
EE 552
PROJECT GAMEPAL
Final Report

Submission Information
April 7, 1998

Dr. Duncan Elliott

GamePal Development Team
Mark Fedorak

Ron Smith
Vera Casteel

Kris Pucci

GamePal Final Report

2

Table Of Contents

Abstract ...03

Overview ...04

IC Information and Details ...05

Design Details and Documentation
Entity GAMEPAL..07
Entity KEYPAD...08
Entity VIDEO...11
Entity DICE..12
Entity MINTIME, MIN3TIME, and MIN5TIM..14

Testing Procedures...17

Appendix A..18
GAMEPAL Code Listing ...19
VIDEO Code Listing ..25
KEYPAD Code Listing ..32
DICE Code Listing ...37
MINTIME Code Listing ...41
MIN3TIME Code Listing ...42
MIN5TIME Code Listing ...43
MAINMENU.MIF..44
DICE.MIF ..45
TIMER.MIF ...46
CHARBANK.MIF..47

Appendix B..55
TIMER Code Listing ..56
COUNTDWN Code Listing..57
COUNTER2 Code Listing ..60
COUNTER3 Code Listing..64
KEYBTST Code Listing...68
CHIP (VIDEO TESTER) Code Listing...69

Appendix C..71
DICE Simulation ..72
COUNTDWN (non-working countdown without timer component)75
TIMER (component for non-working countdown timers)78
COUNTER2 (first non-working countdown with timer component)82
COUNTER3 (second non-working countdown with timer component).......86
MINTIME..90
MIN3TIME..93
MIN5TIME..95

GamePal Final Report

3

Abstract

The following report outlines the development of the GamePal by the GamePal
development team.

You should read this report if you are interested in finding out the technical
details of the GamePal. The overview and IC Information sections contain details on
what the GamePal is and what is required in order to run it. The design description
outlines how each individual component works, and how we obtained the solution we
did. The testing procedures section outlines how we went about testing the individual
components to ensure that they were working correctly. And finally the VHDL code, and
simulations are located in the Appendix.

A softcopy is available in PDF format on Nyquist in:
/users/prof/elliott/www552projects/98w/GamePal

GamePal Final Report

4

Overview

The GamePal was designed to be a “handy” device used for games that require
certain functions in order to play them (i.e. board games). In our design, we include a 1
minute, 3 minute, and a 5 minute timer as well as a dice rolling function that allows you
to choose the number of dice to be rolled with however many sides the user desires (up to
6).

The way it works is that the user programs the chip and is greeted with a main
menu that lists all of the choices and the number that must be pressed in order to
instantiate that function. The user types the number they want and the screen changes to
display a screen containing the current function.

If the user choose one of the timers then they would see a timer counting down on
the screen. This can be restarted by pressing reset and choosing timer again. If the user
ever gets stuck, pressing reset will always move them back to the main menu. Another
function the user can access is dice rolling. What the user does is press the key to enter
the dice screen. The user then chooses the number of dice (1 to 6) followed by enter and
then chooses the number of sides (2 to 6) followed by enter. The user must then press the
roll key in order to display the first set of dice. Every time the user presses roll the screen
will be updated with a new set of numbers corresponding to a dice. If a zero is displayed
it indicates that the dice is not to be updated. If the user wants to choose different dice
parameters they must press reset to go to the main screen and re-enter the dice function
and enter the paramaters they want.

There is no graceful exit or power off. The user must unplug the GamePal, or
reprogram the chip in order to turn it off. The keypad has some keys that are unused and
the keypad must be powered in order for it to work correctly.

Our original design had many more functions, however, we dropped most of them
because we believed that the display portion would take up much more space then it
ended up taking. Also the functions that were included all required a lot more work than
initally anticipated. For example, it tool over 2 months to come up with a video display
process that was acceptable for this particular implementation.

Special thanks and recognition should be given to Jim Hamblen or Georgia Tech
School of Electrical and Computer Engineering. The display engine and character set
were supplied by him on the following web site.

http://www.ee.gatech.edu/users/hamblen/ALTERA/altera.htm

All the other code and ideas were generated by the development team. We solved
many interesting problems and learned a lot in the process. Overall a very worthwhile
endeavor.

GamePal Final Report

5

IC Information and Details

IMPLEMENTATION DETAILS

To see full descriptions of all features implemented please see the design details
section. The features that we implemented are:

- Up to 6 dice with up to 6 sides
- One, Three, and Five minute countdown timers
- VGA screens read from ROM banks
- Keypad with 12 keys

The Altera UP1 Education Development Board was used to implement the
GamePal. The individual components on the board that are utilized are:

- Altera Flex EPF10K20RC240-4
- Flex Side LED (MSB and LSB)
- 8 Pins on Flex Expansion Array B
- VGA Port

CHIP INFORMATION

The FLEX 10K20 device is what the VHDL code included in the appendix is
executed on. The following table has all of the major information regarding the use of
this board.

Logic Cells Utilized 699 or 60% of the total 1152 LC’s available

Logic Cell
Breakdown
(approximate)

GamePal Module 113
Dice Module 206
KeyPad Module 110
Timers 66
Video 204

Memory Bits Utilized 8704 or 70% of the total 12288 bits available

Memory Usage
Breakdown

Character ROM 4096 Bits
Main Menu Screen 1536 Bits
Dice Screen 1536 Bits
Timers Screen 1536 Bits

Flip Flops Utilized 192
Total Compile Time 00:09:27.00
Output Pins 25
Input Pins 6

GamePal Final Report

6

PIN DETAILS

Name Type Number Description
Blue Output 238 Used for VGA. Displays Blue Color.
Green Output 237 Used for VGA. Displays Green Color.
Red Output 236 Used for VGA. Displays Red Color.
Horiz_sync Output 240 Used for VGA. Synchronizes horizontal.
Vert_sync Output 239 Used for VGA. Synchronizes vertical.

Clock Input 91 Global clock for the GAMEPAL.

pinA Output 120 Connects keypad pin A.
pinB Output 118 Connects keypad pin B.
pinC Input 116 Connects keypad pin C.
pinD Input 114 Connects keypad pin D.
pinE Input 119 Connects keypad pin E.
pinF Input 117 Connects keypad pin F.
pinG Output 115 Connects Keypad pin G.
pinH Output 113 Connects keypad pin H.

LSB_a Output 6 Segment A of the LSB on LED Display.
LSB_b Output 7 Segment B of the LSB on LED Display.
LSB_c Output 8 Segment C of the LSB on LED Display.
LSB_d Output 9 Segment D of the LSB on LED Display.
LSB_e Output 11 Segment E of the LSB on LED Display.
LSB_f Output 12 Segment F of the LSB on LED Display.
LSB_g Output 13 Segment G of the LSB on LED Display.
MSB_dp Output 25 Decimal Point of the MSB on LED Display.

MSB_a Output 17 Segment A of the MSB on LED Display.
MSB_b Output 18 Segment B of the MSB on LED Display.
MSB_c Output 19 Segment C of the MSB on LED Display.
MSB_d Output 20 Segment D of the MSB on LED Display.
MSB_e Output 21 Segment E of the MSB on LED Display.
MSB_f Output 23 Segment F of the MSB on LED Display.
MSB_g Output 24 Segment G of the MSB on LED Display.
MSB_dp Output 25 Decimal Point of the MSB on LED Display.

GamePal Final Report

7

Design Details and Documentation

The GamePal was designed by splitting up the large design into several smaller
components that each group member could work on. This was done using the principles
of top-down design. Therefore there are several distinct entities each interconnected and
described below.

ENTITY: GAMEPAL

The main entity that controls all functions and input/output is that of the entity
GAMEPAL. This entity manages external input and output, and acts as an interconnect
for the rest of the chip. The individual entities (VIDEO, KEYPAD, DICE, MINTIME,
MIN3TIME, MIN5TIME) are declared as components and their ports are mapped to
signals that are either used as internal data paths, external data paths, or control the
actions of the GamePal. The signal Current_Function controls whether the main menu,
dice, or timers are being used. The vector signals pass data from the dice and timers to
the video display.

ENTITY: GAMEPAL

ENTITY: KEYPAD

ENTITY: VIDEO

ENTITY: DICE

ENTITY: TIMERS

Figure 4.1

A state machine is responsible for switching modes and enabling each component. The
state machine goes to a null state after the particular function (dice, timers) has been
executed. This is due to the fact that you do not want to be switching states all the time.
When the user presses the reset key (obtained from the keypad component) the state is
reset to the first state and the user can select another function. To see what the state
machine looks like please see Figure 4.3 located on the next page.

GamePal Final Report

8

Others Reset
State

main dice_
enable1

dice_enab
le

three_
mintime

one_
mintime

Key1 = 1 Key1=0

ELSE

key2 = 1
Key3=1

five_
mintime

Key4=1 ELSE

five_
mintime_
enable

Key4=0
ELSE

one_
mintime_
enable

Key2=0

ELSE

ELSE

three_
mintime_
enable

Key3=0

Figure 4.2

ENTITY: KEYPAD

In order to get input into our GamePal, we needed some form of keypad. We
decided on a 16 key device to facilitate the numbers one through nine as well as some
other function keys. The keypad was much more difficult to develop than we had
initially anticipated, and the decoder logic took several attempts before developing a
routine that gave satisfactory output. There are some shortcomings with our particular
implementation which are described below, but they do not have any impact on the
performance of our circuit, so the design was not changed. This decoder is inappropriate
for some applications, and should be fully understood before attempting to export the
design to another implementation.

The keypad we used was a Series 83-BB1-002 obtained from the electronic
storehouse at the University. It is a very simple pad that must be powered and grounded
at different pins at different times by the controller (GAMEPAL entity) in order to give
the desired output. Table 4.1 is a truth table describing the function of the switches.

We decided to make the switches active low, by using pins A, B, G and H as
inputs to the keypad and taking pins E, F, D and C as outputs. The way this works is that
the input pins are all driven high except for one. The outputs are held high by a pull up
resistor between the output pin and Vcc. When a switch is pressed, the corresponding
input pin is driven low, causing a current to flow through the resistor, and the voltage on
the output pin will be dropped signaling to the decoding logic that the key has been

GamePal Final Report

9

Pin
Button E F D C A B G H

1 X - - - X - - -
2 - X - - X - - -
3 - - X - X - - -
4 - - - X X - - -
5 X - - - - X - -
6 - X - - - X - -
7 - - X - - X - -
8 - - - X - X - -
9 X - - - - - X -

10 - X - - - - X -
11 - - X - - - X -
12 - - - X - - X -
13 X - - - - - - X
14 - X - - - - - X
15 - - X - - - - X
16 - - - X - - - X

Table 4.1

pressed. If the correct input pin is not driven low, there will be no change in the voltage,
and no key press will be detected. (See Figure 4.3)

KeyPad PinA

KeyPad PinB

KeyPad PinC

KeyPad PinD

KeyPad PinE

KeyPad PinF

KeyPad PinG

KeyPad PinH

 PinA (120)

PinB (118)

PinC (116)

PinD (114)

PinE (119)

PinF (117)

PinG (115)

PinH (113)

1K 1K 1K1K

Vcc

Figure 4.3

One of the problems we may have been encountering in the early versions of the
keypad decoder is the capacitance of the prototype board we were using. The input pins
were cycled through with one logic 0 at a frequency of 25 MHz, and the capacitance of
the board may have been the cause of the apparent cross-talk between the different keys.

In our final, working decoder several extra states were added to avoid this cross-
talk and to debounce the key presses so that no single input would be interpreted by the
rest of the chip as multiple inputs. First of all we included a stepped down clock that
cycles through at about 1 kHz. This is slow enough to get reliable outputs, yet fast
enough that the inputs have no visible delay to the user. The first state resets all the keys

GamePal Final Report

10

to zero, and they cannot be changed except by the “set” states. Next the state machine
cycles through states which enable one row at a time on the keypad. When a key press is
detected, the state machine is advanced to the corresponding “debounce” state. This
causes the enable cycling to cease and hold the current row enabled. If the key is still
unstable the state machine returns to reset_state and continues searching for a keypress.
When the input is stable the state machine advances to “set”, which assigns the
appropriate key to one and all others to zero. The state machine remains in this state until
the key is released. Because of the slower clock, switches likely will not give multiple
inputs on one keypress, and the “debounce state” filters out any signals that could still be
unstable. (See Figure 4.4)

Others Reset
_State

First
_Row

Second
_Row

Third
_Row

Fourth
_Row

Deb
_First

Deb
_Second

Deb
_Third

Deb
_Fourth

Set
_First

Set
_Second

Set
_Third

Set
_Fourth

Figure 4.4

Careful inspection of the code reveals some shortcomings; however, these
shortcomings have no effect on this implementation. If two or more keys on the same
row are held down at the same time, both will be output from the decoder, but only the
first one pressed will be properly debounced. Pushing a key on an alternate row however
will not produce any results. This will not impact our GamePal design since it only
accepts one input at a time from the keypad and waits until that key has been released
before registering another one.

Upon completion the keypad was extensively tested by connecting the outputs to
the LED display on the prototype board and observing the output of when different
combinations of buttons were pressed. All results were acceptable with what was
expected according to the explanation above. The pull up resistors used were 1 kΩ each.
With a 5 volt source as on the prototype board, each one can draw only 5mA of current.
The entire configuration can only draw a maximum of 20mA, but will rarely do so. The
voltage on the power source was measured with and without this current drawn and had

GamePal Final Report

11

no appreciable loss in voltage, so the switches will not adversely affect the power supply
and thus the rest of the circuit.

ENTITY: VIDEO

We first decided to use a LCD display, which would display the output of the
chosen function. Since a LCD is somewhat limited for what it can display, we switched
to using a VGA monitor for displaying our output. VGA offers more flexibility for our
project, because we are able to display more characters on the screen than we could on an
LCD display, as well as change the colors of the text, etc.

The other reason is that more reference material was available on using the VGA
monitor (http://www.ee.gatech.edu/users/hamblen/ALTERA/altera.htm) and the monitor
itself was readily available for us to use in the lab.

The GAMEPAL is able to switch between full screens of text that are stored in
ROM. It switches between these screens depending on the function that the user chooses
to perform. If for instance the 3-minute countdown timer were chosen from the main
function menu, the screen would change to the timer screen and begin to countdown from
3 minutes. The reset button on the keypad will always take you back to the main menu
screen.

When we chose to use the VGA monitor, we first had to find out how to display
characters on the monitor itself. The Altera UP1 board contains a VGA port, which
allows a possible resolution of 640x480 pixels using five output signals (red, green, blue,
horizontal sync, and vertical sync).

The screen refresh process begins in the top left corner and “paints” 1 pixel at a
time from left to right. At the end of the first column, the row increments and the column
address is reset to the first column. Each row is painted until all pixels have been
displayed .

Our implementation supports a maximum of 32x8 characters using a character set
where each letter is an 8x8-unit block. Each block unit consists of 16x16 pixels. ROM
and LC (logic cell) limited the complexity of the screens. We put all the static screen
data in a ROM file which is initialized using a memory initialization file (.mif) file (see
Appendix A).

On examination of the mif file you will see something similar to the following:
XXXXXXXX : YY YY YY YY…
XX is the address of the characters to written to screen(8 bits required) and YY is the
address of the actual individual characters in octal. The first 3 bits of the address are used
to indicate which row the data is to be displayed on. This is where the 8 rows comes
from. The last 5 bits correspond to 32 columns across. The octal characters are read in
from the character repository in ROM.

GamePal Final Report

12

The aforementioned character set characters are also stored in ROM (see the
charbank.mif file in Appendix A) and are called in from the above file to display the
appropriate text on the monitor. Only 6 bits are used above, because the letters, as
mentioned above, are 8 X 8 pixels. As you can see for example the letter “A” is
equivalent to 01 in octal.

The character ROM would show the letter "A" as the following addresses.

 The Letter "A"
 010 : 00011000 ;
 011 : 00111100 ;
 012 : 01100110 ;
 013 : 01111110 ;
 014 : 01100110 ;
 015 : 01100110 ;
 016 : 01100110 ;
 017 : 00000000 ;

We also are able to change the color of the background and text as long as the
color is a combination of red, blue and green. To create the ROM banks we make use of
use of Altera’s library of paramartized modules. The video process creates 3 ROM banks
for data screens, and one bank to store the character set as mentioned above.

The top level component of our project, interfaces the code for the dice and timer
functions with the video_display process and allows them to be displayed on the monitor.
Special format characters were imbedded in the mif file. As the data in the ROM banks
is read in those special characters are flagged and the appropriate data from the timers
and dice components is put in place of that flag character, and then displayed on the
screen.

ENTITY: DICE

Our original design for the dice called for a total of 1 to 6 dice, chosen by the
user, to be displayed with random values with one keypress. These dice would have an
optional number of sides from 2 to 20. Eventually to simplify the design, we changed the
maximum number of sides to 6. Once the number of dice and sides have been chosen by
the user, these values will stay in memory, and the dice can be continuously rolled. If
new values of sides or dice are required, the user can simply reset the system and choose
appropriate new values. VHDL was used to describe the behaviour of the Dice entity,
and it was simulated and shown to be working correctly with the simulation capabilities
of MaxPlus2.

To begin, a simple explanation of the operation of the dice entity will be given.
Dice was designed to work as a separate entity receiving signals indicating what keys had
been pressed, and responding appropriately. We needed to have up to six random

GamePal Final Report

13

numbers to be generated simultaneously each with a value between 1 and 6. As this is
intended for use as a game, it is necessary that it be sufficiently random that no digits will
have a higher likelihood of appearing than any other. After considering various
possibilities, we came to the conclusion that we would have a six counters count through
all the different possible combinations of dice outputs that were selected by the user, and
that these values would be sampled only when the roll key was pressed. This makes the
number is completely random, because there is no way to tell when the key press will be
registered. The maximum number of dice is 6 with a maximum possible number of sides
of 6. This gives 66 or 46656 possible values which with the 25 MHz clock on the Altera
board will cycle through many times per second, which will ensure that all 6 dice will be
sufficiently random. To illustrate the function of the counters see Table 4.2 below which
displays 6 dice with values up to 3.

First a state machine was created to accept the users inputs and begin counting out
the dice. The state machine is rather simple. It first takes a value for the number of dice
desired, then upon pressing and releasing enter it takes a value for the number of dice.
Acknowledge signals are used to ensure that the state machine does not advance unless
proper values have been input for both. These acknowledge signals are initialized and set

Counter1 123 123 123 123 123 123 123 123 123 123 123
Counter2 111 222 333 111 222 333 111 222 333 111 222
Counter3 111 111 111 222 222 222 333 333 333 111 111
Counter4 111 111 111 111 111 111 111 111 111 222 222
Counter5 111 111 111 111 111 111 111 111 111 111 111
Counter6 111 111 111 111 111 111 111 111 111 111 111

Table 4.2

in the processes Choose_Num and Number_OF_Sides. A reset at any point will clear all
the values and new values can be entered. At this point the counter becomes active, and
will continue to cycle through possible values until reset is pressed (see the state diagram
in Figure 4.5). The counters were set up to cascade so that each one would only
increment if the one before it has just completed its cycle. A large set of nested if
statements were used to implement this. As a note, this process proved quite difficult to
write. The first attempts used a large set of nested if statements similar to the ones now
implemented, but were rejected by the compiler even after numerous revisions. We
attempted many other algorithms to rectify this problem, but none of them gave
functionally correct results. All the values would be cycled through, but not for correct
amounts of time, or sometimes erroneous values would be given which was unacceptable.
After many attempts at making this work it was evident that it wouldn’t and another try
was made at the large nested if statement. For some reason still unknown to us, it
compiled correctly this time, and then gave a functionally correct simulation. The Altera
compiler seems quite picky about the placement of the rising_edge keyword, and this
may have been one of the reasons why it would not accept our earlier code.

One last process assigns the dice values to signals, which are then output from the
dice entity. When the rising edge of a key press on the roll key is detected, each dice is
assigned the value of its corresponding counter. Other unused dice are assigned to a
value of zero.

GamePal Final Report

14

Others Reset
State

Choose_
Num

Choose_
Num2

Num
Sides

Num
Sides2Roll Dice

Enter = 1 &
NumEnable =1

Enter = 0

Enter = 1 &
SidesEnable = 1

Enter = 0

Figure 4.5

The dice entity was simulated using the Altera tools, and gave correct output. It
was also tested with incorrect input to see if it would be robust and withstand any
erroneous input a final user may subject it to, and again it simulated correctly. Some of
the tests included not giving the number of dice or the number of sides, as well as testing
whether the roll key would work before the counters were actually running and if other
key presses would cause it to change states at the wrong time. Again, the dice passed this
test.

ENTITY: MINTIME, MIN3TIME, and MIN5TIME

Our original plan was to have a countdown timer in which the user would enter
the time to be counted down from, and the user would be given a choice of either letting
the timer repeat the countdown as soon as it finished or the counter waiting for the user to
restart the timer. Much time was spent on the countdown timer, but we could not make it
simulate correctly. Therefore, the original countdown timer will be explained in detail, as
well as the individual timers that took its place. One-minute, three-minute, and five-
minute timers were designed. These timers start at the specified time and count down to
0:00. When they are done, the reset button can be pushed to choose that timer, a different
timer, or the dice function.

To design the countdown timer, we first made a state diagram (see Figure 4.6). A
case-when statement structure was used to implement the state diagram by assigning the
outputs followed by the next state based on the inputs. A separate process was used to
assign the state to the next state on the rising clock edge. Another process was used to
increment the time by 1 minute or 10 seconds based on what the user enters. Two
different approaches were taken for the timer itself. First, the timer was included in the
main countdown entity as a process. This process changed the time on the 1 second
rising clock edge. When it reached 0:00, a done signal was set so that the state machine
could either restart the countdown or wait for the user to press enter. This approach did
not work as the numerous acknowledge signals that were required became very difficult

GamePal Final Report

15

to keep up with. The simulation failed and a different approach was taken. A separate
entity, timer, was created to be a component used by the countdown entity. The timer
itself was simulated and seemed to be functionally correct, however when called from
within the countdown entity, the sec1 signal cycled through 1,0, and the sec2 signal
cycled through 9,0. The states did not change correctly either. When the no_repeat
function was chosen, the state machine followed the repeat function path. To remedy
this, state assignments were given to the states, keeping in mind that states with
asynchronous inputs should be adjacent to their following states. Unfortunately, this also
did not work. The sec1 signal cycled through 0, 8, and 9. This was incorrect. Also, the
state machine did not change states correctly. If “repeat” was chosen as the method of
countdown, it would start in the repeating state, then jump over to the restarting state of
no_repeat. At this point, it was decided that the countdown timer was not worth
continuing, since it was unlikely that it would ever work.

Since the state machine in the countdown timer was not working, we chose to
make the timer much simpler in order to have a working product at the end, rather than a
feature-filled non-working product. A one-minute timer was written such that the reset
signal on the board initializes the timer to 1:00. When enabled by the GamePal entity,
the timer counts down to 0:00. This timer was simulated by itself and proved to be
functionally correct. No acknowledge signals were necessary anymore as the timer only
counts down and stops until reset is pressed so that a new function can be chosen. The
one-minute timer was simulated with the GamePal entity and shown to be functionally
correct. Since this timer was working, 3-minute and 5-minute versions of the timer were
included. These timers work exactly the same way that the 1-minute timer works except
that they start from a different initial time. Each timer requires 22 LCs. Before the

GamePal Final Report

16

reset_state

00

set_time

00

choose_func

00

sec_incr_rdy

00

min_incr_rdy

00

sec_incr

00

min_incr

00

repeat

00

count_repeat

10

done_repeat

01

repeat_restart

00

no_repeat

00

reg_count

10

done_count

01

restart

00

Outputs:
count_enable
count_done_ack

key0

key0

key1

key1

key_enter
time_entered

key1 key0

key1 key0

count_done count_done

key_enter

key_enter

Figure 4.6

enable signal was added, 19 LCs were used. Thus adding an enable signal increased the
LCs by 3 for each timer. All three timers simulate correctly alone and within the
GamePal entity.

GamePal Final Report

17

Testing Procedures

The Dice and Timers were tested through simulation. The simulations are located
in Appendix C. Even though we simulated the dice and the timers we still had to tweak
them slightly when we incorporated them into the GamePal entity in order to get them to
work with the other components.

The keypad and video routines were tested through test prototypes which acted as
if they were the entity GAMEPAL. The two files keytst.vhd and chip.vhd were used to
test the keypad and video routines respectively (these two files are located in Appendix
B). Due to the nature of the video and keypad interfaces, simulations would not have
been a particularly effective way to test these routines. This is due to the fact that an in-
depth knowledge of VGA timing would be necessary. Also the video code we used had
been proven to work and it was not necessary to do any further testing of that code. The
other testing was done on the fly by making changes, recompiling and testing by
downloading to the Altera board.

One of the main reasons for applying the testing procedure mentioned above is
due to the reprogrammable capability of the FLEX 10K20 chip. If we had only one time
programmable components available we would not have attempted this type of project.
We would have chosen something that would have simulated with a much higher degree
of probability of working first try in the chip. Also the MAX+plus II simulation module
is not nearly as capable as that of Mentor Graphics, however, we had to stick with the
Altera tools due to the fact that we were programming their chip.

The true test is whether all the entities, when compiled together, give the desired
output. They do, thus the testing, though perhaps not as strict as it should have been was
successful in the end.

NOTE: In total we probably reprogrammed the FLEX10K20 about 150 – 200 times
through the development of the project.

	Title Page
	Table Of Contents
	Abstract
	Overview
	IC Information and Details
	Design Details and Documentation
	Entity GamePal
	Entity Keypad
	Entiry Video
	Entiry Dice
	Entity Timers
	Testing Procedures

