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IC Datasheet

Features:
• Uses Altera Flex10K FPGA on UP1 Prototype Board
• Compatible with IEEE 802.3 ethernet: 10BASE5, and 10BASE-T
• AUI or RJ45 Interface
• Semi-secure XOR based private key encryption
• Bridging Latency: 72 µs
• Bridging Speed: 10 Million bits / second
• Maximum Ethernet Diameter with 2 eSAFE’s : 50m (workstation to hub)

RJ45 10BaseT Connector Pinout:

Pin Name Description
1 TX+ Transmit Data +
2 TX- Transmit Data -
3 RX+ Receive Data +
4 n/c Not Connected
5 n/c Not Connected
6 RX- Receive Data -
7 n/c Not Connected
8 n/c Not Connected

AUI (DB15) 10Base5 Connector Pinout

Pin Name Description
1 n/c Not Connected
2 CD+ Carrier Detect +
3 TX+ Transmit Data +
4 n/c Not Connected
5 RX+ Receive Data +
6 GND Ground
7 n/c Not Connected
8 n/c Not Connected
9 CD- Carrier Detect -
10 TX- Transmit Data -
11 n/c Not Connected
12 RX- Receive Data -
13 12V +12V
14 n/c Not Connected
15 n/c Not Connected

DB 15
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FPGA and UP1 Header Pinouts
Pin Name Pin No Header No I/O Description

Enable 41 SW1 I ON:   encyrption enabled
OFF: encryption disabled

TxE_A 46 A 16 O Transmit Enable (Ethernet Port A)
Held high while transmitting data

TxC_A 49 A 18 I Transmit Clock (Ethernet Port A)
10 MHz clock for syncronizing TxD

TxD_A 51 A 20 O Transmit Data (Ethernet Port A)
Serial Output data stream

RxC_A 54 A 22 I Receive Clock (Ethernet Port A)
10 MHz clock, syncronized with RxD

CRS_A 56 A 24 I Carrier Sense (Ethernet Port A)
Active low when carrier is detected

RxD_A 62 A 26 I Receive Data (Ethernet Port A)
Serial Input data stream

COL_A 64 A 28 I Collision Detect (Ethernet Port A)
Held high when collision detected

TxE_B 78 A 40 O Transmit Enable (Ethernet Port B)
Held high while transmitting data

TxC_B 80 A 42 I Transmit Clock (Ethernet Port B)
10 MHz clock for syncronizing TxD

TxD_B 82 A 44 O Transmit Data (Ethernet Port B)
Serial Output data stream

RxC_B 84 A 46 I Receive Clock (Ethernet Port B)
10 MHz clock, syncronized with RxD

CRS_B 87 A 48 I Carrier Sense (Ethernet Port B)
Active low when carrier is detected

RxD_B 94 A 50 I Receive Data (Ethernet Port B)
Serial Input data stream

COL_B 97 A 52 I Collision Detect (Ethernet Port B)
Held high when collision detected

CLK 91 n/a I System Clock
RESET 212 n/a I System Reset
LED7L6 6 DIGIT1 : a O
LED7L5 7 DIGIT1 : b O
LED7L4 8 DIGIT1 : c O
LED7L3 9 DIGIT1 : d O
LED7L2 11 DIGIT1 : e O
LED7L1 12 DIGIT1 : f O
LED7L0 13 DIGIT1 : g O
LED7R6 17 DIGIT2 : a O
LED7R5 18 DIGIT2 : b O
LED7R4 19 DIGIT2 : c O
LED7R3 20 DIGIT2 : d O
LED7R2 21 DIGIT2 : e O
LED7R1 23 DIGIT2 : f O
LED7R0 24 DIGIT2 : g O

Seven Segment LED
These leds are used to display system status to
facilitate problem isolation during testing.  These
have been used to display:

• Frame Count by Carrier Sense
• Collision Count
• RX Clock (div 5 million)
• TX Clock (div 5 million)
• Contents of frame data
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Input Power Requirements: Absolute Maximum Power Ratings
5V to Altera UP1 Tolerance –2 to 7 V
5V to Breadboard Power Bus Tolerance –0.5 to 7 V
12V to Breadboard AUI Bus Tolerance –15 to 15V

The system uses the following resources of the EPF10k20RC240-4 FPGA:

Total dedicated input pins used:            6/6      (100%)
Total I/O pins used:                       10/183    (  5%)
Total logic cells used:                  1046/1152   ( 90%)
Total embedded cells used:                  0/48     (  0%)
Total EABs used:                            0/6      (  0%)
Average fan-in:                            3.38/4    ( 84%)
Total fan-in:                           3544/4608    ( 76%)

FPGA Pinout and Interconnect Schematic:
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External Ethernet Connection: Port A

External Ethernet Connection: Port B
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Abstract

The eSAFE device will read and write to two separate ethernet segments and provide
data security by means of a semi-secure encryption algorithm.  On the incoming pipe,
the data will first be read by our ethernet transceiver.  The data portion of the current
frame will then be encrypted while the headers are preserved for use on the outgoing
pipe.  After encryption, the frame will be immediately transmitted onto the outgoing pipe.
This is a cut through design as opposed to our original store and forward proposal.

The goals of this project were to design and implement a digital system capable of
transmitting encrypted data.  These goals were met with varying degrees of success.
First of all, we were forced to implement a much more simplistic encryption algorithm
due to size constraints.  A simple 'XOR' algorithm was used in place of the intended
Blowfish algorithm.  Although it was not implemented, the Blowfish encryption modules
and all of its subsidiaries are included for completeness and on the chance that it may
be implemented in the future.

Although simulation was successful, the prototype currently does not function as
intended.  Note that simulation is successful for the fully integrated device, as well as
each of the separate modules.  This implies that the problem lies in the physical
implementation of our external interfaces.

Specifically, the problems that we are encountering are that we are not receiving the
proper frame preamble; however, if we don't look for preamble, we are able to detect
data transfer.  We know that we are receiving data when we get a carrier sense.
Nevertheless, it is necessary to point out that the eSAFE device does maintain a proper
clock cycle on both the transmit and receive components of the ethernet interface.
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Project Description

Network traffic over a LAN or the Internet is inherently vulnerable to a number of forms
of attack.  Unauthorized access to a private data stream could compromise system
security and personal or corporate privacy.  The protection of sensitive data is the
primary purpose of our project -- the eSAFE network bridge.  The eSAFE bridge
provides secure end-to-end data flow with bidirectional encryption and decryption of
network traffic.

The eSAFE device will read and write to two separate ethernet segments and provide
data security by means of a semi-secure encryption algorithm.  In the outgoing direction,
the data will be read in by our ethernet transceiver.  The data portion of the current
frame will then be encrypted, while the headers are preserved for use on the outgoing
pipe.  After encryption, the frame will be immediately transmitted onto the outgoing pipe.
This is a cut through design as opposed to our original store and forward proposal.  A
near-identical process occurs in the incoming direction, except that the data is instead
decrypted.

As reported earlier in our Resource Requirement document, a 20k gate chip cannot
accommodate our Blowfish components.  As a result, we have replaced it with a less
secure, but much more efficient XOR-based encryptor. Although not used in our current
implementation, this document contains descriptions and simulations of most of our
encryption-related components: the Blowfish encryptor, the Blowfish Lookup Table
generator, the Blowfish controller, and the Lookup Table arbitrator.  While these have
been omitted from our final integration, they are still included for completeness.
Furthermore, should two 70k cell FPGAs be available, our full project, including Blowfish,
can be wholly implemented.  As mentioned in previous documents, the LCD display,
keypad and TCP features have been dropped from the project.

To provide a minimal, but functional system, our current implementation focuses on the
ethernet interface including the transmitter, receiver, receive buffer, send buffer and an
XOR-based encryptor that will replace Blowfish in our simulations and prototype.

Compilable code is included for the ethernet receiver, transmitter, CRC generator,
Blowfish encryptor, Blowfish arbitrator, and Lookup Table arbitrator and memory access
interface.  Simulations are included for all the above components, along with our
integrated system featuring the patent-pending XOR-o-Matic Teknologee.
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Integrated System

Design Details

The following block diagram shows the architecture of the overall chip, as originally
designed.  As mentioned above, the design using the Blowfish algorithm (and its

associated support modules) would not fit in the 20K gate FPGA, so the encryption was
replaced with a byte-wise XOR for testing purposes.  The design as tested is shown
below:

The resource requirements for this design are:

Total dedicated input pins used:            6/6      (100%)
Total I/O pins used:                       10/183    (  5%)
Total logic cells used:                  1046/1152   ( 90%)
Total embedded cells used:                  0/48     (  0%)
Total EABs used:                            0/6      (  0%)
Average fan-in:                            3.38/4    ( 84%)
Total fan-in:                           3544/4608    ( 76%)
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Simulation

Since all other components have already been simulated independently, we will look
only at a full end to end case for our integrated simulation.  The following waveform
illustrates receiving one frame and retransmitting it.

Testing

Initial testing on the device has been unsuccessful due to problems interfacing with the
ethernet.  Basically, we are not receiving the data that we are expecting.

For debugging purposes, we used the two FLEX 7-segment LEDs to display hex
numbers.

By counting the number of rising edges on the Carrier Sense signals, we verified that we
are receiving the frames.  We then counted rising edges on the ethernet receive clock,
which is driven by the ethernet chip, and displayed them. This performed as expected;
the counters changed whenever a packet was being received and remained constant
otherwise.  We then displayed nibbles of the incoming data on the LEDs.  The values
displayed were always ‘0’ or ‘F’, and not the ‘A’ or ‘5’ (for alternating 1’s and 0’s) that
would be expected during the preamble.  A more thorough extension of this idea would
be to store the entire frame in memory, and then use one of the pushbuttons to advance
through it on the LEDs byte by byte.  This is the most promising idea to pursue for
further testing.

We also tested that our crystal oscillators for the transmit side were working.  We
displayed a count of the rising edges of this clock, divided by 5 million; as expected, the
values changed approximately every half second.

When we removed the test for the preamble, and simply took the start of frame to
indicate the start of the header, we were able to initiate a frame transmit.  However, we
are unsure whether the contents of the frame are valid.  In order to provide some insight
into where the problem may lie, a sniffer could be used to observe the frames we
transmit.

CRC OutputPreamble
Output

Data Output

End Preamble,
Start of input it End of Frame Calculated Output

CRC
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Ethernet Interface
Overview

This component functions as a controller for the National Semiconductor DP83910AN to
provide an interface between the physical ethernet medium and the rest of the eSAFE
encryption system.  The ethernet controller provides a serialized digital logic data stream
along with handshaking and control lines.  The ethernet controller is composed of three
main functional units:  the receive and transmit interface and CRC generator.

The inbound interface is responsible for flagging the frame data payload in order to allow
other component to later distinguish between data that should be encrypted and headers
that must be left unchanged.  The outbound interface will transmit properly formed
ethernet packets, in conformance with the IEEE 802.3 specifications for ethernet.
Component and integrated design details and annotated simulations are included below.

The national semiconductor chip provides an AUI ethernet connection, which is then
attached to a Cabletron ethernet transceiver that is used to read and write data to
10BaseT ethernet on an unshielded twisted pair (UTP) cable, with an RJ45 connector.

The following diagram shows the ethernet interface to the external network components.

twisted pair

ethernet

Interface Definition

Receiver:
Inputs: collision (COL), carrier sence (CRS), receive data (RxD),

and receive clock (RxC)
Outputs: data stream (eth_recv_data), receive frame control signal

(eth_recv_frame), and receive data control signal (eth_recv_frame_data)
Transmitter:

Inputs: transmit clock (TxC), Data stream (eth_send_data),
crc polynomial (crc_register)

Outputs: transmit data (TxD), and transmit enable (TxE)
CRC Generator:

Inputs: Data stream (eth_send_data)
Outputs: crc polynomial (crc_poly)

Ethernet
Controller

National
DP83910A

Cabletron
Ethernet

Tranciever

AUI

20 MHz
Clock
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Design Details

The national semiconductor chip simplifies three important tasks.  First, it implements a
phased lock loop (PLL) that extracts timing information from the ethernet data.  It outputs
a clock, with synchronized data for our receiver.  All receiver operations within the FPGA
rely on this clock for their operation.  Second, the chip also provides clocking for our
outgoing data, using an external 20MHz clock that is divided down to the 10MHz to
which out outgoing data is synchronized.  Finally, the chip converts between a non-
return to zero (NRZ) serial data stream that can be input or output by the FPGA to the
manchester encoded format used in ethernet.

An important modification to our original project specification is the removal of frame
buffering on our outgoing interface.  While this does provide significant cell reductions,
the main motivation for this change was to simplify our overall design.  By eliminating full
frame buffering, we no longer have to deal with frame retransmission resulting from a
collision.  Instead on any error, we can safely drop the frame, and leave retransmission
to the frame’s originator.

An additional benefit is the decrease in the transmission latency of the frame.  With our
previous store and forward model, no transmission would be attempted until the entire
packet had been stored.  In the best case scenario, with the smallest frame size of 64
bytes, the minimum frame latency would be 512 µs (512 bit times).  Typically, this would
be significantly higher.  However, with our current cut-through implementation, the total
latency of our device is only 7.2 µs (or 72 bit times).

However, some buffering is still required by the outgoing controller.  Since the
transmitter is only notified of a new outgoing frame incident with the first bit of the frame
address field, a 64 bit shift register is used to accommodate for the ethernet preamble
and start delimiter that must be transmitted before the rest of the frame.  This same
buffer is also used for the crc checksum, which requires 32 bit periods after the last data
bit for checksum calculation.

A further update to our original was design is with our handling of collisions.  Since the
eSAFE works at the network’s physical layer collisions really are not our concern.  Much
like a repeater, the eSAFE now sends all received data on the opposite port, even if it
knows data is currently arriving on this port.  Obviously, this will create a collision – this
is a good thing. Better still, the collision will be heard on both ports.  That is to say, that
the eSAFE is no longer attempting to split ethernet segments or collision domains.
Instead, it can now be considered a part of the physical medium of a single segment.

This change is possible because of our change to a low latency cut-through design.
According to the 802.3 specification, the maximum round trip diameter of an ethernet
segment is limited to maximum of 575-bit periods1 (ie. An end to end latency of 575 µs).
Since each path will include two eSAFEs and we are concerned with the round trip time,
the eSAFE device will introduce 288µs (72x2x2) of additional latency.

Effectively, securing a network with eSAFE will reduce the maximum network physical
diameter by about 50% ( 288/575 ).  The maximum workstation to hub cable length in

                                               
1 Quick Reference Guides to 10 Mbps Ethernet : “Calculating Round Trip Delay Time”,
   http://mojo.ots.utexas.edu/ethernet_old/10quickref/ch7qr_7.html
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ethernet is given as 100m.  Adding eSAFE security to such a network would decrease
this to 50m.  Considering the benefits in terms of network security, the sacrifice of in
terms of segment diameter is considered to be worthwhile.
As a side note, it would be possible to decrease the end to end latency of the system if
the entire preamble was not regenerated.  That is, if we received only 60 (of 64)
preamble bits, we could retransmit a preamble of only 60 bits.  This would decrease the
end to end latency of our systems by an order of magnitude to 8 µs, and would allow
95m segments.  As a design decision, we have elected to adhead to a strict frame
format compliant with the 802.3 specification, and to accept the significant loss in
network diameter.

For the testing of our final implemented design, we have removed the CRC generator
from the transmitter.  Instead, we are preserving the original CRC by considering it to be
part of the frame’s data.  If the data is encrypted, the CRC will obviously be incorrect for
the frame – but only until it is decrypted.  This was done simply to remove a potential
source of error, in attempt to diagnose other problems.

For the purposes of testing within a single non-switched ethernet segment, this will not
impede the systems functionality.  However, CRC generation will need to be required for
use on a switched ethernet or if the system were extended with TCP/IP capabilities.  As
a result, the design and simulation of CRC is still included for completeness.  The
simulations of other ethernet components also include operation with CRC.

Currently, the ethernet components require a total of 7 I/O pins for each interface, or 14
pins for the entire system.  The crc generator requires 208 logic cells, the transmitter
requires 94 and the receiver requires 139 cells.  For full functionality we’ll use 2
instantiations of each of these, so the total logic cell count for ethernet comes to:

Receiver:   139 * 2
Transmitter:  94 * 2
CRC:   208 * 2
--------------------------------
Total  882 cells
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Ethernet Receiver Interface

As diagrammed above, this interface receives serial data from the DP83910A chip.  The
state table for the receiver is shown below:

Recv_null

Recv_1

Recv_10

Recv_101

Recv_101

Recv_101

Recv_10101

Recv_10101

1

0

1

1

1

1
Set Count = 96

0

0

1

1

1

0

0

0

0

Frame_AddrWhile count > 0
Count = Count -1

Frame_LengtWhile count > 0
Count = Count -1

When count = 0
Set count = 16

Frame_DataWhile count > 0
Count = Count -1

When count = 0
Set count = Length

Frame_CRCWhile count > 0
Count = Count -1

When count = 0
Set count = 32

When count = 0
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The receiver operation begins when a carrier is detected on the incoming channel (CRS
is asserted).  It then must remove the ethernet preamble (a 7 bytes string of 1-0-1) which
is used by the 83910A to synchronize it's PLL with the data.  A simulated start delimiter
pattern match is demonstrated below:

So while the preamble is received, the systems will oscillate between state 0 and 1, but
will not assert eth_recv_frame until the start delimiter has been receiver.
After this frame delimiter has been detected, the following 96 bits will correspond to the
destination and source ethernet MAC address (6 bytes, 48 bits each).

The next 16 bits are the length field that specifies the length of the data field.  As the bits
arrive they are shifted into a register that will later be used as a counter to mark the end
of the data field.  In practice if this value is below 384 bits (48 bytes) it indicates that
padding is present.  So we would always need to count through a minimum of 384 bits.
However, in simulation this not practical, so we've allowed shorter values.  The
simulation below shows the input to the shift register, which is then copied to our bit
counter:

Input data stream 10101011

Carrier Sense: Notifies of incoming data      States progress since data matches set pattern

Pattern Matched, eth_recv_frame asserted

Address Start                 … 88 bits
…

Address End
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After this follows the number of bits of data that was specified in the length field above,
and then a 32 bit CRC checksum, so an entire frame might look like this:

As previously mentioned, for our implementation testing, we are including the CRC as
part of the frame data, so the frame will look like this:

   Start Delimeter Length = 1100000 = 96 bits

    96 bit Address                      16 bit Length          N = 96 bit Data                 32 bit CRC

   Frame

16 bit Frame Length

Bit Stream - 0000000000010011  =  19

Payload Data StartsShift RegisterBit Counter

   Start Delimeter

    96 bit Address                      16 bit Length          N = 96 bit Data                 32 bit CRC

Length = 1100000 = 96 bits

   Frame
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Ethernet Transmitter Interface

The state table for the receiver is shown below:

Wait for data
TxE = 0

If eth_send_frame = 1

Wait for data
TxE = 1

If eth_send_frame = 0
count = 63

Shift in data
(eth_send_data)

Shift out data
(TxD)

Flush Buffer
TxE = 1

Shift out data
(TxD)

count = count -1

If count = 0
count = 31

Send CRC
TxE = 1

Shift out data
(TxD)

count = count -1

If count = 0
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The ethernet transmitter goes into action when the eth_send_frame signal is asserted.
While this signal is high incoming data will be shifted into a 64 bit buffer, and out onto the
outbound interface.  This buffer will be pre-loaded with the ethernet preamble, which
must precede the rest of the frame.  So when data is first shifted in the preamble will be
transmitted.  Since our output will always be 64 bits behind our input, the transmitter will
need to send 64 bits once the input eth_send_frame signal is dropped in order to empty
the buffer.  The final stage is to output the CRC checksum, which will be copied into the
last 32 bits of the buffer.  When this has been sent, the transmitter will wait for the next
frame to be sent.  This is simulated below:

Note: The CRC data output is all zero, since this case hasn’t yet been integrated with the
CRC generator. That will be shown in the integrated simulation.

Additionally, it is important to note that in our design for testing the CRC field will be
included within the data and state three will be eliminated, as shown:

 CRC  Preamble                   Data Stream

 CRC                  Data Stream

Notification of Incoming Data

Data Stream

  Preamble

End of Data
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CRC Generator2

CRC works by assuming that a data stream is an enormous binary number.  If this
number is divided by a second fixed binary value, the remainder is our CRC checksum.
In order to confirm valid data, the recipient will follow the same process and ensure that
the two checksums correspond.

The difficulty with this method comes with the size of the data stream.  In an ethernet
implementation, this could be as long as 12144 bits, which easily exceeds the
capabilities of a standard 32 bit registers.  To simplify this, we can do the division a little
differently, while considering that we are only interested in the remainder of the division,
not the quotient.    By working with a register the same size as our target checksum, we
are able to shift the serial data through the register, while simply using XORs as linear
feedback to the register.  Basically, this is a linear feedback shift register that works like
this:

Load the register with zero bits.
Augment the message by appending N zero bits to the end of
it.

While (more message bits)
Shift the register left by one bit, reading the next
bit of the augmented message into register bit
position 0.

If (a 1 bit popped out of the register during step 3)
Then Register = Register XOR Generator Poly.

End

The register now contains the remainder

Source: A Painless Guide to CRC Error Detection Algorithms
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html

The CRC generator was tested with a number of generator polynomials of varying
length, on various serial data streams.  For simplicity and brevity, only a test case with a
4 bit (N=4) CRCs will be presented here, but this design will scale directly to a 32 bit
ethernet implementation.

                                               
2 CRC generation and checking are not included in our implemented design, for reasons previously noted.
Simulations and design detail are included for completeness.
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We will use the following inputs:

   Generator Polynomial            :      10011
   Original message                : 1101011011
   Message after appending N zeros : 11010110110000

Through long division, we get the following result:

            1100001010 = Quotient
       _______________
10011 ) 11010110110000 = Augmented message
        10011,,.,,....
        -----,,.,,....
         10011,.,,....
         10011,.,,....
         -----,.,,....
          00001.,,....
          00000.,,....
          -----.,,....
           00010,,....
           00000,,....
           -----,,....
            00101,....
            00000,....
            -----,....
             01011....
             00000....
             -----....
              10110...
              10011...
              -----...
               01010..
               00000..
               -----..
                10100.
                10011.
                -----.
                 01110
                 00000
                 -----
                  1110 = Remainder = THE CHECKSUM!!!!

Source: A Painless Guide to CRC Error Detection Algorithms
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
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The same result can be seen in the following test case:

Data Stream 1101011011 End of Data Mark

Shift Register Full                   Correct CRC Checksum Output

It is important to note that the minimal acceptable input length is N (the width of our CRC
output).  Given less than N bits in the incoming data stream, no CRC output will be
produced.
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Receive Buffer

Overview

The receive buffer converts the serial bit stream from the ethernet receiver into bytes,
and passes them to the encryption module.  Note that the term buffer is used loosely
here, since it does not buffer move than 2 bytes of data.  This component also isolates
the ethernet and system clocks.

Interface Definition

Serial data is accepted on the recv_eth_data line, which is clocked with the recv_eth_clk
signal.  The data stream is valid while recv_eth_frame is high.  The parallelized bytes
are asserted on the recv_end_data_out signals; the byte is valid when the
recv_enc_start_cycle signal is high (it remains high for only one clock cycle).  The
recv_enc_enable signal is high if the byte should be encrypted, and low if not.

Design Details

The ethernet module runs with a 100ns period clock, while the rest of the system runs at
a faster clock (up to 20ns period).  The bits from the ethernet are shifted into a register;
when eight bits have been received, the byte is copied into a second holding register.
This is performed by a state machine clocked with the ethernet receive clock.  When the
system-speed state machine detects that this has happened, it asserts a signal for one
clock that indicates a new byte is available.  It is assumed that the consumer is waiting
for the data, and thus handshaking is unnecessary.

Simulation

Start of frame indicates
first data byte

Signal high indicates that
data (99) is available

Data is shifted into
this register…

And held in
this register
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Progressive Encryption

Overview

The Progressive Encryption module controls encryption/decryption of the incoming data.
Each input byte from the receive buffer is conditionally encrypted and passed to the
send buffer.  This module can easily be modified to support different encryption
algorithms.

Interface Definition

A new input byte on enc_data_in is signaled by asserting enc_start_cycle. Output bytes
are put on enc_data_out, and enc_done_cycle is asserted.  Again, there is no hand-
shaking since each component must run at the required speed for real-time operation.

Design Details

When the Blowfish algorithm is used, this must perform a progressive encryption: each
input byte is XOR’d with the next byte in a 64-bit register, and the result is both sent to
the transmitter and stored back into that byte in the register.  The contents of the register
are encrypted using Blowfish after every 8 bytes are received.  This allows data that is
not an even multiple of 8 bytes to be encrypted.

For purposes of demonstration, this module is much simpler.  It merely passes all data
bytes through to the send buffer, using a simple XOR to encrypt the data when
encryption is enabled.  An arbitrary 8-bit value is XOR’d with every byte to be encrypted;

Header ends, data starts So encrypt the rest
of the data

The frame ends…
Ensure that the encrypt signals
stays high for the last byte



EE552 – eSAFE Project

Final Report  Page 24

for the simulation, this value is all 1’s, so that the output is just the inverse of the input,
allowing a visual inspection to verify that the data is being encrypted properly.  Note that
the same process is used to both encrypt and decrypt the data.

Simulation

Since we did not implement the full Blowfish encryption, the progressive encryptor to
interface to it was not completed.  However, the simple XOR, as described above, was
implemented and fully tested.

Send Buffer

Overview

The send buffer takes the bytes from the encryption module and serializes them to the
ethernet transmitter.  It is the counterpart of the receive buffer, again not performing
much buffering.  It also isolates the transmit ethernet and system clocks.

Interface Definition

The send_enc_frame signals the beginning of a new frame.  While this signal is high, a
high on the send_enc_done_cycle indicates that the next data byte is on the
send_enc_data_in bus. The send_eth_frame_start signal is asserted high when the first
bit of the first data byte is ready to be transmitted.  While this signal is high, the next data
bit is available on send_eth_data, coincident with the rising edge of the send_eth_clk
signal from the ethernet module.

First valid
input byte

First valid
output byte

Enable
encryption

The next output bytes are
the inverse of the input
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Design Details

Each input byte is loaded into a holding register, which is then shifted into the send
register when it becomes empty.  Bits are shifted out of the send buffer on every
ethernet clock.  The most significant difficulty encountered was maintaining the frame
signal high until the last bit of the last byte is shifted out.  This is accomplished by
incrementing a counter whenever a new byte is received and decrementing the counter
every time a byte has been fully transmitted.  This required “converting” the byte_done
signal which is valid on the edge of the slower ethernet clock, to a signal that is only high
for one edge of the faster system clock.

Similar to the receive buffer, no handshaking is used since the send buffer and ethernet
transmitter must be able to process data on every necessary clock edge.  If the next byte
is available before there is space to buffer it, or if it comes after the last buffered byte is
transmitted, then the data is not at the proper rate for transmitting.  The first problem will
result if the system is not synchronized properly (i.e. we are assuming approximately the
same time for each byte to pass through the receive buffer and encryption).  The second
problem results if the encryption module cannot perform at the required bit-rate (i.e. it
has not finished processing the current data when the next data arrives).

Simulation

New frame
starts

First input
byte received

Serialized data is passed
to the transmitter

Tell the transmitter to
start a new frame
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Last byte arrives and the
frame signal goes low

The frame signal to the ethernet
stays high until the last bit is sent

There is one byte
left to send

No bytes
left to send
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Blowfish Encryption Unit

Overview

In order to provide encryption of the data, we will implement the Blowfish encryption
algorithm. This unit is isolated to encrypting our data once it is received from the
ethernet interface.  The algorithm was developed by Bruce Schneier, in 1994, and is
available in the public domain.  He designed the Blowfish algorithm to be fast, compact,
simple, and variably secure.  With the availability of the algorithm (there is source code
available to the public) and the criteria by which it was designed, the Blowfish algorithm
seemed like a viable option for our encryption unit.

The Blowfish algorithm is separated into two parts -- Key Expansion and the actual data
encryption.  Before anything can be encrypted, a large number of subkeys must be
calculated.  Specifically, these subkeys are a P-array and four S-boxes.  The P-array
has 18 of these 32-bit subkeys, while each of the 32-bit S-boxes has 256 entries.  These
terms are important in implementing the algorithm into a design since the data
encryption part of the algorithm relies upon them.  Once these subkeys are computed,
the encryption can take place.

Interface Definition

In order to implement the Blowfish algorithm, there are a number of input/output pins
required.  According to the report file that Maxplus2 generates during compilation of the
code, there are 111 of 183 input/output pins required (or 60% of the chip).  However,
since these are all implemented within the chip, this does not affect the wiring
capabilities of the eSAFE project.

Design Details

In order to implement the algorithm properly in VHDL, it is necessary to break down the
unit into three separate components -- the Blowfish component (blowfish.vhd), the
Blowfish encryption component (bf_enc.vhd), and the Blowfish counter component
(bfcounter.vhd).  The latter two components are necessary in order for the Blowfish
component to work properly.

The blowfish.vhd component basically starts and ends the encryption process.  Upon
sending a signal to the ethernet interface, it begins to read in data.  This data comes in
the form of two 32-bit blocks XL and XR.  Once all of the data is read in, it sends a signal
(data_ready_to) low.  Now it is time to actually encrypt the data that has been read in.

The bf_enc.vhd component is responsible for encrypting the data.  In order to do this, a
‘for’ loop must be created for values of p-array 0 to 15.  In VHDL, we implemented this
via a counter (bfcounter.vhd).  The counter basically counts up for encryption and down
for decryption insofar as the p-array is concerned.  It does, however, also count the s-
boxes in order to implement the function that is referred to by the following flow
diagrams:
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 Note:  the original 64-bit data will be represented with and x and the P-array will be
denoted Pi.

x/2 = xL & xR

i < 16

xL = xL XOR Pi
 xR = F(xL) XOR xR

Swap xL and xR

Swap xL and xR

xR = xR XOR P17
 xL = xL XOR P18

Recombine xL and xR

End

Begin
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Function F:

The VHDL code for the Blowfish algorithm cannot be included for the web copy of the
document.  For further information on Canadian export laws on cryptography see
http://insight.mcmaster.ca/org/efc/pages/doc/crypto-export.html.

xL/(4) = a,b,c,d
where a,b,c,d are 8-bit

quarters

F(xL) = ((S1,a + S2,b mod 2^32) XOR S3,c) + S4,d
mod 2^32

begin

end
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 It is possible to analyze the entire encryption unit by analyzing the simulation of the
blowfish.vhd component.  This is because, that component calls the bf_enc.vhd and
bfcounter.vhd components (i.e. the signals under analysis in those two components are
included in it).  The state diagram for blowfish.vhd is depicted below.

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

bf_data_ready_from

bf_alg_done

bf_data_ready_from'

bf_data_ready_from

bf_data_ready_from'
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In order to show the states at work without having to go to the code, the states are
included here in tabular format.  This will ameliorate understanding the simulation
waveforms found below.  Furthermore, it will help to gain an appreciation of the role that
blowfish.vhd plays in the encryption process.

State Description Next State
S0 Goes to S1 if

bf_data_ready_from = '1'
else wait in S0

S1

S1 Set XL_in <= bf_data_in
Set bf_data_ready_to <= '1'

S2

S2 Goes to S3 if
bf_data_ready_from = '0'
else wait in S2

S3

S3 Set XR_in <= bf_data_in
Set start <= '1'
Set bf_data_ready_to <= '0'

S4

S4 Goes to S5 if
bf_alg_done = '1' else wait
in S4

S5

S5 Set bf_data_out <= XL_out
Set bf_data_ready_to <= '1'

S6

S6 Goes to S7 if
bf_data_from = '1' else wait
in S6

S7

S7 Set bf_data_out <= XR_out
Set bf_data_ready_to <= '0'

S8

S8 Goes to S9 if
bf_data_ready_from = '0'
else wait in S8

S9

S9 Set bf_done_cycle <= '1' S0

Design Rationale

The blowfish.vhd encryption module simulates successfully, on its own.  However, it
does so rather slowly and still takes up quite a bit of the chip.  While the cell count is
down since its initial coding — previously at 783 of 1152 cells and now at 634 of 1152
cells (or 55% of the chip), it is quite obvious that it will not fit in the 20000 gate chip once
all of the components are fully integrated.  In order to alleviate this concern, we decided
to implement a smaller (albeit less secure) encryption algorithm for use with the Altera
board.  This algorithm simply ‘XORed’ the incoming data, basically leaving the encrypted
output as the inverse of the input.  When compared to the Blowfish encryption algorithm,
the amount of space required to implement this simplified encryption technique is
negligible.  It should also be noted that this unit is fully interchangeable with the Blowfish
unit to ease further implementation.  Although this method is not nearly as secure as the
Blowfish method, it allows us to implement the design onto a 20000-gate chip.  The
design details will be discussed later.
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Simulation

The simulation for the Blowfish algorithm module was successful.   Since it has been
shown that the blowfish.vhd component is responsible for the encryption process,
inasmuch as combining the three separate entities (blowfish.vhd, bf_enc.vhd, and
bfcounter.vhd), it is possible to analyze the resulting simulation waveforms.  Having
said that, only the waveform for blowfish.vhd will be analyzed as all of the signals under
consideration are displayed in that waveform as well as their own.  The resulting
simulations are displayed below.

Analysis of this unit begins with the inputs as shown.  Note that the bf_data_in and
bf_lut_data_in are completely arbitrary values.

The bf_enc.vhd component is required when the blowfish.vhd component is ready for
encryption.  Here, the first step is to separate the 64-bit block into two 32-bit blocks
XL_in and XR_in.  In order to implement this algorithm in VHDL, a number of temp
values were needed.  The evolution of these values (XL_out_tmp0 and XR_out_tmp0 to
XR_out_tmp4) is shown over the next several waveforms.

Held constant

Here they are all initialized to 0
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XL_out_tmp0 <= XL_in xor bf_lut_data_in

XR_out_tmp0 <= bf_lut_data_in

XR_out_tmp1 <= XR_out_tmp0 + bf_lut_data_in
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The previous six snapshots of the waveform for the encryption process have shown the
first of sixteen executions of the ‘for’ loop explained earlier (and shown in block diagram

XR_out_tmp2 <= XR_out_tmp1 xor bf_lut_data_in

XR_out_tmp4 <= XR_out_tmp3 xor XR_in

XR_out_tmp3 <= XR_out_tmp2 + bf_lut_data_in
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format).  The remaining executions of this ‘for’ loop follow along in the same manner as
the first and, thus, will not be displayed here.  However, in order to show that the loop
executes as it should (in correlation to our code), the next waveform shows a snapshot
of the bf_enc.vhd component going from state 12 to state 13.  This only happens when
the counter has reached 16 — the number of iterations of the ‘for’ loop.

Once the counter has reached 16 and the bf_enc.vhd component finally gets out of its
loop, it is able to finish encrypting the inputs.  That said, the remaining four states (states
13 to 17) simply calculate the output values for the two 32-bit inputs (i.e. XL_out and
XR_out).

counter = ‘16’State12  à  State13

XR_out encrypted counter stays at 16
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Now that both XL_out and XR_out have been calculated, the bf_enc.vhd component
sends a signal bf_alg_done to the blowfish.vhd component.  This tells the
blowfish.vhd component that encryption is done and it can send data out in the form of
its signal bf_data_out.  Once the blowfish.vhd component has sent both 32-bit blocks of
data for XL_out and XR_out (through bf_data_out), it asserts another signal —
bf_done_cycle high.

XL_out encrypted counter stays at 16

bf_done_cycle goes high Note that ‘bf_done_cycle’
stays high for one clock
cycle
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The simulation runs along relatively smoothly; however, there are a couple of spikes on
the signal bf_lut_pbox. This glitch does not occur on the rising edge of the clock and,
therefore, does not affect a look-up from the look-up table.  Furthermore, it occurs at
state 12 and has no impact on the result.

LUT Access

Overview

The Lookup Table Access module arbitrates access to the Blowfish look-up-tables
stored in external memory.  It arbitrates between three sources: both the Blowfish
encryption module and the LUT generator need read access, and the LUT generator
needs write access.

Interface Definition

Each module that needs to use the LUT Access module is connected with one set of the
signals …_a, …_b, or …_c.  To request a read, the mem_read_start_X line is asserted
with the correct address on the corresponding address bus.  When the
mem_read_done_X is high, the memory value is available on the mem_read_data_X
bus.  Similarly for a write, the operation is requested by asserting mem_write_req with
the correct address on the mem_write_address bus.  When the mem_write_done signal
is asserted, the write operation has completed.

Design Details

The memory used is asynchronous SRAM (Cypress CY7C199), with an access time of
12ns.  Synchronous SRAM would probably have been easier to work with, but the
smallest chips available are 1Mbit, which is far beyond the minimum 32Kbit required for
the LUT.  Since the asynchronous memory responds to falling edges on the control
signals, it is necessary to latch all of these signals to prevent glitches; also, the address
(and during a write, the data) signals must remain asserted while the chip is enabled, so
they must also be latched.

The state machine is shown below.  It waits for one of three consumers to request a
memory access.  When the access is finished, the done signal for that consumer is
asserted.  Thus, requests from other consumers will block until the current request is
completed.  Note that there is only one state that chooses which request to
acknowledge, which means that the first consumer checked will always get priority.  Two
more "wait for request" states are required that have different priorities, which would
allow for a round-robin type of scheduling.

spike
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ram_address = mem_read_address_a ram_address = mem_read_address_b ram_address = mem_write_address
ram_data = Z ram_data = Z ram_data = mem_write_data
ram_ce = 0 ram_ce = 0 ram_ce = 0
ram_oe = 0 ram_oe = 0 ram_we = 0

The current implementation requires 4 clock cycles to complete a read request. Blowfish
requires 16 x 4 + 18 memory access, or 18 x 80ns = 6560ns (of course, Blowfish also
requires time for its control and logic).  This does not meet the timing requirements
imposed by the data rate of the 10Mb/s ethernet: 64 bits are received every 6400ns.
Further work would be required to reduce this to three clock cycles, which should allow
Blowfish to complete in less than 6400ns.  Since we did not implement Blowfish,
optimizing this code to the required speed was not considered a priority.

Simulation

A sample of a series of requests is shown in the waveform on the following page.

wait_req

read_req_a

read_wait_a

read_req_b

read_wait_b

write_req

write_wait

mem_read_start_a

mem_read_start_b

mem_write_start
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Included below are the read and write cycle timing diagrams (and the table of timing
values) from the CY7C199 data sheet.

WE is active after the
data and address have
stabilized, and is active
for at least 5ns

Receive a
write request

Write is
completed

Receive a
read request

Address is
stable when
OE is active

Data is
available
5ns after
OE

Read is
completed
and data is
available
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Blowfish Controller

Overview

Ideally, an eSAFE device would have two separate and independent Blowfish
encryptor blocks, respectively dedicated to encrypting outgoing data and decrypting
incoming data.  However, due to the large number of logic cells required for a Blowfish
encryptor block, it is conceivable that some FPGA devices may not have a sufficient
logic cell count to accommodate two separate units.  To guard against this problem, the
Blowfish controller is introduced to control and mediate access and communications
between the Blowfish encryptor and the client components requesting its use.  The entity
definition for the Blowfish controller is in bf_control.

Interface Definition

The Blowfish controller component waits for one of the three bfctl_req lines to be
asserted.  When one or more of these lines is asserted, the Blowfish controller chooses
to service one of them, and asserts the corresponding bfctl_ack line.  Internally, the
bf_control unit sets the bfctl_mux_select line to the correct value.   This multiplexes the
signals internally; every incoming and outgoing line of communication between the
serviced component and the Blowfish block become connected to each other.  The
bf_control unit will not accept any more connections until the bfctl_done_cycle line is
asserted by the Blowfish block, signifying that the current request is over.  Furthermore,
the Blowfish controller will also wait for the request line to be negated.  This prevents the
serviced unit from immediately requesting another service, thus starving the other clients
from using the Blowfish block.

Design Details

The design of the bf_control unit is actually quite simple.  As described in the
Interface Definition, the unit merely waits for and then accepts a request for service, and
acknowledges that request.  Internally, the input/output lines are multiplexed in such a
fashion as to allow the client component and the Blowfish unit to communicate directly
with each other.  No internal buffering is performed on these multiplexed lines; thus,
there is only a small latency added due to the logic gates in the multiplexers that each
signal is routed through.  When synthesized, the chip utilization is as follows:

Total logic cells required: 34
Total flipflops required:   0
Total packed registers required:   0

Since the design only requires one of these units, it can be concluded that this
unit does not require a significant percentage of the logic cells, and does not have to be
optimized further.  However, note that it has, in total, 8 32-bit data lines, which may
cause a wiring problem.  However, since it is small, we are confident that it will be
possible to find a suitable location for this unit on the chip.  Furthermore, it can be
modified to use 8-bit buses instead, although this will require the addition of buffer
stages to accumulate 32 big numbers that the Blowfish unit expects to process.
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Testing the bf_control unit is quite easy, since it only pays attention to a handful
of the many inputs and outputs.  All the rest are merely routed via the bfctl_mux_select
signal.  Thus, the a group of lines was set to one and the b set of lines to zero.  The
bfctl_req line was asserted, and the unit correctly generated the bfctl_ack_a and ignored
requests from the bfctl_req_c line.  Then, the unit waited for both bfctl_done_cycle to be
asserted and bfctl_req_a to be negated.  Next, when bfctl_req_b was asserted, it could
be seen that the bfctl_mux_select line correctly chose the output to the Blowfish block to
be the inputs from the b lines (this transition could be seen because all of the b inputs
were different than the a inputs.  Note that the ack signals were not originally present.
However, they were deemed necessary, since the bf_control multiplexors could switch
over the single lines more quickly than the data bus lines.  Thus, it would be possible for
the bfctl_data_ready_to_X lines to signal that the data was valid before the
bfctl_data_in_X were fully selected.  Thus, the acknowledgements are needed so that
the requesting entities can assert their data ready lines after the multiplex switching has
been done.

Simulation and Verification

The Blowfish control unit arbitrates access to the Blowfish encryption unit
between three entities that share an identical interface to the Blowfish controller.  These
entities, for our current implementation, will consist of two progressive encryption blocks
and the lookup table generator.  The bf_control unit can handle multiple simultaneous
requests, as is shown in the simulation below.  When a request line is asserted by one of
the user entities, the bf_control unit chooses one to be granted access, and asserts that
unit's bfctl_ack line.  Internally, this switches over all of the bf_control to/from blowfish
lines to connect to this user device.  Upon receipt of the acknowledgement, the user
entity is then directly connected to the Blowfish unit, and modulates the data and control
lines to communicate data between each other.  Note that there is a significant delay
between the transition to the b_req state (in which unit b is granted control of Blowfish)
and the time that the bfctl_data_in_b is mapped to bfctl_data_out.  It is the responsibility
of the user unit and the Blowfish unit to account for this.  However, if the respective units
do not change their data_to and data_from control lines until an acknowledgement of
service is received, then a sufficient delay will be introduced that will allow all lines to be
correctly mapped.  It is important to note, in the simulation below, that the request states
will be much longer than shown.  During these states, the serviced unit and the Blowfish
unit will be using control lines to load and store data.  In addition, the Blowfish unit will be
encrypting the data sent by the user entity.  Both of these operations will take much
longer than shown.
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Lookup Table Generator

Overview

The lookup table generator component is responsible for generating the P-array
and S-boxes for a given 64-bit key and storing them in memory.  It requires access to
ROM (to initialize the P-array and S-boxes) and to RAM (to store the lookup table for use
by the Blowfish encryptor block.  It also requires access to the Blowfish encryptor block
itself (as the algorithm uses Blowfish with the partially generated table to create new
entries in the table).

Interface Definition

The operation of this unit is quite simple.  When lut_key_ready is asserted, the
value on lut_key_value is read in for the key.  In the two-table case, lutgen keeps track
internally of which table has the current value, so that it will start table generation in the
unused table.  Using the defined interfaces and procedures for bf_control, blowfish,
and lut_access, the lutgen component then follows the lookup table algorithm, and
switches over the eSAFE encryptor to use the new table.

In reality, handshaking, data transfer, and
blowfish execution would occur hereSimultaneous requests

on all lines

Req_a is
acknowledged Delay between

transition to b_req and
bfctl_data_out

Wait_req B_done
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Design Details

The lookup table generation algorithm, in pseudocode, is as follows:

1. Initialize the P-array and S-boxes from ROM with a fixed
value common to all eSAFE devices

2. XOR P1 with the first 32 bits of the 64 bit key, and P2 with
the second 32 bits of the key

3. Repeat this for the entire P-array
4. Encrypt the all-zero string with Blowfish using this table

and save the 64 bit result in a register.
5. Set P1 to be the first 32 bits of the result, and P2 to be

the second 32 bits of the result.
6. Using the result of the previous Blowfish encryption, repeat

this process using the latest version of the table, and fill
up two values from the P-array or S-boxes with the result
every time.  Repeat until all entries have been updated.
This will take 521 iterations of Blowfish in total.

Since the ROM table is 4kB and Blowfish encryption is performed 521 times, it
can clearly be seen that the lookup table requires many memory accesses (both reads
and writes) and a significant length of time in order to generate a table that is ready for
data encryption.  It is therefore important to allow ethernet encryption to progress while
lookup table generation is simultaneously being done.  In order to accomplish this, the
bf_control and lut_access components were created.  The bf_control block allows the
lookup table generator to share the Blowfish block with both progressive encryptors,
whereas the lut_access block arbitrates read and write access to the lookup tables in
RAM between blowfish and lutgen (the lookup table generator).  Allowing for at least
two tables to be stored in RAM would enable the blowfish block to use one table
(already generated on startup) while the lutgen component simultaneously generates
the new lookup table in another RAM location.  Thus, this design completely eliminates
any time constraints from the design of the lookup table generator.  This is true because
the table generation will proceed cooperatively with the current encryption and there is
no maximum time delay specified between new key input and valid table ready.

Actual implementation of this straightforward algorithm in hardware is decidedly
non-trivial when attempting to optimize for a limited space.  For example, the entire
lookup table is scanned through during intialization of the table from ROM and during
actual table generation, but taking advantage of this similarity was difficult.  However,
implementation was abandoned on this component once it was realized that the Blowfish
encryptor could not be included in the final project due to space and timing constraints.
This was done because successful simulation of the Blowfish component for correctness
would not require this component.  Also, there was a possiblity that all functional blocks
could be optimized to fit on the chip provided.  However, it was not probable that the
optimization would be enough to accommodate lutgen even if blowfish managed to fit.
In this case, we planned to fall back to ROM-based pregenerated tables, and lutgen
would still not be required.
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Conclusion

Designing the eSAFE project introduced many challenges.  Currently, it is not full
functional, as previously discussed.  Also discussed throughout the document are
possible reasons for this.  Nevertheless, although the physical implementation of the
device is inoperable, it should be noted that simulations of the wholly integrated device
are successful.  As well, simulations are successful for the ethernet receiver, transmitter,
CRC generator, Blowfish encryptor, and Blowfish arbitrator.

Even though successful simulations do not constitute a successful project, insofar as the
physical implementation (as we found out), the eSAFE project was far from
unsuccessful.  The project chosen was quite complex.  This point is especially obvious
considering that a much simplified encryption algorithm was required due to size
constraints.  Although the Blowfish algorithm could not be implemented in the Altera
10K20 chip, the components pertinent to the Blowfish algorithm have been included for
completeness and future endeavors.


