EE 552

Advanced Entry System

Final Report

Group:

Patrick Li 351018

Edgar Wong 356898

Edward Wong 263923

Howard Shum 338714
Professor: Dr. D. Elliott

Date: November 26,1998

Abstract

This report describes the design and testing of an Advanced Entry System. This system is featured with a 12-button keypad and a 2x16 DH4480 LCD screen for user interfacing. Basic system operation is to trigger a door's lock to an opened or closed position upon user entering a correct password. Users are able to change the password with a simple menu selection scheme implemented by the LCD/keypad combination. Security of the system is enforced by the requirement of a master password for accessing the LCD screen menu.

With correct circuit simulation using MaxPlus2, the design is downloaded to the Altera UP1 educational board and tested with the user interfacing hardware (i.e. the keypad and LCD screen). Each step of our design and verification process is documented in this report.

After testing all functional blocks of the design, a prototype of the entire system is built. We have tested the prototype manually and confirmed the circuit design to be functionally valid.

IC Data Sheet

The table below summarizes the I/O of the controller.

PIN
PIN no.
Type
Description

not_reset
28
input
Reset the program main_con

al_clock
91
input
Clock

not_sensor
29
input
Entry detection

keyin0
134
input
7pins keypad signal

keyin1
132
input
7pins keypad signal

keyin2
129
input
7pins keypad signal

keyin3
127
input
7pins keypad signal

keyin4
120
input
7pins keypad signal

keyin5
118
input
7pins keypad signal

keyin6
116
input
7pins keypad signal

data_lcd0
157
output
9pins LCD signal

data_lcd1
154
output
9pins LCD signal

data_lcd2
152
output
9pins LCD signal

data_lcd3
149
output
9pins LCD signal

data_lcd4
147
output
9pins LCD signal

data_lcd5
144
output
9pins LCD signal

data_lcd6
142
output
9pins LCD signal

data_lcd7
139
output
9pins LCD signal

data_lcd8
137
output
9pins LCD signal

open_entry
6
output
door is open

lcd_en
159
output
LCD enable

a
136
output
signal for scanning

b
133
output
signal for scanning

Maximum speed, number of logic block

Entity
Logic cells
Speed (longest path)

Main_con.vhd (area)
721/1152
17.09Mhz

Table of Contents

 1.0 System Overview
This project is an advanced entry system. The advanced entry system is simply a door lock system which the user must input a correct password in order to open the door or access the function inside. When the user enter an invalid password, an error message will display on the LCD screen and the system will reset to the beginning. Once the user enters a valid user password, the system will display "Open" on the LCD screen and a door-unlock signal will pull high. If the password entered is verified to be the administrator password, a menu will be displayed. According to each menu selection, the controller will response by performing the respective functions. The different between the administrator and user password is only the administrator can access the menu. The menu provides the administrator to perform functions like changing password for both user and administrator.

The overall Advanced Entry System consists of a controller (Altera FLEX10K20 FPGA chips) as the central unit, a LCD screen for displaying message, a keypad for user input, and a LED to indicate the door is unlocked. The system block diagram is given in the following page.

[image: image1.wmf]Initialize LCD

Display

"Enter Password"

Key Enter

KeyPad Decoder

and Debouncing

Key Buffer

Check Password

Get Password

RAM

Check

Master/User

Display Menu

Check Input

Change

Password

RAM

Exit

KeyPad Decoder

and Debouncing

KeyPad Decoder

and Debouncing

button

1

button

3

Display Open

user

button

2

No

Password

Invalid

Password Valid

Master

[image: image2.wmf]Keypad buffer

RAM

Message

initializiation

main controller

Keypad decoder

input signal to

ram

Display message

password verifier

LCD display

ROM

[image: image3.wmf]Initialize LCD

Display

"Enter Password"

Key Enter

KeyPad Decoder

and Debouncing

Key Buffer

Check Password

Get Password

RAM

Check

Master/User

Display Menu

Check Input

Change

Password

RAM

Exit

KeyPad Decoder

and Debouncing

KeyPad Decoder

and Debouncing

button

1

button

3

Display Open

user

button

2

No

Password

Invalid

Password Valid

Master

[image: image4.wmf]Keypad buffer

RAM

Message

initializiation

main controller

Keypad decoder

input signal to

ram

Display message

password verifier

LCD display

ROM

System Block Diagram

1.1 Advanced Entry System controller

This controller is the heart of the whole system, which regulates the operation of Advanced Entry System. This includes saving users' password into a 256K RAM.

This device controls a user-friendly terminal for both Users and Administrators. A 10-digit keypad is available here for user input as well as LED lights to guide the user in making their selections. When a user is going to enter a building or office, user needs to input his/her own password from input interface, which is the keypad. If the inputted password is verified, the gate-controller (which can be a door lock, rotating -gate, parking entrance) will be unlocked to allow the user to pass through. The main menu consists of two types of password. First one is for Users, which is only for the purpose of entering a building, no other functions that Users can make on the system.

The second type of password is designed for administrators. This is just like the usual definitions in other computer systems. When the administrators input a correct password, he/she will be allowed to do any modifications on the system.

The password is entered and does a comparison with the saved-password from the 256k RAM. Then it will return the result. If the password is matched, the system will send out a signal. This signal can be used to trigger another system to open the entrance or perform other functions. A signal will send back to the system. This signal can come from other detection devices. This signal is used in the system to bring the system back to the "enter password" screen. If password entered is not correct, the menu will return to front menu waiting for next password input.

On the whole, the Advanced Entry System Controller has 2 operating modes: supervisory and normal. Supervisory mode allows the system administrators to setup passwords for users. The normal mode is the system goes into normal operation until the feedback signal has been trigger. This signal is generated by other system, which can be a sensor. The complete functional block diagram is shown in the following page.

1.2 User terminal

Here is how the user terminal looks like:

2.0 Design details

Our design was synthesized with VHDL the Altera MaxPlus2 software package. A top-down design methodology was used. The lower level entities were individually coded first and we proceeded up the design hierarchy, as given below.

Since our design is able to fit in a single Altera FPGA Flex10K20 chip, this chip will acts as the Central Processing Unit of the whole system.

Advanced Entry System design hierarchy
2.1 Main Controller (CPU) of Advanced Entry System

The main controller IC includes 6 entities and a top entity "main_con.vhd". The following is the declaration of different entity with explanatory notes for each module, and hardware.

main_con.vhd (linked to all VHDL)

entity main_con is

generic(width : positive :=8;

 keywidth : positive :=4);

port (data_lcd : out std_logic_vector(8 downto 0);

 al_clock, not_reset : in std_logic;

 open_entry, lcd_en : out std_logic;

 not_sensor : in std_logic;

 a, b : out std_logic;

 keyin : in std_logic_vector (6 downto 0)

);

end main_con;

This is the main control program, which controls the main process of the whole project. The program contains 33 states which corresponding to all the processes and functions. There are two passwords, the master password and the user password. The master password will lead the user to a menu, which he can change both passwords and open the door. The user password can only open the door. Once the door opens, sensor signal detects the user entering the door will trigger the 'main_con' program back to the beginning state. At the beginning, the 'main_con' program will pass the starting and ending address to 'message.vhd' and display the initialization code and the first message. Then, it will wait for user to enter the password, place it in a 16-bit data by calling 'key.vhd' and compare the password in 'passcom.vhd'. If the user input a invalid password, the program 'passcom.vhd' will feedback a 'invalid' signal and the 'main_con' program will call 'message.vhd' to display "invalid password" message. Once the user password is entered, the 'passcom.vhd' program will send out signals to tell the 'main_con.vhd' that a user password is valid. Then the 'main_con' program will call 'message.vhd' to display "open" and set 'open_entry' to high. The 'main_con' program then wait for 'sensor' signal to jump back to beginning state. Once the master password is entered, the 'main_con' program will called the 'message.vhd' and output a menu which has three choices on the LCD screen. The first choice is changing the password for master and user. It will lead to another menu where the user can select master or user password for changing. The second choice is open the door and will perform the same procedure as user password. The last choice is exit to beginning.

Input : not_reset (reset the program to its initial state, this is a active low signal)

 al_clock (clock for this program, the clock will use altera oscillator)

 not_sensor (a signal will trigger the main program back to beginning after the

 open_entry was high)

 keyin (the seven pin signal from the keypad for detecting keypress)

Output : data_lcd (9-bit signal contains the data and register/data select to the LCD

screen)

 open_entry (a signal to indicate the door is open when '1')

 lcd_en (a signal to enable the LCD screen)

 a (a signal for scanning the keypad)

 b (a signal for scanning the keypad)

keypad.vhd(leypad decoding)

entity keypad is --princess auto keypad

port(

keyin: in std_logic_vector (6 downto 0); --pin 3 to pin 9 on keypad

a,b: out std_logic; --pin A and pin B on keypad

clock,reset: in std_logic;

bcdout: out std_logic_vector (3 downto 0); --bcd output

keydetect: buffer std_logic); --a key is pressed

end entity;
This program interfaces with a princess auto keypad. It provides debouncing to the keypad's buttons and determines if a key is pressed. If a key is pressed, the program will determine which key is pressed and encodes the key to a bcd number at the output.

Input : reset (reset the program to its initial state)

clock (clock for this program)

keyin (direct connection to the keypad's buttons)

Output : a,b (scanning pins to the keypad, for the button-scanning process)

bcdout (a binary coded decimal number specifying what key is pressed)

keydetect (a single bit signal specifying that a key is pressed)

key.vhd(key signal transfer)

entity key is

generic(width : positive := 4);

port(reset, clock : in std_logic;

 keydetect, get, enable : in std_logic;

 keyin : in std_logic_vector(width-1 downto 0);

 ready : out std_logic;

 passarray : out std_logic_vector(4*width-1 downto 0)

);

end key;

This file will receive 4 4-bit password from the main program one by one, store it in a 16-bit data and output it back to the main program. The program will store the first password in passarray[15..12], the second password in passarray[11..8], the third password in passarray[7..4] and the forth password in passarray[3..0]. The 16-bit data was used by the passcom.vhd for comparison of the password.

Input : reset (reset the program to its initial state)

clock (clock for this program)

enable (a signal from the main program to enable the key function)

keydetect (this signal tell the program a key is pressed)

get (a signal from the caller program to acknowledge the receiving of the

ready signal)

keyin (a 4-bit BCD code for the password)

Output : ready (this signal will tell the caller program the passarray is ready for receiving)

passarray (a 16-bit data contains the password)

inpass.vhd(input password)

entity inpass is

generic (width : positive :=4);

port
(clock, reset, enable_ip, key_detect : in std_logic;

 mast_user, done_re : in std_logic;

 done_in : out std_logic;

 ram_write : out std_logic;

 key_data : in std_logic_vector(width-1 downto 0);

 data_ram : out std_logic_vector(width-1 downto 0);

 ram_address : out std_logic_vector(width-1 downto 0)

);

end inpass;

This file will receive 4 4-bit password from the main program one by one and store it into ram. The main program will output a signal to tell this program the password is a master password or a user password. The master password will store in address0 and the user password will store in address1.

Input : reset (reset the program to its initial state)

clock (clock for this program)

enable_ip (a signal from the main program to enable the inpass function)

key_detect (this signal tell the program a key is pressed)

done_re (a signal from the caller program to acknowledge the receiving of

 the done_in signal)

mast_user (this signal will tell the program the password is master of user,

 '0' => master,

 '1' => user)

key_data (a 4-bit BCD code for the password)

Output : done_in (this signal will tell the caller program that this program finishes

 its job)

ram_write (this signal will set write enable in ram)

data_ram (the 4-bit data to store in ram)

ram_address (a 4-bit address for the ram)

passcom.vhd(check password)

entity passcom is

port (passarray: in std_logic_vector(15 downto 0);

clock,enable,reset,idle: in std_logic;

memout: in std_logic_vector(3 downto 0);

address: buffer std_logic_vector(3 downto 0);

master: out std_logic;

valid,invalid,done: out std_logic

);

end passcom;

This program verifies the password entered by the user and sends out a valid or invalid signal accordingly. It also determines whether a master password or a user password is entered.

Input : reset (reset the program to its initial state)

clock (clock for this program)

enable (enable the program to run its process)

idle (stop the program's process and reset the program to its idle(initial) state)

passarray (password entered by the user, in BCD coding)

memout (password number output from the memory (input to this program))

Output : address (location of the passwords saved in memory)

master (a single bit specifying whether a master password is entered)

valid,invalid (single bit output specifying whether a password is valid or invalid)

done (single bit output specifying that the verification process is finish)

message.vhd (display message on LCD)

entity message is

generic (width : positive := 8);

port
(data : out std_logic_vector(8 downto 0);

 st_address, end_address : in std_logic_vector(width-1 downto 0);

 clock, reset, enablel, done_re : in std_logic;

 done_ack, lcd_en : out std_logic);

end message;

This file will display the message on the LCD screen. The caller program will send two addresses, which represent the starting and the ending of the message. Then the message function will output the character one by one. The characters were stored in the Rom and the message program calls Rom.vhd to retrieve the characters.

Input : reset (reset the program to its initial state)

clock (clock for this program)

enablel (a signal from the main program to enable the message function)

st_address (a 8-bit starting address of the message)

end_address (a 8-bit ending address of the message)

done_re (a signal from the caller program to acknowledge the receiving of the

done_ack signal)

Output : done_ack (this signal will tell the caller program that this program finishes

 its job)

 lcd_en (a signal to enable the LCD)

 data (the 9-bit data to from the rom)

Rom1.vhd (memory)

entity Rom1 is

generic (width : positive := 8);

port
(data : out std_logic_vector(8 downto 0);

 address : in std_logic_vector(width-1 downto 0);

 clock, enable : in std_logic);

end Rom1;

This file used lpm_rom function in the package to call the data from load.mif file corresponding to the input address. The file was used to display the message on the LCD screen.

Input : address (8 bit address for location of the data)

clock (clock for both input address and output data for synchronization)

enable (a signal for enable the rom function)

Output : data (9 bit data contains character and a bit for data/register selection)

Ram4x4.vhd (memory)

entity ram4x4 is

generic (datawidth, addrwidth : positive := 8);

port
(data : in std_logic_vector(datawidth-1 downto 0);

 address : in std_logic_vector(addrwidth-1 downto 0);

 clock, we : in std_logic;

q : out std_logic_vector(datawidth-1 downto 0);

end ram4x4;

This file used lpm_ram function in the package to store the data into memory. The program can store 16 4-bit data. The ram function was used to store the master and user password.

 Input : data (4 bit data which contains the password to store in memory)

address (4 bit address for location of the memory)

clock (clock for both input address and output data for synchronization)

we (write enable, when we='1' the ram store the data corresponding to address, when we ='0' the ram output data corresponding to address)

Output : q (4 bit data output for contains the password for comparison)

2.2 External hardware design

LCD display

The LCD (HD44780) dot matrix liquid crystal display controller & driver LSI displays alphanumeric, kana characters, and symbols. It drives a dot matrix liquid crystal display under 4bit or 8bit-microcomputer or microprocessor control. In this design, it takes an 8bit input stream.

Keypad

The Advanced Entry System uses a 12 buttons keypad as an input device. A decoder is designed to interface the keypad with the system. The purpose of designing the keypad decoder is to devise a logic to detect the status of all 12 buttons (i.e. button pressed or released) at the same time through only 9 I/O provided by the keypad. This decoder will provide easier integration of the keypad to other digital logic system. When users press or release a button, signal bouncing occurs at the output of keypad. Thus, the decoder must wait for at lease 1ms before accepting a key-in signal.

3.0 Design Verification

The simulation waveforms are enclosed to demonstrate the functionality of the Entry system. The following waveform description shows the results.

3.1 Waveform

main_con.scf

Once the signal for initialization is detected, it displays message. This message keeps on displaying until key passed. The password is masked with "*" until the whole password has been keyed in. Then password compares with the password in ram to verify the correctness.

Keypad.scf

Each key will translate to a 12bit of "1" or "0" and back to initial state "0". It also sends the signal to a flip-flop to keep for 1ms because of the de-bouncing problem on key detecting. For 1ms delay, a counter of 25175 steps is needed for a 25.175Mhz clock.

Rom1.scf

The rom in this design uses lpm_rom function to display all content. The correct position of data can be seen in file rom1.mif

Message.scf

From the waveform, there are 4 states will output the data in memory with specified starting and ending address.

Passcom.scf

It initializes, gets password from keypad, compares it with memory, then sends finish signal.

Key.scf

When a key passes, it will store as a 16bit signal. "keydetect" goes high until the key is released. Then all keys store in buffer.

inpass.scf

There are 7 states in this part to determine the user is normal user "1" or master user "0"

For normal user, password stores in ram address "0100", "0000" is reserved for master user.

4.0 IC Test Measurement

The Flex10K FPGA chip is the only integrated circuit needed for this project. We take advantage of the re-programmability of the chip and build prototypes of different parts of the system for physical testing. It is possible for us to manually test a prototype because of the simple operating nature of the entry system.

The entry system mainly concerns with the control of a keypad, a LCD display, and password related circuit. We build prototypes of controlling logic for every pieces of hardware and test them separately before the final system integration. The following contents describe the testing procedures and test results for the keypad, LCD and password related circuit.

Testing procedures and results of Keypad related Circuit

The keypad consists of twelve buttons ranging from the Arabic number '0' to '9 ,and two "up/down" buttons. A key detection circuit is needed to recognize the pressing and releasing of a button and provides debouncing to the keypad's signal output. Also, the circuit is required to run a key scanning process to determine what button is being pressed. This scanning process is required because the keypad has only 9 I/O pins while there are twelve buttons to be recognized. The next task is to encode the button's number to a BCD (Binary Coded Decimal) number for easy integration to the main entry system.

We include all the above features into one VHDL file, namely keypad.vhd, and program the FPGA chip for prototype testing. The BCD output and the "keydetect" signal (a single bit signal specifying that a button is pressed and the BCD output is ready) are connected to LED lights for visual feedback.

Because a test vector is visually complicated to the reader, we provide in the following three written testing procedures. These testing procedures are sufficient to correctly verify the circuit.

1. Testing Procedure and result (for verification of proper BCD and keydetect output)

Step
Action
Result

1
Press all buttons one at a time and check if the appropriate BCD output is displayed.

e.g. press button "3" should get "0011" on the BCD output.

Note: the "up/down" buttons are not used by the main program, therefore they are treated as "no button is begin pressed".
All buttons have correct BCD output. When no button is pressed ,or a "up/down" button is pressed, the BCD output is "1111". Specifying that no button is being pressed.

2
Press and Release all buttons one at a time and check if the "keydetect" output is '1' when a button is press, and '0' when a button is released;
The "keydetect" output is '1' when any button is pressed. The "keydetect" output is '0' after a button is released.

2. Testing Procedure and result (for signal debounce)

Because the BCD output is a pure combination output of the "debounced" key inputs, we can just investigate the BCD output on an oscilloscope to verify the debounce circuit.

Step
Action
Result

1
Use an oscilloscope to view the waveform of the least significant bit of the BCD output.

--

2
Adjust the "sec/div" knob to achieve 1 sec/div setting.
--

3
Press and release quickly the '0' button for several times then save or freeze the screen.

The BCD output should rise up and fall down quickly on the screen.
--

4
Adjust the "sec/div" knob to achieve 10ns/div or lower
--

5
Investigate the signal to check if sharp rise up and fall down curves are obtained.
Sharp rising and falling curves are obtained.

6
Repeat the procedure from step one for button '2', '4', '6', '8'.
Sharp rising and falling curves are obtained.

7
Use an oscilloscope to view the waveform of the second least significant bit of the BCD ouput.
--

8
Repeat the procedure from step two for button '1', '3', '5', '7', '9'.
Sharp rising and falling curves are obtained.

3. Testing Procedure and result (BCD output should be ready before the keydetect signal is on)

Step
Action
Result

1
Use an oscilloscope to view the waveforms of the least significant bit of the BCD output and the keydetect at the same time.
--

3
Adjust the "sec/div" knob to achieve 1 sec/div setting.
--

4
Press and release the '0' button.
--

5
Adjust the "sec/div" knob to achieve 40ns/div
--

6
Investigate the two signals together and check if the key detect changes from logic '0' to '1' after the BCD output is ready for at least one clock cycle (about 40ns).
Keydetect's rising edge occur at more than 40ns after the BCD output is ready.

7
Repeat from step 1 for the remaining bits of the BCD output.
Keydetect's rising edge occur at more than 40ns after the BCD output is ready.

Testing procedures and results of LCD related Circuit

The LCD related circuit contains mainly the Rom program and message displaying program. The testing includes initialization of the LCD screen and displaying the message. To initialize the LCD, 4 initialization codes are needed. The codes are stored in Rom in specific locations. The message will receive the starting and ending address of the initialization codes from the main program and call the codes out from Rom. Once the LCD finishes initialization, it is ready to accept any data. The message display basically follows the same procedure as initialization. The characters of the message are stored in Rom. The starting and the ending address of the message are sent to the message program. Then the message program will output the character one by one until the ending address reaches.

1. Testing Procedure and result (For initialization)

Step
Action
Result

1
Connect the LCD display and check the connection.
--

2
Turn on the power, the LCD screen should display all dark on the first row and second row is clear.
The entire first row was dark and the second row was clear.

3
When the LCD was initialized, the first row and the second row were clear.
Both rows of the screen were clear.

Testing procedures and results of Password related Circuit

The password related circuit contains mainly a password verification program and a password storage program. The password verification program accepts password from the user and verifies the password with the one saved in ram. The storage program accepts the new password and stores it into the memory. This testing is basically the final testing of the whole project. This testing not only tests the password-related components, but also tests the message display corresponding to different stages and the signal output of the door entry. In the following testing, we preset the master password to '1234' and the user password to '5678'.

2. Testing Procedure and result (for Password related circuit and the whole project)

Step
Action
Result

1
Check the beginning message. The message should be "Enter Password".
When the system started up, the beginning message was displayed on the LCD screen.

2
Character '*' should display for any keypress.
Character '*' was displayed for every key-press.

3
Enter an invalid password and also enter the fifth digit.
The error message appeared and asked for user to press a key to continue. Since the system only allow four-digit password. The fifth digit did not result a '*' to display on the LCD screen.

4
Enter a user password
The message "Open" appeared.

5
Enter a master password
A menu appeared and provided three choices for user.

6
If the master select menu appear, press any key beside 1, 2, and 3.
The system did not response. (The system only allow 1, 2, and 3 in menu select)

7
In the master select menu, press 3.
The beginning message appeared. (choice '3' is exit and back to the beginning)

8
Re-enter the master password and press 2 in the master select menu.
The message "Open" appeared. (choice 2 is open the door)

9
Re-enter the master password and press 1 in the master select menu.
The message "Change Password"

 "1.Master 2.User"

appeared.

10
In the change password menu, press any key beside 1 and 2.
The system did not response. (The system only allow 1 and 2 in change password selection)

11
Press 2 in the change password menu
The message "User Password" appeared.

12
When the "User Password" message appear, enter '2183'.
'* * * *' was displayed on the second row.

13
After the master select menu appear, press 3 and retry the old user password.
The error message appeared and asked for user to press a key to continue. Since the password was changed, the old user password is invalid.

14
Enter the new user password.
The message "Open" appeared.

15
Re-enter the master password and press 1 to select the change password menu. Then press 1 to select master password. When the "Master Password" message appear, enter '7912'.
'* * * *' was displayed on the second row.

17
After the master select menu appear, press 3 and retry the old master password.
The error message appeared and asked for user to press a key to continue. Since the password was changed, the old master password is invalid.

18
Enter the new master password.
A menu appeared and provided three choices for user.

5.0 Further consideration

Speed vs. Area trade-off

The controller entity was compiled using area optimization. The result is documented below.

Entity
Logic cells
Speed (longest path)

Main_con.vhd (area)
721/1152
17.09Mhz

A compromised solution would need to be made when designing the system between speed and area. Since speed is not a major concern in our system, so we focused on area optimization when designing our system. Therefore, a alternative speed test is not necessary.

6.0 CONCLUSION

In this project, we have learned a lot from brainstorming on project title. We have many ideas but some of them are not easy to implement in only three months, and some are not worth to do. However, an Entry system is worth to design. It is because this system is multi-purpose. This system is not only used in commercial business, but also can be used in any housing. By adding simple VHDL codes and corresponding hardware, we can use this system from mass transit with magnetic ticket to private entry.

Moreover, we have learned the usage of Altera Maxplus2 simulation. We have found that this program is quite different from Mentor Graphics in last term EE480. We have a little bit difficulty on simulating. When we have changed one variable in the code, the output will be a huge different from pervious waveform.

Since Altera Flex10k20 is not a one-time-programming chip, we can do as many changes as we need. This is much better than using Actel chip.

Due to time constraint and difficulty on writing code for LCD menu display from hardware, the final product has changed from the project proposal.

Overall, we have gained valuable experience on coming up project title, writing VHDL codes, simulating, and implementing hardware. This project is a successful experience. If time is not a major concern, many features can be added.

APPENDIX

� EMBED Visio.Drawing.4 ���

256 bytes ROM

Altera FPGA

Flex10K20

Advanced Entry System

2x16 LCD Display HD44780

User input interface

KeyPad

User terminal interface

					Display all messages

		LCD 2x16

		Characters

Keypad

1

2

7

(

0

8

5

3

4

6

9

(

� EMBED Visio.Drawing.4 ���

Enter password

* * * *

_973588526.vsd

_973348763.vsd

