Dual Variable Environment Controller

EE552

Raymond Richmond

Tam Hung Chau

Executive Summary

Efficiency is the catch-phrase for everyone in this day and age. Waste is regarded as costly and simply not tolerated. This trend reaches into every facet of life, even the way we conduct our personal lives.

One place that is always targeted for improvements in efficiency is the home. Low energy emitting windows, high quality insulation, and florescent light bulbs are all examples of initiatives aimed at reducing energy loss in the home. The definition of waste is using something that you do not need to use, like heating a room when you are not there. Technology is coming to the point where individual rooms in a house can be controlled to maximize efficiency, but this really only works on new homes where such elaborate systems can be more easily installed.

To address the needs and concerns of owners with finished houses, compromises on the ideal must be made. Our design focused on a single controller for a whole house who could be pre-programmed with a generic usage pattern. While this is not optimal, it does however provide significant savings over no pattern at all.

This report will cover the operation and design principles of the completed, smaller project. Extra material is attached in the appendix outlining the design and simulation of the remaining blocks required producing a controller, which filled all of the parameters of the original proposal.

Introduction:

The initial project proposal was for a system capable of controlling two devices (Furnace and Air Conditioner) to produce an environmental temperature in accordance with preprogrammed values. These values were to be time based so that a temperature profile could be produced which would repeat every 24 hours. Examples of how this could be utilized would be to lower the temperature during periods when the house is unoccupied and raise it for occupied periods.

Due to space restrictions on the device chosen for the course (in our case ACT1 series), we were unable to implement the full design. The final, submitted project is a scaled-back version of the controller, which has only one programmable temperature. This choice allowed us to remove the 24-hour clock sub-system as well as reduce the complexity of the register system, which held and controlled the user-programmed information and comprised the majority of the space used.

The system has a power-on default of 25 degree’s, and once operational the user can program a desired temperature in the range of -40(C to +120(C. The system then evaluates the present temperature as provided by a digitally sampled analog thermometer. If the temperature moves 3(above or below the set temperature, the system activates the A/C or Furnace as appropriate to return the temperature to the desired level.

 Description:

The thermostat system was based completely on a block system, each module had to operate in such a way that the amount of tasks for each module was minimized. Operation was therefore broken down into the following units:

· Keypad Interface

· Register

· Display interface

· Calculator

· Sensor Interface

Operation of each unit will be examined individually, and then simulation of each unit will be shown and discussed in the next section.

Keypad Interface:

The function of this block is to watch the inputs from the keypad for a certain sequence of keypresses and, if they are entered properly, pass the temperature the user entered off to the register (see block diagram Appendix page
). A single bit control signal is used to tell the register to accept the incoming data, beyond this the keypad interface has no control of the data.

This block is implemented using a closed-loop state machine (illustrated in Figure 1
.). The first state is the holding state, if an invalid keypress is detected during programming, or until programming begins, the system holds in this state.

The system leaves this state only when key “1100” (Key ‘C’ on the hex-keypad) is detected the system moves into the next state, waiting for the key to be released (This holding state is in effect for all keypresses, but will be omitted from the discussion here out). We changed this feature key “1100” for programming the temperature to just a simple DIP SWITCH since it is due to modules and ACT1 technology limitations. ACT1 contains no flip-flops nor SEQUENTIAL logic. The next key pressed must be the sign (+ or -) of the temperature, valid keys for this are key ‘E’ for negative or anything <’E’ for positive. The next 3 digits represent the magnitude of the temperature, e.g. 025 for 25(C, 100 for 100(C, etc..

Producing a properly working state machine in VHDL (or perhaps ACT1) is difficult in the extreme. We discovered that Design Architect would read the design without difficulty and when we simulated the block, operation was confirmed to be exactly what we expected. However, when we compiled the code in Actmap, converted the EDN to VHDL and simulated it again, we found MANY problems, especially stated machines. (Part of our CAD tool documentation includes an approach to design that addresses this problem and a related one.) It seems that when the state machine is implemented, using the components available to the ACT1 libraries (although we did not get a chance to test this using other chip types), signal continuity is lost. An example of this is a signal which is initialized to ‘1’ in state0 goes to ‘0’ in state1 even though there is no signal assignment statement. Obviously, this is not good when you have a signal you wish to remain untouched through several states. Even putting reinforcing statements in each state helped little. This proved to be frustrating to say the least.

[image: image1.wmf]Process Start

Process

Start

Display1 <= Keypad1

Display2 <= Keypad2

Display3 <= Keypad3

Dislpay4 <= Keypad4

DES_USE1 <= Keypad1

DES_USE2 <= Keypad2

DES_USE3 <= Keypad3

DES_USE4 <= Keypad4

Display1 <= RLTEMP1

Display2 <= RLTEMP2

Display3 <= RLTEMP3

Dislpay4 <= RLTEMP4

Keypad_Active

Keypad_Idle

Figure 1: Keypad controller

We solved this problem by implementing a ONE-HOT State machine methology. Figure 1 shows how we implement our state machine. We assigned the states uniquely so that only one bit is allowed to change at any given time.

We can implement the Keypad encoder by either building another internal block to do this function or simply use an external chip that provide suitable options. Both must correctly interpret the 16 keys that can be possibly pressed by the user and translate each of these values into a BCD digit. Figure 2 show how the keypad encoder looks like if it were to be implemented within the FPGA. We have to write a VHDL code to scan 4 ROW and 4 COLUMNS. Therefore, it requires to scan 16 different combinations (S1 to S32). The switch debouncing is resolved when we use 3 INVERTERS as illustrated in Figure 2.

[image: image2.wmf]Pad_in0

Pad_in1

Pad_in2

Pad_in3

Data_ready

Keypad Controller

-State Machine based.

-Looks for a particular sequence of

digits to be entered and passes data

to the rest of the circuit.

-Initiate Temperature programming by

pressing key "1100" (E)

-Initiate Time programming by

pressing key "1110" (C)

-Enter 3 digits for temperature

(Sign and 2 digit magnitude)

-Enter 4 digits for Time

(2 hour digits, 2 Minute Digits)

-End programming by pressing key

"1111" (F or Enter)

Uses 230 Logic Modules

Temp1Set(0to3)

Temp2Set(0to3)

Temp3Set(0to3)

Temp4Set(0to3)

HourSet1

HourSet2

MinuteSet1

MinuteSet2

PROG_TIME

PROG_TEMP

Set

Figure 2: Keypad Encoder or use external chip MM54C922

We implement our design in a way so that every number entered by the user is always in a 4 bits BCD number. These 4 bit BCD numbers (in our case we have 4 four 4 bits BCD number) are then latches to the REGISTER and the CALCULATOR.

Register:

The function of this block is to route information between all the other blocks in the system. It accepts programming values from the keypad, real-time data from the sensor interface, and outputs data to the calculator and the display interface.

[image: image3.wmf]Register

Temp1(0to3)

Temp2(0to3)

Temp3(0to3)

Temp4(0to3)

Time1(0to3)

Time2(0to3)

Time3(0to3)

Time4(0to3)

Time6(0to3)

Des_use1(0to3)

Des_use2(0to3)

Des_use3(0to3)

Des_use4(0to3)

Temp1Set(0to3)

Temp2Set(0to3)

Temp3Set(0to3)

Temp4Set(0to3)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

HourSet1(0to3)

HourSet2(0to3)

MinuteSet1(0to3)

MinuteSet2(0to3)

Hour1(0to3)

Hour2(0to3)

Minute1(0to3)

Minute2(0to3)

Second2(0to3)

-Controls what data is passed to the display

and latches the user-set temperature for use

by the calculator.

-If Prog line is HIGH, display values being

entered on keypad by user. (Shift Temp into

DES_USE values if Prog_TEMP is HIGH)

-If Prog line is LOW, display RealTime values.

Uses 40 Logic Modules

PROG_TIME

PROG_TEMP

PROG_TIME

PROG_TEMP

Implementation of this block could be best described as a switching network coupled with latches.
(Figure 3: Flowchart of the REGISTER)

 When the control signal from the keypad interface goes high, the register copies the data coming in from the keypad directly to the display (for visual feedback for the user). While routing to the display, data is also copied to latched data lines for use by the calculator (see block diagram). When the control signal goes low, the data from the sensor interface is routed to the display.

Display interface:

The function of the display interface is to take 4 BCD digits in and do 7 segment conversion on each digit to produce 7 bits suitable for controlling a group of 4 seven-segment displays. Were we not limited by space this would be implemented by a large look-up table. When originally coded, the LUT took the form of a large case statement.

(See the sensor interface section for a discussion on LUT versus high level statements)

Implementing this method results in a VHDL file with 16x4 cases (one for each possible digit type for 4 different signals)

Again, we were limited on the amount of modules and therefore we simply use four external chips, TTL logic 7448’s, which include built in pull-up resistors for directly driving the LED’s.

Calculator:

The function of this block is to take the desired temperature settings from the register and the actual temperature from the sensor interface and perform a calculation using the two values. Depending on the results of the calculation the block will turn on either the A/C or the Furnace or both or neither.

The calculator has 4 different sets of inputs:

· The register, as mentioned before, provides the first, desired temperature. It is a group of 4 BCD digits representing a sign and a magnitude. This sign is the first digit and the magnitude is made up of the last three digits.

· The second set is provided by the sensor interface, this is also a group of 4 BCD digits in the same format as the values provided by the register.

· The third input is a single bit control set by a user controlled switch exterior to the FPGA. This input is called HOT and controls the operating mode of the furnace. If it is high, the furnace is free to operate based on calculator decisions. If it is low, the furnace is disabled. This would be used in summer, for example, to ensure that the heat never turns on.

· The fourth input is a single bit control set by a user controlled switch exterior to the FPGA. This input is called COLD and controls the operating mode of the A/C. If the signal is high, the A/C is free to operate based on calculator decisions. If it is low, the A/C is disabled. This would be used in summer, for example, to ensure that the heat never turns on.

The calculator forms its decision using a cascading subtraction scheme (Illustrated in Figure 4). First, the calculator determines the sign of each number. There are 4 possible combinations and the way is performs the remaining calculations is slightly different for same sign situations than for mixed sign situations. As an example, let’s consider that both values are positive. The calculator then looks at the first magnitude digit, the hundreds, if desired is higher than actual obviously the heater needs to be turned on, so the furnace value is set high and the calculator exits the calculation. If the hundreds values are the same it looks at the second magnitude digits (or tens values) the decision process here is the same as for the hundreds.

Now, if the hundreds and the tens are the same, the calculator looks at the third magnitude digits or ones values. In this case a control signal is set only if the temperature rises or falls 3 degrees above the programmed value. This was chosen to remove possible oscillation in the operation of the whole system (Example: furnace is turned on and before it can shut off the heat rises above programmed value which turns on the A/C. Before A/C can be shut off, the temperature falls below set point and the furnace turns on.). At the same time, we are hopefully providing an operation envelope small enough that the occupants will not detect the variation.

[image: image4.wmf]Display Controller

SevenSeg1

(0to7)

SevenSeg2

(0to7)

SevenSeg3

(0to7)

SevenSeg4

(0to7)

Temp1(0to3)

Temp2(0to3)

Temp3(0to3)

Temp4(0to3)

Time1(0to3)

Time2(0to3)

Time3(0to3)

Time4(0to3)

Time6(0to3)

-Displays either Time or Temperature based on

the value of Time6 (1's of seconds) then uses a

LUT to decode BCD to Seven Segment control.

-If Time6 <=4 then display Time

- If Time > 4 then display Temp

-Prog_Time and Prog_Temp override automatic

function. If Prog_Time HIGH display Time. etc.

Uses 52 Logic Modules.

PROG_TIME

PROG_TEMP

Figure 3 (Process flow for Calculator)

Sensor Interface:

The function of the sensor interface is to communicate with an external Analog to Digital converter, take in the data it provides, and manipulate the data to work around various vagaries of the A/D converter chosen. (See Figure 4.)

For the project, we chose to use an ACD0808 A/D converter from National Semiconductor. Unfortunately, this A/D is only able to provide conversion for values ranging from “00000000” to “11111111” representing positive values only. To be useful for this system it was required that we be able to distinguish between -40(C and over +100(C. We therefore decided to set the analog portion of the hardware such that at -40(C the A/D would output “00000000”.

Now that we had a range of continuous values provided by the A/D we were next required to shift that data coming in down by a value of 40. To do this the two’s complement of 40 was added to the sampled 8 bit value. If the result was positive, it is simply passed it on to the register. If the result was negative it is converted to a positive number and set the MSB to 1 (This limited our system to 7 bits of magnitude, or values below +127(C). Once this is done, it is passed on to the register.

To obtain the data from the A/D, bi-directional communication must be established between the A/D and the FPGA. This communication is accomplished by three single bit lines. These lines, Start, EOC (end of conversion), and OUTEN (output enable) operate as follows. Start is used to signal the A/D to begin the conversion process, the A/D is configured to do constant conversion but it is recommended to provide a start pulse to initialize the process. Once the conversion process is complete the A/D sets EOC high telling the system that data is available. When the sensor interface sees EOC go high, it in turn sets OUTEN high to enable the tri-state outputs on the A/D, then reads the 8bit value into internal latches.

It was relatively easy to communicate with the A/D, however, due to decisions we made to accommodate the display of data in our system 8bit numbers were inappropriate.

What the system needed was 4 BCD digits. Initially we worked on an algorithm to convert the digit. If the incoming data was positive, BCD1 was set to “0000” if it were negative it would be set to “1110” (the display driver interpreted this as ‘-‘). Next, if the magnitude was > 100, 100 would be subtracted from the data and BCD2 would be incremented by one. After this calculation it would go back to the start of the loop, if the number was still > 100 it would increment again. The same process was applied to the 10’s and 1’s digits. This process worked exceptionally well and was suitable for our purposes it was, however large (250 modules).

There was no way for us to avoid using BCD without changing the whole system, nor could we easily change the A/D system. Instead, we took an approach that would generate a LUT. Using a CASE statement with 256 possible values, we built a converter by explicit specification. (This method will be included in CAD tools documentation) Producing our converter in this way had three results. First, we were able to produce the converter with a VERY small logic module count, (to produce a LUT for four BCD digits from an 8 bit number used under 50 modules). Look up tables are very fast so we removed possible timing issues which were introduced by a recursive algorithm. Finally, specifying something explicitly like this results in a design with HUGE complexity, (Compiler complexity, not module). Compiling this particular block of code took about 35 minutes on the UltraSparc stations (7 minutes on PentiumII) while the rest of our components took only a couple minutes. This is the price to pay for small area usage.
[image: image5.wmf]Calculator

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

HOT

COLD

-Compares the Desired temperature with the actual

temperature and makes a decision about what environment

controller to activate (Furnace or A/C)

-Compares the two temperatures by a cascading

comparison. (Looks at first digit of both values, if there is not

enough info to decide, compare second digits, and so on.)

-The results of the decision are AND'ed with the inputs HOT

and COLD. (ie. if Cold = '0' then even if the process decided

to turn on the A/C the control output would remain '0'. Same

for the Furnace)

Uses 109 Logic Modules.

Furnace

A/C

Figure 5 (Functional flow of Sensor Interface.)
Simulation:

Functional Simulation

Functional simulation is a sore spot with me. I feel that the method of using Mentor Graphics to simulate while needing to work with Actmap for final designs introduces a level of unnecessary difficulty. After talking with several groups who experienced what they called timing problems when back annotating their systems I found that most of them were victims of one of 2 things.

First Mentor graphics interprets code differently than actmap. As an example, I compiled a small piece of code in both Mentor and Actmap. I converted the actmap EDN to VHDL, compiled this on Mentor and simulated the results of both. The result of this simulation was significantly different between the two files when they should have been exactly the same. Most people noticed these differences at the end of their project when they did back-annotation and assumed that it was a timing and delay problem. However, most projects were not especially frequency sensitive and operated in the kHz range.

I found that if I simulated the code created after converting Actmap EDN files, rather than just working from Mentor, that when I did my back annotation testing there was really no change in operation.

The second problem is with the actmap netlist optimizer. As I understand it, this utility is supposed to optimize code for space, speed, or fan-out, without altering the functional operation. When we were simulating our project we compiled all our code then did a functional simulation on it, which worked fine. Then we optimized the code to reduce the size slightly as we were just slightly too large. Testing of the optimized file showed radically different operation than the we saw from the original EDN file. I am not sure what the reason for this change is but I feel it should be brought up with Actel.

Back-Annotated Simulations (waveforms and procedures)

Conclusion:

We were able to produce a system which operates quite well as a digital thermostat. With only a bit more work and a larger FPGA we would be able to implement the full system including programmability of multiple time based temperature settings.

This project provided both of us with what we feel is a really useful exposure to using programmable logic. We encountered problems which we think are quite comparable to work-force situations and I know I have a new respect for the work required in producing a market ready system when you have iron-clad restrictions (namely the fpga).

******Off topic*************

I would like to see this course focus more on using programmable logic rather than the large amount of theoretical information offered. The information about logic types, SRAM or anti-fuse technology and related items can be picked up in other courses like EE572 and others. While the information was good I think a focus on larger projects with fewer labs (thus offering more lab time for the project and associated questions) would be of great benefit. I have several friends who work at Nortel, 3Com and even Cisco who all use various Actel chips and they all say that a firmer functional understanding of how these devices work would have helped immesurably.
[image: image6.wmf]Sensor Interface

Data_in(0to7)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

Start

EOC

OutEn

-Communicates with External A/D Converter

and changes the format of the value and puts it

into the proper range.

-Sets START high to signal A/D to begin

conversion.

-Waits until EOC goes high.

-Sets START low and OUTEN high.

-Reads value which is now available at Data_in

-Subtracts 40 from this value.

-Converts 8bit Magnitude plus sign to 4 BCD

digits.

Calculator requires 120 Logic Modules

Converter requires 35 Logic Modules

Appendix:
--Project.vhd

LIBRARY ieee;

use ieee.std_logic_1164.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

--use work.std_arith.all

-- uncomment for Warp

--

--********* THIS SHOULD BE FINAL AS FAR AS SIGNALS *******

--********* FOR EACH BLOCK IS CONCERNED. IF THERE IS *******

--********* A PROBLEM CONTACT ME!!!!!!! *******

--

--SYSTEM I/O PINS AS FOLLOWS

--4 7BIT GROUPS FOR DISPLAY. (28 PINS) - out - Disp1-4

--1 2BIT GROUP for memory address (2 pins) - in - Address

--1 4BIT GROUP for keypad input (4 pins) - in - Keypad

--1 8 BIT GROUP FOR DIGITAL TEMP IN (8 PINS) - in - Data_In

--3 1 bit groups FOR A/D CONTROL (3 PINS) - out, in - START OUTEN, EOC

--2 1bit groups for operating mode (2 pins) - in - HOT, COLD

--2 1BIT GROUPS for System Control (2 pins) - out - Fur, AC

--1 Bit in clock
(1 pin) - in - Clock

--1 Bit in Enable (1 pin) - in - Enable

--(Pin total so far is 51)

--

ENTITY Project IS

port(

DATA_IN :
IN std_logic_vector(7 downto 0);

PAD_IN :
IN std_logic_vector(3 downto 0);

Data_Ready
:
IN
std_logic;

EOC, HOT, COLD, RESET, CLOCK
:
IN
std_logic;

Keypad_switch :
IN
std_logic;

Display1out, Display2out, Display3out, Display4out
:
OUT std_logic_vector(3 downto 0);

START, OUTEN, FUR, AC
:
OUT
std_logic

);

END Project ;

ARCHITECTURE Operation OF Project IS

--Define Signals here, may have to move them later.

--

---------- For distributing temp from sensor.

Signal RLTMP1, RLTMP2, RLTMP3, RLTMP4:
std_logic_vector(3 downto 0);

---------- For passing set status info to/from RTC to Kepad

Signal SET, FINISHED:
std_logic;

----------For distributing Temp values from keypad to REGISTERS.

Signal TMPPROG:
std_logic_vector(7 downto 0);

----------For distributing Time set values from keypad to RTC and REGISTERS.

Signal KPDTMP1, KPDTMP2, KPDTMP3, KPDTMP4: std_logic_vector(3 downto 0);

----------For communication between Keypad and Display, is an interrupt to display prog info.

Signal DISPMODE:
std_logic;

----------For distributing temp set from registers

Signal SETTMP1, SETTMP2, SETTMP3, SETTMP4:
std_logic_vector(3 downto 0);

----------For conversion of 8bit to 4x4bit

Signal TMPBCD1, TMPBCD2, TMPBCD3, TMPBCD4: std_logic_vector(3 downto 0);

Signal
TMPWRK:
std_logic_vector(7 downto 0);

----------For passing values from DISPLAY block to BCD block.

Signal DISPOUT1, DISPOUT2, DISPOUT3, DISPOUT4:
std_logic_vector(3 downto 0);

Signal RBI, RBO, LT:
std_logic;

----------For passing info from Keypad to Register

Signal DTP
:
std_logic;

----------for passing infro from register to display

signal REGT1, REGT2, REGT3, REGT4: std_logic_vector(3 downto 0);

--

--COMPONENT DECLARATIONS!!!!!!!!!!!!!!!!

--

COMPONENT Sensor

port (

Reset, EOC : in std_ulogic;

DataIN: in std_logic_vector(7 downto 0);

Start, OutEn: out std_ulogic;

Temp: out std_logic_vector(7 downto 0)

);

END COMPONENT ;

COMPONENT Calc

port (

Reset, Hot, Cold, clock : in std_logic;

TMP_USE1, TMP_USE2, TMP_USE3, TMP_USE4:
in
std_logic_vector(3 downto 0);

Des_USE1, Des_USE2, Des_USE3, Des_USE4:
in
std_logic_vector(3 downto 0);

Fur, AC : out std_logic

);

END COMPONENT ;

COMPONENT REG

PORT (

Temp_prog1, Temp_prog2, Temp_prog3, Temp_prog4

: IN
std_logic_vector (3 downto 0);

Temp_in1, Temp_in2, Temp_in3, Temp_in4

: IN
std_logic_vector(3 downto 0);

DES_Temp1, DES_Temp2, DES_Temp3, DES_Temp4

: OUT
std_logic_vector (3 downto 0);

DispT1, DispT2, DispT3, DispT4

: OUT
std_logic_vector (3 downto 0);

Display_Temp_Press

: IN
std_logic;

Reset

: IN
std_logic;

Clock

: IN
std_logic

);

END COMPONENT ;

COMPONENT display

PORT (RESET :
in
std_logic;

DispT1, DispT2, DispT3, DispT4

:
IN
std_logic_vector (3 downto 0);

Display1, Display2, Display3, Display4

:
OUT
std_logic_vector (3 downto 0);

Clock

:
IN
std_logic

);

END COMPONENT;

COMPONENT keypad

PORT (

PAD_IN

:
IN
std_logic_vector (3 downto 0);

Data_Ready

:
IN
std_logic;

Clock

:
IN
std_logic;

Reset

:
IN
std_logic;

Temp_prog1, Temp_prog2, Temp_prog3, Temp_prog4

:
OUT
std_logic_vector (3 downto 0);

Keypad_switch

:
IN
std_logic;

display_temp_press

:
out
std_logic

);

END COMPONENT;

COMPONENT CONVERTER

port (

RESET:
in std_logic;

clock: in std_logic;

TEMP: in std_logic_vector(7 downto 0);

BCD1, BCD2, BCD3, BCD4: out std_logic_vector(3 downto 0)

);

END COMPONENT;

--

-- DEFINE WHO IS WHO!!!!!

--

for all: Calc use entity work.calc(behavior);

for all: Sensor use entity work.Sensor(behavior);

for all: Reg use entity work.reg(behavior);

for all: Display use entity work.display(behavior);

for all: Keypad use entity work.keypad(behavior);

for all: converter use entity work.converter(behavior);

BEGIN -- Architecture that is.

--

--DO all the component instantiations.

--

--

Calcmap:
Calc
port
map (
RESET => RESET,

Hot => HOT,

Cold => COLD,

clock => clock,

-- Items below were altered by raymond to conform to BCD throughout cct.

TMP_USE1 => RLTMP1, -- these connect to 8bit2bcd output

TMP_USE2 => RLTMP2,

TMP_USE3 => RLTMP3,

TMP_USE4 => RLTMP4,

Des_USE1 => SETTMP1, -- These connect to register output.

Des_USE2 => SETTMP2,

Des_USE3 => SETTMP3,

Des_USE4 => SETTMP4,

Fur => FUR,

AC => AC);

Sensormap:
Sensor
port
map
(
RESET => RESET,

EOC => EOC,

DataIN => DATA_IN,

Start => START,

OutEn => OUTEN,

Temp => TMPWRK);

Registermap : reg
PORT MAP (

Temp_prog1 => KPDTMP1,

Temp_prog2 => KPDTMP2,

Temp_prog3 => KPDTMP3,

Temp_prog4 => KPDTMP4,

Temp_in1 => RLTMP1,

Temp_in2 => RLTMP2,

Temp_in3 => RLTMP3,

Temp_in4 => RLTMP4,

DispT1 => REGT1,

DispT2 => REGT2,

DispT3 => REGT3,

DispT4 => REGT4,

DES_Temp1 => SETTMP1,

DES_Temp2 => SETTMP2,

DES_Temp3 => SETTMP3,

DES_Temp4 => SETTMP4,

Display_Temp_Press => DTP,

Reset => reset,

Clock => Clock);

Keypadmap : keypad
PORT MAP (
PAD_IN => PAD_IN,

Data_Ready => Data_Ready,

Clock => Clock,

Reset => Reset,

Temp_prog1 => KPDTMP1,

Temp_prog2 => KPDTMP2,

Temp_prog3 => KPDTMP3,

Temp_prog4 => KPDTMP4,

Display_Temp_Press => DTP,

Keypad_switch =>
Keypad_switch

);

Displaymap : display
PORT MAP (

DispT1 => REGT1,

DispT2 => REGT2,

DispT3 => REGT3,

DispT4 => REGT4,

Display1 => Display1out,

Display2 => Display2out,

Display3 => Display3out,

Display4 => Display4out,

reset => reset,

Clock => Clock);

Convertmap
:
converter
PORT MAP
(
TEMP => TMPWRK,

RESET => RESET,

clock => clock,

BCD1 => RLTMP1,

BCD2 => RLTMP2,

BCD3 => RLTMP3,

BCD4 => RLTMP4);

END Operation;

[image: image7.wmf]Real Time Clock

HourSet1

Hourset2

MinuteSet1

MinuteSet2

Hour1(0to3)

Hour2(0to3)

Minute1(0to3)

Minute2(0to3)

Second2(0to3)

-Implements a 24 Hour clock using 6 BCD digits

(10's Hours, Hours, 10's Minutes, Minutes, etc..)

-Based on inter-connected asynchronous counters

- 3 Different counters were created.

One counts from 0 to 9,

one counts from 0 to 5,

 and the last counts from 0 to 3.

The carry_out line of the least significant number is

connected to the increment line of the next digit.

-If Set goes high the operation of the clock is stopped and

the contents of HourSet* and MinuteSet* are copied into

Hour* and Minute*. Operation resumes when Set goes low.

-Time increment is triggered by process which counts clock

cycles. When specified number of cycles is reached the

increment line of Least Significant Digit is toggled.

Uses 300 Logic Modules

(Source of our problem.)

Set

--keypadw.vhd

library ieee;

use ieee.std_logic_1164.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

entity keypad is

port (

PAD_IN

:
IN
std_logic_vector (3 downto 0);

Data_Ready

:
IN
std_logic;

Clock

:
IN
std_logic;

Reset

:
IN
std_logic;

Temp_prog1, Temp_prog2, Temp_prog3, Temp_prog4

:
OUT
std_logic_vector (3 downto 0);

DISPLAY_TEMP_Press

:
OUT
std_logic;

Keypad_switch

:
IN
std_logic

);

end keypad;

ARCHITECTURE behavior OF keypad IS

TYPE state_temp IS (a, b, c, d, e, f, g, h);

--For Temperature Process

SIGNAL current_stateA, next_stateA
: state_temp;

SIGNAL
TEMP1, TEMP2, TEMP3, TEMP4
: std_logic_vector (3 downto 0);

BEGIN

--If DIP SWICTH, Keypad_switch, is "ON" this will guarantee we will get that key press will be display, otherwise don't

Display_Key
:
PROCESS (Keypad_switch, reset)

BEGIN

IF (Keypad_switch = '1') THEN

--REMEMBER "Keypad_switch" is a DIP SWITCH

DISPLAY_TEMP_PRESS
<= '1';

Temp_prog1

<= TEMP1;

Temp_prog2

<= TEMP2;

Temp_prog3

<= TEMP3;

Temp_prog4

<= TEMP4;

END IF;

IF (Keypad_switch = '0') THEN

DISPLAY_TEMP_PRESS
<= '0';

END IF;

END PROCESS Display_Key;

key_control_temp : PROCESS (current_stateA, Reset, Clock, PAD_IN, Data_Ready)

BEGIN

IF (Reset = '1') THEN

DISPLAY_TEMP_PRESS <= '0';

Temp_prog1
<= "0000";

Temp_prog2
<= "0000";

Temp_prog3
<= "0000";

Temp_prog4
<= "0000";

next_Statea <= a;

TEMP1

<= "0000";

TEMP2

<= "0000";

TEMP3

<= "0000";

TEMP4

<= "0000";

END IF;

IF (Clock = '1') THEN

current_stateA
<= next_stateA;

END IF;

IF (Reset = '1') THEN

current_stateA
<= a;

END IF;

CASE current_stateA IS

WHEN a =>

--get 1st key press

IF (Data_Ready = '0') THEN

Next_stateA <= a;

END IF;

IF (Data_Ready = '1')
THEN

CASE PAD_IN IS

WHEN "0000" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0001" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0010" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0011" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0100" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0101" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0110" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "0111" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "1000" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN "1001" =>

TEMP1 <= PAD_IN;

next_stateA <= b;

WHEN others =>

next_stateA <= a;

--wait for correct key press

END CASE;

END IF;

WHEN b =>

--waiting for next key press release

IF (Data_Ready = '1') THEN

next_stateA <= b;

END IF;

IF (Data_Ready = '0') THEN

Next_stateA <= c;

END IF;

WHEN c =>

IF (Data_Ready = '0') THEN

Next_stateA <= c;

END IF;

IF (Data_Ready = '1')
THEN

CASE PAD_IN IS

WHEN "0000" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "0001" =>

TEMP2 <= PAD_IN;

next_stateA <= d;

WHEN "0010" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "0011" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "0100" =>

TEMP2 <= PAD_IN;

next_stateA <= d;

WHEN "0101" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "0110" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "0111" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "1000" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN "1001" =>

TEMP2
<= PAD_IN;

next_stateA <= d;

WHEN others =>

next_stateA <= c;

--wait for correct key press

END CASE;

END IF;

WHEN d =>

--waiting for next key press release

IF (Data_Ready = '1') THEN

next_stateA <= d;

END IF;

IF (Data_Ready = '0') THEN

Next_stateA <= e;

END IF;

WHEN e =>

IF (Data_Ready = '0') THEN

Next_stateA <= e;

END IF;

IF (Data_Ready = '1')
THEN

CASE PAD_IN IS

WHEN "0000" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0001" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0010" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0011" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0100" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0101" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0110" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "0111" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "1000" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN "1001" =>

TEMP3 <= PAD_IN;

next_stateA <= f;

WHEN others =>

next_stateA <= e;

--wait for correct keypress

END CASE;

END IF;

WHEN f =>

--waiting for next key press release

IF (Data_Ready = '1') THEN

next_stateA <= f;

END IF;

IF (Data_Ready = '0') THEN

Next_stateA <= g;

END IF;

WHEN g =>

IF (Data_Ready = '0') THEN

Next_stateA <= g;

END IF;

IF (Data_Ready = '1')
THEN

CASE PAD_IN IS

WHEN "0000" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0001" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0010" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0011" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0100" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0101" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0110" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "0111" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "1000" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN "1001" =>

TEMP4 <= PAD_IN;

next_stateA <= h;

WHEN others =>

NULL;

next_stateA <= g;

--wait for correct key press

END CASE;

END IF;

WHEN h =>

--waiting for any key press releases

IF (Data_Ready = '1') THEN

next_stateA <= h;

END IF;

IF (Data_Ready = '0') THEN

Next_stateA <= a;

--DONE SINCE last key is press

END IF;

END CASE;

END PROCESS key_control_temp;

END behavior;

[image: image8.wmf]Keypad

Controller

Register

Display

Controller

4 x 4

5 x 4

4 x 4

4 x 4

Real

Time

Clock

6 x 4

7

4

4 x 4

4 x 4

Calculator

Sensor

Interface

4 x 4

8

7

7

7

I/O signals for FPGA

Internal Time Signals

Internal Temp. Signals

Post-Optimization Module count:

867

-- REG.vhd

library ieee;

use ieee.std_logic_1164.all;

--library asyl;

--use asyl.arith.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

ENTITY REG IS

PORT (

Temp_prog1, Temp_prog2, Temp_prog3, Temp_prog4

: IN
std_logic_vector (3 downto 0);

Temp_in1, Temp_in2, Temp_in3, Temp_in4

: IN
std_logic_vector(3 downto 0);

DispT1, DispT2, DispT3, DispT4

: OUT
std_logic_vector (3 downto 0);

DES_Temp1, DES_Temp2, DES_Temp3, DES_Temp4

: OUT
std_logic_vector (3 downto 0);

Display_Temp_Press

: IN
std_logic;

Reset

: IN
std_logic;

Clock

: IN
std_logic

);

END REG;

ARCHITECTURE behavior OF REG IS

Signal TEMP_TMP1, TEMP_TMP2, TEMP_TMP3, TEMP_TMP4, DES_TEMP1_TMP, DES_TEMP2_TMP, DES_TEMP3_TMP,

DES_TEMP4_TMP: std_logic_vector(3 downto 0);

BEGIN

--

--HAPPENS ONLY when the user is pressing the temperature.

--

--

--HAPPENS ONLY when the user is pressing the Clock.

--

--

--HAPPENS ONLY when the user is finish PRESSING THE KEY

--

Temp_Press
:
PROCESS (
Reset, Display_Temp_Press, Temp_prog1, Temp_prog2, Temp_prog3, Temp_prog4)

BEGIN

IF RESET = '1' THEN

DispT1
<=
"0000";

DispT2
<=
"0000";

DispT3
<=
"0000";

DispT4
<=
"0000";

DES_Temp1
<=
"0000";

DES_Temp2
<=
"0000";

DES_Temp3
<=
"0000";

DES_Temp4
<=
"0000";

end if;

IF Display_Temp_Press = '1' THEN

TEMP_TMP1
<=
Temp_prog1;

TEMP_TMP2
<=
Temp_prog2;

TEMP_TMP3
<=
Temp_prog3;

TEMP_TMP4
<=
Temp_prog4;

DES_Temp1_tmp
<=
Temp_prog1;

DES_Temp2_tmp
<=
Temp_prog2;

DES_Temp3_tmp
<=
Temp_prog3;

DES_Temp4_tmp
<=
Temp_prog4;

Else

TEMP_TMP1

<=
Temp_in1;

TEMP_TMP2

<=
Temp_in2;

TEMP_TMP3

<=
Temp_in3;

TEMP_TMP4

<=
Temp_in4;

END IF;

DispT1 <= TEMP_TMP1;

DispT2 <= TEMP_TMP2;

DispT3 <= TEMP_TMP3;

DispT4 <= TEMP_TMP4;

DES_Temp1 <= DES_Temp1_tmp;

DES_Temp2 <= DES_Temp2_tmp;

DES_Temp3 <= DES_Temp3_tmp;

DES_Temp4 <= DES_Temp4_tmp;

END PROCESS Temp_Press;

END behavior;

[image: image9.wmf]A/D Converter

--Display.vhd

library ieee;

use ieee.std_logic_1164.all;

use asyl.arith.all;

use asyl.sl_arith.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

--Display1 is highest digit

ENTITY display IS

PORT (

RESET :
in
std_logic;

DispT1, DispT2, DispT3, DispT4

:
IN
std_logic_vector (3 downto 0);

Display1, Display2, Display3, Display4

:
OUT
std_logic_vector (3 downto 0);

Clock

:
IN
std_logic

);

end Display;

ARCHITECTURE behavior OF Display IS

BEGIN

--begin ARCHIERE

--display "real_time clock" for first for 5 seconds (0000-0101 binary from DispSec2)

--it is sensitive to both Seconds(0-9) and any of the 4 key press

--4 key press are "Enter key, Clock Key, DispTerature Key, and Programming Key"

--
Keyp1 is Enter Key

--
Keyp2 is Clock Key

--
Keyp3 is DispTerature Key

--
Keyp4 is Programming Key

--
bcd_in1-4
same as DispH1, DispH2, DispM1, DispM2

--

same as Keyp1, keyp2, keyp3, keyp4

--

same as DispT1, DispT2, DispT3, DispT4

display_normal: PROCESS (Clock, reset, DispT1, DispT2, DispT3, DispT4)

BEGIN

if RESET = '1' then

Display1 <= "0000";

Display2 <= "0000";

Display3 <= "0000";

Display4 <= "0000";

end if;

IF (Clock = '1') THEN

Display1 <= DispT1;

Display2 <= DispT2;

Display3 <= DispT3;

Display4 <= DispT4;

END IF;

END PROCESS;

END behavior;

[image: image10.png]

-- Calcualtor.vhd

-- This block must take incoming temp reading as 1 argument and desired

-- temp value from register as other value. From this it must make a decision

-- as to wether or not turn on a heater or A/C unit.

-- For initial creation, the temperature must vary 3 degrees in any direction from the

-- desired value before an action is taken, this should help to prevent oscilation in the

-- system.

-- As final add-on, there will be three modes,(A/C and heat, Heat only, A/C only)

-- these are referenced as HOT and COLD internally. They are simply AND'ed at the last stage

-- to produce the relevant signals.

-- Fur and AC are the outputs

library ieee;

use ieee.std_logic_1164.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

entity calc is

port (

Reset, Hot, Cold, clock : in std_logic;

TMP_USE1, TMP_USE2, TMP_USE3, TMP_USE4:
in
std_logic_vector(3 downto 0);

Des_USE1, Des_USE2, Des_USE3, Des_USE4:
in
std_logic_vector(3 downto 0);

Fur, AC : out std_logic

);

end calc;

architecture behavior of calc is

signal TMP: std_logic_vector(7 downto 0);

signal DESN: std_logic_vector(3 downto 0);

signal DESP: std_logic_vector(3 downto 0);

signal HTSIG, CLDSIG: std_logic;

begin

keeptemp: process(TMP_USE1, DES_USE1, TMP_USE2, DES_USE2, TMP_USE3, DES_USE3, TMP_USE4, DES_USE4, Reset, clock, htsig, cldsig, hot, cold) is

begin

--Only operate while not reset

if reset = '1' then

Fur <= '0';

AC <= '0';

end if;

if Reset= '0' then

--Both TMP and Des pos.

DESN <= DES_USE4 - "0011";

DESP <= DES_use4 + "0011";

HTSIG <= '0';

CLDSIG <= '0';

if (TMP_use1 <= "1110") then

if (Des_use1 <= "1110") then

if (TMP_USE2 = Des_use2) then

if (TMP_USE3 = DES_USE3) then

if (TMP_USE4 = DES_USE4) then

HTSIG <= '0';

CLDSIG <= '0';

else

if (TMP_USE4 < DESN) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

if (TMP_USE3 < DES_USE3) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

if (TMP_USE2 < DES_USE2) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

-- both In and Des neg

if (TMP_use1 = "1111") then

if (Des_use1 = "1111") then

if (TMP_USE2 = Des_use2) then

if (TMP_USE3 = DES_USE3) then

if (TMP_USE4 = DES_USE4) then

HTSIG <= '0';

CLDSIG <= '0';

else

if (TMP_USE4 > DESP) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

if (TMP_USE3 > DES_USE3) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

if (TMP_USE2 > DES_USE2) then

HTSIG <= '1';

CLDSIG <= '0';

else

HTSIG <= '0';

CLDSIG <= '1';

end if;

end if;

else

HTSIG <= '1';

CLDSIG <= '0';

end if;

end if;

Fur <= HTSIG and HOT;

AC <= CLDSIG and COLD;

end if;

end process;

end behavior;

[image: image11.wmf]Process Start

Process

Start

Display1 <= Keypad1

Display2 <= Keypad2

Display3 <= Keypad3

Dislpay4 <= Keypad4

DES_USE1 <= Keypad1

DES_USE2 <= Keypad2

DES_USE3 <= Keypad3

DES_USE4 <= Keypad4

Display1 <= RLTEMP1

Display2 <= RLTEMP2

Display3 <= RLTEMP3

Dislpay4 <= RLTEMP4

Keypad_Active

Keypad_Idle

-- Sensorint.vhd

library ieee;

use ieee.std_logic_1164.all;

--use ieee.std_logic_unsigned.all; -- uncomment for DA

use ieee.std_logic_arith.all; -- uncomment for Actmap

entity sensor is

port (

Reset, EOC : in std_ulogic;

DataIN: in std_logic_vector(7 downto 0);

Start, OutEn: out std_ulogic;

Temp: out std_logic_vector(7 downto 0)

);

end sensor;

architecture behavior of sensor is

-- Define two signals to use internally

signal Data_wrk:
std_logic_vector(7 downto 0);

signal Data_wrk2: std_logic_vector(7 downto 0);

signal Data_wrk3: std_logic_vector(7 downto 0);

begin

readsensor: process(Reset, EOC, datain, data_wrk, data_Wrk2, data_wrk3, clock) is

begin

--only operate when not Reset.

If RESET = '1' then

Temp <= "00000000";

Start <= '1';

Outen <= '0';

Data_wrk <= "00000000";

Data_wrk2 <= "00000000";

Data_wrk3 <= "00000000";

end if;

If Reset='0' then

OutEn <= '0';

Start <= '0';

--Wait for End Of Conversion

if (EOC = '1') then

--turn on the outputs of A/D so we can read them

OutEn <= '1';

--read the data into variables and "tweak" it.

Data_wrk <= DataIn;

Data_wrk2 <= Data_wrk - "00101000";

end if;

--Differentiate between positive and negative numbers and set sign bit appropriately.

if Data_wrk2 >= "10000000" then

Data_wrk3 <= not (Data_wrk2 - "00000001");

Data_wrk3(7) <= '1';

Temp <= Data_wrk3;

end if;

if Data_wrk2 < "10000000" then

Temp <= Data_wrk2;

end if;

end if;

end process;

end behavior;
[image: image12.wmf]Process

Start

Des_use2

=

RLTMP2 ?

Des_use2

>

RLTMP2?

Yes

No

Yes

Des_use3

=

RLTMP3 ?

Yes

Des_use4

=

RLTMP4 ?

Yes

Furnace <= '0'

A/C <= '0'

RLTMP4

>

(Des_use4+3)

?

No

No

Yes

Furnace <= '0'

A/C <= '1'

RLTMP4

<

(Des_use4 -3)

?

No

Furnace <= '1'

A/C <= '0'

Yes

RLTMP3

>

Des_use3 ?

Yes

Furnace <= '0'

A/C <= '1'

RLTMP3

<

Des_use3 ?

No

Furnace <= '1'

A/C <= '0'

Yes

Furnace <= '0'

A/C <= '1'

Furnace <= '1'

A/C <= '0'

Des_use2

>

RLTMP2?

No

Yes

Furnace

and

A/C

Remain

unchanged

No

No

No

Process End

[image: image13.wmf]Process

Start

Process End

Reset

 =

 '1' ?

No

Yes

EOC = '1'?

No

Yes

Set OutEn = '1'

Read Data

Set OutEn='0'

Subtract 40

from Data

Data

Positive?

Yes

No

convert 2's

complement

number to

positive.

Set MSB = '1'

Send Data to

8bit to BCD

converter.

Use LUT to

convert 8bit

number to 4

BCD digits.

Set all internal

variables and

outputs to zeros.

Toggle start = '1'

Output BCD

Data

-- Clock.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all; -- uncomment for DA

--use ieee.std_logic_arith.all; -- uncomment for Actmap

entity rtc is

port (

Set, CLK, RESET : in std_logic;

HourSet1: in std_logic_vector(3 downto 0);

HourSet2: in std_logic_vector(3 downto 0);

MinuteSet1: in std_logic_vector(3 downto 0);

MinuteSet2: in std_logic_vector(3 downto 0);

Hour1: out std_logic_vector(3 downto 0);

Hour2: out std_logic_vector(3 downto 0);

Minute1: out std_logic_vector(3 downto 0);

Minute2: out std_logic_vector(3 downto 0);

Second1: out std_logic_vector(3 downto 0);

Second2: out std_logic_vector(3 downto 0)

);

end rtc;

architecture behavior of rtc is

signal done, Reset1, Reset2, Reset3, Reset4, Reset5, Reset6, Increment: std_logic;

signal count:
integer;

signal SecSet:
std_logic_vector(3 downto 0);

signal
CO1, CO2, CO3, CO4, CO5, CO6: std_logic;

signal
Hour1_int, Hour2_int, Minute1_int, Minute2_int, Second1_int, Second2_int: std_logic_Vector(3 downto 0);

component bcdcount1

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

component bcdcount2

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

component bcdcount3

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

component bcdcount4

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

component bcdcount5

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

component bcdcount6

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end component;

for all: BCDcount1 use entity work.BCDcount3(behavior);

for all: BCDcount2 use entity work.BCDcount(behavior);

for all: BCDcount3 use entity work.BCDcount5(behavior);

for all: BCDcount4 use entity work.BCDcount(behavior);

for all: BCDcount5 use entity work.BCDcount5(behavior);

for all: BCDcount6 use entity work.BCDcount(behavior);

BEGIN -- Architecture that is.

--

--DO all the component instantiations.

--

--

Countmap1:
BCDcount1
port
map (
Clock => CLK,

Carry_in => CO2,

Reset => RESET1,

Set => SET,

Digit_in => HourSet1,

digit_out => Hour1_Int,

Carry_out => CO1);

Countmap2:
BCDcount2
port
map (
Clock => CLK,

Carry_in => CO3,

Reset => RESET2,

Set => SET,

Digit_in => HourSet2,

digit_out => Hour2_int,

Carry_out => CO2);

Countmap3:
BCDcount3
port
map (
Clock => CLK,

Carry_in => CO4,

Reset => RESET3,

Set => SET,

Digit_in => MinuteSet1,

digit_out => Minute1_int,

Carry_out => CO3);

Countmap4:
BCDcount4
port
map (
Clock => CLK,

Carry_in => CO5,

Reset => RESET4,

Set => SET,

Digit_in => MinuteSet2,

digit_out => Minute2_int,

Carry_out => CO4);

Countmap5:
BCDcount5
port
map (
Clock => CLK,

Carry_in => CO6,

Reset => RESET5,

Set => SET,

Digit_in => SecSet,

digit_out => Second1_int,

Carry_out => CO5);

Countmap6:
BCDcount6
port
map (
Clock => CLK,

Carry_in => Done,

Reset => RESET6,

Set => SET,

Digit_in => SecSet,

digit_out => Second2_int,

Carry_out => CO6);

keeptime: process(done, RESET) is

begin

Secset <= "0000";

if RESET = '1' then

Increment <= '0';

Reset1 <= '1';

Reset2 <= '1';

Reset3 <= '1';

Reset4 <= '1';

Reset5 <= '1';

Reset6 <= '1';

else

If Hour2_int = "0100" then

if Hour1_int = "0010" then

if Minute1_int = "0000" then

if Minute2_int = "0000" then

Reset1 <= '1';

Reset2 <= '1';

end if;

end if;

end if;

end if;

if Hour2_int < "0100" then

Reset1 <= '0';

Reset2 <= '0';

Reset3 <= '0';

Reset4 <= '0';

Reset5 <= '0';

Reset6 <= '0';

end if;

Hour1 <= Hour1_int;

Hour2 <= Hour2_int;

Minute1 <= Minute1_int;

Minute2 <= Minute2_int;

Second1 <= Second1_int;

Second2 <= Second2_int;

end if;

end process;

onesec:
process (CLK, RESET, Count)

-- Wait one second (Clock freq must be 1 MHz for a loop size of 1Meg, this can be altered to

-- produce a proper time response if clock frew must be different)

begin

if rising_edge(ClK) then

count <= count + 1;

if count >= 1000000 then

 done <= '1';

 count <= 0;

end if;

if count < 0 then

count <= 0;

end if;

end if;

if count = 1 then

done <= '0';

end if;

if Reset = '1' then

count <= 0;

done <= '0';

end if;

end process;

end behavior;
-- BCDCOUNT.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all; -- uncomment for DA

--use ieee.std_logic_arith.all; -- uncomment for Actmap

entity bcdcount is

port (

Clock, Carry_in, Reset, Set : in std_logic;

Digit_in:
in
std_logic_vector(3 downto 0);

Digit_out: out std_logic_vector(3 downto 0);

Carry_out:
out
std_logic

);

end bcdcount;

architecture behavior of bcdcount is

signal carry_out_int: std_logic;

signal Count_Int: std_logic_vector(3 downto 0);

begin

countbcd: process(Carry_in, Set, Reset, Count_int, Digit_in) is

begin

if (Set = '1') then

Count_Int <= Digit_in;

else

if Reset = '1' then

Count_Int <= "0000";

Carry_out_Int <= '0';

end if;

end if;

if Rising_edge(Carry_In) then

If Count_int > "1000" then

Carry_out_int <= '1';

end if;

If Count_int <= "1000" then

Carry_out_int <= '0';

end if;

If Count_Int >= "1001" then

Count_Int <= "0000";

end if;

if COunt_Int < "1001" then

Count_Int <= Count_Int + "0001";

end if;

end if;

Carry_out <= Carry_out_int;

Digit_out <= Count_Int;

end process;

end behavior;
[image: image14.emf]
� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Photoshop.Image.4 \s ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

�PAGE \# "'Page: '#'�'" �� Page ?? in appendix

�PAGE \# "'Page: '#'�'" �� Do not forget to update this when flow chart is included.

1
14

[image: image15.wmf]Pad_in0

Pad_in1

Pad_in2

Pad_in3

Data_ready

Keypad Controller

-State Machine based.

-Looks for a particular sequence of

digits to be entered and passes data

to the rest of the circuit.

-Initiate Temperature programming by

pressing key "1100" (E)

-Initiate Time programming by

pressing key "1110" (C)

-Enter 3 digits for temperature

(Sign and 2 digit magnitude)

-Enter 4 digits for Time

(2 hour digits, 2 Minute Digits)

-End programming by pressing key

"1111" (F or Enter)

Uses 230 Logic Modules

Temp1Set(0to3)

Temp2Set(0to3)

Temp3Set(0to3)

Temp4Set(0to3)

HourSet1

HourSet2

MinuteSet1

MinuteSet2

PROG_TIME

PROG_TEMP

Set

[image: image16.png]

[image: image17.wmf]Register

Temp1(0to3)

Temp2(0to3)

Temp3(0to3)

Temp4(0to3)

Time1(0to3)

Time2(0to3)

Time3(0to3)

Time4(0to3)

Time6(0to3)

Des_use1(0to3)

Des_use2(0to3)

Des_use3(0to3)

Des_use4(0to3)

Temp1Set(0to3)

Temp2Set(0to3)

Temp3Set(0to3)

Temp4Set(0to3)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

HourSet1(0to3)

HourSet2(0to3)

MinuteSet1(0to3)

MinuteSet2(0to3)

Hour1(0to3)

Hour2(0to3)

Minute1(0to3)

Minute2(0to3)

Second2(0to3)

-Controls what data is passed to the display

and latches the user-set temperature for use

by the calculator.

-If Prog line is HIGH, display values being

entered on keypad by user. (Shift Temp into

DES_USE values if Prog_TEMP is HIGH)

-If Prog line is LOW, display RealTime values.

Uses 40 Logic Modules

PROG_TIME

PROG_TEMP

PROG_TIME

PROG_TEMP

[image: image18.wmf]Display Controller

SevenSeg1

(0to7)

SevenSeg2

(0to7)

SevenSeg3

(0to7)

SevenSeg4

(0to7)

Temp1(0to3)

Temp2(0to3)

Temp3(0to3)

Temp4(0to3)

Time1(0to3)

Time2(0to3)

Time3(0to3)

Time4(0to3)

Time6(0to3)

-Displays either Time or Temperature based on

the value of Time6 (1's of seconds) then uses a

LUT to decode BCD to Seven Segment control.

-If Time6 <=4 then display Time

- If Time > 4 then display Temp

-Prog_Time and Prog_Temp override automatic

function. If Prog_Time HIGH display Time. etc.

Uses 52 Logic Modules.

PROG_TIME

PROG_TEMP

[image: image19.wmf]Calculator

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

HOT

COLD

-Compares the Desired temperature with the actual

temperature and makes a decision about what environment

controller to activate (Furnace or A/C)

-Compares the two temperatures by a cascading

comparison. (Looks at first digit of both values, if there is not

enough info to decide, compare second digits, and so on.)

-The results of the decision are AND'ed with the inputs HOT

and COLD. (ie. if Cold = '0' then even if the process decided

to turn on the A/C the control output would remain '0'. Same

for the Furnace)

Uses 109 Logic Modules.

Furnace

A/C

[image: image20.wmf]Sensor Interface

Data_in(0to7)

RLTMP1(0to3)

RLTMP2(0to3)

RLTMP3(0to3)

RLTMP4(0to3)

Start

EOC

OutEn

-Communicates with External A/D Converter

and changes the format of the value and puts it

into the proper range.

-Sets START high to signal A/D to begin

conversion.

-Waits until EOC goes high.

-Sets START low and OUTEN high.

-Reads value which is now available at Data_in

-Subtracts 40 from this value.

-Converts 8bit Magnitude plus sign to 4 BCD

digits.

Calculator requires 120 Logic Modules

Converter requires 35 Logic Modules

[image: image21.wmf]Real Time Clock

HourSet1

Hourset2

MinuteSet1

MinuteSet2

Hour1(0to3)

Hour2(0to3)

Minute1(0to3)

Minute2(0to3)

Second2(0to3)

-Implements a 24 Hour clock using 6 BCD digits

(10's Hours, Hours, 10's Minutes, Minutes, etc..)

-Based on inter-connected asynchronous counters

- 3 Different counters were created.

One counts from 0 to 9,

one counts from 0 to 5,

 and the last counts from 0 to 3.

The carry_out line of the least significant number is

connected to the increment line of the next digit.

-If Set goes high the operation of the clock is stopped and

the contents of HourSet* and MinuteSet* are copied into

Hour* and Minute*. Operation resumes when Set goes low.

-Time increment is triggered by process which counts clock

cycles. When specified number of cycles is reached the

increment line of Least Significant Digit is toggled.

Uses 300 Logic Modules

(Source of our problem.)

Set

[image: image22.wmf]Keypad

Controller

Register

Display

Controller

4 x 4

5 x 4

4 x 4

4 x 4

Real

Time

Clock

6 x 4

7

4

4 x 4

4 x 4

Calculator

Sensor

Interface

4 x 4

8

7

7

7

I/O signals for FPGA

Internal Time Signals

Internal Temp. Signals

Post-Optimization Module count:

867

[image: image23.wmf]A/D Converter

[image: image24.wmf]Keypad

Controller

Register

Display

Controller

4 x 4

4 x 4

4

4

4 x 4

4 x 4

Calculator

Sensor

Interface

4 x 4

8

4

4

4

I/O signals for FPGA

Internal Temp. Signals

Post-Optimization Module count:

~480

[image: image25.wmf]Process Start

Process

Start

Display1 <= Keypad1

Display2 <= Keypad2

Display3 <= Keypad3

Dislpay4 <= Keypad4

DES_USE1 <= Keypad1

DES_USE2 <= Keypad2

DES_USE3 <= Keypad3

DES_USE4 <= Keypad4

Display1 <= RLTEMP1

Display2 <= RLTEMP2

Display3 <= RLTEMP3

Dislpay4 <= RLTEMP4

Keypad_Active

Keypad_Idle

[image: image26.wmf]Process

Start

Des_use2

=

RLTMP2 ?

Des_use2

>

RLTMP2?

Yes

No

Yes

Des_use3

=

RLTMP3 ?

Yes

Des_use4

=

RLTMP4 ?

Yes

Furnace <= '0'

A/C <= '0'

RLTMP4

>

(Des_use4+3)

?

No

No

Yes

Furnace <= '0'

A/C <= '1'

RLTMP4

<

(Des_use4 -3)

?

No

Furnace <= '1'

A/C <= '0'

Yes

RLTMP3

>

Des_use3 ?

Yes

Furnace <= '0'

A/C <= '1'

RLTMP3

<

Des_use3 ?

No

Furnace <= '1'

A/C <= '0'

Yes

Furnace <= '0'

A/C <= '1'

Furnace <= '1'

A/C <= '0'

Des_use2

>

RLTMP2?

No

Yes

Furnace

and

A/C

Remain

unchanged

No

No

No

Process End

[image: image27.wmf]Process

Start

Process End

Reset

 =

 '1' ?

No

Yes

EOC = '1'?

No

Yes

Set OutEn = '1'

Read Data

Set OutEn='0'

Subtract 40

from Data

Data

Positive?

Yes

No

convert 2's

complement

number to

positive.

Set MSB = '1'

Send Data to

8bit to BCD

converter.

Use LUT to

convert 8bit

number to 4

BCD digits.

Set all internal

variables and

outputs to zeros.

Toggle start = '1'

Output BCD

Data

_942492525.vsd
Calculator�

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)

Des_use(0to3)�

RLTMP1(0to3)
RLTMP2(0to3)
RLTMP3(0to3)
RLTMP4(0to3)�

HOT�

COLD�

-Compares the Desired temperature with the actual temperature and makes a decision about what environment controller to activate (Furnace or A/C)

-Compares the two temperatures by a cascading comparison. (Looks at first digit of both values, if there is not enough info to decide, compare second digits, and so on.)

-The results of the decision are AND'ed with the inputs HOT and COLD. (ie. if Cold = '0' then even if the process decided to turn on the A/C the control output would remain '0'. Same for the Furnace)

Uses 109 Logic Modules.�

Furnace�

A/C�

_942492808.vsd

_942523916.psd

_942617196.vsd
Process
Start�

Des_use2 =
RLTMP2 ?�

Des_use2 >
RLTMP2?�

Des_use3 =
RLTMP3 ?�

Des_use4 =
RLTMP4 ?�

Furnace <= '0'
A/C <= '0'�

RLTMP4
> (Des_use4+3) ? �

Furnace <= '0'
A/C <= '1'�

Furnace <= '0'
A/C <= '1'�

RLTMP4
<
(Des_use4 -3) ? �

Furnace <= '1'
A/C <= '0'�

RLTMP3
>
Des_use3 ? �

Furnace <= '0'
A/C <= '1'�

RLTMP3
<
Des_use3 ? �

Furnace <= '1'
A/C <= '0'�

Furnace <= '1'
A/C <= '0'�

Des_use2 >
RLTMP2?�

Furnace
and
A/C
Remain unchanged�

Process End�

_942620116.vsd
Process
Start�

Process End�

Reset
 =
 '1' ?�

EOC = '1'?�

�

No�

Set OutEn = '1'

Read Data

Set OutEn='0'�

Subtract 40 from Data�

Data Positive?�

convert 2's complement number to positive.
Set MSB = '1'�

Send Data to
8bit to BCD converter.
�

Use LUT to convert 8bit number to 4 BCD digits.�

Set all internal variables and outputs to zeros.
Toggle start = '1'�

Output BCD
Data�

_942613441.vsd
Process Start�

Process
Start�

Display1 <= Keypad1
Display2 <= Keypad2
Display3 <= Keypad3
Dislpay4 <= Keypad4
DES_USE1 <= Keypad1
DES_USE2 <= Keypad2
DES_USE3 <= Keypad3
DES_USE4 <= Keypad4
�

Display1 <= RLTEMP1
Display2 <= RLTEMP2
Display3 <= RLTEMP3
Dislpay4 <= RLTEMP4
�

Keypad_Active�

Keypad_Idle�

_942493546.vsd
Keypad
Controller�

Register�

Display Controller�

4 x 4�

4 x 4�

4�

4 �

4 x 4�

4 x 4�

Calculator�

Sensor Interface�

4 x 4�

 �

�

8�

4�

4�

4�

I/O signals for FPGA�

Internal Temp. Signals�

Post-Optimization Module count:
~480�

_942492641.vsd
Real Time Clock�

HourSet1
Hourset2

MinuteSet1
MinuteSet2�

Hour1(0to3)
Hour2(0to3)

Minute1(0to3)
Minute2(0to3)

Second2(0to3)�

-Implements a 24 Hour clock using 6 BCD digits
(10's Hours, Hours, 10's Minutes, Minutes, etc..)

-Based on inter-connected asynchronous counters

- 3 Different counters were created.
One counts from 0 to 9,
one counts from 0 to 5,
 and the last counts from 0 to 3.
The carry_out line of the least significant number is connected to the increment line of the next digit.

-If Set goes high the operation of the clock is stopped and the contents of HourSet* and MinuteSet* are copied into Hour* and Minute*. Operation resumes when Set goes low.

-Time increment is triggered by process which counts clock cycles. When specified number of cycles is reached the increment line of Least Significant Digit is toggled.

Uses 300 Logic Modules
(Source of our problem.)�

Set�

_942492746.vsd
Keypad
Controller�

Register�

Display Controller�

4 x 4�

5 x 4�

4 x 4�

4 x 4 �

Real
Time
Clock�

6 x 4�

�

7�

4 �

4 x 4�

4 x 4�

Calculator�

Sensor Interface�

4 x 4�

 �

�

8�

7�

7�

7�

I/O signals for FPGA�

Internal Time Signals�

Internal Temp. Signals�

�

Post-Optimization Module count: 867�

_942492550.vsd
Sensor Interface�

Data_in(0to7)�

RLTMP1(0to3)
RLTMP2(0to3)
RLTMP3(0to3)
RLTMP4(0to3)�

Start�

EOC�

OutEn�

-Communicates with External A/D Converter and changes the format of the value and puts it into the proper range.

-Sets START high to signal A/D to begin conversion.

-Waits until EOC goes high.

-Sets START low and OUTEN high.

-Reads value which is now available at Data_in

-Subtracts 40 from this value.

-Converts 8bit Magnitude plus sign to 4 BCD digits.

Calculator requires 120 Logic Modules
Converter requires 35 Logic Modules�

_942492439.vsd
Register�

Temp1(0to3)
Temp2(0to3)
Temp3(0to3)
Temp4(0to3)�

Time1(0to3)
Time2(0to3)
Time3(0to3)
Time4(0to3)
Time6(0to3)�

Des_use1(0to3)
Des_use2(0to3)
Des_use3(0to3)
Des_use4(0to3)�

Temp1Set(0to3)
Temp2Set(0to3)
Temp3Set(0to3)
Temp4Set(0to3)�

RLTMP1(0to3)
RLTMP2(0to3)
RLTMP3(0to3)
RLTMP4(0to3)�

HourSet1(0to3)
HourSet2(0to3)
MinuteSet1(0to3)
MinuteSet2(0to3)�

Hour1(0to3)
Hour2(0to3)
Minute1(0to3)
Minute2(0to3)
Second2(0to3)�

PROG_TIME�

-Controls what data is passed to the display and latches the user-set temperature for use by the calculator.

-If Prog line is HIGH, display values being entered on keypad by user. (Shift Temp into DES_USE values if Prog_TEMP is HIGH)

-If Prog line is LOW, display RealTime values.

Uses 40 Logic Modules�

PROG_TEMP�

PROG_TIME�

PROG_TEMP�

_942492472.vsd
Display Controller�

SevenSeg1(0to7)�

SevenSeg2(0to7)�

SevenSeg3(0to7)�

SevenSeg4(0to7)�

Temp1(0to3)
Temp2(0to3)
Temp3(0to3)
Temp4(0to3)�

Time1(0to3)
Time2(0to3)
Time3(0to3)
Time4(0to3)
Time6(0to3)�

-Displays either Time or Temperature based on the value of Time6 (1's of seconds) then uses a LUT to decode BCD to Seven Segment control.

-If Time6 <=4 then display Time

- If Time > 4 then display Temp

-Prog_Time and Prog_Temp override automatic function. If Prog_Time HIGH display Time. etc.

Uses 52 Logic Modules.�

PROG_TIME�

PROG_TEMP�

_942492314.vsd
Keypad Controller
�

Pad_in0

Pad_in1

Pad_in2

Pad_in3�

Data_ready �

HourSet1

HourSet2

MinuteSet1

MinuteSet2�

Temp1Set(0to3)

Temp2Set(0to3)

Temp3Set(0to3)

Temp4Set(0to3)�

-State Machine based.

-Looks for a particular sequence of digits to be entered and passes data to the rest of the circuit.

-Initiate Temperature programming by pressing key "1100" (E)

-Initiate Time programming by pressing key "1110" (C)

-Enter 3 digits for temperature
(Sign and 2 digit magnitude)

-Enter 4 digits for Time
(2 hour digits, 2 Minute Digits)

-End programming by pressing key "1111" (F or Enter)

Uses 230 Logic Modules�

PROG_TIME�

PROG_TEMP�

�

Set�

