
Restrictive Compression Techniques to Increase Level 1 Cache Capacity

Prateek Pujara
Dept of Electrical and Computer Engineering

Binghamton University
Binghamton, NY 13902

ppujara1@binghamton.edu

Aneesh Aggarwal
Dept of Electrical and Computer Engineering

Binghamton University
Binghamton, NY 13902
aneesh@binghamton.edu

Abstract

Increasing cache latencies limit L1 cache sizes. In this paper we
investigate restrictive compression techniques for level 1 data
cache, to avoid an increase in the cache access latency. The
basic technique — All Words Narrow (AWN) — compresses a
cache block only if all the words in the cache block are of narrow
size. We extend the AWN technique to store a few upper half-
words (AHS) in a cache block to accommodate a small number
of normal-sized words in the cache block. Further, we make the
AHS technique adaptive, where the additional half-words space
is adaptively allocated to the various cache blocks. We also pro-
pose techniques to reduce the increase in the tag space that is
inevitable with compression techniques. Overall, the techniques
in this paper increase the average L1 data cache capacity (in
terms of the average number of valid cache blocks per cycle)
by about 50%, compared to the conventional cache, with no or
minimal impact on the cache access time. In addition, the tech-
niques have the potential of reducing the average L1 data cache
miss rate by about 23%.

1 Introduction
CMOS scaling trends result in faster transistors and relatively
longer wire delays, making it difficult to have low latency caches
[9]. This is due to the long wires required to access the RAM
structures. This trend has resulted in pipelined cache access
and small-sized Level 1 caches. Another important parameter
that affects cache design is the energy consumption in the cache
[4, 13, 22]. To reduce the cache energy consumption, designers
have decoupled the tag comparisons from the data access [15].
Figure 1 shows the decoupled and pipelined cache read access
[11]. A cache access starts with decoding the set index. In the
next cycle, byte-offset is decoded in parallel to address tag com-
parisons, and the bit-lines in the data array are pre-charged. The
tag comparisons control whether or not the data is read from a
cache block. If the data is read, then it is then driven to the units
that requested the data.

drive
ouputRead data

Decode
Set

Compare tags +
Decode

byte−offset

Figure 1: Pipelined Data Cache Read Access

Increasing Level 1 cache size impacts cache access time,
whereas small sized caches increase the cache miss rate. Cache
compression is a popular approach to increase the capacity of a
small cache. However, elaborate compression techniques cannot
be applied to the level 1 cache, as they increase the cache access
latency. In this paper, we propose restrictive compression tech-
niques, that do not increase the cache access latency, and still
result in significant increase in the L1 data cache capacity.

Our basic technique — All Words Narrow (AWN) — com-
presses a cache block only if all the words in the cache block
are of narrow width (requiring less than a particular number of
bits for representation). AWN technique alone increases the level
1 data cache capacity (in terms of the average number of valid
blocks per cycle) by about 20%, compared to a conventional data
cache. We extend the AWN technique by providing additional
space for a few upper half-words (AHS) in a cache block to ac-
commodate a small number of normal-sized words in each cache
block. AHS technique increases the L1 data cache capacity by
almost 90% (with an average of about 50%). We also investi-
gate an adaptive AHS technique — AAHS — where the number
of additional half-words allocated to a cache block is varied de-
pending on the requirement. Finally, we propose a technique —
OATS — to reduce the increased cache tag space requirement,
which is inevitable with any cache compression technique. It
is important to note that we performed our experiments with a
32-bit architecture, whereas our techniques will be much more
beneficial for a 64-bit architecture.

The rest of the paper is organized as follows. Section 2
discusses the motivation behind our techniques and the related
work. Section 3 presents the AWN and the AHS cache compres-
sion techniques. Section 4 presents the experimental setup and
the results. Section 5 presents the OATS and the AAHS tech-
niques, along with their results. Section 6 presents a sensitivity
study as the block size and cache size is varied. We conclude in
Section 7.

2 Motivation and Related Work
2.1 Motivation
Elaborate cache compression techniques cannot be applied for
L1 caches, because such techniques require multiple cycles to
decompress the data read from the cache, thus increasing the
cache access latency. For instance, if a cache block is com-
pressed by ignoring all the insignificant higher order bytes, then

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

such a cache block will consist of both compressed as well as
uncompressed words. The byte-offset of each word in the cache
block will depend on the size of the words before it. This will re-
quire recalculating the byte-offset to read a word from the block,
shown in Figure 2. Therefore, it is imperative that any compres-
sion technique that is applied to L1 caches should not require
updates to the byte-offset. We call such compression techniques
as restrictive compression techniques.

Decode
Set

drive
ouput

Decode
Read databyte−

offset
byte−offset

Compare
tags

Adjust

Figure 2: Pipelined DCache Read with byte-offset adjustment

To motivate the techniques proposed in this paper, we mea-
sure the number of normal-sized words (that require more than
16 bits for representation) in cache block. Figure 3 presents
the results of the measurements in the form of a stacked graph,
where each bar is divided into the percentage of cache blocks
with 0, 1, 2, 3, 4, and more than 4 normal-sized words.

art bzip2 gcc
mcf vpr

parser
ammp

applu apsi equake
mgrid swim

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f b
lo

ck
s

5 or more words > 16 bits
4 words greater than 16 bits
3 words greater than 16 bits
2 words greater than 16 bits
1 word greater than 16 bits
All Words less than 16 bits

Figure 3: Percentage distribution of word sizes in the new cache
blocks brought into the L1 Dcache

Figure 3 shows that, for many benchmarks, a significant frac-
tion of the new cache blocks that are brought into the L1 data
cache have all narrow words. In addition, there are many cache
blocks that have just 1 or 2 normal words. Narrow words are
less prevalent in the floating-point benchmarks because of the
IEEE 754 format.

2.2 Related Work
Compression techniques have mainly been proposed to com-
press the data in main memory [5, 7] and in L2 cache [10, 6, 19,
20, 21, 14]. More sophisticated compression techniques (such
as XRL compression [17], and parallel compression with dictio-
nary construction [12]) can be applied to main memory and L2
cache as they are more tolerant to increase in hit times.

Level 1 data cache compression techniques have been pro-
posed in [16, 24, 25]. However, all these techniques increase the
L1 access time. Yang et. al. [24, 25] use a small Frequent Value
Cache (FVC) to store small number of frequently seen values in
cache blocks. They then use a separate buffer to store the masks
for the words in a cache block. A level 1 data cache access will
read the mask at the byte-offset specified by the memory ref-
erence, and then based on the decoding of the mask either the

frequent value cache is accessed or the data array is accessed.
This technique will increase the cache access latency by at least
1 cycle.

Kim et. al [16] compress the higher order “insignificant” bits
of words in a cache block to save energy. The higher order sig-
nificant bits and the lower order bits of the words are stored in
separate cache banks. The bank storing the higher order bits
is accessed if required, doubling the cache access latency for
uncompressed words. Other techniques [4, 2] also compress
the higher order “insignificant” bits of words to save energy in
caches.

Exploiting narrow width operands for power and performance
improvements, in hardware modules other than the cache, has
also been proposed in [1, 3, 18].

3 Restrictive Compression Techniques
We consider a word narrow if it can be represented using 16 bits,
and can be reconstructed by sign-extending the narrow word.

3.1 All Words Narrow (AWN)
In this technique, a cache block is compressed only if all the
words in the cache block are of narrow size. We call such a
cache block a narrow cache block, and a cache block where all
the words are represented using the entire set of bits as a nor-
mal cache block. We call the physical RAM space provided in
the cache for a cache block as a physical cache block. A phys-
ical cache block can hold one normal cache block or up to two
narrow cache blocks, as shown in Figure 4(a). Note that, the
last word in the lower cache block is not narrow because sign-
extension of

� � � �
will result in � � � � � � � �

, whereas this is not
the case with the last word in the upper block 	 � � �

.
Figure 4(b) shows that each physical cache block is provided

with additional tag space and status bits for the additional nar-
row cache block (as is the case for all compression techniques),
and a width bit signifying the presence of a normal cache block
(width bit = “0”) or two narrow cache blocks (width bit = “1”).
In parallel to tag comparisons, the byte-offset is decoded, by also
considering the width bit for the cache block. The size bits, also
used in a conventional cache, and the width bit decide the num-
ber and the location of bit-lines to be activated. When reading
a word, if the width bit is set, 2 half-words are simultaneously
read from two locations in the cache block (by considering the
byte-offset as a byte-offset as well as a half-byte offset). If the
width bit is reset, 1 normal-sized word is read from only one
location as in the conventional case. Bit-line activation for load
half-word and load byte instructions will also be accordingly
modified. Figure 5 illustrates read accesses of a 32-bit word if
the width bit is set or reset. Hence, the AWN technique avoids
byte-offset updates. The data read from the caches has to be
sign-extended if the width bit is set.

The replacement policy used in the AWN technique is still the
LRU policy (with some modifications). If the new cache block
brought in is a narrow cache block, then the conventional LRU
policy is followed. Note that the least recently used cache block
could be a narrow or a normal cache block, and is replaced ac-
cordingly. When a normal cache block is brought in, the age
of the most recently used cache block in a physical cache block

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

000003af 00000000 ffff93af 00007401

000003af 00000000 ffff93af 00009401

normal cache block

Byte−offset decoder Width and Size bits

narrow cache block

physical cache block

000003af 00000000 ffff93af 00009401

03af0000 93af7401

space for another narrow
cache block

(a)
S

e
t

in
d

e
x
 d

e
c
o

d
e
r

T
a
g

s

T
a
g

s

S
ta

tu
s
 b

it
s

Data Array

bit−line drviers
Tag comparisons

bitsvalid

(b)

MUX
byte−offset

width bit
extender

Sign−

Additional
Hardware

number of bytes to
(Size bits indicate the

be accessed)

Data

valid bits

Tag comparisons
MUX

Data from other ways

Figure 4: (a) Placement of narrow and normal cache blocks in
a physical cache block; (b) Schematic data cache read access in
the AWN technique

is chosen for comparison to find the least recently used cache
block. For instance, if a physical cache block has 2 narrow
cache blocks, and one of them is the most recently used, then
the cache blocks in that physical cache block will not be re-
placed. This ensures that the AWN technique will not perform
worse than the conventional cache.

03af0000 93af7401 2794ffff 98f14000 03af0000 93af7401 2794ffff 98f14000

32 bits

32 bits

Byte−offset decoderByte−offset decoder
width bit = 1

size = 32bits size = 32bits

width bit = 0

narrow cache blocks

16 bits 16 bits

Data from 2 locations

byte−offset = 3

98f193af

16 bits 16 bits
normal cache block

Data from a single location

2794ffff

byte−offset = 3

(b)(a)

Compressed block with width bit = 1 Conventional Case or Compressed block with width bit =0

Figure 5: Read access of a 32-bit word when (a) the width bit is
set; and (b) the width bit is reset

The write operation (for a store instruction) is performed sim-
ilarly, after checking the size of the data to be written. A po-
tential problem could arise if a write operation writes a normal
value into a narrow cache block. We observed that such cases
are very rare (on an average, about 2%). In our implementation,
if a write operation writes a normal value into a narrow cache
block, the narrow cache block is read and converted into a nor-
mal cache block. It then replaces an existing cache block based

on the modified LRU policy discussed earlier. In our measure-
ments, we consider such cases as cache misses.

3.2 Additional Half-Word Storage (AHS)
In the AWN technique, even a single normal-sized word will
make the entire cache block a normal cache block, thus not ben-
efiting from the technique. To make the cache blocks with a few
normal-sized words as narrow cache blocks, we provide addi-
tional half-words storage for each physical cache block, to store
the higher order half-words of the few normal-sized words. In
the AHS technique, we equally divide the additional half-words
among all the narrow cache blocks in a physical cache block.
Hence, if a physical cache block is provided with 2 additional
half-words, then that cache block can contain two narrow cache
blocks, each with a maximum of one normal-sized word, but it
can not hold one narrow cache block with 2 normal-sized words.
In the AHS scheme, an extra storage bit (for the case of 2 half-
words per physical cache block) is provided for each half-word
in the physical cache block, indicating the presence of an upper
half-word in the additional storage. Figure 6(a) shows how data
is packed in a physical cache block. The lower cache block is a
normal cache block, which gets converted into a narrow one by
placing the upper half-word “01f0” for the word “01f09401” in
the additional storage, and set the corresponding extra storage
bit. Figure 6(b) shows the schematic data read access from a
cache with AHS. To read data from a cache with the AHS tech-
nique, once the byte-offset is decoded, the extra storage bit is
read to determine whether the additional half-words need to be
read or not. Alternately, additional storage for a cache block can
always be read on a tag comparison. The additional delay in
reading the additional half-words can easily be overlapped with
reading the data from the data array (based on our experiments
with cacti [23]). The rest of the data cache access will remain
the same as in the AWN technique.

Cache Access Latency Impact: The AWN technique will incur
additional delay in the byte-offset decoder (it also considers the
width bit) and the output data stage (because of additional con-
trol signals in the MUXes and a sign-extender required between
the 2 levels of MUXes in Figure 4(b)). The AHS technique in-
curs additional delay in the byte-offset decoder for reading the
extra storage bit. However, these additional delays will not im-
pact the overall cache access latency. Our experiments with the
cacti tool [23] show that the delay in the read data stage is more
than double the delay in the output data stage and the byte-offset
decoder, and that the additional delays can be easily absorbed in
the shorter output data and decode byte-offset pipeline stages.
We performed our experiments with a 0.18 � m technology.

Cache Energy Consumption In the AWN and the AHS tech-
niques, additional energy is primarily consumed in the addi-
tional tag comparisons, and in the L1 cache data array as a result
of an increase in the hit rate. However, on a hit, the number of
bits that the AWN technique reads from the data array is almost
the same as that read by the conventional cache. For instance in
a load word, the AWN technique reads either 2 half-words or 1
word. Some minimal additional energy will also be consumed in
maintaining and reading the additional status and width bits. In

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

S
e

t
in

d
e

x
 d

e
c

o
d

e
r

A
d

d
it

io
n

a
l

b
y

te
s

s
to

r
a

g
e

T
a

g
s

T
a

g
s

S
ta

tu
s

 b
it

s

Data Array

Byte−offset decoder
control
logic

DataData

Extra storage bit

Tag comparisons

Width and Size bits
To control data
array bit−lines
activation

000003af 00000000 ffff93af 00007401

S
e

t
in

d
e

x
 d

e
c

o
d

e
r

T
a

g
s

T
a

g
s

S
ta

tu
s

 b
it

s

Data Array

(b)

Extra 1 half−word
per narrow cache

block

xxxx xxxx

xxxx

narrow cache block

physical cache block

03af0000 93af7401

space for another narrow
cache block

03af0000 93af9401

space for another narrow
cache block

(a)

Extra Storage bits

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

000003af 00000000 ffff93af

normal cache block

01f09401 01f0

(size bits indicate the
number of bytes to be
accessed)

Figure 6: (a) Cache block packing with AHS technique; (b) Schematic data cache read access in AHS technique

section 5, we propose a technique to reduce the additional com-
plexity and energy consumption introduced by the additional ad-
dress tags. On the other hand, because of a reduction in the L1
data cache miss rate, energy consumption in the L2 cache and
in the bus between the L2 and the L1 data caches will reduce.
Overall, the techniques discussed in this paper can result in sav-
ings in the total energy consumption in the L1 and the L2 data
caches and the bus between the L1 and L2 data caches. How-
ever, performing a detailed energy consumption analysis of the
schemes is beyond the scope of this paper.

4 Performance Results
4.1 Experimental Setup
We use a modified SimpleScalar simulator [8], simulating a 32-
bit PISA architecture � . The hardware features and default pa-
rameters that we use are given in Table 1. For benchmarks, we
use a collection of 6 integer (vpr, mcf, parser, bzip2, gcc,
and art), and 6 FP (equake, mgrid, swim, applu, ammp,
and apsi) benchmarks, using ref inputs, from the SPEC2K
benchmark suite. The statistics are collected for 500M instruc-
tions after skipping the first 1B instructions. Even though the
schemes in the paper can be applied to any cache, we employ
the schemes only for the Level-1 data caches, where each phys-
ical cache block can hold up to 2 narrow cache blocks.

4.2 Results
In this section, we present the L1 data cache capacity (in terms
of average number of valid cache blocks present in the cache per
cycle) results with the AWN and the AHS techniques. Figure 7
shows the percentage increase in cache capacity for the 8KB 2-
way, 32-byte block, cache with AWN and AHS techniques, com-
pared to the conventional 8KB 2-way cache. Figure 7 shows that
the percentage increase in capacity increases from AWN to AHS
with 2 additional half-words (AHS-2)to AHS with 4 additional
half-words (AHS-4). AWN technique increases the cache capac-
ity by about 20% with minimal additional storage and no access

�
The techniques of this paper will be much more benefi cial for a 64-bit

architecture.

time impact. AHS-4 technique increases the cache capacity by
about 50% on an average, with about 38% additional storage and
minimal, if any, impact on cache access time. It is important to
note that for the AHS techniques, in some benchmarks (such as
applu and bzip2), the increase in cache capacity may be less
than the space overhead of our techniques. If the space over-
head required for the AHS technique is utilized towards making
the cache bigger, the overall cache access time can be severely
impacted. However, in our techniques, the cache capacity in in-
creased without any increase in the overall cache access time. In
addition, the OATS technique in Section 5 helps in reducing the
space overhead of the AHS techniques.

5 Enhanced Techniques
5.1 Optimizing Address Tags (OATS)
As is the case with all the cache compression techniques, addi-
tional tag space and tag comparisons are required for the AWN
and the AHS techniques. In this section, we propose a tech-
nique to reduce the additional tag space and tag comparisons.
Intuitively, the higher order bits of the address tags in a set are
expected to be the same. Our experiments confirmed the sugges-
tion. Hence, in the optimizing address tags (OATS) technique,
instead of providing the entire set of bits used for the address tag,
only a small number of additional tag bits are provided for each
physical cache block. For instance, a physical cache block with
22 bit address tags in the conventional cache, may be provided
with 24 tag bits in the AWN and the AHS techniques, partitioned
into three parts; one of 20 higher order bits, and 2 parts of 2
lower order bits each. In this case, the physical cache block can
either hold just 1 cache block or it can hold two narrow cache
blocks that have the same 20 higher order tag bits. Tag compar-
ions are performed accordingly. When compared to a conven-
tional cache with 22 tag bits, the cache with the OATS technique
requires just 2 additional tag bits and tag bit comparisons. Note
that the OATS technique reduces the space overhead of the AHS-
4 technique to about 30%. The cache capacity results with the
OATS technique are presented in the Section 5.3.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Parameter Value Parameter Value
Fetch/Commit Width 8 instructions Instr. Window Size 96 Int/64 FP instructions

ROB Size 256 instructions Frontend Stages 9 pipeline stages
Unified 128 Int/128 FP, Int. Functional units 3 ALU, 1 Mul/Div,

Phy. Register File 2-cycle pipelined access. 2 AGUs
Issue Width 5 Int/ 3 FP FP Functional Units 3 ALU, 1 Mul/Div

Branch Predictor gshare 4K entries BTB Size 4096 entries, 4-way assoc.
L1 - I-cache 16K, direct-mapped, L1 - D-cache 8KB, 2-way assoc.,

2 cycle latency 32 bytes block
4 cycle pipelined access

Memory Latency 100 cycles first chunk L2 - cache unified 512K,
2 cycles/inter-chunk 8-way assoc., 10 cycles

Table 1: Default Parameters for the Experimental Evaluation

art bzip2 gcc mcf vpr
parser

ammp applu apsi equake
mgrid swim average

0

10

20

30

40

50

60

70

80

90

100

Per
cen

tag
e In

cre
ase

 in
L1

 Dc
ach

e C
apa

city AWN
AHS-2
AHS-4

Figure 7: Percentage increase in L1 data cache capacity wrt a 2-way 8KB conventional cache

5.2 Adaptive AHS (AAHS)
In the AHS technique discussed in Section 3.2, the additional
half-words storage provided with each physical cache block is
not optimally utilized. For instance, if space is provided to store
the upper halves of 4 words, the space is equally divided among
the 2 potential narrow cache blocks that can occupy the physi-
cal cache block. In this case, the physical cache block cannot
contain one block with 1 normal-sized word and another cache
block with 3 normal-sized words. Here, we propose an adap-
tive scheme that allows the narrow cache blocks to use varied
number of additional half-words. If 2 additional half-words are
provided, then in the AAHS technique, 2 extra storage bits are
required, because a cache block can use both the half-words,
and the extra storage bits will be 01 and 10. To avoid increas-
ing the number of extra storage bits required for 4 additional
half-words, we restrict the maximum number of half-words that
a cache block can use to 3. Hence, extra storage bits “01”, “10”,
and “11” correspond to

� � �
,

� � �
, and 	 � �

half-words for the first
narrow cache block and

� � �
, 	 � �

, and
� �

half-words for the
second narrow cache block. Figure 8 shows the contents of a
physical cache block containing 2 narrow cache blocks. The

� � �

block has 1 normal word (“00ff7401”) and the
� � �

block has 3
normal words (“01003801”, “00100000”, and “00009401”).

5.3 Results
In this section, we present the L1 data cache results with the
OATS and the AAHS techniques, in Figure 9, respectively, com-
pared to the conventional 8KB 2-way conventional L1 data

00009401

narrow cache block with 3 normal words

0010000001003801 fffff8b2

physical cache block

03af0000 93af7401 38010000 f8b29401 00ff 0100 0010

4 Extra half−words

narrow cache block with 1 normal word

000003af 00000000 ffff93af 00ff7401

0000

Extra Storage bits

00 00 00 01 01 10 00 11

Figure 8: Converting 2 normal cache blocks into narrow cache
blocks and packing them in the AAHS technique

cache. For the OATS technique, we experiment with provid-
ing additional 2 (OATS-2)and 4 (OATS-4) bits for the additional
tag, using the AHS-4 technique words as the base case. For
the AAHS technique, we experiment with 2 (AAHS-2), and 4
(AAHS-4)additional half-words per physical cache block. As
seen in Figure 9, providing just 2 additional tag bits per physical
cache block is enough to capture almost all the narrow cache
blocks obtained with all the bits provided for the entire tag. Fig-
ure 9 shows that the AAHS-4 technique increases the percentage
increase in cache capacity, compared to the conventional cache,
by about 50%, which is only slightly better than AHS-4 tech-
nique. However, AAHS-2 performs about 8% better than AHS-2.

Our experiments showed that the increase in cache capacity
did not translate into comparable reductions in cache miss rates.
On an average, the L1 data cache miss rate reduced by about
1%, 3%, and 7% for the AWN, AHS-2, and AHS-4 techniques,
respectively. The small reduction in cache miss rate is because
different benchmarks require different cache sizes, and if the

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

art bzip2 gcc mcf vpr parser ammp applu apsi equake
mgrid swim average

0

10

20

30

40

50

60

70

80

90

100

Per
cen

tage
 Inc

reas
e in

 L1
 Dc

ach
e C

apa
city

AHS -2
AAHS-2
AHS-4 with OATS-2
AHS-4 with OATS-4
AHS-4
AAHS-4

Figure 9: Percentage increase in L1 Dcache capacity, compared to a 2-way 8KB conventional cache

8KB 2-way cache is enough to get rid of most of the misses,
then increasing the cache capacity may not impact the miss rate
considerably. To study the potential of our techniques in reduc-
ing the L1 data cache miss rate, we experiment with different
cache sizes for different benchmarks. The cache size is chosen
for a benchmark such that a noticeably reduction in cache miss
rate is observed when going from a 2-way smaller conventional
cache to a 4-way larger conventional cache (double the size of
the 2-way cache). We also experimented with a conventional
cache provided with 38% more data space (equal to the over-
head of the AAHS-4 technique), where some sets had 2 cache
blocks and some had 3 cache blocks. Figure 10 presents the
percentage miss rate reduction for AHS-4, AHS-4 with OATS-
4, and AAHS-4 techniques on a 2-way smaller cache, compared
with a 38% more conventional cache. Figure 10 shows that an
average miss rate reduction of about 23% can be achieved with
the AAHS-4 technique, whereas, the 38% more cache achieves
a reduction of about 27%. However, for some benchmarks, our
techniques perform significantly better than the 38% more con-
ventional cache. Note that the space overhead of the AAHS-4
technique can be further reduced by using the OATS technique.

6 Sensitivity Study
In this section, we measure the increase in the L1 data cache
capacity as the block size is varied from 16 bytes to 128 bytes,
while keeping the cache size constant. Figure 11 presents the
measurements for the various cache block sizes for the AHS-4
technique.

As seen in Figure 11, the percentage increase in the L1 data
cache capacity generally reduces as the block sizes are increased
from 16 bytes to 128 bytes. This is expected, because the num-
ber of narrow cache blocks reduce as the block size is increased.
Note that, as the block size increases, the percentage overhead
of the techniques discussed in this paper also reduces. Never-
theless, the percentage increase in the L1 data capacity rate is
still about 38% for a block size of 64 bytes, and about 27% for
a block size of 128 bytes.

7 Conclusion
With the CMOS scaling trends and slow scaling of wires as
compared to the transistors, the cache access latencies will in-

crease in the future microprocessors. To prevent the increas-
ing latencies from affecting the cache throughput, the L1 caches
are small-sized and their accesses are pipelined. Small-sized
L1 data caches can result in significant performance degrada-
tion due to increased miss rates. Compression techniques can
be used to increase the L1 data cache capacity. However, these
compression techniques cannot alter the byte-offset of the mem-
ory reference, to avoid any increase in the cache access latency.

In this paper, we propose restrictive cache compression tech-
niques that do not require updates to the byte-offset, and hence
result in minimal, if any, cache access latency impact. Our ba-
sic technique — AWN — compresses a cache block only if all
the words in the cache block are of small size. The compressed
cache blocks are then packed together in a single physical cache
block. The AWN technique requires minimal additional storage
in the cache and results in a 20% increase in the cache capac-
ity. We extend the AWN technique by providing some additional
space for the upper half-words — AHS — of a few normal-sized
words in a cache block, with an aim to convert them into nar-
row blocks. We further extend the AHS technique — AAHS —
so that the number of upper half-words used by a cache block
can vary depending on the requirement. AHS and AAHS tech-
niques increase the cache capacity by about 50%, while incur-
ring a 38% increase in the storage space required, compared to
a conventional cache. However, these techniques still do not
impact the cache access latency. To reduce the additional tag
requirements (which is inevitable with any cache compression
technique), we propose reducing the number of additional tag
bits provided for the additional cache blocks to be packed in a
physical cache block, reducing the overhead of the AHS tech-
niques to about 30%. Our studies showed that providing just 2
additional tag bits is enough to give a performance almost equal
to that obtained with doubling the number of tag bits.

References
[1] D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow

Width Operands to Improve Processor Power and Performance,”
Proc. HPCA, 1999.

[2] M. Ghosh, et al., ”CoolPression —A Hybrid Signifi cance Com-
pression Technique for Reducing Energy in Caches.”Proc. IEEE
Int’l SOC Conference, 2004.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

art bzip2 gcc mcf vpr parser ammp applu apsi equake
mgrid swim average

0

10

20

30

40

50

60

Per
cen

tage
 Re

duc
tion

 in L
1 D

cac
he m

iss
rate 38% more conventional cache

AHS-4
AHS-4 with OATS-4
AAHS-4

80%

Figure 10: Percentage reduction in L1 Dcache miss rate for different sized caches for different benchmarks, compared to a 2-way
smaller conventional cache

art bzip2 gcc mcf vpr
parser

ammp applu apsi equake
mgrid swim average

0

10

20

30

40

50

60

70

80

90

100

Per
cen

tag
e In

cre
ase

 in
L1

 Dc
ach

e C
apa

city

16 byte AHS-4
32 byte AHS-4
64 byte AHS-4
128 byte AHS-4

Figure 11: Percentage increase in L1 Dcache capacity, compared to a 2-way 8KB conventional cache; with varying cache block
sizes

[3] G. Loh, “Exploiting data-width locality to increase superscalar
execution bandwidth,” Proc. Micro-35, 2002.

[4] L. Villa, et. al., “Dynamic zero compression for cache energy
reduction,”Proc. of Micro-33, 2000.

[5] B. Abali and H. Franke, ”Operating System Support for Fast
Hardware Compression of Main Memory Contents”, Workshop
on Solving the Memory Wall Problem, 2000.

[6] A. Alameldeen and D. Wood, ”Adaptive Cache Compression for
High-Performance Processors”, Proc. ISCA-31, 2004.

[7] C. Benveniste, et. al., ”Cache-Memory Interfaces in Compressed
Memory Systems”, Workshop on Solving the Memory Wall Prob-
lem, 2000.

[8] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
2.0,”Computer Arch. News, 1997.

[9] T. Chappell, et. al., “A 2-ns cycle, 3.8-ns access 512-kB CMOS
ECL SRAM with a fully pipelined architecture,” IEEE Jour. of
Solid State Circuits, 26(11):1577-1585, 1991.

[10] D. Chen, et. al., ”A Dynamically Partitionable Compressed
Cache”, Singapore-MIT Alliance Symposium, 2003.

[11] Z. Chishti, and T. N. Vijaykumar, “Wire Delay is not a problem
for SMT (in the near future),”Proc. ISCA-31, 2004.

[12] P. Franaszek, et. al., ”Parallel Compression with Cooperative
Dictionary Construction”, Proc. Data Compression Conference,
1996.

[13] M. K. Gowan, et. al., “Power Considerations in the Design of the
Alpha 21264 Microprocessor,” Proc. DAC, 1998.

[14] E. Hallnor and S. Reinhardt, ”A Compressed Memory Hierarchy
using an Indirect Index Cache”, Technical Report CSE-TR-488-
04, University of Michigan, 2004.

[15] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March/April 1999.

[16] N. Kim, et. al., ”Low-Energy Data Cache using Sign Compres-
sion and Cache Line Bisection”, Workshop on Memory Perfor-
mance Issues, 2002.

[17] M. Kjelso, et. al., ”Design and Performance of a Main Memory
Hardware Data Compressor”, Proc. EUROMICRO Conference,
1996.

[18] S. Kumar, et. al., ”Bit-Sliced Datapath for Energy-Effi cient
High Performance Microprocessors”, Workshop on Power-Aware
Computer Systems(PACS’04), 2004.

[19] J. Lee, et. al., ”Design and Evaluation of a Selective Compressed
Memory System”, Proc. ICCD, 1999.

[20] J. Lee, et. al., ”An On-chip Cache Compression Technique
to Reduce Decompression Overhead and Design Complexity”,
Journal of Systems Architecture: The EUROMICRO Journal,
46(15):1365-1382, 2000.

[21] J. Lee, et. al., ”Adaptive Methods to Minimize Decompression
Overhead for Compressed On-chip Cache”, International Jour-
nal of Computers and Application, 25(2), 2003.

[22] S. Manne, et. al., “Pipeline Gating: Speculation Control For En-
ergy Reduction,”Proc. ISCA, 1998.

[23] P. Shivakumar, and N. Jouppi, “CACTI 3.0: An Integrated Cache
Timing Power, and Area Model,”Technical Report, DEC Western
Research Lab, 2002.

[24] J. Yang, et. al., ”Frequent Value Compression in Data Caches”,
Proc. Micro-33, 2000.

[25] Y. Zhang, et. al., ”Frequent Value Locality and Value Centric
Data Cache Design”, Proc. ASPLOS, 2000.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

