

mming
esigns
port
ways.
 While
r (NP)
en they
 us to

cessor
ribed in

he way
y such
tial try
nough

(BNN)

 spatial
 times
formed
et of
an be
 spent
igital
m with
 two

 aid in
used a
Implementing Artificial Neural
Network Designs:

Final Report
Rob Chapman (806461), Steven Sutankayo (224431)

1 Abstract

With the increasing density of programmable hardware and the usability of hardware progra
languages, it has become more attractive to implement, in hardware, a wider range of d
traditionally done in software. Artificial Neural Networks (ANN) is one such area. This re
describes the implementation of two ANN designs. Each ANN is implemented in two different
One ANN is a simple pattern separator and is used to indicate when two inputs are different.
this is not a demanding application for ANNs it illustrates the principles and neuroprocesso
model rather well. The second ANN is used to recognize digits in a seven segment display, wh
are as they should be, and even with a little distortion. The two different implementations allow
explore alternate design trade-offs for implementing an ANN. One implementation is single pro
based while the other consists of many optimized processors. The two ANN designs are desc
VHDL and targeted for the MAX and FLEX chips on the Altera UP1 board.

2 Overview

Conventional digital serial algorithms described in programming languages express much of t
in which we think: serially, connected, thought after thought. Our consciousness is modeled b
programs, but what of the hardware which runs it? Fast digital computers with mega/giga poten
to run these programs fast, but there are still many problems for which they will never be fast e
or even close in skills when compared to a very different hardware platform, a bio-neural net
— the brain.

While the digital computer makes spatial as well as temporal connections in time, a BNN makes
connections in parallel, allowing for highly connected problems to be solved in much shorter
than a digital computer. Problems like image recognition and visual navigating are easily per
by a BNN. There is a well trod path for the digital computer evolution, but, for a certain s
problems, a BNN structure will always be superior. ANNs simulating some qualities of a BNN c
run on a digital computer, but then, the power they gain in pattern emulation, is lost in time
running all the parallel connections serially. What is needed, is to drastically simplify the d
computer, let it simulate a neuron instead of a network, clone many of them and connect the
weights corresponding to an ANN design. This report implements two different ANNs with
different architectures.

The first ANN design was chosen because it was simple and it would be a good debugging
getting the NPNs up and going. The Second ANN design was a little more complicated but it
Final Report April 7, 1998 1

ing a
s that
ld get
a new
mpered

y. Due
gn, the
ted that

as
t LED

ese two
ied and

in. For

 held

 one of
by this
certain
 to a

deling,
 value 0
g all the
more mature interface where we could plug in different NPN implementations without chang
thing other than doing a recompile. This proved to be very powerful, exhibiting the good thing
VHDL was meant for. As a matter of fact, it turned it into a bit of a competition to see who cou
their NPN working first. The single processor NPN won out as it was much easier to modify for
set of weights. The multiple processor NPN lacked a full generic interface and progress was ha
by compiler bugs.

In the original design, the user interface (UI) components were to be a mouse and a VGA displa
to time constraints, these were supplanted with UP1 UI components. Also in the original desi
second ANN was to be a digit recognizer consisting of sixty NPs. Earlier measurements indica
it would be difficult or impossible to fit the NPN inside of the given FLEX chip so the ANN w
modified to work with fourteen NPs and instead of a five by six grid of pixels, a seven segmen
display was used.

This document describes the NP model and then goes through two different architectures. Th
architectures are then used to implement two different ANN designs. Finally the results are tall
a few ideas are explored.

3 Neural Network Components

When transferring ANN designs to hardware, it helps to have a simple model to describe them
our designs, we make use of the neuroprocessor (NP) model described previously[1].

The model presented here for a neuron has one input (Xi), plus all the outputs (Y), feeding into a
summing junction (Σ) whose output feeds a hard limiting activation function where the result is
in the output latch (L).

Each NP has only one input. If there are several inputs, then several NPs will be needed with
them serving as a summing junction to sum several inputs. Although one may be struck
seemingly lavish use of an NP, this is only the model. When translated to hardware,
optimizations will be performed taking advantage of the simplicity of the model, reducing it
minimum circuit (Section 7.7, “NP Reduction,” on page 20).

A more compact version of the model which is used in the paper is:

3.1 Sum, Sign and Latch

Inputs and outputs are binary in value. In hardware they are the logic values 0 and 1. For mo
they are the sign bit of the sum. The logic value 1 represents a negative value and the logic
represents a positive value. The weights are any positive or negative integer value. Summin

YiΣWXi

WY

Ui

Y

Xi L

NP
Final Report April 7, 1998 2

lue is
e latch.
 are:

pective
verted
e. The
f the

 into a

sented
te the
e used

ere N
atrix is

inputs is simply done by adding up the weights, changing the sign of a weight if the input va
negative. The activation function takes the sign of the resultant summation and presents it to th
The latch passes the value on to the output on a positive clock edge. The equations for an NP

(EQ 1)

(EQ 2)

where Xi and Yj are either 1 or -1.

3.2 NP Pseudocode

The requirements of the NP are quite simple and they may be described in pseudocode:
forever
 choice = 0
 sum = weight[choice] * (-2 * input[choice] + 1)
 till choice = N
 choice + 1
 sum + weight[choice] * (-2 * input[choice] + 1)
 do again
 output = sum < 0
do again

A continuous summation is done over the weight matrix negating the weights when the res
input is negative. To transfer the mathematical sign from the input to the weight, the input is con
from the value zero or one to one or minus one by multiplying by minus two and then adding on
weight is then multiplied by this value effectively changing the sign of the weight. At the end o
loop, the sign of the summation is output.

3.3 Topologies

A network of NPs or an NP net (NPN), can be shown by feeding all the inputs and outputs
summing junction. The X and Y inputs and Wx weights for the X inputs are Nx1 matrices while Wy
weights for the Y inputs is a NxN matrix, where N is the number of NPs. All topologies are repre
by this diagram, but when implementing an ANN design, the NPs are usually drawn to illustra
structure eliminating the lines between NPs which have a weight of zero. This technique will b
later to describe two ANN designs.

3.4 Grand Matrix

It is possible to describe all topologies with one sparse weight matrix of dimension (N+1)xN, wh
is the number of NPs in the network. The NPs are numbered from 1 to N. Each row of the m
the transposed weight vector for that NP. The weights for the inputs are in the zeroth column of the

Ui Xi WXi
× Yj WYj i,

×
j 1=

N

∑+=

Yi t 1+() Uisgn=

ΣWX

WY

U Y

Y

X L
Final Report April 7, 1998 3

ck as
ill be
rived in

s.

ndent of

 some
essary

e ANN

nguage
e target
X chip
e UP1

ed the
itable
uction
allows it
s down
e in the

8S84
 NPs.
assive
matrix. The first to the Nth column represents the weights for the outputs of all the NPs fed ba
inputs. This matrix is called the grand matrix (GM). For most, if not all topologies, the GM w
heavily populated with zeros or ones representing the connections between nodes. It is de
vector notation:

(EQ 3)

where P is the input vector containing all the external inputs and the outputs fed back as input

3.4.1 GM Pseudocode

The GM acts like a massively parallel memory where each NP accesses their weights indepe
the other NPs. Pseudocode for this operation is:

for each NP from 1 to N
 NPweightvector = gm[NP]
loop

3.4.2 Minimizing Precision

Given that the target implementation is to be hardware, this gives us certain flexibility and
limitations. Since we are not constrained to 32-bit arithmetic, we can choose the minimum nec
precision for the weights and the sum to reduce the number of bits required to implement th
design. This minimizing allows designs to fit within the limits of the target hardware.

4 Resources

The target language chosen to describe the designs is VHDL. There is good support for the la
and it can span descriptions from simple connections to general behavioural descriptions. Th
programmable hardware is a 2500 gate MAX chip with flash memory and a 20,000 gate FLE
both from Altera. Both of these chips are supplied with a programming environment called th
which Altera has made available to Universities for a reasonable cost.

4.1 VHDL

As a measure of the power of VHDL to capture different design architectures, we implement
ANN designs using two completely different architectures. The first architecture uses wr
computer parts [3] to build an NP, describing the algorithms in program memory and instr
sequences. The NP operates much like a conventional processor and runs a program which
to work through all the nodes calculating the outputs sequentially. The second architecture trim
the NP to a set of minimum pieces to try and create a small enough image so that every nod
design has its own NP.

4.2 FPGA Technology

Two different chips from Altera are used to implement the ANN designs. They are the MAX 712
and the FLEX 10K20-240. The FPGA architectures work well with ANN designs modeled with
There are plenty of input and output pins, internal connections are very cheap for the m

U XWX
T YWY

T+=

X Y WX
T WY

T=

P WGM×=
Final Report April 7, 1998 4

ough to

tes the
into a

s is the

y speed
 goes
quired

twork.
interconnections required, lots of space for NPs on a single chip and the clock rate is high en
do real time reactions.

5 Single NP Implementation

This architecture is similar to a microprocessor-based ANN. A single neuroprocessor compu
sums for each node serially. The ANN's inputs, outputs, and weights are multiplexed
neuroprocessor core.

This has the greatest scalability in terms of remaining small since the only thing that increase
size of the weight matrix.

The trade off here, clearly, is speed. One NP has to be each NP, consecutively, eliminating an
that could be gained by running multiple NPs in parallel. Thus the total run time of the network
up linearly with each NP added. On the other hand, if this is within the time constraints of the re
solution, then it is an acceptable solution.

NOTE: Also there is only one actual NP in this implementation, this section
will refer to each node as an NP to be consistent with the rest of the document.

5.1 Architecture

All weights for the ANN may be stored in a single block representing the grand matrix for the ne

Neuroprocessor
Network

Stack Processor Memory

Grand Matrix
(weights)

NP Program
Final Report April 7, 1998 5

ision

k-based
t of the
GA, the

dth of
d matrix

ock was
xternal"

ifference
iplex the
A network of N NPs requires an N x (N+1) sized grand matrix multiplied by the weight bit prec
to determine the number of bits.

5.2 Design

The nature of the single-NP ANN implementation is that of a processor based system. A stac
processor is the core of the network. It computes the NP sums and interfaces with the res
network via its data and address buses. Since no tri-state buffers are available inside the FP
inputs, outputs, and weights must be multiplexed to drive the shared data bus.

It is our goal to implement neural nets of different size, and it was originally thought that the wi
the data and address busses would increase with the number of NPs, to handle the larger gran
size. This was not necessary. In order to address larger weight arrays, the weight memory bl
made external to the processor's memory space by using a weight register to address the "e
memory. This demonstrated one great advantage of the FPGA implementation, because the d
between the two methods of accessing the weights was merely a few extra processes to mult
grand matrix to the data bus.

A system view:
Final Report April 7, 1998 6

5.2.1 Instructions

This table lists the available instructions for the NP:

Instruction Description Action

psh_mem_DS push the
contents of the
given memory
location to the
data stack

DS_index <= DS_index - 1
DS(index)<= memory(PC+1)

pop_DS_TOP pop the data
stack and store
its contents to
TOP

TOP<= DS(index)
DS_index<= DS_index + 1

sto_DS_memimm store the
contents of the
data stack to the
given memory
location

memory(PC+1)<= DS(index)

sto_memimm_DS_and_sto_DS_TOP fetch the
contents of the
given memory
address and
store to the data
stack, while
storing the
current
 data stack to
TOP

TOP<= DS(index)
DS(index)<=
memory(memory(PC+1))

bra_mem branch to the
given memory
location

PC <= memory(PC+1)

bnzero_imm branch to the
given memory
location if
TOP is nonzero

if TOP != 0
 PC<= memory(PC+1)

bzero_imm branch to the
given memory
location if TOP
is zero

if TOP = 0
 PC<= memory(PC+1)

add add TOP to the
data stack,
place the result
in the data stack

DS(index) <= DS + TOP
Final Report April 7, 1998 7

5.2.2 Program
Pseudocode for the ANN program:

-- START

-- N => number of Neuroprocessors in the ANN

input_ptr = INPUT_START
weight_ptr = WEIGHT_START
np_counter = N

subtract subtract TOP
from the data
stack, place the
result in the
data stack

DS(index) <= DS - TOP

sto_mem_DS store the
contents of the
given memory
location to the
data stack

DS(index <= memory(PC+1)

psh_memptr_DS push the
contents of the
location
referenced by
the given
pointer to the
data stack

DS(index) <=
 memory(memory(memory(PC+1)))

sto_DS_TOP copy the data
stack to TOP

TOP <= DS

swap exchange the
contents of the
data stack and
TOP

TOP <= DS, DS <= TOP

sto_TOP_DS copy TOP to the
data stack

DS <= TOP

incr_ptr increment given
pointer by 1

ptr = memory(memory(PC+1))
memory(ptr) <= memory(ptr) + 1

sto_DS_memptr store the data
stack to the
location
referenced by
the given
pointer

ptr = memory(memory(PC+1))
memory(ptr) <= DS

Instruction Description Action
Final Report April 7, 1998 8

strongly

NP loop:

 input_counter = N
 np_output_ptr = NP_OUT_START
 output_ptr = OUTPUT_START
 sum = 0

 summation loop:

 fetch weight
 fetch input

 if input = 0
 sum = sum - weight
 else
 sum = sum + weight
 end if

 weight_ptr = weight_ptr + 1

 if input_counter = 0 then
 exit loop
 else
 input_counter = input_counter - 1
 end if

 fetch weight
 fetch np_output

 np_output_ptr = np_output_ptr +1

 end summation loop

 #perform hard-limiting function by storing sign bit of resultant sum
 *output_ptr = MSB(sum)
 output_ptr = output_ptr + 1

 if np_counter = 0 then
 exit NP loop
 else
 np_counter = np_counter + 1
 end if

end NP loop

5.2.3 Assembler

An assembler written in Perl was included in the Appendix of the previous document.

5.2.4 Memory and Cycle Time versus NPs

This graph shows what happens as the number of NPs is increased. The time for a layer
Final Report April 7, 1998 9

N.
depends on the topology and it can vary anywhere between the line for an NP and for and NP
Final Report April 7, 1998 10

cision:

one NP
. Each
a set of
ide of

s a truth
This graph show the relationship between memory size and the number of NPs for a fixed pre

6 Multiple NP Implementation

In this architectural approach, there are only three components to the design, but there is
instance for each NP in the ANN design. The GM contains all the weight vectors for all the NPs
NP in the network is a copy of an optimized dedicated processor summing a weight vector for
inputs. The NP is described with a simple behavioural description as this allows many to fit ins
an FPGA. In small designs, such as the ones in this report, it is prudent to implement the GM a
table in VHDL with case statements.

NPN

GM NP
Final Report April 7, 1998 11

h input
er NPs.
t but it

6.1 NP

An NP has 1+N inputs, where N is the number of NPs in the NPN, and one output. The zerot
is an external input to the network. The other N inputs are the sign bits of the outputs of the oth
The weight vector is shown separate from the NP here as it resides in the GM componen
accessed exclusively by one NP.

6.1.1 Architecture

The NP itself is described in about 40 lines of behavioural VHDL code:
entity sevennp is
 port(clock : in std_logic; -- synchronous design
 input : in std_logic; -- external input
 inputs : in iobus; -- inputs from outputs
 weight : in aweight; -- weight from GM
 choice : out achoice; -- which weight from GM
 output : out asum); -- the final sum
end entity;

architecture behaviour of np is
 signal index : achoice; -- for choosing weights
 signal sum, next_sum : asum; -- for summing
 signal np_input : std_logic_vector(0 to N); -- vector for all inputs

 begin

 choice <= index; -- index is passed onto the GM

 np_input(0) <= input; -- actual input
 np_input(1 to N) <= inputs; -- output inputs

 with np_input(index) select -- negate the weight if input is not 0
 next_sum <= weight when '0',
 -weight when others;

 process -- run NP algorithm
 begin
 wait until clock = '1';

 if index = N then -- end of summation
 index <= 0; -- reset index
 output <= sum; -- output final sum; NPN extracts sign
 sum <= next_sum; -- initial sum
 else
 index <= index + 1; -- increment index
 sum <= sum + next_sum; -- sum the weight
 end if;

NP outputinputs

choice weight

Weight vector
Final Report April 7, 1998 12

gram

an input
 or zero

o, vary
xpected

le bit
ponent

 end process;

end architecture behaviour;

This code is compiled down to optimal hardware for executing the NP algorithm. A block dia
which helps illustrate the data flow described in this code is:

The index counter, which increments up to N and then starts again at zero, is used to select
and a weight. The input causes an addition or a subtraction of the weight from the current sum
to flow back into the sum. The sum is passed to the output register when finished.

6.1.2 NP Test

A simple NP test is to connect one input to zero and one while holding all the other inputs to zer
the corresponding weight between 1 and -1 and check the outputs. This table describes an e

input output pattern. The input is a single logic bit while the weight and output are multip
precision values. This was used to verify that the NP code was working before using it as a com
in an NPN.

input weight output

0
1

1

1 -1

0
-1

-1

1 1

+ / -

index

sum

input
mux

weight
vector

output

2 input
mux

+1

0

output

inputs

regis ter
mux

table
alu

Legend
Final Report April 7, 1998 13

ented
ectors

e design
but the
with the
elegant
ligence,

roved
nent
emory

d array
ty was
6.2 GM

Several architectures were attempted for the GM, and as it turns out, for the small ANNs implem
in this report, the truth table approach proved to work best. An example of one of the weight v
described in a VHDL process is:

 process(choice(9)) -- be sensitive to NP9’s choice
 begin
 case choice(9) is -- supply the weight vector
 when 2 => weight(9) <= one;
 when 6 => weight(9) <= minus1;
 when others => weight(9) <= zero;
 end case;
 end process;

In the above code, the weight values have been implemented as constants. This is part of th
which is in flux. It is a matter of convenience to be able to express the weights as integers
current design uses std_logic_vectors as the signal types and problems were experienced
conversion functions on negative numbers. So as an inconvenient but certainly less than
solution, the weights have been coded as constants of the type std_logic_vector. With due di
a more elegant method, that the compiler agrees with, could be found.

The ROM and RAM megafunctions supplied with the Altera compiler tools were tried but they p
to be very capricious and difficult to get just right. Their benefit is that they allow the GM compo
to be made generic and therefore usable in many designs by supplying the weights in a m
initialization file.

On one of the target chips, it is possible to have logic implemented in the on-chip embedde
blocks (EAB)s. For the second ANN, this option was attempted for the GM but the EAB capaci
exceeded by a small margin so this compile option was not used.

Grand
Matr ix

choice

weight
vector
Final Report April 7, 1998 14

ontains
gn bit
taken

rent
eneric.

w set
emory

L file
nction

 with
t but it
cussed

uch an
6.3 NPN

The NPN component mostly consists of wires and instances of the NPs and the GM. It also c
the activation functions for all the NPs (extract sign bits) which is simply just a wire for each si
from the outputs. The full precision of the NP outputs is available for monitoring. This is
advantage of later by the user interface in the two ANN designs.

6.4 Modifying for Different ANNs

This multiple NP design provided some difficulty in moving to different ANN designs and diffe
chips. Some of the difficulty exists because the architecture is not mature enough to be fully g

Another difficulty arises in modifying the VHDL code for the GM as it is hand coded for each ne
of weights in the form of case statements. Two ways around this are to either make use of a m
megafunction, which won’t be portable across different compilers, or to generate the VHD
automatically from a set of weights. In the single NP design, the mif file for the memory megafu
is automatically generated from the GM.

For the smaller target chip, there was room left for only two NPs so they were muxed to the GM
a counter cycling them through as different NPs. This complicated the design a certain amoun
was necessary to fit the NPN and the user interface into the chip. This design optimization is dis
further in Section 11.2.1, “One NP per String,” on page 27. This is a basic block diagram for s
architecture:

GM NPs
extract

sign
b i t s

output

inputs

outputs

NP1

NP2

Grand
Matr ix

weight
mux

weight
mux

1 3 5

2 4
outputs

input
mux

input
mux

inputs

2 4

1 3 5

outputs
Final Report April 7, 1998 15

an be
r, adds

en the
n XOR
, as the
ntrol

s.

er and
esting.
ithout
7 A Difference Detector

Detecting a single input pattern with an ANN is fairly simple and with the proper training set, it c
detected from a vast array of input patterns. Detecting when inputs are different, howeve
another layer to the ANN design.

This ANN design implements a simple two input difference detector which outputs a one wh
inputs are different and a zero when they are the same. In logic, this function is provided by a
gate which is a two level boolean logic equation. As a result, the NPN is referred to, in places
XOR NPN. The XOR UI is interfaced to two dip switches for the inputs, two push buttons to co
the NP monitoring and two seven segment led digit displays to display the output and NP sum

7.1 Component Hierarchy

The user interface is the top level entity. It creates instances of the NPN, the LED display driv
the VGA driver. The VGA driver was not used and a stub component was used during the t
With this component style architecture, different NPN components can easily be substituted w
affecting the other components.

XOR NPN
in1

in2
output XOR UI

PB1 PB2

dip switches

User Interface

NPN LED Digits VGA driver
Final Report April 7, 1998 16

rate the

h
he next
n offset
). It’s
hows

d all the
in the

 we can

7.2 NPN Design

In this ANN design there are few connections so it is easy to draw the NPs connected to illust
structure. The two inputs, in1 and in2 , accept a binary value and output outputs a binary value. Eac
NP outputs a logic zero or one which is interpreted mathematically as a one or minus one by t
NP. The fifth NP uses one input as an offset value to obtain the proper output (this use of a
value to shift the threshold of the NP is discussed in Section 7.7, “NP Reduction,” on page 20
input is tied to logic zero which is mathematically one while the weight is set to -1. This table s
all the possible inputs, the output and the NP summations:

As required, the output is one when the inputs are different and zero when they are the same.

Each summation is the sum of each weight times its input. Each NP has one external input an
outputs from all the NPs as inputs. The GM containing all of the weight vectors for the NPs
difference detector NPN is:

7.2.1 Weight Precision

Since the weights range from -1 to 1, only two bits are required to encode the weights. And as

Logic: Response Math: Summations

in1 in2 output NP1 NP2 NP3 NP4 NP5

0 0 0 1 1 0 0 1

0 1 1 1 -1 2 -2 -1

1 0 1 -1 1 -2 2 -1

1 1 0 -1 -1 0 0 1

Weight
vectors

Input source

external output1 output2 output3 output4 output5

NP1 1 0 0 0 0 0

NP2 1 0 0 0 0 0

NP3 0 1 -1 0 0 0

NP4 0 -1 1 0 0 0

NP5 -1 0 0 1 1 0

NP1

NP2

NP3

NP4

NP5

1

1

1

- 1

- 1

1

1

1

- 1 output

i n1

in2

0 (1)
Final Report April 7, 1998 17

.

terface
nd two

ys the
ot on

t of the
 inputs
with the
s minus

nent.
 in the
oved to

duce a
this UI
formed
second.
e switch
ted and
ed. The
and the
e push

see from the summations, the sums range from -2 to 2 requiring a precision of 3 bits.

7.3 Simulation

The timing diagram for the MAX implementation of the XOR NPN is included on the next page

7.4 User Interface Design

For simplicity and to reduce the scope of the project, we decided to make use of the user in
components supplied on the UP1 board. This consists of eight dip-switches, two push-button a
seven segment displays:

The two displays are used to monitor the NP sums and the NPN output. The left digit displa
current NP number which is being examined while the right digit displays its final sum. The d
the right digit is the sign since there is no sign segment. The dot on the left digit is the outpu
network. So reading this display tells us that the output of the network is one, indicating that the
are different, and the final sum of NP3 is -2. The NP number is incremented and decremented
left and right push-button. Two of the dip switches are used as inputs to the network where up i
one and down is plus one.

When digging through the user interface file, one will find a declaration of a VGA driver compo
It was intended to be used for a visually appealing and informative display of the network but
end, it was not used due to time constraints. As it turned out, the onboard UI components pr
be quite adequate for the task.

7.4.1 Push Buttons

The push buttons are momentary contact switches. The circuit interfacing to them must pro
single activation for a single press and it must provide debouncing as well. The circuit used in
is a little bulkier and less refined than the one used in the second ANN UI. Nonetheless, it per
adequately. It is based on the push button providing a continuous pressed signal for one milli
This done by counting up when pressed and counting down when not pressed. So when th
bounces, the count will go up and down. When a terminal count is reached the counting is hal
the NP number is incremented or decremented depending on which push button was press
counting is re-enabled when the push button is released. In this UI, the push button code
incrementing and decrementing of the NP number is all within one process. In the second UI, th
button process is factored out.

7.5 Test

To test the user interface, a stub NPN was used:
-- XOR NPN stub Rob Chapman Mar 7, 1998

NP#

output

magnitude

sign
Final Report April 7, 1998 18

Final Report April 7, 1998 19

he NP
 for the

 It was
eforms,
ey were
ind the
e due

bugging

aller

impler
perset of
t gates
Library IEEE;

use IEEE.STD_Logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

use work.params.all;

entity xor_npn is

 port (in1, in2, clock : in std_logic;

 output : out std_logic;

 outputs : buffer std_logic_vector(14 downto 0));

end entity;

architecture stub of xor_npn is

begin

 output <= ’1’;

 outputs(2 downto 0) <= "000";

 outputs(5 downto 3) <= "001";

 outputs(8 downto 6) <= "010";

 outputs(11 downto 9) <= "111";

 outputs(14 downto 12) <= "110";

end stub;

This provided the user interface with the necessary stimulus to test out the functionality. T
number was incremented and decremented with the push buttons and the display was verified
proper digits. The UI was debugged first, as this gives us a powerful tool to debug the NPNs.
a lot faster to download the NPN and run it on the board than it was to setup the simulation wav
run them and then try and interpret the results. The UI gave a direct read of the NP sums and th
compared to the sums from the table. If they were in error, then it was usually quite easy to f
fault in the VHDL code. For the single NP architecture where simulation was quite cumbersom
to the number of components and the number of cycles required, the UI was a much better de
tool in helping straighten out bus wiring and other problems.

7.6 MAX and FLEX

The ANN design was implemented in both chips with the multiple NP design (modified for the sm
chip) going in the MAX chip and the single NP design in the FLEX chip.

7.7 NP Reduction

For certain weight vectors for an NP, the NP (and its weights) can be replaced with s
components. This allows the hardware to be reduced and it also relates the NP as a sort of su
logic gates with equivalent logic gates for certain configurations. This table lists some equivalen
Final Report April 7, 1998 20

 Recall
g these

doesn’t
utput is
t is one.
 math

ives the
e can

logic

for certain weight vectors.

Let’s have a closer look and see what’s going on with the AND and especially the OR gate.
that a logic zero is a mathematical one and a logic one is a mathematical minus one. Pluggin
values into an NP with two inputs with weights of one, and obtaining the outputs we get:

We see that we get three different values for the summation. Since addition is commutative, it
matter which input is one when the inputs are different. For three of the cases the sign of the o
positive so the logic output is zero. For the last case, the output is negative so the logic outpu
Now when we add a third input which is tied to logic zero and it has a weight of -1, this shifts the
values down by one so only the first case is positive and the last three are negative. This g
equivalent of an OR gate. In effect, the third input acts like a threshold shifter and with this w
propose that an OR gate is an AND gate with a different threshold.

Now if we apply these NP reductions to the XOR NPN, we can replace it with the following

NP circuit with weights Equivalent circuit Comment

When there is only one non-
zero weight and it is a one,

then the equivalent circuit is a
wire.

When there is only one
weight and it is minus one,

then the equivalent is just an
inverter.

When all the weights are zero,
then there is no connection.

If there are two inputs and
they both have weights of one,
then the equivalent circuit is

an AND gate.

If there are two inputs with a
weight of one and one input
tied to zero with a weight of
minus 1, then the equivalent

gate is an OR gate.

Inputs Outputs

Logic Math Math Logic

0 0 1 1 2 0

0 1 1 -1 0 0

1 0 -1 1 0 0

1 1 -1 -1 -2 1

NP1

NP- 1

NP0

NP
1
1

NP
1
1
- 10(1)
Final Report April 7, 1998 21

. The
e ANN
he user

 the NP

d seven
circuit:

Which anyone in a basic logic course would recognize as an XOR gate:

8 A Digit Recognizer

This ANN design is a little more complex with seven inputs, seven outputs and fourteen NPs
inputs and outputs are to the two seven segment displays on the UP1 board. The goal of th
design is to recognize the digits zero, one and two, even if there are extra segments on or off. T
interface uses all eight dip switches to deal with these extra inputs and outputs and still display
final sums.

8.1 Design

Using the same ANN design procedure described previously [1], we see that for seven inputs an
Final Report April 7, 1998 22

lay for
that are

].

asically,
we are
hts are

are
outputs, we will need fourteen NPs connected in a feed forward network:

The numbering of the NPs past NP9 is due to the limitations of the seven segment disp
displaying letters of the alphabet or more than one digit. These are the hexadecimal digits
displayed in the monitor mode.

8.2 Weight Calculation

The calculation of the weights is done by using supervised Hebbian learning as described in [1

8.2.1 Hebbian Learning

Hebbian learning uses the inputs and outputs to directly calculate the weights. The inputs are b
multiplied by the outputs and the resultant values are used as the weight values. Since
implementing autoassociative memory, our outputs are the same as our inputs. The weig
calculated by the formula:

(EQ 4)

where P is the matrix of all the input patterns and P+ is the pseudoinverse of P. Since the inputs
not orthogonal, we have used the pseudoinverse instead of the transpose.

NP1

NP2

NP8

NP9

1

1

in1

in2

NP3

NP4

1

1

in3

in4

NP5

NP6

1

1

in5

in6

NP71
in7

NPA

NPb

NPC

NPd

NPE

out1

out2

out3

out4

out5

out6

out7

Calculate
weights with
Hebb's Rule

WY P P+×=
Final Report April 7, 1998 23

ent and

eights,
atrix
m:

his can

ber and
8.2.2 Input Patterns

The input patterns for the digits 0, 1 and 2 are:

Translating these patterns into a matrix of 1 and -1, where -1 is used to represent an OFF segm
1 is used to present an ON segment, we have:

(EQ 5)

The input matrix is presented transposed to put it into a horizontal form. To calculate the w
MATLAB is used as it has extensive support for matrices and matrix functions. The weight m
was calculated and converted from floating point to integers with the following MATLAB progra

>> W=P*pinv(P)

W =

 0.2941 0.1176 -0.0588 0.2941 0.2941 0.1176 0.0588
 0.1176 0.6471 0.1765 0.1176 0.1176 -0.3529 -0.1765
 -0.0588 0.1765 0.4118 -0.0588 -0.0588 0.1765 -0.4118
 0.2941 0.1176 -0.0588 0.2941 0.2941 0.1176 0.0588
 0.2941 0.1176 -0.0588 0.2941 0.2941 0.1176 0.0588
 0.1176 -0.3529 0.1765 0.1176 0.1176 0.6471 -0.1765
 0.0588 -0.1765 -0.4118 0.0588 0.0588 -0.1765 0.4118

>> round(20*W)

ans =

 6 2 -1 6 6 2 1
 2 13 4 2 2 -7 -4
 -1 4 8 -1 -1 4 -8
 6 2 -1 6 6 2 1
 6 2 -1 6 6 2 1
 2 -7 4 2 2 13 -4
 1 -4 -8 1 1 -4 8

Smaller weights could be tried to find the optimal balance between precision and accuracy. T
be done with a simulator and a scripting interface.

8.3 User Interface

The two seven segment displays are used to display either the inputs and outputs or the NP num

P
1 1 1 1 1 1 1–

1– 1 1 1– 1– 1– 1–

1 1 1– 1 1 1– 1

T

=

Final Report April 7, 1998 24

 the

umber.
he left
 button

ognized
ssible

t patterns

 was
s were

it’s final sum as in the first ANN UI. Dip switch eight controls the display mode. If it is up, then

sums are available with the left and right push buttons incrementing and decrementing the NP n
When it is down, the inputs are the left digit and the outputs are the right digit. In this mode, t
push button cycles through eleven different test patterns for the inputs. While the right push
transfers whatever is on the first seven dip switches to the inputs. The mapping is as follows:

There are eleven test patterns. They include the digits zero, one and two which should be rec
and then the top halves of the digits followed by a few of the one hundred and twenty-two po
other patterns. As a comparison, some test subjects were asked to try and recognize the tes
as well. In general the test subjects and the ANN design were in agreement.

8.4 Test

Once the ANN was designed, it was simulated in Timbre [1]. The output of the simulation
compared to the output of the Seven NPN to verify proper operation. Eight of the eleven pattern

Dip Switch 8 is down Dip Switch 8 is Up

Inputs

 _
| |
|_|

 |
 |

 _
 _|
|_

 _
| |

 |

 _
 _|

 _
|_|
|_|

 _|
 |

 _
|_|
|_

 _
 _|
|_|

 _
| |
|_

Outputs

 _
| |
|_|

 |
 |

 _
 _|
|_

| |
 |

 |
 |

 _|

 _
| |
|_|

 |
 |

 _
|_|
|_

 _
 _|
|_

 _
| |
|_|

Inputs Outputs NP# Sum

sign

PB1 PB2

Test
SwitchesPatterns
Show Dip

PB1 PB2

Next Previous
NP NP

1

2

3

4

5

6 7
Final Report April 7, 1998 25

t similar
s work
 same

umber
 with
 to the
 of the

 here for

 number
for the
uld be

using
different
 for:

recognized as a digit while three patterns weren’t recognized as anything and produced outpu
to the input. This behaviour was duplicated with the implemented NPN. As done in the previou
[1], the precision of the weights could be reduced to try and improve the recognition while at the
time reducing the hardware requirements of the circuit.

8.5 Extending the Digit Recognizer

It is quite easy to extend the digit recognizer to more complex digit displays by increasing the n
of NPs to match the inputs. An ANN design for a five by six pixel display which uses sixty NPs
a weight precision of minus one to one, was compiled to compare the size of the resultant NPN
previous designs. Using the single NP architecture, the NPN took up 67% of the LCs and 25%
memory bits in a FLEX 10K20 part.

9 Metrics

These measurements were made on the different designs and architectures and are tabled
reference:

As can be expected, in the single NP implementation, the ratio of LCs to NPs goes down as the
of NPs is increased. And for the multiple NP implementation it increases. The same is true
number of flip flops per NP. With more time, the size trade-off between the implementations co
further explored and better understood.

10 Summary

This project explored two different ANN designs and implemented them in two different ways
the NP model. The results are encouraging and create many new areas to explore. The two
implementations are just two of many possible architectures one can consider when optimizing

• Extensibility - how easy can the NPN be extended?

• Reconfigurability - how easy can the NPN be changed?

• Response Time - what are the requirements for real time?

• Propagation Delay - what are the constraints for delay?

• Resource Requirements - what resources are available for the ANN implementation?

• Simulation - is simulation important?

Architecture Entity number of NPs LCs LCs/NPs flip flops ffs/NPs memory bits

multiple NPs

XOR NPN 5 76 15.2 38 7.6 0

Seven NPN 14 284 20.3 154 11 0

Sixty NPN 60 a

a. figures unavailable since the compiler could not compile the design. Strange errors.

single NP

XOR NPN 5 544 108.8 177 35.4 1168

Seven NPN 14 645 46 244 17.4 3072

Sixty NPN 60 783 13 264 4.4 8344

User Interface
XOR UI 5 124

n/a
37

n/a
0

Seven UI 14 155 33 0
Final Report April 7, 1998 26

rocess.

 ANN
re of:

 in the

can be
r string
e one per
 S NPs

used in
s with

esearch
11 What’s Next

Now that the ideas have been taken all the way down to the silicon, it is time to look at the p
What ways can it be improved?

11.1 Automation

Automation is key in improving all parts of the process. One can picture a black box where an
design is fed in one side and a FLEX sram object file pops out the other side. It would take ca
• Design Transfer from ANN Parameters
• Topology
• Precision
• Inputs
• Outputs
• Graphical

11.2 Optimization

Optimization is also key in making the technology more useful. This can be directly measured
cost to implement the ANN design in terms of logic cells and flip flops.

11.2.1 One NP per String

As explored in the previous document (simulation documentation), the topology of a network
implemented with one NP per node or one per string when using multiple NPs. The one pe
approach is compelling because propagation delay and response time can be the same. In th
string approach, one NP is all the NPs that are serially connected to it. At most, there will be
where S is the maximum number of parallel operating peer NPs.

11.2.2 Statistical Addition

The Single NP implementation uses Statistical Addition [3] to save gates. This could also be
the multiple NP implementation. It would be interesting to see the timing and speed difference
this change.

11.3 Schedule

There are still a few parts of the project which could be completed and are areas for further r
Final Report April 7, 1998 27

l

and exploration. This table is a collection of some of the tasks:

12 References

1. EE563 Project Document: "Using A Neuroprocessor Model for Describing Artificial Neura
Nets", http://www.compusmart.ab.ca/rc/Papers/NeuroprocessorModeling.pdf

2. EE602 Project Document: "A Stack Processor: Synthesis", http://www.compusmart.ab.ca/rc/
Papers/spsynthesis.pdf

3. EE635 Project Document: "A Writable Computer", http://www.compusmart.ab.ca/rc/Papers/
writablecomputer.pdf

4. Paper "Simulating a Neuroprocessor", http://www.compusmart.ab.ca/rc/Papers/Simulating a
Neuroprocessor.pdf

Task

1. simplify using generics and generates for NP and NPN

2. replace adder in NP with statistical adder

3. automate the generation of the VHDL code from the GM

4. add multi-level optimization

5. use dynamic weights

6. incorporate backprop net for dynamic learning
Final Report April 7, 1998 28

Appendices

A VHDL Code for Multiple NP Design

A.1 Xor NPN
-- Difference detector NP network Rob Chapman Mar 7, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_npn is
 port (in1, in2, clock : in std_logic;
 output : out std_logic;
 outputs : buffer std_logic_vector(14 downto 0));
end entity;

architecture structure of xor_npn is

 component xor_np
 port(clock : in std_logic;
 inputs : in std_logic_vector(5 downto 0);
 weight : in integer range -1 to 1;
 choice : out integer range 0 to 7;
 output : out integer range -2 to 2);
 end component;

 component xor_gm
 port(np1, np2, np3, np4, np5 : in integer range 0 to 7;
 w1, w2, w3, w4, w5 : out integer range -1 to 1);
 end component;

 signal cycle135, cycle244 : natural range 0 to 2;

 signal input1, input2 : std_logic_vector(5 downto 0); -- NP inputs

 signal out1, out2, out3, out4, out5 : std_logic_vector(2 downto 0);

 signal choice135, choice244 : natural range 0 to 5;
 signal w1, w2, w3, w4, w5, weight135, weight244 : integer range -1 to 1;

 signal out135, out244: integer range -2 to 2; -- interconnects

begin

 -- cycle for summing one input and 5 outputs is 6 clocks long
 process
 begin
 wait until clock = '1';

 if choice135 = 5 then -- np1 has reached final sum
 case cycle135 is -- on to next cycle
 when 0 => cycle135 <= 1;
 when 1 => cycle135 <= 2;
 when others => cycle135 <= 0;
 end case;
 end if;

 if choice244 = 5 then -- np2 has reached final sum
Final Report April 7, 1998 29

 case cycle244 is -- next cycle
 when 0 => cycle244 <= 1;
 when 1 => cycle244 <= 2;
 when others => cycle244 <= 0;
 end case;
 end if;

 end process;

 -- create input vectors for NPs
 with cycle135 select -- get current input vector for NP1
 input1 <= "00000"&in1 when 0,
 "000"&out2(2)&out1(2)&"0" when 1,
 "0"&out4(2)&out3(2)&"010" when others;

 with cycle244 select -- get current input vector for NP2
 input2 <= "00000"&in2 when 0,
 "000"&out2(2)&out1(2)&"0" when others;

 with cycle135 select -- select GM interface for NP1
 weight135 <= w1 when 0,
 w3 when 1,
 w5 when others;

 with cycle244 select -- select GM interface for NP2
 weight244 <= w2 when 0,
 w4 when others;

 -- transfer output of NP1 and NP2 to the current NP outputs
 -- Note: done on first clock of beginning of next summation. This
 -- is ok because the first clock is used by the NPs to
 -- check the input. By the second clock, the outputs are
 -- ready to be used as inputs to the NPs.
 begin
 wait until clock = '1';
 if choice135 = 0 then -- for NP1
 case cycle135 is
 when 0 =>
 out5 <= conv_std_logic_vector(out135,3);
 when 1 =>
 out1 <= conv_std_logic_vector(out135,3);
 when others =>
 out3 <= conv_std_logic_vector(out135,3);
 end case;
 end if;

 if choice244 = 0 then -- for NP2
 if cycle244 = 1 then
 out2 <= conv_std_logic_vector(out244,3);
 else
 out4 <= conv_std_logic_vector(out244,3);
 end if;
 end if;

 end process;

 -- map in the weights for all
 Grand_Matrix : xor_gm
 port map (np1 => choice135, np2 => choice244, np3 => choice135,
 np4 => choice244, np5 => choice135,
 w1 => w1, w2 => w2, w3 => w3, w4 => w4, w5 => w5);

 -- connect up the neuroprocessors
 NP1 : xor_np -- neuroprocessor 1,3,5
Final Report April 7, 1998 30

 port map (clock => clock,
 inputs => input1,
 weight => weight135,
 choice => choice135,
 output => out135);

 NP2 : xor_np -- neuroprocessor 2,4
 port map (clock => clock,
 inputs => input2,
 weight => weight244,
 choice => choice244,
 output => out244);

 -- assign output sums
 outputs(2 downto 0) <= out1;
 outputs(5 downto 3) <= out2;
 outputs(8 downto 6) <= out3;
 outputs(11 downto 9) <= out4;
 outputs(14 downto 12) <= out5;
 output <= out5(2);

end structure;

-- Neuroprocessor for "Difference Detector" NPN Rob Chapman Mar 10, 1998

 -- This file contains a behavioural description of a neuroprocessor for
 -- the difference dectector NPN.

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_np is
 port(clock : in std_logic;
 inputs : in std_logic_vector(5 downto 0);
 weight : in integer range -1 to 1; -- interface to GM
 choice : out integer range 0 to 7; -- ditto
 output : out integer range -2 to 2);
end entity xor_np;

architecture behaviour of xor_np is
 signal index : natural range 0 to 5;
 signal sum : integer range -2 to 2;
 signal next_sum : integer range -1 to 1;

 begin

 choice <= index;

 with inputs(index) select
 next_sum <= weight when '0',
 -weight when others;

 process
 begin
 wait until clock = '1';

 if index = 5 then
 index <= 0;
 output <= sum;
 sum <= next_sum;
 else
 index <= index + 1;
 sum <= sum + next_sum;
Final Report April 7, 1998 31

 end if;

 end process;

end architecture behaviour;

-- The Grand Matrix for the "detect a difference" NPN Rob Chapman Mar 9, 1998

 -- This file contains all the weights for the detect a difference
 -- neuroprocessor network. A truth table is used to represent the
 -- values. The interface uses one input vector and one output vector
 -- which is partitioned into individual weight vectors for each NP.

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_gm is
 port(np1, np2, np3, np4, np5 : in integer range 0 to 7;
 w1, w2, w3, w4, w5 : out integer range -1 to 1);
end entity xor_gm;

architecture truth_table of xor_gm is
 begin

 -- the individual weights
 process(np1)
 begin
 case np1 is
 when 0 => w1 <= 1;
 when others => w1 <= 0;
 end case;
 end process;

 process(np2)
 begin
 case np2 is
 when 0 => w2 <= 1;
 when others => w2 <= 0;
 end case;
 end process;

 process(np3)
 begin
 case np3 is
 when 1 => w3 <= 1;
 when 2 => w3 <= -1;
 when others => w3 <= 0;
 end case;
 end process;

 process(np4)
 begin
 case np4 is
 when 1 => w4 <= -1;
 when 2 => w4 <= 1;
 when others => w4 <= 0;
 end case;
 end process;

 process(np5)
 begin
 case np5 is
 when 0 => w5 <= -1;
Final Report April 7, 1998 32

 when 3 => w5 <= 1;
 when 4 => w5 <= 1;
 when others => w5 <= 0;
 end case;
 end process;

end architecture truth_table;

A.2 Seven NPN
-- Network parameters Rob Chapman Mar 27, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

-- parameterize the network
package params is

 constant N : positive := 14; -- number of neuroprocessors
 constant sumbits : positive := 6; -- precision of the sums
 constant weightbits : positive := 6; -- precision of the weights

 subtype achoice is natural range 0 to N;
 subtype aweight is std_logic_vector(weightbits-1 downto 0);
 subtype asum is std_logic_vector(sumbits-1 downto 0);
 subtype iobus is std_logic_vector(0 to N);

 type choices is array (natural range N downto 0) of achoice;
 type weights is array (natural range N downto 0) of aweight;
 type sums is array (natural range N downto 0) of asum;

end package;

-- Digit recognizer NP network Rob Chapman Mar 7, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity sevennpn is
 port (clock : in std_logic;
 input : in iobus;
 output : buffer iobus;
 outputs : buffer sums);
end entity;

architecture structure of sevennpn is

 component sevennp
 port(clock : in std_logic;
 input : in std_logic; -- input for NP
 inputs : in iobus; -- inputs from other NPs
 weight : in aweight; -- interface to GM
 choice : out achoice; -- ditto
 output : out asum); -- final sum
 end component;

 component sevengm
 port(choice : in choices;
Final Report April 7, 1998 33

 weight : out weights);
 end component;

 signal weight : weights; -- weight bus
 signal choice : choices; -- choice bus

begin

 -- bug2 avoidance for Altera compiler
 choice(0) <= 15;
 outputs(0) <= "000000";
 output(0) <= '0';

 -- map in the weights for all
 Grand_Matrix : sevengm
 port map (choice => choice, weight => weight);

 network:
 for np in 1 to N generate
 begin
 node : sevennp
 port map (clock => clock,
 input => input(np),
 inputs => output,
 weight => weight(np),
 choice => choice(np),
 output => outputs(np));
 end generate;

 -- connect up output bits to sign bit of final sums
 the_outputs:
 for np in 1 to N generate
 begin
 process(outputs(np))
 variable tmp : asum;
 begin
 tmp := outputs(np);
 output(np) <= tmp(sumbits-1);
 end process;
 end generate;

end structure;

-- Neuroprocessor Rob Chapman Mar 10, 1998

 -- This file contains a behavioural description of a neuroprocessor

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity sevennp is
 port(clock : in std_logic;
 input : in std_logic;
 inputs : in iobus;
 weight : in aweight; -- interface to GM
 choice : out achoice; -- ditto
 output : out asum);
end entity;

architecture behaviour of sevennp is
 signal index : achoice;
Final Report April 7, 1998 34

 signal sum : asum;
 signal next_sum : aweight;
 signal np_input : std_logic_vector(0 to N);

 begin

 choice <= index;

 np_input(0) <= input;
 np_input(1 to N) <= inputs;

 with np_input(index) select
 next_sum <= weight when '0',
 -weight when others;

 process
 begin
 wait until clock = '1';

 if index = N then
 index <= 0;
 output <= sum;
 sum <= next_sum;
 else
 index <= index + 1;
 sum <= sum + next_sum;
 end if;

 end process;

end architecture behaviour;

-- The Grand Matrix for NPN Rob Chapman Mar 9, 1998

 -- This file contains all the weights for the neuroprocessor network.
 -- A truth table is used to represent the values. The interface uses
 -- one input vector and one output vector which is partitioned int
 -- individual weight vectors for each NP.

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity sevengm is
 port(choice : in choices;
 weight : out weights);
end entity;

architecture truth_table of sevengm is

 -- Weight values used
 constant zero : aweight := "000000"; -- conv_std_logic_vector(0,weight-
bits);
 constant one : aweight := "000001"; -- conv_std_logic_vector(1,weightbits);
 constant two : aweight := "000010";
 constant three : aweight := "000011";
 constant four : aweight := "000100";
 constant five : aweight := "000101";
 constant six : aweight := "000110";
 constant seven : aweight := "000111";
 constant eight : aweight := "001000";
 constant nine : aweight := "001001";
Final Report April 7, 1998 35

 constant ten : aweight := "001010";
 constant eleven : aweight := "001011";
 constant twelve : aweight := "001100";
 constant thirteen : aweight := "001101";
 constant minus1 : aweight := "111111"; -- conv_std_logic_vector(-1,weight-
bits);
 constant minus2 : aweight := "111110";
 constant minus3 : aweight := "111101";
 constant minus4 : aweight := "111100";
 constant minus5 : aweight := "111011";
 constant minus6 : aweight := "111010";
 constant minus7 : aweight := "111001";
 constant minus8 : aweight := "111000";

 begin

 -- bug2 avoidance for Altera compiler
 weight(0) <= zero;

 -- the input weights
 in_weights:
 for index in 1 to 7 generate
 process(choice(index))
 begin
 case choice(index) is
 when 0 => weight(index) <= one;
 when others => weight(index) <= zero;
 end case;
 end process;
 end generate;

 -- second layer weights
 process(choice(8))
 begin
 case choice(8) is
 when 1 => weight(8) <= six;
 when 2 => weight(8) <= two;
 when 3 => weight(8) <= minus1;
 when 4 => weight(8) <= six;
 when 5 => weight(8) <= six;
 when 6 => weight(8) <= two;
 when 7 => weight(8) <= one;
 when others => weight(8) <= zero;
 end case;
 end process;

 process(choice(9))
 begin
 case choice(9) is
 when 1 => weight(9) <= two;
 when 2 => weight(9) <= thirteen;
 when 3 => weight(9) <= four;
 when 4 => weight(9) <= two;
 when 5 => weight(9) <= two;
 when 6 => weight(9) <= minus7;
 when 7 => weight(9) <= minus4;
 when others => weight(9) <= zero;
 end case;
 end process;

 process(choice(10))
 begin
 case choice(10) is
 when 1 => weight(10) <= minus1;
 when 2 => weight(10) <= four;
Final Report April 7, 1998 36

 when 3 => weight(10) <= eight;
 when 4 => weight(10) <= minus1;
 when 5 => weight(10) <= minus1;
 when 6 => weight(10) <= four;
 when 7 => weight(10) <= minus8;
 when others => weight(10) <= zero;
 end case;
 end process;

 process(choice(11))
 begin
 case choice(11) is
 when 1 => weight(11) <= six;
 when 2 => weight(11) <= two;
 when 3 => weight(11) <= minus1;
 when 4 => weight(11) <= six;
 when 5 => weight(11) <= six;
 when 6 => weight(11) <= two;
 when 7 => weight(11) <= one;
 when others => weight(11) <= zero;
 end case;
 end process;

 process(choice(12))
 begin
 case choice(12) is
 when 1 => weight(12) <= six;
 when 2 => weight(12) <= two;
 when 3 => weight(12) <= minus1;
 when 4 => weight(12) <= six;
 when 5 => weight(12) <= six;
 when 6 => weight(12) <= two;
 when 7 => weight(12) <= one;
 when others => weight(12) <= zero;
 end case;
 end process;

 process(choice(13))
 begin
 case choice(13) is
 when 1 => weight(13) <= two;
 when 2 => weight(13) <= minus7;
 when 3 => weight(13) <= four;
 when 4 => weight(13) <= two;
 when 5 => weight(13) <= two;
 when 6 => weight(13) <= thirteen;
 when 7 => weight(13) <= minus4;
 when others => weight(13) <= zero;
 end case;
 end process;

 process(choice(14))
 begin
 case choice(14) is
 when 1 => weight(14) <= one;
 when 2 => weight(14) <= minus4;
 when 3 => weight(14) <= minus8;
 when 4 => weight(14) <= one;
 when 5 => weight(14) <= one;
 when 6 => weight(14) <= minus4;
 when 7 => weight(14) <= eight;
 when others => weight(14) <= zero;
 end case;
 end process;
Final Report April 7, 1998 37

end architecture truth_table;

B VHDL Code for Single NP Design

B.1 Seven NPN
detect-a-difference circuit:

seven.vhd
 +sevenui.vhd
 +params.vhd
 +seven_npn_sp.vhd
 +seven_npn_defs.vhd
 +params.vhd
 +memory_seven.vhd
 +sevengmnew.mif
 +stack_processor.vhd
 +np_program_seven.mif

-- Seven segment digit recognizer Rob Chapman Mar 25, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity seven is
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 led : out std_logic_vector(1 to 16));
end;

architecture structure of seven is

 component seven_npn_sp
 port (input : in iobus;
 clock : in std_logic;
 output : out iobus;
 outputs : out sums);
 end component;

 component sevenui
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 inputs_to_npn : out iobus;
 output_from_npn : in iobus;
 outputs : in sums;
 led : out std_logic_vector(1 to 16));
 end component;

 signal pulse, quickpulse : std_logic; -- for setting network heartbeat
 signal outputs : sums;
 signal input, output : iobus;

begin

 -- bug2 avoidance for Altera compiler
Final Report April 7, 1998 38

-- input(0) <= '0';

 -- set the pulse for the nps; could be event triggered too for low
 -- power and instant response to input change
 HB : process
 begin
 wait until clock = '1';
 if quickpulse = '0' then
 quickpulse <= '1';
 else
 quickpulse <= '0';
 end if;
 end process;

 right_ventricle : process
 begin
 wait until quickpulse = '1';
 if pulse = '0' then
 pulse <= '1';
 else
 pulse <= '0';
 end if;
 end process;

 -- connect switches to inputs
-- input(1 to 7) <= switches(3 to 9);
-- off: for i in 8 to N generate
-- input(i) <= '0';
-- end generate;

 -- connect up components
 ui : sevenui -- user interface
 port map (clock => pulse,
 switches => switches,
 inputs_to_npn => input,
 output_from_npn => output,
 outputs => outputs,
 led => led);

 npn : seven_npn_sp -- neural network
 port map (clock => pulse,
 input => input,
 output => output,
 outputs => outputs);

end structure;

library ieee;
use ieee.std_logic_1164.all;

package seven_npn_types is
subtype sp_word is std_logic_vector(7 downto 0);
end seven_npn_types;

library ieee;
use ieee.std_logic_1164.all;

use work.seven_npn_types.all;
use work.seven_npn_defs.all;
use work.params.all;

entity seven_npn_sp is

 port (input : in iobus;
Final Report April 7, 1998 39

--reset,
clock : in std_logic;
result : out sp_word;
output : out iobus;
np_sum_array_port : out np_sum_array_type;
outputs : out sums
);
end;

architecture structure of seven_npn_sp is

component stack_processor
generic(data_stack_index_width : integer := 3;
 data_stack_index_depth : integer := 8;
 return_stack_index_width : integer := 3;
 return_stack_index_depth : integer := 8
);
port (
reset, clock : in std_logic;
memdata_in : in std_logic_vector(7 downto 0);
memdata_out : out std_logic_vector (7 downto 0);
address_out : out std_logic_vector(7 downto 0);
fetch_store : out std_logic;
topout : out std_logic_vector(7 downto 0);
pcout : out std_logic_vector(7 downto 0)
);
end component;

component memory_seven
 port (
ain,
din: in std_logic_vector(7 downto 0);

clock,
fetch_store: in std_logic;

 input_vector: in npn_io_type;

 dout,
result: out std_logic_vector(7 downto 0);

output: out npn_io_type;

--out1, out2, out3, out4, out5 : out std_logic_vector(2 downto 0)
np_sum_array: out np_sum_array_type
);
end component;

signal address,
data_tomem,
data_tosp,
periph_tomem,
program_counter,
periph_toout: sp_word;

signal fetch_store,
reset: std_logic;

signal np_sum_array_buffer : np_sum_array_type;

--signal result : sp_word;

signal output_buffer, input_buffer : npn_io_type;

begin
Final Report April 7, 1998 40

reset <= '0';
np_sum_array_port <= np_sum_array_buffer;

--output <= output_buffer(0 to output'high);

--outputs <= np_sum_array_buffer(0 to outputs'high);

--outputs(0) <= "000";

connect_sums : for i in 1 to 14 generate
outputs(i) <= np_sum_array_buffer(16-i);
output(i) <= output_buffer(i-1);
--input_buffer(14-i) <= input(i+2);
end generate;

--output <= "101010101010101";

output(0) <= '0';
outputs(0) <= "000";
--outputs(1) <= "001";
--outputs(2) <= "010";
--outputs(3) <= "011";
--outputs(4) <= "100";
--outputs(5) <= "101";
--outputs(6) <= "110";
--outputs(7) <= "111";
--outputs(8) <= "000";
--outputs(9) <= "001";
--outputs(10) <= "010";
--outputs(11) <= "011";
--outputs(12) <= "100";
--outputs(13) <= "101";
--outputs(14) <= "110";

--input_buffer(15) <= '0';

--input_buffer(0) <= '0';
input_buffer <= (input(1 to 14) & "00");

my_memory : memory_seven
port map (
ain => address,
din => data_tomem,
input_vector => input_buffer,
clock => clock,
fetch_store => fetch_store,
dout => data_tosp,
result => result,
output => output_buffer,
np_sum_array => np_sum_array_buffer
);

my_sp : stack_processor
generic map (
data_stack_index_width => 3,
data_stack_index_depth => 8,
return_stack_index_width => 2,
return_stack_index_depth => 4
)
port map (
reset => reset,
clock => clock,
memdata_in => data_tosp,
memdata_out => data_tomem,
Final Report April 7, 1998 41

address_out => address,
fetch_store => fetch_store
);

end structure;

library ieee;
use ieee.std_logic_1164.all;

package seven_npn_defs is

subtype np_sum_type is std_logic_vector(2 downto 0);
type np_sum_array_type is array(0 to 15) of np_sum_type;

subtype npn_io_type is std_logic_vector(0 to 15);

end seven_npn_defs;

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library lpm;
use lpm.lpm_components.all;
use work.seven_npn_defs.all;

entity Memory_seven is
 port (
ain,
din: in std_logic_vector(7 downto 0);

clock,
fetch_store: in std_logic;

 input_vector: in npn_io_type;

 dout,
result: out std_logic_vector(7 downto 0);

output: out npn_io_type;

--out1, out2, out3, out4, out5 : out std_logic_vector(2 downto 0)
np_sum_array: out np_sum_array_type
);
end;

architecture behaviour2 of Memory_seven is

subtype Cell is std_logic_vector(7 downto 0);

type decode_state_type is (ram, periph, io);
signal decode_state, next_decode_state : decode_state_type;

type io_state_type is (input_port, np_outputs);
signal io_state, next_io_state : io_state_type;

type periph_state_type is (weight_ptr, weight_register, result_register,
output_sum_register);
signal periph_state, next_periph_state : periph_state_type;

signal program_dout,
 periph_dout,
Final Report April 7, 1998 42

 weight_dout,
 weight_ptr_dout,
 input_dout : Cell;

--signal zero_2bit : std_logic_vector (1 downto 0);

signal weight_dout_8bit, zero_8bit : std_logic_vector(7 downto 0);

signal np_output, din_signbit : std_logic_vector(0 downto 0);

signal clock_inv,
zero,
input_bit,
input_port_bit : std_logic;

signal io_select, input_we, np_output_we, ram_we, result_we, np_sum_we,
weight_ptr_we, np_output_bit : std_logic;

signal din_3bit : std_logic_vector(2 downto 0);

signal weight_ptr_dout_6bit : std_logic_vector(5 downto 0);
signal np_output_array : npn_io_type;
signal np_sum_array_sig : np_sum_array_type;

signal address_7bit : std_logic_vector(6 downto 0);

begin

-- program ram spans memory locations 0 to $7f (7 bits)
program_ram : component LPM_RAM_DQ
generic map (
lpm_width => Cell'length,
lpm_widthad => 7,
lpm_file => "np_program_seven.mif"
)
port map (
inclock => clock,
outclock => clock_inv,
we => ram_we,
address => address_7bit,
data => din,
q => program_dout
);

-- weight rom spans memory locations $80 to $bf (6 bits)
weight_rom : component LPM_RAM_DQ
generic map (
lpm_width => 8,
lpm_widthad => 8,
lpm_file => "sevengmnew.mif"
)
port map (
inclock => clock,
outclock => clock_inv,
we => zero,
address => weight_ptr_dout,
data => zero_8bit,
q => weight_dout_8bit
);

-- this is just one-bit ram for the outputs of the NPs
-- found in memory locations 64 to 64+15=79 (16 locations)
-- however io memory space spans $c0 to $ff
--np_output_ram : component LPM_RAM_DQ
Final Report April 7, 1998 43

--generic map (
--lpm_width => 1,
--lpm_widthad => 4
--)
--port map (
--inclock => clock,
--outclock => clock_inv,
--we => input_we,
--address => address_4bit,
--data => din_signbit,
--q => np_output
--);

-- address_decode
--
-- do address decoding

address_decoder : process(ain)
begin
 case ain(7 downto 6) is
when "00" | "01" =>-- select program ram
next_decode_state <= ram;

when "10" => -- select weight rom
next_decode_state <= io;

when "11" => -- select input/output ram
next_decode_state <= periph;

when others => -- shouldn't happen...
next_decode_state <= ram;
end case;

--
-- take care of write enable signals
--
case next_decode_state is
when ram =>
ram_we <= fetch_store;
when others =>
ram_we <= '0';
end case;

--
-- io block decoder
case ain(4) is
when '0' =>
next_io_state <= input_port;
when others =>
next_io_state <= np_outputs;
end case;

if next_decode_state = io and next_io_state = np_outputs then
np_output_we <= fetch_store;
else
np_output_we <= '0';
end if;

--
-- peripheral block decoder: output sums located in first 7 locations.
-- next two locations contain weight pointer and weight peripheral
case ain(5 downto 0) is
when "111101" =>
next_periph_state <= weight_ptr;
Final Report April 7, 1998 44

when "111110" =>
next_periph_state <= weight_register;
when "111111" =>
next_periph_state <= result_register;
when others =>
next_periph_state <= output_sum_register;
end case;

if next_decode_state = periph then
if next_periph_state = result_register then
result_we <= fetch_store;
else
result_we <= '0';
end if;

if next_periph_state = output_sum_register then
np_sum_we <= fetch_store;
else
np_sum_we <= '0';
end if;

if next_periph_state = weight_ptr then
weight_ptr_we <= fetch_store;
else
weight_ptr_we <= '0';
end if;
else
result_we <= '0';
np_sum_we <= '0';
weight_ptr_we <= '0';
end if;

end process;

change_decoder_states : process(clock)
begin
if clock'event and clock='1' then
decode_state <= next_decode_state;

io_state <= next_io_state;

periph_state <= next_periph_state;
end if;
end process;

--
-- state output logic

main_output_logic : process(decode_state, program_dout, weight_dout, input_dout
)
begin
case decode_state is
when ram =>
dout <= program_dout;

when periph =>
dout <= periph_dout;

when io =>-- inputs, and also output latch
dout <= input_dout;
end case;
end process;

io_output_logic : process(io_state, input_port_bit, np_output_bit)
begin
Final Report April 7, 1998 45

case io_state is
when input_port =>
input_bit <= input_port_bit;
when np_outputs =>
input_bit <= np_output_bit;
end case;
end process;

periph_output_logic : process(periph_state, weight_ptr_dout, weight_dout)
begin
case periph_state is
when weight_ptr =>
periph_dout <= weight_ptr_dout;
when weight_register =>
periph_dout <= weight_dout;
when result_register =>
periph_dout <= x"00";
when output_sum_register =>
periph_dout <= x"00";
end case;
end process;

assorted_registers : process(clock)

begin
if clock'event and clock='1' then
-- select which np output is fetched
np_output_bit <= np_output_array(conv_integer(ain(3 downto 0)));

-- select which input depending on address
input_port_bit <= input_vector(conv_integer(ain(3 downto 0)));

-- write the weight ptr
if weight_ptr_we = '1' then
weight_ptr_dout <= din;
end if;

-- write the np sum -- this uses the np_output_we signal because the sums
-- are mapped to the same addresses as the outputs. The outputs just use the
-- sign bit of the sum.
if np_output_we = '1' then
np_sum_array_sig(conv_integer(ain(3 downto 0))) <= din(2 downto 0);
end if;

-- write the np output
if np_output_we = '1' then
np_output_array(conv_integer(ain(3 downto 0))) <= din(7);
end if;

-- take care of the "result" register
if fetch_store = '1' then
if ain = x"ff" then
result <= din;
end if;
end if;

end if;
end process;

--

output <= np_output_array;
Final Report April 7, 1998 46

np_sum_array <= np_sum_array_sig;

input_dout(0) <= input_bit;
input_dout(1) <= '0';
input_dout(2) <= '0';
input_dout(3) <= '0';
input_dout(4) <= '0';
input_dout(5) <= '0';
input_dout(6) <= '0';
input_dout(7) <= '0';

--
-- assign ain to the different address signals
--
--address_4bit <= ain(3 downto 0);
--address_6bit <= ain(5 downto 0);
address_7bit <= ain(6 downto 0);

-- put the LSB of din on a separate signal
din_signbit(0) <= din(7);
din_3bit(2 downto 0) <= din(2 downto 0);

weight_ptr_dout_6bit <= weight_ptr_dout(5 downto 0);

-- assign the 2bit weight to the full weight

weight_dout(7 downto 0) <= weight_dout_8bit(7 downto 0);
-- sign-extend the weights
--assign_weights : for i in 4 to 7 generate
---weight_dout(i) <= weight_dout_4bit(3);
--end generate;

clock_inv <= not clock;
zero <= '0';
zero_8bit <= "00000000";

end behaviour2;

-- Grand Matrix Weight .mif file auto-generated by genmatrix
-- copyright 1998
--

WIDTH = 8;
DEPTH = 256;

ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT BEGIN

00: 01;
01: 00;
02: 00;
03: 00;
04: 00;
05: 00;
06: 00;
07: 00;
08: 00;
09: 00;
0a: 00;
0b: 00;
0c: 00;
Final Report April 7, 1998 47

0d: 00;
0e: 00;
0f: 01;
10: 00;
11: 00;
12: 00;
13: 00;
14: 00;
15: 00;
16: 00;
17: 00;
18: 00;
19: 00;
1a: 00;
1b: 00;
1c: 00;
1d: 00;
1e: 01;
1f: 00;
20: 00;
21: 00;
22: 00;
23: 00;
24: 00;
25: 00;
26: 00;
27: 00;
28: 00;
29: 00;
2a: 00;
2b: 00;
2c: 00;
2d: 01;
2e: 00;
2f: 00;
30: 00;
31: 00;
32: 00;
33: 00;
34: 00;
35: 00;
36: 00;
37: 00;
38: 00;
39: 00;
3a: 00;
3b: 00;
3c: 01;
3d: 00;
3e: 00;
3f: 00;
40: 00;
41: 00;
42: 00;
43: 00;
44: 00;
45: 00;
46: 00;
47: 00;
48: 00;
49: 00;
4a: 00;
4b: 01;
4c: 00;
4d: 00;
Final Report April 7, 1998 48

4e: 00;
4f: 00;
50: 00;
51: 00;
52: 00;
53: 00;
54: 00;
55: 00;
56: 00;
57: 00;
58: 00;
59: 00;
5a: 01;
5b: 00;
5c: 00;
5d: 00;
5e: 00;
5f: 00;
60: 00;
61: 00;
62: 00;
63: 00;
64: 00;
65: 00;
66: 00;
67: 00;
68: 00;
69: 00;
6a: 06;
6b: 02;
6c: ff;
6d: 06;
6e: 06;
6f: 02;
70: 01;
71: 00;
72: 00;
73: 00;
74: 00;
75: 00;
76: 00;
77: 00;
78: 00;
79: 02;
7a: 0d;
7b: 04;
7c: 02;
7d: 02;
7e: f9;
7f: fc;
80: 00;
81: 00;
82: 00;
83: 00;
84: 00;
85: 00;
86: 00;
87: 00;
88: ff;
89: 04;
8a: 08;
8b: ff;
8c: ff;
8d: 04;
8e: f8;
Final Report April 7, 1998 49

8f: 00;
90: 00;
91: 00;
92: 00;
93: 00;
94: 00;
95: 00;
96: 00;
97: 06;
98: 02;
99: ff;
9a: 06;
9b: 06;
9c: 02;
9d: 01;
9e: 00;
9f: 00;
a0: 00;
a1: 00;
a2: 00;
a3: 00;
a4: 00;
a5: 00;
a6: 06;
a7: 02;
a8: ff;
a9: 06;
aa: 06;
ab: 02;
ac: 01;
ad: 00;
ae: 00;
af: 00;
b0: 00;
b1: 00;
b2: 00;
b3: 00;
b4: 00;
b5: 02;
b6: f9;
b7: 04;
b8: 02;
b9: 02;
ba: 0d;
bb: fc;
bc: 00;
bd: 00;
be: 00;
bf: 00;
c0: 00;
c1: 00;
c2: 00;
c3: 00;
c4: 01;
c5: fc;
c6: f8;
c7: 01;
c8: 01;
c9: fc;
ca: 08;
cb: 00;
cc: 00;
cd: 00;
ce: 00;
cf: 00;
Final Report April 7, 1998 50

d0: 00;
d1: 00;

END;

library IEEE;
use IEEE.STD_Logic_1164.all;

package stack_processor is
component stack_processor
generic(data_stack_index_width : integer := 3;
 data_stack_index_depth : integer := 8;
 return_stack_index_width : integer := 2;
 return_stack_index_depth : integer := 4
);
port (
reset, clock : in std_logic;
memdata_in : in std_logic_vector(7 downto 0);
memdata_out : out std_logic_vector (7 downto 0);
address_out : out std_logic_vector(7 downto 0);
fetch_store : out std_logic;
topout : out std_logic_vector(7 downto 0);
pcout : out std_logic_vector(7 downto 0)
);
end component;
end stack_processor;

library IEEE;
use IEEE.STD_Logic_1164.all;

use work.sp_defs.all;

entity stack_processor is
generic (data_stack_index_width : integer := 3;
 data_stack_index_depth : integer := 8;
 return_stack_index_width : integer := 2;
 return_stack_index_depth : integer := 4
);
port (
reset, clock : in std_logic;
memdata_in : in std_logic_vector(7 downto 0);
memdata_out : out std_logic_vector (7 downto 0);
address_out : out std_logic_vector(7 downto 0);
fetch_store : out std_logic;
topout : out std_logic_vector(7 downto 0);
pcout : out std_logic_vector(7 downto 0)
);
end;

architecture structure of stack_processor is

constant word_width : positive := 8;
subtype Cell is std_logic_vector(word_width-1 downto 0);

 signal P, PP, R, M, T, F, U, D : Cell; -- data paths
 signal nz : std_logic; -- not zero signal from top to instruction
 signal mcontrol, pcontrol, tcontrol : std_logic_vector(1 downto 0);
 signal rcontrol, dcontrol : std_logic_vector(2 downto 0);
 signal fcontrol : std_logic_vector(2 downto 0);
 signal sp_opcode : Opcode;

 component instruction
 port (iin : in Cell;
 reset, nz, clock : in std_logic;
 iout : out Opcode);
Final Report April 7, 1998 51

 end component;
 for all : instruction use entity work.instruction(behaviour2);

 component FunctionUnit
 generic (width : positive :=4);
 port (selfunction : in std_logic_vector(2 downto 0);
 in1, in2 : in std_logic_vector(width-1 downto 0);
 out1, out2 : out std_logic_vector(width-1 downto 0)
);
 end component;
 for all : FunctionUnit use entity work.FunctionUnit(behaviour);

 component ProgramCounter
 port (ain1, ain2 : in Cell;
 clock,reset: in std_logic;
 control : in std_logic_vector(1 downto 0);
 aoutport: out Cell);
 end component;
 for all : ProgramCounter use entity work.ProgramCounter(behaviour);

 component Stack

generic (width : positive := 8;
 widthad : positive := 3;
depth : positive := 8);

 port (clock, push, pop, d1_d2 : in std_logic;
 din1, din2 : in Cell;
reset: in std_logic;
 dout : out Cell);
 end component;
 for all : Stack use entity work.Stack(behaviour);

 component Top
generic (width : positive := 4);
 port (din1, din2 : in std_logic_vector(width-1 downto 0);
 d1_d2, clock, store : in std_logic;
 notzero : out std_logic;
 dout : out std_logic_vector(width-1 downto 0));
 end component;
 for all : Top use entity work.Top(behaviour2);

begin

pcout <= P;
topout <= T;

 rcontrol(0) <= sp_opcode(0) ;
 rcontrol(1) <= sp_opcode(1) ;
 rcontrol(2) <= sp_opcode(2) ;
 dcontrol(0) <= sp_opcode(3) ;
 dcontrol(1) <= sp_opcode(4) ;
 dcontrol(2) <= sp_opcode(5) ;
 tcontrol(0) <= sp_opcode(6) ;
 tcontrol(1) <= sp_opcode(7) ;
 mcontrol(0) <= sp_opcode(8) ;
 mcontrol(1) <= sp_opcode(9) ;
 pcontrol(0) <= sp_opcode(10) ;
 pcontrol(1) <= sp_opcode(11) ;
 fcontrol(0) <= sp_opcode(12) ;
 fcontrol(1) <= sp_opcode(13) ;
 fcontrol(2) <= sp_opcode(14) ;

-- assign memory signals --
fetch_store <= mcontrol(1);
Final Report April 7, 1998 52

M <= memdata_in;
memdata_out <= D;

-- Memory --
memory_address_select : process(T, P, mcontrol(0)) is
begin
-- mcontrol(0) = a1_a2 --
if mcontrol(0)='0' then
address_out <= P;-- PC select
else
address_out <= T;-- TOP select
end if;
end process;

 IR : instruction -- instruction register
 port map (iin => M, reset => reset, nz => nz, clock => clock,
 iout => sp_opcode);

 DS : Stack -- data stack
generic map (width => word_width, widthad => data_stack_index_width,
depth => data_stack_index_depth)
 port map (reset => reset, clock => clock, push => dcontrol(2), pop => dcon-
trol(1),
 d1_d2 => dcontrol(0), din1 => U, din2 => M, dout => D);

 RS : Stack -- return stack
generic map (width => word_width, widthad => return_stack_index_width,
depth => return_stack_index_depth)
 port map (reset => reset, clock => clock, push => rcontrol(2), pop => rcon-
trol(1),
 d1_d2 => rcontrol(0), din1 => T, din2 => P, dout => R);

 PC : ProgramCounter
 port map (ain1 => M, ain2 => R, clock => clock, reset => reset,
 control => pcontrol, aoutport => P);

 FU : FunctionUnit
generic map (width => Cell'length)
 port map (selfunction => fcontrol,
 --leftin => lio, rightin => rio,
 --leftout => open, rightout => open,
 --leftinout => open, rightinout => open,
 in1 => T, in2 => D,
 out1 => F, out2 => U);

 TP : Top -- top register
generic map (width => Cell'length)
 port map (din1 => F, din2 => R, d1_d2 => tcontrol(0), clock => clock,
 store => tcontrol(1), notzero => nz, dout => T);

end structure;

-- .mif file auto-generated by npcc
-- copyright 1998
--
-- This file is covered by over a million patents, none of which
-- are actually worth anything except while negotiating a buyout
-- with a larger, better corporation.

WIDTH = 8;
DEPTH = 128;
Final Report April 7, 1998 53

ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT BEGIN

-- 7-segment display Artificial Neural Network program file

-- NOTE: All numeric values are in _HEXADECIMAL_

-- Addresses of pointers and counters:

-- starting address for inputs is 80
-- starting address for NP outputs is 90
-- address for weight register

-- Program Counter variables for various routine

-- an output register is available for an external output.
-- address of "result latch" is FF

-- initialize input_ptr to input_address
00: 0e; -- sto_mem_DS
01: 80; -- input_address
02: 05; -- sto_DS_memimm
03: 7e; -- input_ptr

-- initialize weight_ptr to zero
04: 0e; -- sto_mem_DS
05: 00;
06: 05; -- sto_DS_memimm
07: fd; -- weight_ptr

-- initialize NP counter
08: 0e; -- sto_mem_DS
09: 0e;
0a: 05; -- sto_DS_memimm
0b: 7c; -- NP_counter

-- initialize output_ptr
0c: 0e; -- sto_mem_DS
0d: 90; -- np_output_address
0e: 05; -- sto_DS_memimm
0f: 7a; -- output_ptr

-- This loop executes for each NP

-- next_np

-- initialize input counter
10: 0e; -- sto_mem_DS

-- NOTE: counter is 15, not 16 because adding the
-- first NP input does not increment the counter
11: 0e ;
12: 05; -- sto_DS_memimm
13: 7b; -- input_counter

-- initialize np_output_ptr
14: 0e; -- sto_mem_DS
15: 90; -- np_output_address
16: 05; -- sto_DS_memimm
Final Report April 7, 1998 54

17: 7f; -- np_output_ptr

-- initialize SUM
18: 03; -- psh_mem_DS
19: 00;

-- Add this NP's input

-- push dummy value to stack
1a: 03; -- psh_mem_DS
1b: 00;

-- fetch weight
1c: 08; -- sto_memimm_DS_and_sto_DS_TOP
1d: fe; -- weight_address

-- fetch input
1e: 12; -- psh_memptr_DS
1f: 7e; -- input_ptr

-- domath

-- transfer input to TOP
20: 04; -- pop_DS_TOP

-- make decision on add/subtract
21: 09; -- bnzero_imm
-- branch to **subtract**
22: 28; -- subtract_routine

-- o/p is one, so add
23: 04; -- pop_DS_TOP
24: 0c; -- add
25: 00;
-- branch to **donemath**
26: 0a; -- bra_mem
27: 2b; -- donemath_routine

-- subtract

28: 04; -- pop_DS_TOP
29: 0d; -- subtract
2a: 00;

-- donemath

-- increment weight pointer
2b: 1a; -- incr_ptr
2c: fd; -- weight_ptr

-- check_counter
-- Fetch counter and check if zero. If not, decrement
-- and do next addition/subtraction.

-- push a dummy value onto the DS
2d: 03; -- psh_mem_DS
Final Report April 7, 1998 55

2e: 00;
-- Fetch input_counter
2f: 08; -- sto_memimm_DS_and_sto_DS_TOP
30: 7b; -- input_counter
-- if the counter is zero, branch to done NP
31: 17; -- sto_DS_TOP
32: 0b; -- bzero_imm
33: 48; -- done_np_routine

-- decrement input_counter
34: 0e; -- sto_mem_DS
35: 01;
36: 18; -- swap
37: 0d; -- subtract
38: 00;
39: 05; -- sto_DS_memimm
3a: 7b; -- input_counter

--*************
-- DEBUG: store input counter to result latch
3b: 05; -- sto_DS_memimm
3c: FF;

-- drop top of stack
3d: 04; -- pop_DS_TOP

--
-- Fetch the NP output

-- push dummy value to stack
3e: 03; -- psh_mem_DS
3f: 00;

-- fetch weight
40: 08; -- sto_memimm_DS_and_sto_DS_TOP
41: fe; -- weight_address

-- fetch npoutput
42: 12; -- psh_memptr_DS
43: 7f; -- np_output_ptr

-- increment npoutput pointer
44: 1a; -- incr_ptr
45: 7f; -- np_output_ptr

-- branch to **domath**
46: 0a; -- bra_mem
47: 20; -- domath_routine

--
-- done_np
-- entry con: stack contains 00, then value of sum.

--pop stack to uncover sum
48: 04; -- pop_DS_TOP

-- store sum to output
49: 24; -- sto_DS_memptr
4a: 7a; -- output_ptr

-- push stack to save sum
4b: 03; -- psh_mem_DS
4c: 00;
Final Report April 7, 1998 56

-- increment input pointer
4d: 1a; -- incr_ptr
4e: 7e; -- input_ptr

-- increment output pointer
4f: 1a; -- incr_ptr
50: 7a; -- output_ptr

-- check_NP_counter
-- Fetch counter and check if zero. If not, decrement
-- and goto next neroprocessor.
--

-- test to see if all the NPs have been computed
51: 08; -- sto_memimm_DS_and_sto_DS_TOP
52: 7c; -- NP_counter

-- if the counter is zero, branch to done_ann
53: 17; -- sto_DS_TOP
54: 0b; -- bzero_imm
55: 63; -- done_ann_routine

-- decrement NP counter
56: 0e; -- sto_mem_DS
57: 01;
-- swap since after subtract, DS = DS - TOP
58: 18; -- swap
59: 0d; -- subtract
5a: 00;
5b: 05; -- sto_DS_memimm
5c: 7c; -- NP_counter

--*************
-- DEBUG: store input counter to result latch
5d: 05; -- sto_DS_memimm
5e: FF;

-- reset the DS
5f: 04; -- pop_DS_TOP
60: 04; -- pop_DS_TOP

-- branch to **next_np**
61: 0a; -- bra_mem
62: 10; -- next_np_routine

-- done_ann
-- entry con: stack contains 00 and then sum

-- write "be" to the output latch for show
63: 0e; -- sto_mem_DS
64: BE;
65: 05; -- sto_DS_memimm
66: FF;

-- branch to beginning
67: 0a; -- bra_mem
68: 00;

-- end.

END;
Final Report April 7, 1998 57

B.2 XOR NPN
xor_ui.vhd
 +xor_led.vhd
 +xor_npn_sp.vhd
 +memory.vhd
 +weight_rom.mif
 +stack_processor.vhd
 +np_program.mif

library ieee;
use ieee.std_logic_1164.all;

package npn_types is
subtype sp_word is std_logic_vector(7 downto 0);
end npn_types;

library ieee;
use ieee.std_logic_1164.all;

use work.npn_types.all;

entity xor_npn_sp is
 port (in1,
in2,
--reset,
clock : in std_logic;

--result : out sp_word;
output : out std_logic;
outputs : out std_logic_vector(14 downto 0)
);
end;

architecture structure of xor_npn_sp is

signal reset : std_logic;
signal result : sp_word;

signal xor_inputs : std_logic_vector(0 to 1);

signal outputs_buffer : std_logic_vector(14 downto 0);

component stack_processor
generic(data_stack_index_width : integer := 3;
 data_stack_index_depth : integer := 8;
 return_stack_index_width : integer := 3;
 return_stack_index_depth : integer := 8
);
port (
reset, clock : in std_logic;
memdata_in : in std_logic_vector(7 downto 0);
memdata_out : out std_logic_vector (7 downto 0);
address_out : out std_logic_vector(7 downto 0);
fetch_store : out std_logic;
topout : out std_logic_vector(7 downto 0);
pcout : out std_logic_vector(7 downto 0)
);
end component;

component memory
Final Report April 7, 1998 58

 port (
ain,
din: in std_logic_vector(7 downto 0);

clock,
fetch_store: in std_logic;

 input_vector: in std_logic_vector(0 to 1);

 dout,
result: out std_logic_vector(7 downto 0);

output: out std_logic;

out1, out2, out3, out4, out5 : out std_logic_vector(2 downto 0)
);
end component;

signal address,
data_tomem,
data_tosp,
periph_tomem,
program_counter,
periph_toout: sp_word;

signal fetch_store
: std_logic;

signal out1, out2, out3, out4, out5 : std_logic_vector(2 downto 0);

signal blah : std_logic;
begin

output <= blah;
xor_inputs(0) <= in1;
xor_inputs(1) <= in2;

reset <= '0';

outputs <= outputs_buffer;

outputs_buffer(14 downto 12) <= out5;
outputs_buffer(11 downto 9) <= out4;
outputs_buffer(8 downto 6) <= out3;
outputs_buffer(5 downto 3) <= out2;
outputs_buffer(2 downto 0) <= out1;

my_memory : memory
port map (
ain => address,
din => data_tomem,
input_vector => xor_inputs,
clock => clock,
fetch_store => fetch_store,
dout => data_tosp,
result => result,
output => blah,
out1 => out1,
out2 => out2,
out3 => out3,
out4 => out4,
out5 => out5
);

my_sp : stack_processor
Final Report April 7, 1998 59

generic map (
data_stack_index_width => 3,
data_stack_index_depth => 8,
return_stack_index_width => 2,
return_stack_index_depth => 4
)
port map (
reset => reset,
clock => clock,
memdata_in => data_tosp,
memdata_out => data_tomem,
address_out => address,
fetch_store => fetch_store
);

end structure;

Library IEEE;
use IEEE.STD_Logic_1164.all;

library lpm;
use lpm.lpm_components.all;

entity Memory is
 port (
ain,
din: in std_logic_vector(7 downto 0);

clock,
fetch_store: in std_logic;

 input_vector: in std_logic_vector(0 to 1);

 dout,
result: out std_logic_vector(7 downto 0);

output: out std_logic;

out1, out2, out3, out4, out5 : out std_logic_vector(2 downto 0)
);
end;

architecture behaviour2 of Memory is

subtype Cell is std_logic_vector(7 downto 0);

type decode_state_type is (ram, weight, io);
signal decode_state, next_decode_state : decode_state_type;

type input_ram_state_type is (input_port, output_ram);
signal input_ram_state, next_input_ram_state : input_ram_state_type;

signal decode_bits : std_logic_vector(1 downto 0);

signal address_4bit : std_logic_vector(3 downto 0);
signal address_6bit : std_logic_vector(5 downto 0);
signal address_7bit : std_logic_vector(6 downto 0);

signal program_dout,
 weight_dout,
 input_dout : Cell;

signal weight_dout_2bit, zero_2bit : std_logic_vector (1 downto 0);

signal np_output, din_signbit : std_logic_vector(0 downto 0);
Final Report April 7, 1998 60

signal clock_inv,
zero,
input_bit,
input_port_bit : std_logic;

signal io_select, input_we, ram_we : std_logic;

signal din_3bit : std_logic_vector(2 downto 0);

begin

clock_inv <= not clock;
zero <= '0';
zero_2bit <= "00";

-- program ram spans memory locations 0 to $7f (7 bits)
program_ram : component LPM_RAM_DQ
generic map (
lpm_width => Cell'length,
lpm_widthad => 7,
lpm_file => "np_program.mif"
)
port map (
inclock => clock,
outclock => clock_inv,
we => ram_we,
address => address_7bit,
data => din,
q => program_dout
);

-- weight rom spans memory locations $80 to $bf (6 bits)
weight_rom : component LPM_RAM_DQ
generic map (
lpm_width => 2,
lpm_widthad => 6,
lpm_file => "weight_rom.mif"
)
port map (
inclock => clock,
outclock => clock_inv,
we => zero,
address => address_6bit,
data => zero_2bit,
q => weight_dout_2bit
);

-- this is just one-bit ram for the outputs of the NPs
-- found in memory locations 64 to 64+15=79 (16 locations)
-- however io memory space spans $c0 to $ff
np_output_ram : component LPM_RAM_DQ
generic map (
lpm_width => 1,
lpm_widthad => 4
)
port map (
inclock => clock,
outclock => clock_inv,
we => input_we,
address => address_4bit,
data => din_signbit,
q => np_output
);

--
Final Report April 7, 1998 61

-- assign ain to the different address signals
--
decode_bits <= ain(7 downto 6);
address_4bit <= ain(3 downto 0);
address_6bit <= ain(5 downto 0);
address_7bit <= ain(6 downto 0);

-- put the LSB of din on a separate signal
din_signbit(0) <= din(7);
din_3bit(2 downto 0) <= din(2 downto 0);

-- assign the 2bit weight to the full weight
weight_dout(0) <= weight_dout_2bit(0);
weight_dout(1) <= weight_dout_2bit(1);
weight_dout(2) <= weight_dout_2bit(1);
weight_dout(3) <= weight_dout_2bit(1);
weight_dout(4) <= weight_dout_2bit(1);
weight_dout(5) <= weight_dout_2bit(1);
weight_dout(6) <= weight_dout_2bit(1);
weight_dout(7) <= weight_dout_2bit(1);

-- address_decode
--
-- do address decoding

address_decode_state : process(decode_bits)
begin
 case decode_bits is
when "00" | "01" =>-- select program ram
next_decode_state <= ram;

when "10" => -- select weight rom
next_decode_state <= weight;

when "11" => -- select input/output ram
next_decode_state <= io;

when others => -- shouldn't happen...
next_decode_state <= ram;
end case;

--
-- take care of write enable signals
--
case next_decode_state is
when ram =>
ram_we <= fetch_store;
input_we <= '0';
when io =>
ram_we <= '0';
input_we <= fetch_store;
when others =>
ram_we <= '0';
input_we <= '0';
end case;
end process;

change_decode_state : process(clock)
begin
if clock'event and clock='1' then
decode_state <= next_decode_state;
end if;
end process;
Final Report April 7, 1998 62

address_decode : process(decode_state, program_dout, weight_dout, input_dout)
begin
case decode_state is
when ram =>
dout <= program_dout;

when weight =>
dout <= weight_dout;

when io =>-- inputs, and also output latch
dout <= input_dout;
end case;
end process;

-- input_ram controller
--
-- Control memory access to input and NP output signals

input_dout(0) <= input_bit;
input_dout(1) <= '0';
input_dout(2) <= '0';
input_dout(3) <= '0';
input_dout(4) <= '0';
input_dout(5) <= '0';
input_dout(6) <= '0';
input_dout(7) <= '0';

input_ram_nextstate : process(address_6bit)
begin
case address_6bit is
when o"00" => -- this is octal. bin = "xx000000"
next_input_ram_state <= input_port;
when o"01" =>
next_input_ram_state <= input_port;
when others =>
next_input_ram_state <= output_ram;
end case;
end process;

input_ram_changestate : process(clock)
begin
if clock'event and clock='1' then
input_ram_state <= next_input_ram_state;
end if;
end process;

input_ram_decode : process(input_ram_state, input_port_bit, np_output(0))
begin
case input_ram_state is
when input_port =>
input_bit <= input_port_bit;

when output_ram =>
input_bit <= np_output(0);
end case;
end process;

input_port_register : process(clock, input_vector)
begin
if clock'event and clock='1' then
case address_6bit is
when o"00" =>
input_port_bit <= input_vector(0);
Final Report April 7, 1998 63

when o"01" =>
input_port_bit <= input_vector(1);
when others =>
-- nothing
end case;
end if;
end process;

-- output latch
--
-- fully decode the output latch address and
-- write to it

output_latch : process(clock)

begin
if clock'event and clock='1' then
if fetch_store = '1' then
if ain = x"c5" then
out1 <= din_3bit;
end if;
if ain = x"c6" then
out2 <= din_3bit;
end if;
if ain = x"c7" then
out3 <= din_3bit;
end if;
if ain = x"c8" then
out4 <= din_3bit;
end if;
if ain = x"c9" then
out5 <= din_3bit;
output <= din_signbit(0);
end if;

if ain = x"ff" then
result <= din;
end if;
end if;
end if;
end process;

end behaviour2;

-- MAX+plus II - generated Memory Initialization File

-- Copyright (C) 1991-1997 Altera Corporation
-- Any megafunction design, and related net list (encrypted or decrypted),
-- support information, device programming or simulation file, and any other
-- associated documentation or information provided by Altera or a partner
-- under Altera's Megafunction Partnership Program may be used only to
-- program PLD devices (but not masked PLD devices) from Altera. Any other
-- use of such megafunction design, net list, support information, device
-- programming or simulation file, or any other related documentation or
-- information is prohibited for any other purpose, including, but not
-- limited to modification, reverse engineering, de-compiling, or use with
-- any other silicon devices, unless such use is explicitly licensed under
-- a separate agreement with Altera or a megafunction partner. Title to
-- the intellectual property, including patents, copyrights, trademarks,
-- trade secrets, or maskworks, embodied in any such megafunction design,
-- net list, support information, device programming or simulation file, or
Final Report April 7, 1998 64

-- any other related documentation or information provided by Altera or a
-- megafunction partner, remains with Altera, the megafunction partner, or
-- their respective licensors. No other licenses, including any licenses
-- needed under any third party's intellectual property, are provided herein.

WIDTH = 2;
DEPTH = 64;

ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;

CONTENT BEGIN
0:01;
1:00;
2:00;
3:00;
4:00;
5:00;
6:01;
7:00;
8:00;
9:00;
a:00;
b:00;
c:00;
d:01;
e:11;
f:00;
10:00;
11:00;
12:00;
13:11;
14:01;
15:00;
16:00;
17:00;
18:11;
19:00;
1a:00;
1b:01;
1c:01;
1d:00;
1e:00;
1f:00;
20:00;
21:00;
22:00;
23:00;
24:00;
25:00;
26:00;
27:00;
28:00;
29:00;
2a:00;
2b:00;
2c:00;
2d:00;
2e:00;
2f:00;
30:00;
31:00;
32:00;
33:00;
34:00;
Final Report April 7, 1998 65

35:00;
36:00;
37:00;
38:00;
39:00;
3a:00;
3b:00;
3c:00;
3d:00;
3e:00;
3f:00;
END;

-- .mif file auto-generated by npcc
-- copyright 1998
--
-- This file is covered by over a million patents, none of which
-- are actually worth anything except while negotiating a buyout
-- with a larger, better corporation.

WIDTH = 8;
DEPTH = 128;

ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT BEGIN

-- Pattern Recognition Artificial Neural Network program file

-- NOTE: All numeric values are in _HEXADECIMAL_

-- Addresses of pointers and counters:

-- starting address for inputs is c0
-- starting address for NP outputs is c5
-- starting address for weights is 80

-- Program Counter values for various routine
-- (necessary because this is only a one-pass compiler!)

-- an output register is available for an external output.
-- address of "result latch" is FF

-- initialize input_ptr to input_address
00: 0e; -- sto_mem_DS
01: c0; -- input_address
02: 05; -- sto_DS_memimm
03: 7e; -- input_ptr

-- initialize weight_ptr to weight_address
04: 0e; -- sto_mem_DS
05: 80; -- weight_address
06: 05; -- sto_DS_memimm
07: 7d; -- weight_ptr

-- initialize NP counter
08: 0e; -- sto_mem_DS
09: 05;
0a: 05; -- sto_DS_memimm
0b: 7c; -- NP_counter

-- initialize output_ptr
0c: 0e; -- sto_mem_DS
0d: c5; -- np_output_address
Final Report April 7, 1998 66

0e: 05; -- sto_DS_memimm
0f: 7a; -- output_ptr

-- This loop executes for each NP

-- next_np

-- initialize input counter
10: 0e; -- sto_mem_DS

-- NOTE: counter is 5, not 6 because adding the
-- first NP input does not increment the counter
11: 05 ;
12: 05; -- sto_DS_memimm
13: 7b; -- input_counter

-- initialize np_output_ptr
14: 0e; -- sto_mem_DS
15: c5; -- np_output_address
16: 05; -- sto_DS_memimm
17: 7f; -- np_output_ptr

-- initialize SUM
18: 03; -- psh_mem_DS
19: 00;

-- Add this NP's input

-- fetch weight
1a: 12; -- psh_memptr_DS
1b: 7d; -- weight_ptr

-- fetch input
1c: 12; -- psh_memptr_DS
1d: 7e; -- input_ptr

-- domath

-- transfer input to TOP
1e: 04; -- pop_DS_TOP

-- make decision on add/subtract
1f: 09; -- bnzero_imm
-- branch to **subtract**
20: 26; -- subtract_routine

-- o/p is one, so add
21: 04; -- pop_DS_TOP
22: 0c; -- add
23: 00;
-- branch to **donemath**
24: 0a; -- bra_mem
25: 29; -- donemath_routine

-- subtract

Final Report April 7, 1998 67

26: 04; -- pop_DS_TOP
27: 0d; -- subtract
28: 00;

-- donemath

-- increment weight pointer
29: 1a; -- incr_ptr
2a: 7d; -- weight_ptr

-- check_counter
-- Fetch counter and check if zero. If not, decrement
-- and do next addition/subtraction.

-- push a dummy value onto the DS
2b: 03; -- psh_mem_DS
2c: 00;
-- Fetch input_counter
2d: 08; -- sto_memimm_DS_and_sto_DS_TOP
2e: 7b; -- input_counter
-- if the counter is zero, branch to done NP
2f: 17; -- sto_DS_TOP
30: 0b; -- bzero_imm
31: 44; -- done_np_routine

-- decrement input_counter
32: 0e; -- sto_mem_DS
33: 01;
34: 18; -- swap
35: 0d; -- subtract
36: 00;
37: 05; -- sto_DS_memimm
38: 7b; -- input_counter

--*************
-- DEBUG: store input counter to result latch
39: 05; -- sto_DS_memimm
3a: FF;

-- drop top of stack
3b: 04; -- pop_DS_TOP

--
-- Fetch the NP output

-- fetch weight
3c: 12; -- psh_memptr_DS
3d: 7d; -- weight_ptr

-- fetch npoutput
3e: 12; -- psh_memptr_DS
3f: 7f; -- np_output_ptr

-- increment npoutput pointer
40: 1a; -- incr_ptr
41: 7f; -- np_output_ptr

-- branch to **domath**
42: 0a; -- bra_mem
43: 1e; -- domath_routine
Final Report April 7, 1998 68

--
-- done_np
-- entry con: stack contains 00, then value of sum.

--pop stack to uncover sum
44: 04; -- pop_DS_TOP

-- store sum to output
45: 24; -- sto_DS_memptr
46: 7a; -- output_ptr

-- push stack to save sum
47: 03; -- psh_mem_DS
48: 00;

-- increment input pointer
49: 1a; -- incr_ptr
4a: 7e; -- input_ptr

-- increment output pointer
4b: 1a; -- incr_ptr
4c: 7a; -- output_ptr

-- check_NP_counter
-- Fetch counter and check if zero. If not, decrement
-- and goto next neroprocessor.
--

-- test to see if all the NPs have been computed
4d: 08; -- sto_memimm_DS_and_sto_DS_TOP
4e: 7c; -- NP_counter

-- if the counter is zero, branch to done_ann
4f: 17; -- sto_DS_TOP
50: 0b; -- bzero_imm
51: 5f; -- done_ann_routine

-- decrement NP counter
52: 0e; -- sto_mem_DS
53: 01;
-- swap since after subtract, DS = DS - TOP
54: 18; -- swap
55: 0d; -- subtract
56: 00;
57: 05; -- sto_DS_memimm
58: 7c; -- NP_counter

--*************
-- DEBUG: store input counter to result latch
59: 05; -- sto_DS_memimm
5a: FF;

-- reset the DS
5b: 04; -- pop_DS_TOP
5c: 04; -- pop_DS_TOP

-- branch to **next_np**
5d: 0a; -- bra_mem
5e: 10; -- next_np_routine

-- done_ann
Final Report April 7, 1998 69

-- entry con: stack contains 00 and then sum

-- write "be" to the output latch for show
5f: 0e; -- sto_mem_DS
60: BE;
61: 05; -- sto_DS_memimm
62: FF;

-- should branch, but we're just going to stop.
63: 0a; -- bra_mem
64: 00;

-- end.

END;

C XOR UI
-- Difference detector NP network UI Rob Chapman Mar 18, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_ui is
 port (clock : in std_logic;
 vga : out std_logic_vector(1 to 5);
 led : out std_logic_vector(1 to 16);
 mouse : in std_logic_vector(1 to 2);
 switches : in std_logic_vector(1 to 10));
end;

architecture structure of xor_ui is

 component xor_npn
 port (in1, in2, clock : in std_logic;
 output : out std_logic;
 outputs : out std_logic_vector(14 downto 0));
 end component;

 component xor_led
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 led : out std_logic_vector(1 to 16);
 outputs : in std_logic_vector(14 downto 0));
 end component;

 component xor_vga
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 output : in std_logic;
 vga : out std_logic_vector(1 to 5));
 end component;

 signal pulse : std_logic; -- for setting network clock
 signal outputs : std_logic_vector(14 downto 0);
 signal in1, in2, output : std_logic;
 signal led_not : std_logic_vector(1 to 16); -- inverted led sense

begin
Final Report April 7, 1998 70

 -- set the pulse for the nps; could be event triggered to for low
 -- power and instant response to input change
 pulse <= clock;

 -- connect switches to inputs
 in1 <= switches(3);
 in2 <= switches(4);

 -- led output with 50% duty cycle
 process
 variable blank : std_logic;
 begin
 wait until clock = '1';
 if blank = '1' then
 led <= (others => '1');
 else
 led <= not led_not;
 end if;
 blank := not blank;
 end process;

 -- connect up components
-- led <= not led_not;
 leds : xor_led -- led digit display
 port map (clock => pulse,
 switches => switches,
 led => led_not,
 outputs => outputs);

 display : xor_vga -- vga display
 port map (clock => pulse,
 switches => switches,
 output => output,
 vga => vga);

 npn : xor_npn -- neural network
 port map (in1 => in1, in2 => in2,
 clock => pulse,
 output => output,
 outputs => outputs);

end structure;

-- XOR NPN VGA objects Rob Chapman Mar 18, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_led is
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 led : out std_logic_vector(1 to 16);
 outputs : in std_logic_vector(14 downto 0));
end;

architecture structure of xor_led is

 -- digits 0-9: order of segments is "abcdefg"
 subtype digit is std_logic_vector(1 to 7);
 constant digit0 : digit := "1111110";
 constant digit1 : digit := "0110000";
 constant digit2 : digit := "1101101";
 constant digit3 : digit := "1111001";
Final Report April 7, 1998 71

 constant digit4 : digit := "0110011";
 constant digit5 : digit := "1011011";
 constant digit6 : digit := "1011111";
 constant digit7 : digit := "1110000";
 constant digit8 : digit := "1111111";
 constant digit9 : digit := "1111011";

 -- letter E for error
 constant letterE : digit := "1001111";

 -- np counter and led signals
 signal np : natural range 1 to 5;
 signal sum : std_logic_vector(2 downto 0);

 alias left_digit : std_logic_vector (1 to 7) is led(1 to 7);
 alias left_dot : std_logic is led(8);
 alias right_digit : std_logic_vector (1 to 7) is led(9 to 15);
 alias right_dot : std_logic is led(16);

begin

 -- user interface
 -- push button one is used to cycle the left led digit from np 1 to 5
 -- push button two is used to cycle the digit the other way
 -- the sum of each np is displayed in right led digit with dot as sign
 -- dip switch one and two are used as the two inputs into the xor npn
 -- the dot on the left led digit is the output of the xor npn,
 -- it is on, if the dip switches are different

 -- led digits and dots
 with np select
 left_digit <= digit1 when 1,
 digit2 when 2,
 digit3 when 3,
 digit4 when 4,
 digit5 when 5,
 letterE when others;

 left_dot <= outputs(14);

 with sum select
 right_digit <= digit0 when "000",
 digit1 when "001",
 digit1 when "111",
 digit2 when "010",
 digit2 when "110",
 digit3 when "011",
 digit3 when "101",
 letterE when others;

 right_dot <= sum(2);

 -- sum from currently selected neuroprocessor
 with np select
 sum <= outputs(2 downto 0) when 1,
 outputs(5 downto 3) when 2,
 outputs(8 downto 6) when 3,
 outputs(11 downto 9) when 4,
 outputs(14 downto 12) when 5,
 "100" when others;

 -- incrementing of np by push button 1
 process
 constant limit : integer := 25175;
 variable pbstate : integer range -limit to limit;
Final Report April 7, 1998 72

 variable pressed : std_logic;
 constant press : integer := (limit - 1); -- 25,175,000 hz clock
 constant release : integer := -(limit - 1);
 -- a millisecond of delay is used to debounce the input
 begin
 wait until clock = '1';

 if switches(1) = '1' and switches(2) = '1' then
 pressed := '0';
 end if;

 if pressed = '0' then
 if switches(1) = '0' or switches(2) = '0' then
 pbstate := pbstate + 1;
 else
 pbstate := pbstate - 1;
 end if;
 end if;

 if pbstate = press then
 if switches(1) = '0' then
 if np = 5 then
 np <= 1;
 else
 np <= np + 1;
 end if;
 else
 if np = 1 then
 np <= 5;
 else
 np <= np - 1;
 end if;
 end if;
 end if;

 if pbstate > press then
 pbstate := 0;
 pressed := '1';
 elsif pbstate < release then
 pbstate := 0;
 end if;

 end process;

end architecture;

-- XOR NPN VGA objects Rob Chapman Mar 18, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity xor_vga is
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 output : in std_logic;
 vga : out std_logic_vector(1 to 5));
end;

architecture structure of xor_vga is
begin
 vga <= "00000"; -- stubbed
end architecture;
Final Report April 7, 1998 73

D Seven UI
-- Seven segment digit recognizer Rob Chapman Mar 25, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity seven is
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10);
 led : out std_logic_vector(1 to 16));
end;

architecture structure of seven is

 component sevennpn
 port (clock : in std_logic;
 input : in iobus;
 output : inout iobus;
 outputs : inout sums);
 end component;

 component sevenui
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10); -- pb1-2 sw1-8
 inputs : buffer iobus;
 output : in iobus;
 outputs : in sums;
 led : out std_logic_vector(1 to 16));
 end component;

 signal pulse : std_logic; -- for setting network heartbeat
 signal outputs : sums;
 signal inputs, output : iobus;

begin

 -- set the pulse for the nps; could be event triggered too for low
 -- power and instant response to input change
 HB : process
 begin
 wait until clock = '1';
 if pulse = '0' then
 pulse <= '1';
 else
 pulse <= '0';
 end if;
 end process;

 -- connect up components
 ui : sevenui -- user interface
 port map (clock => pulse,
 switches => switches,
 inputs => inputs,
 output => output,
 outputs => outputs,
 led => led);

Final Report April 7, 1998 74

 npn : sevennpn -- neural network
 port map (clock => pulse,
 input => inputs,
 output => output,
 outputs => outputs);

end structure;

-- user interface for digit recognizer Rob Chapman Mar 25, 1998

Library IEEE;
use IEEE.STD_Logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

use work.params.all;

entity sevenui is
 port (clock : in std_logic;
 switches : in std_logic_vector(1 to 10); -- pb1-2 sw1-8
 inputs : buffer iobus;
 output : in iobus;
 outputs : in sums;
 led : out std_logic_vector(1 to 16));
end;

architecture structure of sevenui is

 -- digits 0-9: order of segments is "abcdefg"
 -- a_
 -- f|_|b g in the middle
 -- e|_|c
 -- d .p for the point

 subtype digit is std_logic_vector(1 to 7);

 constant digit0 : digit := "1111110";
 constant digit1 : digit := "0110000";
 constant digit2 : digit := "1101101";
 constant digit3 : digit := "1111001";
 constant digit4 : digit := "0110011";
 constant digit5 : digit := "1011011";
 constant digit6 : digit := "1011111";
 constant digit7 : digit := "1110000";
 constant digit8 : digit := "1111111";
 constant digit9 : digit := "1111011";

 -- letters
 constant letterA : digit := "1110111";
 constant letterB : digit := "0011111";
 constant letterC : digit := "0001101";
 constant letterD : digit := "0111101";
 constant letterE : digit := "1001111";
 constant letterF : digit := "1000111";
 constant letterG : digit := "1011110";
 constant letterH : digit := "0110111";
 constant letterI : digit := "0000110";
 constant letterJ : digit := "0111100";
 constant letterK : digit := "0100111";
 constant letterL : digit := "0001110";
 constant letterM : digit := "1110110";
 constant letterN : digit := "0010101";
 constant letterO : digit := "0011101";
 constant letterP : digit := "1100111";
 constant letterQ : digit := "1110011";
Final Report April 7, 1998 75

 constant letterR : digit := "0000101";
 constant letterS : digit := "1011011";
 constant letterT : digit := "1000110";
 constant letterU : digit := "0011100";
 constant letterV : digit := "0010100";
 constant letterW : digit := "0111110";
 constant letterX : digit := "0110110";
 constant letterY : digit := "0110011";
 constant letterZ : digit := "1001001";

 -- Test patterns
 -- Input#1
 -- _
 -- | |
 -- |_|
 constant test1 : digit := "1111110";

 -- Input#2
 --
--
 constant test2 : digit := "0110000";

 -- Input#3
 -- _
 -- _|
 -- |_
 constant test3 : digit := "1101101";

 -- Input#4
 -- _
 -- | |
 --
 constant test4 : digit := "1100010";

 -- Input#5
 --
--
 constant test5 : digit := "0100000";

 -- Input#6
 -- _
-- _
 constant test6 : digit := "1100001";

 -- Input#7
 -- _
 -- |_|
 -- |_|
 constant test7 : digit := "1111111";

 -- Input#8
 --
-- _
 constant test8 : digit := "0110001";

 -- Input#9
 -- _
 -- |_|
 -- |_
 constant test9 : digit := "1101111";
Final Report April 7, 1998 76

 -- Input#10
 -- _
 -- _|
 -- |_|
 constant test10 : digit := "1111101";

 -- Input#11
 -- _
 -- | |
 -- |_
 constant test11 : digit := "1101110";

 signal pattern : digit; -- current test pattern

 -- np counter and led signals
 signal np : natural range 1 to N;
 signal sum : asum;

 signal led_not : std_logic_vector(1 to 16);
 alias left_digit : std_logic_vector (1 to 7) is led_not(1 to 7);
 alias left_dot : std_logic is led_not(8);
 alias right_digit : std_logic_vector (1 to 7) is led_not(9 to 15);
 alias right_dot : std_logic is led_not(16);

 -- push buttons
 signal pushed : std_logic; -- set to one for a clock cycle when button pressed
 signal button : std_logic; -- zero for left button, one for right button

begin

 -- bug2 avoidance for Altera compiler
 inputs(0) <= '0';

 -- user interface
 -- The first seven switches are used to set the segments for the left
 -- digit. The eighth switch toggles between displaying the selected
 -- np with it's sum and the input and output characters. In first mode:
 -- push button one is used to cycle the left led digit from np 1 to 14H
 -- The sum of each np is displayed in right led digit with dot as sign.
 -- Push button two cycles down. In the second mode, the left push
 -- button is used to cycle through eleven test patterns and the right
 -- button is used to select the input switches. The input selection
 -- can only be changed when switch 8 is down.

 -- push button detector; note they are '0' when pressed
 process
 constant limit : integer := 25175; -- 25,175,000 hz clock
 variable pbstate : integer range 0 to limit;
 variable pressed : std_logic;
 constant press : integer := (limit - 1);
 -- a millisecond of delay is used to debounce the input
 begin
 wait until clock = '1';

 if pressed = '0' and (switches(1) = '0' or switches(2) = '0') then
 pbstate := pbstate + 1;
 if pbstate = press then
 pressed := '1';
 pushed <= '1';
 end if;
 else
 pbstate := 0;
 pushed <= '0';
 end if;

Final Report April 7, 1998 77

 if switches(1) = '1' and switches(2) = '1' then
 pressed := '0';
 end if;

 button <= switches(1);

 end process;

 -- changing of np by push button 1 and 2
 process
 begin
 wait until clock = '1';

 if pushed = '1' and switches(10) = '1' then -- a push button is pressed
 if button = '0' then -- test for pb1 pressed

 if np = N then -- and increment
 np <= 1;
 else
 np <= np + 1;
 end if;

 else -- assume pb2 is pressed

 if np = 1 then -- else decrement
 np <= N;
 else
 np <= np - 1;
 end if;

 end if;

 end if;

 end process;

 -- sum from currently selected neuroprocessor
 sum <= outputs(np);

 -- led digits and dots
 with np select
 left_digit <= digit1 when 1,
 digit2 when 2,
 digit3 when 3,
 digit4 when 4,
 digit5 when 5,
 digit6 when 6,
 digit7 when 7,
 digit8 when 8,
 digit9 when 9,
 letterA when 10,
 letterB when 11,
 letterC when 12,
 letterD when 13,
 letterE when 14,
 letterZ when others;

 left_dot <= '0';

 with sum select
 right_digit <= digit0 when "000000",
 digit1 when "000001"|"111111",
 digit2 when "000010"|"111110",
 digit3 when "000011"|"111101",
 digit4 when "000100"|"111100",
Final Report April 7, 1998 78

 digit5 when "000101"|"111011",
 digit6 when "000110"|"111010",
 digit7 when "000111"|"111001",
 digit8 when "001000"|"111000",
 digit9 when "001001"|"110111",
 letterA when "001010"|"110110",
 letterB when "001011"|"110101",
 letterC when "001100"|"110100",
 letterD when "001101"|"110011",
 letterE when "001110"|"110010",
 letterF when "001111"|"110001",
 letterG when "010000"|"110000",
 letterH when "010001"|"101111",
 letterI when "010010"|"101110",
 letterJ when "010011"|"101101",
 letterK when "010100"|"101100",
 letterL when "010101"|"101011",
 letterM when "010110"|"101010",
 letterZ when others;

 right_dot <= sum(sumbits-1);

 testpattern : process
 variable counter : positive range 1 to 11;
 begin
 wait until clock = '1';

 if pushed = '1' and button = '0' and switches(10) = '0' then
 if counter = 11 then
 counter := 1;
 else
 counter := counter + 1;
 end if;
 end if;

 case counter is
 when 1 => pattern <= test1;
 when 2 => pattern <= test2;
 when 3 => pattern <= test3;
 when 4 => pattern <= test4;
 when 5 => pattern <= test5;
 when 6 => pattern <= test6;
 when 7 => pattern <= test7;
 when 8 => pattern <= test8;
 when 9 => pattern <= test9;
 when 10 => pattern <= test10;
 when 11 => pattern <= test11;
 when others => pattern <= letterZ;
 end case;

 end process testpattern;

 -- choose network input
 process(switches(10), pushed, button)
 begin
 if switches(10) = '0' and pushed = '1' then
 if button='0' then
 inputs(1 to 7) <= pattern;
 else
 inputs(1 to 7) <= switches(3 to 9);
 end if;
 end if;
 end process;

 -- second layer inputs
Final Report April 7, 1998 79

n the
 take
 sli : for i in 8 to N generate
 inputs(i) <= '0';
 end generate;

 -- led output either inputs and outputs or np# and sum
 with switches(10) select
 led <= not (inputs(1 to 7)&'0'&output(8 to 14)&'0') when '0',
 not led_not when others;

end architecture;

E Data Sheet

These two chips implement two different artificial neural networks. The first one detects whe
inputs are different while the second one does digit recognition. The MAX part is 90% full and
204 LCs while the FLEX part takes up 645 LCs and 3072 bits of memory.

XOR ANN

MAX push
buttons
and switches

MAX LED
d ig i t s

Seven ANN

FLEX push
buttons
and switches

FLEX LED
d ig i t s
Final Report April 7, 1998 80

The hookup pins for the MAX part are as follows:

Pin name Pin number

led1 58

led2 60

led3 61

led4 63

led5 64

led6 65

led7 67

led8 68

led9 69

led10 70

led11 73

led12 74

led13 76

led14 75

led15 77

led16 79

pb1 54

pb2 57

switch1 56

switch2 55
Final Report April 7, 1998 81

The hookup pins for the FLEX part are as follows:

Pin name Pin number

led1 6

led2 7

led3 8

led4 9

led5 11

led6 12

led7 13

led8 14

led9 17

led10 18

led11 19

led12 20

led13 21

led14 23

led15 24

led16 25

pb1 28

pb2 29

switch1 41

switch2 40

switch3 39

switch4 38

switch5 36

switch6 35

switch7 34

switch8 33
Final Report April 7, 1998 82

	1 Abstract
	2 Overview
	3 Neural Network Components
	3.1 Sum, Sign and Latch
	3.2 NP Pseudocode
	3.3 Topologies
	3.4 Grand Matrix
	3.4.1 GM Pseudocode
	3.4.2 Minimizing Precision

	4 Resources
	4.1 VHDL
	4.2 FPGA Technology

	5 Single NP Implementation
	5.1 Architecture
	5.2 Design
	5.2.1 Instructions
	5.2.2 Program
	5.2.3 Assembler
	5.2.4 Memory and Cycle Time versus NPs

	6 Multiple NP Implementation
	6.1 NP
	6.1.1 Architecture
	6.1.2 NP Test

	6.2 GM
	6.3 NPN
	6.4 Modifying for Different ANNs

	7 A Difference Detector
	7.1 Component Hierarchy
	7.2 NPN Design
	7.2.1 Weight Precision

	7.3 Simulation
	7.4 User Interface Design
	7.4.1 Push Buttons

	7.5 Test
	7.6 MAX and FLEX
	7.7 NP Reduction

	8 A Digit Recognizer
	8.1 Design
	8.2 Weight Calculation
	8.2.1 Hebbian Learning
	8.2.2 Input Patterns

	8.3 User Interface
	8.4 Test
	8.5 Extending the Digit Recognizer

	9 Metrics
	10 Summary
	11 What’s Next
	11.1 Automation
	11.2 Optimization
	11.2.1 One NP per String
	11.2.2 Statistical Addition

	11.3 Schedule

	12 References
	A VHDL Code for Multiple NP Design
	A.1 Xor NPN
	A.2 Seven NPN

	B VHDL Code for Single NP Design
	B.1 Seven NPN
	B.2 XOR NPN

	C XOR UI
	D Seven UI
	E Data Sheet

