit counter would only register 78, which when multiplied by 32 again resultsin 2496. Thisisa
0.16% error. Other values of acceleration will have more % error but all less than 2%.

To further conserve logic cells, the counter alternates between counting the x acceleration and y

accel eration through afinite state machine controlling a 2-to-1 mux that sel ects between the two
accelerations. For the base station to differentiate between the two accelerations, a bit is passed along with
each set of acceleration data to the base station, thus making each set packet of data sent 8 bitswide. A
dtate diagram in the appendix illustrates this state machine. Finally, before the data is sent to the data path
multiplexer, the output isregistered in aregister with enable. The contraller for the data path checks the
value of the enable before reading the value of the counter, thus ensuring that the counter valueis not
changing when the controller is attempting to read the accel eration value.

Note that while the y acceleration is not currently used by the base station in the calculation of the
acceleration, the y acceleration count is still passed onto the base station for possible future
implementation.

The major design difficulty in designing the module for the accelerometer liesin the limited number of
logic cellsin the FPGA. Initially, both accel erations were counted simultaneously and passed onto the base
station. However, the solution of dividing down the count value and using only one counter to count both
accelerations reduces the logic considerably. The other design difficulty involved the different clock
frequencies. This problem is solved using the method described above.

Optical Encoder Design

The optical encoder produces 128 counts per revolution (CPR). A small finite state machine (see appendix)
was used to take the output from the encoder and passit to the base station. The finite state machine has
two counters. Thefirst counter isa 8-bit counter used to count the number pulsesthat is outputted by the
encoder. The second counter isa4-bit counter that countsto 16 and then resetsthefirst counter. The
second counter is used because each packet is 3.72 ms, ainterval too short to obtain any accurate data. For
example, if the RC car weretravelling at arate of 20km/h (the approximate maximum speed of the RC car)
and the circumference of the whed that the optical encoder is mounted is 16cm. By performing some
simple arithmetic, the estimated maximum number of counts per second is ~4444 (or 4.444 countsms).
However, the car will probably never operate at thisfast. A better operating speed would be about 13 km/h
or about 3 counts/ms. The counter used within the FPGA to count the number of high pulses counts on the
rising edge and the value of the counter is read approximately every ~3.5ms (corresponding to the period of
one complete packet). Thistrandatesinto ~10 counts/(packet period). At thisrate, the calculation at the

EE552 Final Report

base station of the distance and vel ocity would not be meaningful. Thus, it was decided that the distance
and velocity should only be calculated every 16 packets (~59.52ms). So when the counter value has been
read from 16 times, the counter is reset to zero.

As stated above in the accel erometer design section, the biggest challenge in designing the interface for the
optical encoder is the conflicting timing requirements of the two components.

Data Path Controller

The data path contraller controls a 4-to-1 mux, which selects the order that the telemetry data is sent to the
packet encoder module. Each input of the 4-to-1 mux is abus 8-bitswide. The accel erometer value and
the encoder value are both eight bits wide while each of the proximity and compass values are four bits
wide. Thus, the proximity and compass values are concatenated together to form an 8-bit bus. All three
buses form three of the inputs to the 4-to-1 mux. The fourth input isabusthat istied high and is used for
sending all 1'swhen an error occurs. An example of an error occurring is the controller attempting to read
the accelerometer value when the accelerometer state machineiswriting to theregister. The data path state
machine operates interactively with the packet encoder controller. Three flag signals are sent from the
packet encoder controller indicating which of the three sets of datais needed. The state machine then
sdlects the appropriate control signals. If an error occurs, the state machine transitionsinto an error state
where eight 1’ s are outputted.

The main design challenges for this module were the timing specifications of the optical encoder and the
accelerometer. Since the accelerometer outputs are PWM, the time between successive cyclesvaries. This
conflicts with the periodic sampling interval for the optical encoder. Periodic sampling isrequired for
accurate speed cal culation by the base station since speed is a time dependent measurement. Thus, a
system had to be designed that could sample the encoder value periodically yet still sample the pul se width
of every accelerometer cycle. The latter condition, although not essential to the correct calculation of the
acceleration, is still desirable.

Packet Encoder

The RF data packet was formatted so that the receiver at the base station can synchronize with the
incoming data stream using the 16-bit pre-amble. Furthermore, the 8 bit security codes must match on both
ends of the RF link for that particular packet to be accepted. Otherwise, the base station will reject the
current packet and wait for another 16-bit pre-amble. This data-encoding schemeis robust enough to
ensure adeguate system operation in the shared communications spectrum. As discussed earlier, the RF
link was implemented using integrated FSK PCB mounting modules. According to the manufacturer's
specifications, the transmitted data had to be run-length limited to 20 ms so that the RF receiver could
accurately recover the bitstream. The run-length isthe number of bit-periods that the dataremains at a'0'
or a'l' Thetotal packet length was 58 hits with each bit having alength of 64ns. Thistrandated to atotal
packet length of 3.712 ms. Since, the transmissions were synchronous, the preamble”1010 ..." stream
would appear every 3.7 ms thus meeting the run-length requirement.

The design of the packet encoder involved three components. The finite state machine was used to control
adata path consisting of a shift register to convert parallel bus datainto a serial bitstream to the RF
transmitter, a5 to 1 multiplexer is used to select from the 5 data sources that needed to be shifted out and
an asynchronous counter. The counter was necessary to allow the state machine to remain in a particular
state until all of the data from the 8-bit bus was shifted out. The control signals Accel Chip Sdlect, Encoder
Chip Sdlect and Prox Chip Select start the Accelerometer, Optical Encoder and Proximity/Compass
Detector state machines when data from those particular sensors are required.

EE552 Final Report

2 Bits 2 Bits 2 Bits 2 Bits 2 Bits
Padding Padding Padding Padding Padding
Preamble Security Bvte Acceleration Optical Proximity/
16 Bits 3 B)i/ts y Data (X or Y) Encoder Data Compass Data
Length 8 Bits 8 Bits 8 Bits
Used to Used to ensure
that transmissions Data From

synchronize the
clock at the
receiving
basestation to the
incoming RF data

Raw Data From Raw Data From

Accelerometer Optical Encoder Proximity and

Compass

that are not
originating from
the RC Car are
not interpreted as
valid

RF Packet For mat

Challenges: It was critical to reduce the size of the state machine since the number of logic cells on the RC
car FPGA was limited. Furthermore, it was determined after several design iterations that the shift register
and state machine would not function properly unlessit was coded as a strictly Moore Machine. Therefore
the number of states had to berelatively large.

Proximity and Compass Design

The inputs from the four proximity circuits and the four compass inputs are non-periodic signals that do not
need any control logic to acquire. The proximity sensorswill output a high signal when the RC vehicleis
not near to any objects and alow signal when an object is closer than 5cm. The compass will send alow
signal on one or two of theinput lines from the compass to the FPGA indicating which direction the RC
vehicleis heading. Both the proximity and the compass inputs are inputted to registers where the data path
controller can samplethe signalsasrequired. The registers are used to avoid unwanted signal spikes.
There were no design difficulties in designing for these sensors.

Flashing LED's

After the complete design of the RC Car, about 10 logic cellsremained. These 10 cells could not be used
to implement any more features. Thus, a smple controller controlling a bank of LED's at the front of the
RC Car isaso added. Thisbank of LED's adds visual appeal to the RC Car. One benefit from
implementing this feature, isthe actual reduction of logic cellsin the overall FPGA. Prior to the addition of
the LED controller, different synthesis styles had not been attempted as the project fit on thefirst synthesis.
After adding the LED controller the project no longer fit into the FPGA. Thus, different compile options
were implemented and a smaller fit was eventually found. There were no design difficultiesin designing
the LED controller.

FPGA Choice

The UA7K devel opment board with an EPM7128SL. C84-10 FPGA was chosen over the UP1 devel opment
board with an EPF10K20RC240-4 FPGA for two reasons:
1. TheMAXTk part is prom memory based rather than the static RAM based implementation of
the FLEX10K?20 part. Thisisimportant, asit isimpractical to reprogram the FLEX10K20
FPGA after every power up since the FPGA is mounted on the RC car and powered from a
battery pack. Due to the use of a battery pack, powering down the RC car whenever the car is
not in use saves power and increases the time that the RC car and data acquisition controller
can beused. If the FPGA had to remain powered even the car is not operated; the battery

EE552 Final Report

pack would not last very long before needing arecharge. The need of a frequent recharge
would be very time consuming.

2. TheUAT7K board is much smaller than the UP1 board. In addition to mounting the FPGA on
the RC car, the four different sensor modules also must be mounted. Due to the size of the
car, it was not practical to mount the sensors and the UP1 board onto the RC car at the same
time,

Whilethe FLEX10K part has many morelogic cells, 1152 versus 128, the fact that the MAX7k isflash
based and the smaller size of the UA7K board was deemed more important. Thus, the UA7K board was
chosen over the UP1.

Clock Frequency

The clock frequency chosen for the system was 15.625kHz. This frequency is obtained by dividing down
the IMHz clock provided by the crystal oscillator on mounted on the UA7K board. This frequency was
chosen for a number of reasons. Firstly, thisfrequency is divided down 64 times from the 1IMHz oscillator.
Thisis an advantage as 64 is a 2" number, which means that this frequency can be directly obtained by
taking the MSB of a 6-hit counter. Using this approach to divide down a clock saveslogic cdls, which is at
a premium on the MAX7k128. Secondly, the frequency must be close to a frequency that can be obtained
on the base station FPGA that uses a 25.175MHz crystal oscillator. By dividing down the 25.175MHz
clock by 1611, a frequency of 15.627kHz can be obtained. The 2Hz difference between the two clocks was
deemed close enough. There may be another pair of frequencies that is closer together but finding them
would have been too time consuming and not worth the effort since the two frequencies found meet the
requirements. A third parameter isthat since the sensors are acquiring data in the order of milliseconds and
in some cases, in seconds. Therefore, the clock frequency cannot be too fast. On the other hand, a clock
that istoo slow would mean dower data transmission and thus sower data processing by the base station.
A fourth parameter isthe maximum transmission rate of the RF transmitter, which is 20kbps. This
trandates into a maximum frequency of 40kHz. The selected frequency of 15.625kHz iswell under that
specification. While aratethat isfaster could have been used (say 31.25kHz) and still be under the
maximum transmission rate, 31.25kHz would not meet the second or third design parameters discussed
above.

Base Station Design

The design is broken into three major modules. Thiswas done to provide aframework to start from and to
makeit easier to divide the tasks. The three modules consists of the RF decode, data analysisand VGA.
The following design description will aso be broken into these modules.

RF decode

Decoding the received RF data involves: 1) using the preamble word to synchronize the incoming data rate
with the clock used to receive the data; 2) checking the security byte for data packet validity; 3) separating
the different bytes of data and storing the three different bytes in separate registers where they can be read
by the data analysis modul es.

Preamble Word (preamble_fsm.vhd)

Thisfinite state machine (see appendix for state diagram) checks the first fourteen bits of the preamble
word (1010 _1010_1010 10") to determine the start of the packet. The preamble word is also used to
synchronize the receiving clock with the incoming datarate. Thisisnecessary for two reasons. Firstly,
when the system isinitially powered up or after a global reset, the receive clock is at an unknown phase
with respect to theincoming data. Thisis undesirable due to possible setup and hold timing violationsin

EE552 Final Report

registers. This could cause some of the bits of the packet to belost. Secondly, the incoming data rate
7.8126kbps while the receive clock is operating at 15.62694kHz. Ideally, the receive clock should be
double the incoming data rate to prevent clock drift. So, theideal receive clock frequency should be
15.625kHz. Thus, thereisa 1.94Hz clock difference between the actual clock and theideal clock. This
small difference will cause the clock to drift to the left 8ns with respect to the incoming data every bit that
isreceived. Eventually, when the clock drifts close enough to a transition in the incoming data the setup
time for storing the bit into aregister will be violated. To solve these problems, the receive clock must be
synchronized to the incoming data stream on every packet. Thus, for one complete packet the clock will
drift only ~460ns to the | ft.

Security Check (security_check.vhd)

This state machine (see appendix for state diagram) verifies whether the security byte matches with
expected data from the RC car. The selected pattern is"10001000." If the security code does not match,
the Security _Corrupted Flag will be set high for the duration of the packet. The flag will continue to be
high until it receives a valid preamble from the RC car in which case the flag will be reset to low.

Data Deocder (data_decoder.vhd)

The entity data_decoder (see appendix for state diagram) is used to transform 8 bits serial datainto an 8
bit vector data. It uses a state machine with a clock frequency of 64 us to accomplish the modification of
data. The state machine starts when the packet_decoder entity sends asignal to the data_decoder. This
signal is represents the security signal has been received and the following serial dataisvalid. When this
occurs, the data_decoder will wait for 2 clock cycles. Thistwo clock cyclesisrequired to ensure that the
two extra of '1' generated by the packet_encoder during the transmission of data over the RF are not read
by the data_decoder. The packet_decoder will then shift the next 8 bits of serial datainto aregister. This
is accomplished by the use of |pm_shiftreg. The shift register convertsthe 8 hits serial datainto an 8 hits
vector data. This 8 bit vector dataisthe acceleration data. The next 2 clock cycleswill not be read by the
data_decoder. Thesetwo bits are the extra bits generated by the packet_encoder. Once again, the next 8
serial bitswill be shifted into an 8-bit vector by the I[pm_shiftreg. This new 8-bit vector isthe distance
data. Thefollowing next 2 hits are ignore by the packet_decoder (extrabits). The next 8 hits of serial data
will then be converted into a 8 bits vector by the I[pm_shiftreg. Thisisthe direction and proximity warning
data. Thelast two bits are data areignored by the packet_decoder (extra bits).

Demux_top (demux_top.vhd)

The demux_top.vhd is used to separate the data collected from the package decoder and pass them into their
respective entities for data calculation. The data collected from the package decoder contains 3 types of
information. Thefirst series of dataisa counter, which counts for the length of a pulse width from the
accelerometer. The second set of datais a counter that counts for the distance travel from optical encoder.
Thefinal set of data contains information about the proximity detection and heading direction.

The package decoder will output 8 hits of data into oneregister and then after 2 clock cycles, 8 bits of new
datawill be shifted into the ssmeregister. Therefore, the demux_top entity has only 1 clock cycle to read
from theregister. When the package decoder is shifting data into the register (using I|pm_shiftreg), an
enable signal is set to high. During thetime, the enable signal will prevent the demux_top entity from
reading the register. When the enable signal goeslow, the demux_top entity will read from the shift register
and transfer the data into either acceleration, distance or direction-proximity register. A state machine
controls the demux_top entity. Asareset signal isreceived, the state machineis set to the start state, on the
next clock cycle; the state machine will go to the security_state. Whileinside this state, the package
decoder will be reading in the preamble signals and the security bits. The state machinewill enter the next
state only when a high enable signal is detected. Asaresult the package decoder has now finished reading
the preamble and security bits and is shifting the acceleration bitsinto aregister. The state machineis now
in the accel_state. When 8 clock cycle has passed (the package encoder has shift in 8 hits), the enable
signal will go low which allows the demux_top to transfer the data from the shift register into the
acceleration register. Thisistheread_accel state and will last only 1 clock cycle. The next stateisthe
temp_statel. The purpose of this stateis to allow the package decoder to read in the 2™ intermediate bits

10

EE552 Final Report

(there are two bits separating the accel eration, distance and direction-proximity bits). The state following
thisisthedis state. Thisstateis similar to the accel_state with the exception of the data being shifted is
the data from the optical decoder. The next stateisread_dis, which transfers the data from the shift register
into the distance register in the same manner as the acceleration data, is written into the acceleration

register into the read_accel. Thetemp_state? is used to read the 2™ intermediate bit. The next set of states
(dirprox_state, read_dirprox, and temp_state3) function smilarly to the accel _state, read_accel, and
temp_statel, with the exception that the datais read into the direction-proximity register.

The most important aspect of the demux_top isthe timing of when the dataisread. The shift register must
not be accessed by the demux_top when the package decoder iswriting data to the register. Otherwise, the
dataread will beinvalid.

Data Analysis

On board the RC car there are four sensorsthat output data to the Base station. These arethe
accel erometer, optical encoder, compass and proximity sensors. The data collected from these sensors will
be used to calculate the acceleration, velocity, distance, direction and collision detection.

Acceleration (accel.vhd)

The entity accel will calculate the acceleration of the RC car. Theinput to this entity is the clock (40ns),
the reset signal, an enable and the data input from the packet decoder. The data input from the packet
decoder isfirst written into an acceleration register every 3.72 ms. Because the register is update so fast, the
acceleration calculation is done every 30 packets (132.6 ms). Thisway, once the calculation is done, the
VGA monitor can be updated. Whenever the packet decoder writes data into thisregister, an enable signal
will increment a counter. When the counter reaches 15 (15 because there are two sets of accel eration data:
x and y axis), the accel entity will calculate the acceleration of the RC car, and the counter is reset to O.
While the counter isincrementing, the old value of the acceleration will be used to display onto the VGA
monitor.

The data receive by the entity accel from the packet decoder is a counter value. This value representsthe
length of T1 from the accelerometer. The calculation of the acceleration is based on the formula:

Tl - 50%
Acceleration =12 x9.81m/s?
12.5%

where T1 = the length of the pulse width
T2 =the period of the pulse

First of al, the value obtained from the packet decoder is T1/32. Thisdivision is required because of the
process how the data are packaged (as explained in the accelerometer’ s data collection). Also, because
MAXPLUSII only allows multiplication or division by a number of based 2 (Ipm_division and Ipm_multi
are not chosen to reduce the number total logic cells used), the acceleration value obtained by accel entity
isan approximation of the actual acceleration of the RC car. With T2 set to 10.0 ms, and the clock
frequency of the RC car set to 500kHz (2ns), this means that the counter value for T2 is5000. Thus, the
acceleration formula becomes:

3T o,

Acceleration=-2000 49 .81m/¢* » (5T1- 390)x10'm/s?
12.5%

where T1 = the counter from packet decoder

If T1is 74, the acceleration isequal to zero. If T1isgreater than 74, the acceleration is positive, and if less
than 74, the acceleration is negative. The zero mark isset at T1 = 74 and not (5000/2/32 = 78) is because
the accel erometer requires an offset. When the RC car not moving, the accelerometer is transmitting an
impulse width of 4.6 ms, which trandate to 74 in the counter.

11

EE552 Final Report

The data obtained from the acceleration register isan 8 bit std_logic_vector. Thefirst bit (most significant
bit) indicated whether the data represents the x-axis accel eration or y-axis acceleration. A one represents y-
axis acceleration, and a zero represents the x-axis acceleration. The remaining bits represent the
acceleration of the RC car. An error in acceleration data collection occurs when the remaining 7 bitsare
"1111111". Inthis case, the dataisignored, and the old value of the acceleration is displayed on the
monitor.

Once the acceleration of the RC car has been determined, the value of the acceleration hasto be divided
(using Ipm_divide and divide by 10) into two digits (the ones digit and the tenth digit, i.e. 24 isdivided into
2 and 4). Thesetwo digits are then passed into the VGA.vhd to be displayed on the monitor.

Attempts have been to reduce the total logic cells used. The original design used Ipm_divide and
Ipm_muilti to calculate the acceleration, but it used too many logic cells. The calculation isthen changed to
converting the input signal into integers, computing the accel eration and then converting the answer back to
typesignal. This method reduced thetotal logic cells used.

Challenges: The MAXPLUSII won't allow the division of any number that isnot base 2, if [pm_divideis
not used. Lpm_divideis not used to reduce the number of total logic cell used. Because of this problem,
square root function was not able to execute. Also, thetiming of the reading the dataiis critical. When the
Ipm_shiftreg iswriting into the acceleration register, it isimportant for the accel entity not to read the shift
register. The problem of refreshing and displaying on the data onto the VGA monitor provides a concern
initially. The original plan isto update the acceleration data on the VGA monitor whenever thereisa
change. Thiswill occur every two packets (7.42 ms). Thisistoo fast for the human eyes to read the data.
Thus, the counter of 30 is added.

Distance (distance.vhd)

Thedatais an 8 bit std_logic_vector from the optical encoder is used to calcul ate the distance traveled by
the RC car. The optical encoder itsdf will generate 128 pulses per one revolution. Since the packets are
sent every 3.72 ms, only the sixteenth packet is used in the calculation. Sixteen was picked, since it was
easy to implement a 2"-hit counter. To accomplish this, afinite state machineisused. Thedatais
continually sent with each packet but a 4-bit counter holds the process in a counting state until it reaches
“1111” then proceedsto the next state. The new valueis then added to the previous value, sincethetotal
distancetraveled isthe desired result. The sum isthen divided by 128 to find the total number of
revolutions. A whed is physically attached to the encoder; this whee has a circumference of 16 cm. To
obtain the distance, the circumference of the whedl is multiplied with the total number of revolutions.

pulses

Distance= —————
128pulses/ rev

*16cm+ (previous_distance_value)

A register was implemented to hold the previous distance value to calculate the total distance traveled after
an initial reset. Once the distance of the RC car has been determined, the valueis divided by 100 to obtain
a hundredth digit and the remainder is divided by 10 to obtain a tenth and ones digit. E.g. (345 isdivided by
100 = 3 and remainder 45, then 45 isdivided by 10 = 4 remainder 5). Thethree digits are then passed to
the VGA.vhd to be displayed on the monitor. An error in distance data collection occurs when the remaining
7 bitsare"1111111". In thiscasg, the dataisignored, and the old value of the acceleration is displayed on
the monitor.

One of the difficultiesin the design of the distance was to make the system wait for the valid data and then
complete the calculation. Much of theinitial code had to be redesign since all the cal culations were done

12

EE552 Final Report

with Ipm_mult and Ipm_divide. Using these functions required twice as many logic cells and extremely
long compile and simulation times. Now the data is converted to integer before the calculation and then
back to std_logic_vectors after. This reduces the number of logic cells need and simulation time.

Velocity (velocity.vhd)

The instantaneous vel ocity is al so obtained from the optical encoder. From the distance design, it was
stated that only the sixteenth packet had the valid optical encoder data. In the same distance finite state
machine the output signal is sent to the velocity entity with the valid encoder data. Once the datais sent the
velocity calculation can proceed. First, the datais divided by 128 to obtain the number of revolutions, and
then it is multiplied by the circumference of the whedl that is 16 cm. This gives the instantaneous distance,
to calculate the velocity; areference time value is needed. Thetimeistaken from packet transmission time
of 3.72 ms, which isthen multiplied by 16 for every valid data. Sothetotal timeis 3.72ms* 16 = 0.05952,
take thereciprocal and approximateto 16 1/s. Thefinal velocity is the distance calculated multiplied by 16
and theresultisin cm/s.

@ #pulses *16cm g
Velogity = 128 pulses /rev P
y 0.0390 sec* 16 packets

Again, asin distance, once the velocity of the RC car has been determined, the result is divided by 10 to
obtain atenth and ones digit. E.g. (45 isdivided by 10 = 4 remainder 5). Thetwo digits are then passed to
the VGA.vhd to be displayed on the monitor.

Many of the problems faced in the velocity calculation were carry over from the distance calculation since
distanceis an essential component of velocity. Again, the multiplication and division were initially
implemented with LPM modules, but were change to reduce the number of logic cells.

Direction and Proximity War ning (direction.vhd)

The datainput to the entity direction is an 8-bit std_logic_vector. Thisdatais used to calculate both the
heading of the RC and the proximity warnings. Both the heading direction and the proximity warnings are
updated every packet (every signal from the packet decoder). The input to this entity is the clock (40ns), the
reset signal, an enable signal and the data input from the package decoder. The data input from the package
decoder isfirst written into an direction-proximity register every 3.72 ms. Whenever the package decoder
writes data into this register, an enable signal will be set to disable the direction entity in determining the
heading of the RC car. The old value of the acceleration will be used to display onto the VGA monitor.
When the package decoder finisheswriting to the direction-proximity register, the direction entity will
obtain the data from the direction-proximity register and cal culates the heading of the RC car. If the packet
data containsal ‘1's, the datais discarded and the previous data is used to display on the VGA monitor.
Thisis due to the data from the compassislogic high. Therefore, thereis no possible way for the data to
containal ‘1's.

As mention before, the data stored in the direction-proximity register contains an 8-bit std_logic_vector.
The bitsthat contain the direction arethelast 4 bits. The order of bitsis north, east, south, and west (with
north in the most significant bits). An if - else statement is used to separate this 4 bits and converts them
into a4 bits std_logic_vector (000 = north, 001 = northeast, 010 = east, 011 = southeast, 100 = south, 101 =
southwest, 110 = west, and 111 = northwest). This 3 bits vector will then be passed in to the VGA.vhd to
be displayed onto the monitor.

13

EE552 Final Report

The detection of proximity objectsis done at the same time the direction heading of the RC is cal cul ated.
When the 8-bit vector is passed to the direction entity, the 4 most significant hits of the vector contains the
information about the proximity objects. These four bits represent the proximity detection at the front, left,
right, and back of the RC car. A zero represents an object is closed to the RC car, and a one means that the
car is safe from crashing. When these 4 bits are separated, they will be passed into the VGA.vhd to be
displayed onto the monitor.

VGA

Initially, the VGA must synchronize both the vertical and horizontal direction (syncgen.vhd)!. Thisis
important because not all pixels on the VGA are allowed to be updated at the sametime. The pixelson the
VGA are updated one at atime from left to right and from top to bottom. Thisis accomplished by
count_xy.vhd®. These two files essential drive the refresh sequence for the VGA. Therest of VGA is
broken into two sections, static and dynamic objects. Static is an object that does not change and is
continuoudly displayed on the monitor, while dynamic are objects that change.

The static objects are implemented first, starting with a blue background (bkgd.vhd). Thisentity uses
count_xy.vhd to cycle through all the pixe s on the screen and sets the output blue pin high, while setting
the green and red pinsto low. To display |etters on the screen (display.vhd), for example (Driver’s Ed, our
project name), two Ipm_rom wereused. Thefirst [pm_rom holds a char_set.mif file, which the individua
charactersarein binary format. Second Ipm_rom holds a different file called d_text.mif, which provides
the ability to group individual characterstogether to form words. Thed_text.mif contains 3 columns. The
first column represents the binary address of the words within the .mif file. The second column uses the
octel system to write the address of each characters| the char_set.mif. Thelast column isthe actual written
words. Again, the entity count_xy.vhd is used to cycle through all the pixels on the screen. A different
process checks the current column address and row address to see if amatch is made to output a certain
gring in thed_text.mif file. Once amatch isfound, then a specific message is selected and a color for the
output is chosen.

Dynamic objects are implemented in the same manner as the static objects with minor adjustments to the
input process (combine.vhd). Dynamic objects include such items as the proximity warning, keypad input,
compass heading (N,E,S,W) and the digits for acceleration, velocity and distance. These objectsare
refreshed when the new data values are cal culated and passed to the VGA component. Two counters cycle
through the x and y position on the display and ancther process checks the current column and row address.
Once the same column and row address is found, the new data from the requested calculation is taken and
displayed on the monitor. The update of the dynamic charactersisrdatively straightforward. Sincethe
datais passed in asasignal, the signal can be used indirectly to update the display. For example, if the
input signal contains the number 4, an offset is added to the signal so that the new signal representsthe
location of the number 4 in the char_set.mif. Essentially, the char_set.mif becomes a lookup table for
dynamic objects.

Keypad Interface Code

The keypad interface was designed from scratch using a strictly Moore Machine architecture. Thisisa
radical departure from the keypad code from the application notes where the hybrid Moore/Mealy
machines with falling edge or double edge clocking were implemented. These application notes were used
asastarting point in the design although the implemented code is significantly different. Thiswas because
the hybrid architectures did not perform well when implemented on the Altera FPGAS.

14

EE552 Final Report

The keydecoder used a common row and column-scanning algorithm. The state machine began by driving
all of the columnsto alow value and detecting if any of the rows, which are weakly pulled high with 4.7kW
resistors, were driven to zero. If any onerow was driven to zero, that would mean that a key was
depressed. The state machine will then wait several clock cycles for the keypad-bouncing transientsto die
down and then proceed to determine which key was pressed. It does this by shifting a zero through each
column while keeping the other columns high. When it detects a zero in a particular row, the intersection

of the column driven to zero and the row that has a zero asitsinput will yield the desired key. The
keyscanning routine then waits for the key to be released by driving all the columnsto 0 and waiting for all
of therowsto go to one. The keyscanning routine then starts from the beginning. Theresulting keypressis
latched to an output register where the value is held until another keypressis detected. Furthermore, the
keyvalid signal will go high for 1 clock period following the detection of a valid keypress. The recorded
keyvalue will be output to a binary to 7-segment decoder and displayed on the VGA screen as well.

1 0 1 1

DetectedIKey,

R B O K

A smplified Finite State Machine Diagram is as follows. The keydetection phase for Columns 2, 3 and 4
have been omitted sinceit is very similar to the key detection of Column 1.

The concepts for the implementation of the VGA took awhileto grasp. The student application notes
provided a basis to start from but not enough to generate the desired output initially. Much of the testing
was through trial and error. Adding to the problem, the VGA code would not compile and gave a pointer
error on the computer stationsin CEB 342. The VGA code would only compile on the workstation in CEB
540, therefore we were constantly running up and down to compile and view the results.

Estimation/ Measurement of Total Logic Cell used

Base Station
Total Logic Cells Available: 1152 Logic Cells (EPF10K 20RC240-4)

All the essential features, as described in the achievements section, have been implemented and
simulated. Dueto logic cell constraints, the keypad functionality is moved to the other FPGA available on

15

EE552 Final Report

the UP1 development board. Thetotal logic cell usage from the report generated by MAX+plusll is
1123/1152 (97%).

Total Logic Cells Available: 128 Logic Cells (EPM7128SLC84-7)

This FPGA implements the design for user interface using akeypad. Thetotal logic cell usage
from the report generated by MAX+plusll is60/128 (46%).

RC Car
Total Logic Cells Available: 128

All the essential features on the RC Car FPGA have been designed and smulated in MAX+plusll.
From the report generated, the number of logic cellsused is 115/128 (89%). Some additional features that
could not be implemented due to fitting issues include:
1) Anerror detection and correction (EDAC) scheme using alinear feedback shift register that
randomly compares bitsto check for errors
2) A more accurate accelerometer pulse width count. Currently, the acceleration count is
divided down be 32 beforeit is sent to the base station. This introducing some round off error
asthe acceleration is only accurate to £31 counts.

Maximum Speed

Base Station

The maximum clock frequency of the base station FPGA as measured by the Registered Performance
Timing Analyzer in MAX+plus |l was 3.56MHz. However, this appearsto be incorrect as the system uses
multiple clocks. The use of multiple clocks was necessary since the RF receiver receives the data at
7.1825kbps while the calculation and VGA display modules operate at the system clock of 25.175MHz.
Simulation was completed with a clock frequency of 25.175MHz.

RC Car

The maximum clock frequency of the RC car FPGA as measured by the Registered Performance Timing
Analyzer in MAX+plus Il was 37.31MHz. Thisis much faster then the required system performance.
Thereisno need to increase the system performance since the system operates at an acceptable frequency
already.

Hardware Component Integration

Accelerometer Design

The ADXL202 isadual axis accelerometer capable of measuring both positive and negative accel erations
toamaximum level of £2g. For each channd an output circuit converts the acquired analog acceleration
measurement into a duty cycle modulated (or Pulse Width Modulated) output. When the accel erometer is
at rest and completely horizontal to the earth, both axes should normally produce a 50% duty cycle. Dueto
processing considerations in the base station, to be discussed later, only the x-axis was used in this project.
Thus only straight-line kinematic accel eration was displayed accurately on the VGA screen. An example
of the accelerometer waveform is as follows:

16

EE552 Final Report

e

la— T1 —a= |

A(g) = (TH/T2 = 0.5)/12.5%
0g = 50% DUTY CYCLE
T2(s) = Reer(02W125M1}

The acceleration is proportional to theratio of the pulse width and the period or TL/T2. The scale factor, as
specified in the data sheet is 12.5% Duty Cycle change per g. Therefore, the maximum de-accel eration will
be measured as a 25% duty cycle while the maximum acceleration will be measured as a 75% duty cycle.

Before the accel erometer could be used, it had to be configured for operation using several external
components.

The functional diagram of the accel erometer from the Analog Devices data sheet is as follows:

+2.0V T +5.28Y
ok W
Voo
L)

(L i SELF TEST
\I’u: FET
) O
ADXL202/
¥ SENSCR B ADXL21D
FILT
A2kiy ¥ OouT
Coe —m | DEMOD i
e ouTyY
CYCLE
MODULATCR
Rrar
0 ¥ ouT
b oewon —o——
¥ BENSOR

-
=

First asmall decoupling capacitor C. of 0.1uF was needed to decouple the IC from noise on the power
supplies.

Next, the bandwidth of the accelerometer needed to be chosen. The bandwidth determines the response
time of the accelerometer. Increasing the bandwidth decreases the response time but also increases noise
the occurrence of white noise. According the data sheet the bandwidth is selected using an appropriate
low-pass filtering capacitor. The equation that governs the bandwidth is smply

£ on
-3dB C_
X
Since the motion of the RC car was relatively dow, it was decided that using the lowest recommended
bandwidth would be suitable for our application. Using a bandwidth of 10Hz resulted in alow-pass
filtering capacitor value of 0.5uF. Choosing a standard value of 0.47uF met our needs.

The Duty Cycle Modulated Period (samplerate) was set by asingleresistor Ry . Since, aswill be

discussed later, the FPGA must gather data from different sensors and transmit the entire packet at a
maximum rate of 20kbps; the period was set as high as possible. The equation governing the period was

17

EE552 Final Report

2 - RSET
125MW

Since the maximum recommended period is 10 ms, we decided to usea 1.2MWresistor. Thisresulted in a
theoretical period of 9.6ms and thus a sampling rate of 104Hz.

The accelerometer has characteristics of white Gaussian noise that contributes equally at all frequencies.
The noiseis proportional to the square root of the bandwidth of the accelerometer. Through statistical
methods that are beyond the scope of this report, the resolution accuracy one should be able to achieve a
resolution of approximately 1.9mg.

However, the resolution of the accel eration measurements are also limited by the frequency and number of
bits of the counter. Because of logic cdll limitations on the RC Car FPGA and the maximum speed of the
RF transmitter, a counter frequency of 500 kHz was chosen. Furthermore, an effective 7-bit counter was
used. In order to count a pulse that might last a maximum of 7.5ms, the FPGA will use a 12-hit counter.
Then the counter value will be divided by 32 to be placed on the 8-bit data bus. The effective resolution is
51.2mg.

The accel erometer was mounted on the RC Car with the following orientation:
Front of Car

ADXL.202

* A

i
ST AT

Ay

However, aswill be discussed in the | C test measurements section, the accelerometer was mounted at atilt.

Compass

Thedigital sensor No. 1490 is used as the compass sensor for the RC car. The sensor magnetically
indicates the four Cardinal (N, E, S, W) directions, and by overlapping the four Cardinal directions, shows
the four intermediate (NE, NW, SE, SW) direction. These signals are generated by four Hall effect IC's.
The following circuit is attached to each Hall effect.

output
signal

The output signal of the hall-effect sensor isalogic low signal. When the particular hall-effect sensor is
not detecting the magnetic north, the output signal ishigh. When it is detecting the magnetic north, the
signal will go low.

Challenges: The biggest challenges related to the heading direction are using the compass sensor. The pins
layer of the compass sensor isnot in the format of an IC chip. It isoriented in the 4 sideswith 3 pinsaside
(total of 12 pins). Thisrequires bending of some pins. The power and ground pins of the sensor also poses
some problems. The ground is always right beside the power pin. If bending of the pinsis required,

18

EE552 Final Report

extreme cautious must be taken to ensure the ground and power pins do not come in contact and short
circuit the sensor. The mounting of the sensor on the RC ismajor obstacle. At first, the sensor is mounted
on the back of the RC car. When the sensor is being tested, it was discovered that the sensor always
displays one direction. Later, it was found that the inductor coil from the RC motor which lies directly

bel ow the compass sensor creates a magnetic field which interfere with the sensor. The next location of the
sensor to betested is at the front of the RC car. Thislocation is also proven to be inappropriate because it
too close to the rest of the other circuits (accelerometer, RF transmitter etc). The current produces by the
power and ground lines at the side of the circuit produces a magnetic field, which also interfere with the
compass sensor. Thefinal solution isto elevate the sensor above the RC car thus above the interference of
the magnetic fields produce by the motor and the other circuitry.

Proximity Detection

The proximity detection sensor (QRD 1114 or OMRON EE-SF5) is make up of both the photo reflective
sensors and the voltage comparator. The output signal of the combine sensor islogic low. Normally the
photo reflective sensor will emit light. Thislight is bounced back into the photo reflective sensor if an
object isin front of the sensor. The reflected light will cause the output signal to go low. The voltage
comparator isused to drive the signal low after athreshold point. The threshold point in the voltage
comparator is set to 0.6 V to increase the sengitivity of the proximity detection. This means that whenever
the input voltage drops from 5V to 4.4 V, the voltage comparator will output a0 V signal. Two resistors,
11.5kWand 1kW, controls the threshold point. If the 11.5kW s reduce, the threshold point of the voltage
comparator will increase.

5V A

To the FPGA

Challenge: The only difficulty for the proximity warning is the distance of detection. At first, the sensors
can only detect objectsif they arelessthan 1 cm from the object. After purchasing arelatively more
expensive ($1 compared to $6) sensors, and adding a voltage comparator, the detection range of the sensors
increaseto 5to 6 cm. The new sensors play a significant role in the detection range. The front, left and
right sensors are the more expensive sensors, while the back sensor isthe original sensor. Although all 4
sensors have the same voltage regulator, the detection ranges are quite difference. The new sensors have a
range of 5 to 6 cm whilethe origina sensor has only 2 to 3 cm range (which have a significant
improvement with the voltage regulator). An even more expensive sensor (~$60), with an amplifier can
improve the detection range even further. But for the purpose of this project, we fed that the present
sensors are justified.

19

EE552 Final Report

Optical Encoder

The optical encoder used was the Clarostat-Optical Rotary Encoder 600E, which outputs 128 pul ses per
revolution. It hasan input power of 5V @ 30 mA and an operating speed range of 300RPM to 3000RPM.

Challenge: Mounting the optical encoder was also a problem. The optical encoder can in a non-standard
package and was difficult to mount onto the RC car. The solution to this problem was to use Lego™ to
make a housing for the optical encoder and implemented a gear and chain system to turn awhed. Still, we
experienced some dipping with the optical encoder and whedl. Also, was mounted on the rear of the car
creating a problem when backing up. With more time a better design could be implemented so that backing
up the car would not be a problem.

RF Hardware Design

The RF Link was accomplished through the use of PCB mounting modules for both the RF transmitter and
receiver. The RF transmitter module, the ABACOM TXM-418-F was an RF module that accepted serial
digital data and modulated the incoming bitstream using Frequency Shift Keying at 418 MHz. The receiver
modul e used was an ABACOM SILRX-418-A FM Superheterodyne Receiver which demodulated the FSK
transmission and converted it into a baseband digital signal. A block diagram of the RF link can be
represented as follows:

T . g 1
BEE I
Anfanng Spsiaf
Data Diala Basebhand-lo-AF AF-in-Basaband Crala Diala
in ™ Encader [™ Transdugsr Transdugar ™ Docoder P Cus

The RF transmitter/receiver pair was tested for correct function using the pul se width modulated outputs
from the digital accelerometer. Oscill oscopes were connected to both ends of the RF link and it was
observed whether a change of pulse width on the transmitted side was reflected in the same changein
pulse-width on the received side.

Antenna Design

The simplest antenna type was used in thisdesign. The antenna type used was the quarter-wave monopole
cut from 24-gauge wire. Theradiation pattern of a quarter wave monopole antennais as follows.

Using theinformation gained from several antenna design tutorialsit was determined that resonance of a
guarter-wavelength monopole occurs when itslength is dightly less than a quarter-wavelength. The
following equation was used to determine the required length of wire:

20

EE552 Final Report

= 2808 =2808/ — i
length = Ar equency(MH2) ~ Am =6.72inches

Voltage Regulators

Two different 5V Voltage Regulators were used. Thefirst voltage regulator isthe MAXIM MAX667
which supplies up to 250 mA of output current. Was used on the base station to regulate the 5V for the

Keypad and RF receiver.

|||—}}%
{

||{—||;|||¢|
hngn

LTI

Rl

The second isthe MAXIM MAX 603 which supplies up to 500 mA of output current. A 9.6V RC car
battery powered the system on the RC car. This battery powered all the sensor components and the MAX

7000. Thisisreason we chose a different voltage regulator.

izl
CIETCTE

RS0

21

EE552 Final Report

Buffers

A Octal 3-State Noninverting Buffer was used to protect the FPGA from static discharge and human wiring
errors. The buffers were also used to provide a 5-volt drive needed since the FPGA could not only output
3.156V. The MC54/74HC244A buffers were used.

LOGIC DIAGRAM
n—> - PIN ASSIGNMENT
ot 5 1B _
L~ EMARLE A [1 w0 1 ¥eg
ad I/Fl My a2 19 [] ENALE @ FUNCTION TABLE
. [_\] B YR 2 12] ¥ar Inputs Outputs
oae = HONBYERTING az 4 17 B4 Enabe A,
WIS L/Fl o JOUTPUTE . ! Erable B | A, B | YA B
vaa [l & 16] vz
! ! 1
L L/l, L v a6 15 [1 B3 | H H
i Pl . vEe 7 14 [] ¥aa iz = 2
|l Al 12] B £ = high impeadanca
- > JU]
| B[8 12 [¥ad

G 10 1 [] B2
PIN g0 = Ve
OUTAUT | ENABLE & - FIN 10.= GND
EHARLES] pnapien 28

22

EE552 Final Report

Keypad!?

The keypad isa 4 by 4 Grayhill with 4.7kW pull-up resistors on therows. A diagram below will illustrate
how the keypad was wired:

A A
4. 7kW
4. 7kW
F B 7 3
4. 7kW
FPGA
E A 6
Right 2
D o 5 4. 7kW
For Sto Back 1
ward - ward
C 8 4 0
Left
A A

23

EE552 Final Report

Results of Experiments

Acceleration Experiment

Using aturntable, the acceleration was tested. The accelerometer circuit and the RC car’s FPGA were
placed on the turntable. When the turntable is turned on, the acceleration of the accelerometer displayed on
the VGA monitor was recorded. The reason measuring the accel eration on a turntable is to measure a
constant acceleration. When an object is rotating around afixed point at a constant speed and a constant
distance from the fixed point (radius), the object experiences two accel erations, the normal acceleration and
thetangential acceleration. If all the required conditions (constant radius, constant speed around the fixed
point) aretrue, the normal acceleration will be constant. Thus, the normal acceleration can be calcul ated

by:

Acceleration = w?r

wherew = angular velocity in rad/s2
r = distance from the fixed point (radius)

Thistest will accurately test the acceleration of the accelerometer (since only one acceleration axisis used
to display on the monitor). When the accel erometer is not moving, the acceleration display on the monitor
is0.3m/s’. Thus, thereisan offset of 0.3 m/s’.

RPM of Angular Theoretic Actual % error
turntable Radius velocity Acceleration Actual Acceleration
rad/s ms’ Acceleration (after offset)
(on monitor) ¢
ms’
33 14 cm 3.45576 17 19 16 5.8
45 14 cm 4.7124 3.1 2.9 2.6 12.9

The % error may seem alittle high, but the RPM may be too accurate. According to the turntable, the RPM
can be set at 33 and 45. But when the FPGA and the accelerometer circuit are placed on the turntable, the
RPM may be dower than stated. The combine weight of the FPGA and the accel erometer is heavier than
the weight of arecord, thus, thiswill cause the RPM to decrease, which will result in a smaller value for the
angular velocity and the theoretic acceleration and in turn reduces the percentage error. Thus, the data
from the accelerometer can be considered valid.

Distance Experiments

The optical encoder was used for both distance and velocity calculations. Testing the accuracy of the
optical encoder to perform the function of calculating distance was done through the following series of
tests.

Tests

1. Starting from rest, then proceed to 2 meters and stop, take reading from VGA

2. Starting from a constant velocity, then proceed to 2 meters and stop, take reading from VGA
3. Accderating to starting point, then proceed to 2 meters and stop, take reading from VGA

Thesetestswill accurately test the optical encoder for all possible conditions. The tests were conducted on
a carpet surface to prevent the whedl, which the encoder is attached to, from dipping.

Test Number | #of Trials Actual Distance Traveled Expected Distance Traveled % error
(m) (m)

24

EE552 Final Report

1 1 1.79 2.00 11.7
2 1.66 2.00 20.5

3 1.56 2.00 28.2

4 1.89 2.00 58

5 1.88 2.00 6.4

Avg 1.76 2.00 13.6

2 1 1.89 2.00 58
2 1.65 2.00 21.2

3 1.99 2.00 05

4 2.07 2.00 34

5 1.97 2.00 15

Avg 191 2.00 4.7

3 1 1.66 2.00 20.5
2 1.89 2.00 58

3 194 2.00 31

4 1.88 2.00 6.4

5 1.72 2.00 16.3

Avg 181 2.00 10.5

From theresultsit can be concluded that the second test proved to be the most accurate for measuring
distance. Inthefirst test the car started from rest. The optical encoder seem to behave poorly under slow
speeds (>0.5 m/s). Also some dipping could have occurred to produce the higher percent error. In the
accel erating tests, the car was a little hard to control and to keep in a straight line. This was the main cause
of theerror. Finaly, thetest at constant vel ocity provided the least amount of error since the car wasin
motion and the encoder was already moving it gave better results. Still, some error was due to keeping the
car at a constant speed and keeping going in a straight line.

In a separate test, a turntable was used to calcul ate the distance traveled. The whed was placed on the edge
of the turntable and was 14 cm away from the center. Rotating the turntable 5 times resulted in a total
distance traveled of 4.40 meters.

Disgtance=5* (2* p * 0.14 m) = 4.40 meters

The following is the results of this test:

Trial Number | Actual Distance Traveled (m) Expected Distance Traveled (m) %error
1 4.32 4.40 19
2 4.42 4.40 0.5
3 4.37 4.40 0.7
4 4.27 4.40 3.0
5 451 4.40 24
Avg 4.38 4.40 0.5

These results demonstrated the accuracy of the optical encoder without the added human error of driving
the RC car in agtraight line.

Velocity Experiment

The velocity was tested in conjunction with the distance in test 2, where we tried to keep the velocity
constant. The following data was obtain from the test:

25

EE552 Final Report

Trial Number | Actual Distance Expected Time (sec) Actual Expected % error
Traveled (m) Distance Velocity Velocity
Traveled (mvs)
(m)
1 1.89 2.00 1.85 1.02 1.00 7.4
2 1.65 2.00 1.94 0.85 1.00 17.6
3 1.99 2.00 1.97 1.01 1.00 1.0
4 2.07 2.00 1.99 1.04 1.00 3.8
5 1.97 2.00 1.98 0.99 1.00 1.0
Avg 1.91 2.00 1.95 0.98 1.00 2.0

The overall data gather from the optical encoder was quite accurate with little error. The error in the
calculation can be accounted for by the dipping of the whedl, keeping the car straight, and human reaction
time for the stopwatch. The percent error is still within reason and therefore the datais valid.

Proximity Experiment

The proximity detection measurement is done by placing aruler on the table underneath the sensor and
measuring how far the object is before the sensor detects the object and display the warning message on the
monitor. 3 tests (white surface, reflective surface and non-reflective surface) are done with the room’s
lights on, and onetest (white surface) is done when the room is dark.

White Surface Reflective Non-Reflective White Surface
Surface Surface
Front Proximity 5cm 55cm 3.5cm 45cm
Left Proximity 5cm 55cm 3.5cm 45cm
Right Proximity 5cm 55cm 3.5cm 45cm
Rear Proximity 3cm 3cm lcm 2cm

Direction Experiment

Comparing the display on the monitor with an actual compass does the test of the compass sensor. The
results show that the compass sensor isworking properly.

VGA Experiment

The VGA testing isdone by trail and error. The VGA program is downloaded onto the UP1 and display
onto the monitor. The location of the words and pictures are then viewed and adjusted if necessary.

Base station Experiments

Any changes to the default setting in synthesis of speed vs. area trade-offs resulted in over 100% total cell
usage and therefore would not fit into the Flex10K chip. Different settings of global synthesis style also
resulted in over usage of cells. Therefore, no changes were made to the settings. The critical path is
limited by the external hardware, which are the RF receiver and the VGA monitor. Therefore, no formal
calculation could be done.

26

EE552 Final Report

RC Car Experiments

A noticeable reduction in the usage of logic cells was observed when adjusting the synthesis options.
Initially, the speed vs. area optimization level was set to O (for most optimized area synthesis). When
normal synthesis style is selected, the project would not compile. When fast was selected the project
compiled but with about 92% logic usage. When the speed vs. area optimization level was set to 2 the
project blocks was reduced to 89% usage. Other levels were attempted but did not yield improved results.
The main objective for using the different compile options was for the most efficient optimization of area
rather than attempting to achieve maximum speed. Thisis mainly due to the limited number of logic cells
available on the MAX7K. The maximum speed was not a great concern as fast throughput was not
required. Furthermore, external components such as the RF transmitter with a maximum transmission rate
of 20kbps set alimit to the maximum throughput of the FPGA.

IC Measurements

The following diagram shows how the FPGA cannot drive up to the 5V rail when sourcing current to even
asingle CMOS load. Therefore a current buffer was deemed necessary. The peak to peak voltageis
3.156V

Vo-pLAZI==2. 158 ¥

The next measurement taken isthe acceleration in the x direction. This measurement provides us with
insight into the operation of the accel erometer.

27

EE552 Final Report

[P [l =00~ £ O0.00s 5008 +A1 RUN
ooy i T s g
4-r|4-]|4-r|i-rlw-riw-r|4-L|4-r|;;|w-r|i-r|4-ri4-r|4-f|4-r|i-r|4-r
P P O PR S ERPRIEE TRTINe, SR ETRTRRTERI (PRTTRTE

FregiAll=93 .53 H= FeriodiAll=10.04ms Doty cyiARll2=45.5%

The sampling rate of the accel erometer was 99.63 Hz with a corresponding Duty Cycle period of 10.04 ms.
The duty cycle, length of the high pules, at rest was 46.8%. This deviated from the theoretical 50% duty
cyclefor an accelerometer at rest because of the angle at which the accelerometer was mounted. The
frequency and period can be altered with a changein resistor value. Thisisexplained in the Hardware
Design section.

The following two diagrams show the operation of the proximity sensors and voltage comparators. The
first diagram illustrates the operation of the proximity sensor when no object is detected. The effects of the
fluorescent lights cause the deviation from OV. Asdescribed € sawherein this document, the voltage level
increases when the infrared light reflects off of an object and is detected by the phototransistor circuit.
However, the voltage will not reach the threshold needed by the FPGA to detect alogic high until the
object was very close to the proximity sensor circuit.

28

EE552 Final Report

TEREEEE Al =.00V. £ 0.00s 2,001 Auto¥Al RUN

Vaug oA 1)=267 . 0mY

The voltage comparators where used to increase the effective range of the proximity sensors. With the
resistor divider network as shown in the Hardware Section, the threshold trip point where the comparator
would go from high to low and signal to the FPGA that an object was detected is at 615.7mV. This
corresponded to an object being within 5cm of the proximity sensor.

£ —1Z0E 2,008 A1 STOP
Al
e e s e e e S B R R A R S S e S S
P TN BT TETE TS PP TR 4.%.4...4.h.{}.4.b...b.4.b T TR AR R R T R PR PR RS
Az 3
TH =

Yawg iR 11=615.7mY YauwglRzZi=2.541 ¥

29

EE552 Final Report

Thefinal diagram shows the how the packet that is transmitted from the RC car is received by the base

Al =.00vV~. LW £ 1.035 S00E +A1 STOP

P e e e O e e P L S L P

A2
¥

Ay e T L e o REEESO T Srpr T RN Se e s]

station.

, : A : n Z
Feriod(R22=125.2us Outy cytA23=54.5%

From this diagram we can see that the received signal is dightly delayed when compared to the transmitted
signal. However, the bitstream was recovered exactly. Thistest was run with both the transmitter and

receiver within 1m of each other.

References:

Student Application notes:

1. VGA: http://www.ee .ualberta.ca/~€elliott/ee552/studentA ppNotes/98w/dicerace video display
2. Keypad: http://www.ee.ual berta.ca/~elliott/ee552/studentA ppNotes/99w/keypad/keydecoder .html
3. http://mwww.ee ual berta.ca/~ee480/hardware/lUA 7K _UsersManual . pdf
4. http://www.ee.ual berta.ca/~ee480/hardware/UA 7K _Hel psheet. pdf
Written by Steven Sutankayo and Curtis Wickman
Datasheset
5. Abacom Technologies: TXM-4xx-F (5V, 20000bps Transmitter)
6. Abacom Technologies: SILRX Series UHF FM Superhet Receiver Module
7. Anaog Devices: ADXL202/210, Acceerometers with Digital Output
8. Clarostat: Optical Rotary Encoders Series: 600, 601H, 601V
9. Dinsmore Digital Compass Sensor
10. Maxim: MAX667, +5V/Programmable Low-Dropout Voltage Regul ator
11. Maxim: MAX603, +5V/Programmable Low-Dropout V oltage Regul ator
12. National Semiconductor: LMC6772 Dua Micropower Rail-to-Rail Input CMOS Comparator

. Motorola:

. Grayhill:

With Open Drain Output

MC54/74HC244A Octal 3 State non inverting Buffer/Line Driver/ Line
Receiver

12/16 Button Keyboards

30

EE552 Final Report

15. Optodlectronics: ORD1113 Reflective Object Sensor

16. Micrd: MICRFO01 Antenna Design Tutorial

17. Omron: EE-SF5-B Compact Reflective Phototransistor Output Insusceptible to
External Interference Light

18. RFM: Application note on encoding and decoding RF

transmissions and packetizing information

Appendix
(not included in web copy)

31

