eSAFETM
and

eSAFE/IPTM
Project Specification

Stephen Caplan

Javan Gargus

Kevin Hackett

Paul Somogyi
Date: October 6, 1998

Instructor: Duncan Elliott

Class: EE 552
Contents

2Behavior of Project

Ethernet Interface
2
ethernet
3
Receive Buffer
3
Blowfish Encryptor
3
Progressive Blowfish Encryptor
3
Blowfish Controller
3
Send Buffer
4
Memory Architecture
4
Lookup Table Generator
4
Keypad Interface
5
Liquid Crystal Display Interface
5
Hardware
6
I/O Interface
6
Ethernet
6
The keypad
6
LCD
6
Memory
6
Total Pin Requirement
6
Testing Techniques
6
General Agenda
7
Resource Allocation:
7
Time Line:
7
Detailed Agenda
8
Enhancements
10
1. Support for IP layer (eSAFE/IP()
10
2. Enhanced Keypad
11
3. Network Statistics
11
Reductions
11
1. Half Duplex
11
2. Encryption Algorithm
11
3. No Keypad or network configuration
11

Behavior of Project

Network traffic over a LAN or the Internet is inherently vulnerable to a number of forms of attack. Primarily, unauthorized access to a private data stream could compromise system security and personal privacy. The protection of such data is the prime concern of our project, the eSAFE network bridge.

Functionally, our eSAFE bridge will provide encryption and decryption of network traffic between two locations. The device will read and write to two separate ethernet segments and provide data security by means of blowfish encryption. On the incoming pipe, the data will first be read by our ethernet transceiver. The data portion of the current frame will then be encrypted while the headers are preserved for use on the outgoing pipe. After encryption, the frame is put into a buffer to await transmission onto the second ethernet segment. When the media is available the packet will be transmitted.

The blowfish algorithm is a symmetric encryption routine requires the same key to be used on both ends of the data stream to properly encrypt and decrypt the data. This key is fundamental to the security of the system. It can only be input directly into the eSAFE device by a keypad; an LCD will echo the key as it is entered. Once the key is input, it can not be viewed by an external source, so the onus is upon the user to both maintain the key’s privacy. Additionally, the display will provide messages regarding the current status of the system.

This project could be modified to encrypt at the IP level allowing encrypted information to be communicated over the internet; however, this document does not consider this enhancement.

 The design of the project has been broken down into the following components: ethernet interface, receive buffer, blowfish encryptor, progressive blowfish encryptor, LUT generator, memory controller, send buffer, display, and keypad. These entities are connected as shown in the FPGA block diagram on the following page.

Ethernet Interface

This component functions as a controller for the National Semiconductor DP83910A to provide an interface between the physical ethernet medium and the rest of the eSAFE encryption system. Additionally, a DP83922 twisted pair transceiver will be used to drive and read data from the physical medium. The physical medium is 10BaseT ethernet, carried over CAT 3 UTP cable.

This ethernet controller provides a serial data stream to the rest of the system along with handshaking and control lines. On the inbound interface such issues as collisions, broken/incomplete packets and CRC checking are dealt with. The outbound interface will calculate and append a CRC checksum to a frame. It will transmit properly formed ethernet packets, in conformance with the IEEE 802.3 specifications for ethernet, including proper retransmission on collisions.

The following diagram, shows the ethernet interface to the external network components.

twisted pair

ethernet
Receive Buffer

The receive buffer is required in order to receive the serial bit stream from the ethernet interface. As the data is received, it is shifted into an 8-bit register and then passed on to the encryption module. It also propagates the frame start, end, and error information through the encryption module to the send buffer. This entity also controls whether data is encrypted or passed through unchanged. This is used to avoid encrypting frame headers, while providing encryption to the data payload. Additionally, the same mechanism can selectively choose which IP datagrams will be encrypted if the IP feature is implemented.

Blowfish Encryptor

Encryption will be done using the blowfish algorithm; hence the name blowfish encryptor. The blowfish algorithm is faster and more secure than many other freely available encryption algorithms such as DES and IDEA. It uses a 64-bit block size with a key size ranging from 48 to 448-bits (we will use a 64-bit key). The cipher text is the same length as the plain text, so the output from the blowfish algorithm is also a 64-bit value.

The blowfish algorithm requires approximately 4KB of lookup table memory space per key. This interfaces to another module that handles the details of the LUT access. The blowfish module can selectively handle both encryption and decryption.

Progressive Blowfish Encryptor

We cannot use the blowfish algorithm directly, since the input data may not be a multiple of eight bytes. We cannot solve this problem by padding the input, since we require that the cipher text be the same length as the plain text. There is a feedback mechanism that allows us to deal with this situation. It is implemented as a stream cipher with a one byte input and output per iteration. Each byte of cipher text is generated separately; they are also used to generate further cipher text. The blowfish algorithm is still used on each 8 bytes, thus ensuring the strength of the encryption.

Blowfish Controller

Considering space requirements on the chip, we have decided that we will only have one instance of the blowfish entity. This entity must be shared between the progressive blowfish encryptors in each direction, and the LUT generator. This controller will arbitrate access to the blowfish between these three sources.

Send Buffer

The send buffer component of our design has two entities — one that takes the output from the progressive encryptor and sends it to a circular buffer in memory, and one that takes the data stored in the memory and sends it to the output ethernet interface. These two components communicate through a pair of control signals.

The encryption side buffer maintains a count of the number of free buffers, and a pointer to the current buffer. When a new frame is received, it checks if the free buffer count is greater than 0. If not, we have overrun the buffer and this frame is dropped. If it is, the frame is written to the current buffer. When the entire frame is successfully copied, the free buffer count is decremented, the current buffer pointer is incremented, and a signal is sent to the ethernet side buffer.

The ethernet side buffer maintains a count of the number of full buffers, and a pointer to the current buffer. When the ethernet is clear to send, it checks if the full buffer count is greater than 0. If not, no action is taken. If it is, the frame is written to the ethernet. When the entire frame is successfully transmitted, the full buffer count is decremented, the current buffer pointer is incremented, and a signal is sent to the encryption side buffer.

When the encryption side buffer receives a signal from the other side, it increments it’s free buffer count. When the ethernet side buffer receives a signal from the other side, it increments it’s full buffer count.

Memory Architecture

SRAM is required to fulfill the bandwidth requirements of the device. Each send buffer will have an 8K x 8 SRAM, which allows for 5 buffers of ~1500 bytes (the maximum size of an ethernet frame). The LUT requires ~4KB of memory for each key. We will use four 8K x 8 SRAM’s (to allow the possibility of multiple keys). The LUT generator requires an 8KB ROM to store the initial constants for its tables.

We have split the RAM into three blocks to localize the access. Memory speed for the ethernet send buffers is not an issue, since we will be, at maximum, reading and writing one byte every 800ns. However, the blowfish algorithm requires 4*16 32-bit memory accesses for each 64-bit block processed. In order to meet the timing requirements of the system, high speed memory is essential at this potential bottleneck.

Lookup Table Generator

This component will receive the key as input from the keypad. Once the key is received, it will immediately start to generate the lookup tables into the free area of RAM (thus, we require at least 8k of RAM for the lookup tables - one for the current table, and one to hold the next table to be generated). Since there is only one Blowfish encryption block, the Lookup Table Generator will have to share it with the send and receive data streams. This is accomplished by communicating with the Blowfish Controller unit, which manages access to the Blowfish Encryptor unit. Preliminary timing estimates indicate that the Lookup Table Generator will have more than adequate time to access the Blowfish Encryptor unit (it requires 512 iterations of Blowfish to generate the correct lookup tables) due to the relatively slow rate of send/receive data transfer and fact that there is no requirement for the generation to be done in a certain period of time. Upon completion, the Lookup Table Generator asserts a signal to indicate that it is done generating the table. The switch to the new table will occur synchronously between packets.

Keypad Interface

The keypad interface allows the users of the system to change the encryption key interactively. The key is 64 bits long. However, instead of requiring the user to input a 64 digit binary number, we will instead be using hexadecimal numbers to reduce the amount of digits to 16. In addition to the 16 keys for the hexadecimal key entry, the keypad will allow contain the following control keys: clear, delete, reset, and enter. The clear key will clear the LCD display. The delete key will delete the last character entered. The reset key will reset the entire device to an initial known state. Finally, the enter key will accept the new value for the key and will start off the look-up table generator.

If the IP functionality is implemented, the keypad will also be used to enter the IP subnet masks and IP addresses for the selective encryption. It will also allow for multiple keys to be entered and stored.

Liquid Crystal Display Interface

In the most basic implementation, the LCD display will merely serve to echo out the values received from the keypad so the user will have some visual feedback while entering the key. Naturally, the display will be blank at other times in order to preserve the security of the key.

Since the LCD will be a two-line display, it will be possible to implement the first line as a prompt and message display, and have the second line used to echo back the user input. This is the most desirable design. Furthermore, it becomes crucial to perform this interactive display if the IP functionality is implemented in order to be as user-friendly as possible.

Hardware

We will be using the Altera UP1 boards for this project.

I/O Interface

Ethernet

- each ethernet interface will require 10 external pins, for a total of 20 pins.

- the chips (2 x DP83910A and 2 x DP83922) have not yet been ordered, however, we have confirmed delivery within 2 days of order.

The keypad

- unknown design (custom (2 day delay) or homemade)

- requires 20 keys (5x4 configuration requires 9 lines/pins)

LCD

- Data Image Corp.

- 16 pins for 20x2, 24x2, and 40x2 configurations

- can be directly connected to FPGA

Memory

- require 2 x 8pin and a 32pin data buses (48 pins)

- require 3 x 13pin address buses (39 pins)

Total Pin Requirement

- 132 pins

Testing Techniques

Testing will be an ongoing effort throughout the design process. Unit testing will be performed on all major components and on all subsystems in order to ensure their correct operation. Furthermore, unit testing will allow us to continue development on each subsystem independently of the other subsystems as long as the interfaces to the other subsystems are well known. This can be guaranteed, since subsystem interface design is an early target in our project time line.

We also intend to take advantage of the reprogrammable nature of our FPGA to try some early hardware implementation and testing of various subsystems using the actual hardware in order to get some early feedback on our implementation feasibility. Automated test bench programs will be used wherever possible so that regression testing can be performed throughout the development process, thus catching errors as early as possible.

This testing philosophy will help us greatly when we start to integrate our subsystems together. Integration testing on this project will be a major task, since each subsystem will now have timing delays and requirements imposed upon it by the other subsystems which were difficult to test until this point. This task will be nearly impossible without thorough unit testing to assure us of the integrity of our subsystems.

General Agenda

Resource Allocation:

Task
Leader
Consultant

Ethernet
Steve
Paul

RAM/Buffering
Paul
Javan

Encryption
Kevin
Javan

Keypad
Javan
Kevin

IP Level
Paul
Steve

LCD
Javan
Kevin

Overall Interfacing
All
All

Integration and Unit Testing
Javan
All

Time Line:

Expected Date of Completion

(yyyy/mm/dd)
Stage
Class Deadline

(denoted with ☺)

1998/09/18
Project Ideas and General Plan

1998/09/21
Precise Design Goals and System Scope

1998/09/22
Project Proposal
☺

1998/09/25
General Parts List

1998/09/28
Block Diagrams and Flow Diagrams

1998/09/30
(Early Bonus) Application Notes

1998/10/02
Interface Design

1998/10/02
Detailed Individual Task Lists

1998/10/05
Detailed Parts List

1998/10/05
Specific I/O Diagrams

1998/10/05
Preliminary VHDL Code

1998/10/06
Specification
☺

1998/10/19
Basic Unit VHDL

1998/10/19
Basic Hardware Modules

1998/10/27
Resource Requirements
☺

1998/10/29
Application Notes
☺

1998/11/02
Complete Unit VHDL

1998/11/02
Test Unit VHDL

1998/11/06
Integrate VHDL

1998/11/06
Test Integrated VHDL

1998/11/10
Simulation Documentation
☺

1998/11/16
Build System / Program FPGA

1998/11/19
System Testing

1998/11/25
Final Report
☺

Detailed Agenda

Member
Date

(yyyy/mm/day)
Task
Sub-task

Kevin
1998/10/04
Research Blowfish

Algorithm
Effects of varying key size

Encryption of less than 8 bytes of data

LUT access and pipelining

Common code and simplifications for hardware implementations

1998/10/05
Code VHDL entities

for Specification

1998/10/08
Application Notes

(early deadline)
Pseudocode and English explanation of the Blowfish Algorithm

1998/11/02
Code
LUT access

encryptor block

Simulate

encryptor block
Create test bench

Research testing with Mentor Graphics

Research Altera’s command files

Member
Date

(yyyy/mm/day)
Task
Sub-task

Javan
1998/10/04
Research interfacing

elements
Keypad

LED

LCD

7-segment

1998/10/05
Code VHDL entities

for Specification

1998/10/08
Application Notes

(early deadline)
emacs vhdl-mode

AFS file sharing

RCS/CVS

1998/11/02
Code
LUT generator

Keypad

display

Simulate

1998/11/06
Integration Testing
Design overall test plan

Quality control

Coding Standards

Member
Date

(yyyy/mm/day)
Task
Sub-task

Paul
1998/10/04
Research RAM
Configuration

Speed

Handshaking

LUT access

Research buffers
Shifting

Blowfish control

Ethernet frame

Research

Counting-Off Header

Research

IP Layer

1998/10/05
Code VHDL entities

for Specification

1998/10/08
Application Notes

(early deadline)
RAM

Unix and X-windows primer

1998/11/02
Code
Buffers

Memory

Simulate

Member
Date

(yyyy/mm/day)
Task
Sub-task

Stephen
1998/10/04
Research Ethernet
Collisions

Clocking data

Network statistics

Buffering (secondary)

1998/10/05
Code VHDL entities

for Specification

1998/10/08
Application Notes

(early deadline)
Ethernet

CRC’s

1998/11/02
Code
Input Ethernet interface

Output Ethernet interface

Simulate

Enhancements

1. Support for IP layer (eSAFE/IP()

The base proposal considers encryption/decryption at the physical network layer; this is the Ethernet frame. This allows secure communication between different computers on a LAN. However, this data cannot be transmitted across different physical layers, or be processed by any active devices that process packets based on protocol. The primary consequence is that these packets cannot be transferred over the Internet. To allow this, we must add another layer of processing to the device that understands the IP protocol. Now the entire packet is not encrypted; the IP header is untouched, and only the IP payload is encrypted. This level allows several features to be added:

a) as described above, the encrypted packets can be sent across the Internet

b) encryption/decryption can be selective based on the destination/source IP address

i. encrypt data destined for a certain network or host, but not to other ones

ii. use a different key for each network/host

c) a program running on a workstation can communicate with the device through either of 2 methods:

iii. the device can be assigned an IP address, and we can send packets to it

iv. we can send IP UDP broadcast packets on a special port number. There is a slight risk of conflict if a valid broadcast message is sent on this port, but the risk is minimal; we will work under the assumption that this will not occur. This is not the most "correct" method, but it is much simpler.

Complications:

a) must handle fragmentation of IP packets. When a packet is sent across a router, the packet is fragmented if the maximum transmission unit (MTU) of the destination network is smaller than that of the source. Moreover, the order that the fragments are received in is indeterminate. Since the size of fragments is arbitrary, we cannot simply decrypt each fragment separately, but must store all fragments, and process the entire message.

b) if the device has an IP address, then it must send and be able to process ARP requests to convert IP addresses to hardware MAC addresses

2. Enhanced Keypad

a) LCD showing digits as they are entered

b) Extra keys for Enter, Cancel, Backspace

3. Network Statistics

a) the device can also record network statistics (for example, collisions, packets/seconds)

b) these statistics can be displayed in two ways:

i. on the LCD display

ii. sent to a computer that could display them

Reductions

1. Half Duplex

a) Full Duplex network I/O, but Half Duplex encryption/decryption

i. this would be done if the encryption logic is too large to fit two copies of it on the FPGA, since we would need one dedicated to encrypt, and the other to decrypt

b) Half Duplex network I/O, no buffering

i. Simplification of the network I/O logic that would stream the incoming data through the FPGA and stream it out the sending Ethernet interface

ii. There could be dedicated encrypt and decrypt logic, or a flag could be used to specify the operation

iii. We make the assumption that higher level protocols can handle lost packets, since they will be dropped if a packet arrives when the link in the other direction is in use

2. Encryption Algorithm

a) if Blowfish cannot be implemented, then we can fall back on simpler algorithms, such as XOR

b) the key size could also be reduced

3. No Keypad or network configuration

a) there would be a hardcoded default key used for all hosts

Ethernet

Controller

National

DP83910A

National

DP83922

Ethernet

Tranciever

PAGE
2
eSAFE Project Specification
 Page

