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Outline

• Objective 

• Overview: 
– Statistical Simulation

– Value Prediction

• Simulated Processor

• Results & Conclusions

• Further Research
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Value Prediction (VP)

Fetch | Decode | R-Rename Mem | W-BackIssue | R-read | Execute

Pre-fetch

Hide memory 
latency

Inst. Cache

Increase fetch 
bandwidth

Value Predication

Reduce data dependency 
and overcome latencies

• VP is capable of overcoming true data dependencies
• Despite the advantage of VP as a speculative execution 

approach, there is still no commercial processor that 
employs this technique

• Why not …. what is the potential of VP? 
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This report ….

• Characterizes the upper limit of VP performance
• Uses a statistical simulation approach
• Simulates a simple 5-stage pipelined processor with 

register forwarding and separate FUs for prediction 
validation
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Factors Considered

• Factors influencing VP performance:
i) Frequency of long latency instructions
ii) Level of value locality within instructions
iii) Level of data dependency between instructions
iv) Accuracy of value predictions

• All of the above are studied using statistical models and 
random event generation
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Statistical Simulation 

Implementation 
Correctness

Performance
Characterization

Source: L. Eeckhout, et al, 2003

• Lies between detailed simulation & analytical models 
• Provides a first-order performance estimate early in the 

design cycle  
• Allows the design potential to be evaluated over a wide 

range of parameter values
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Synthetic Trace Approach

Synthetically Generated

Instruction Stream

• Replaces actual code with synthetic instruction stream 
and synthetic functional behavior

• Accurate to within 4-8% of cycle-by-cycle simulations

Statistical 
Profiling

Structural Simulation of 
FUs & Pipeline Arch.

• Instruction Mix
• Dynamic Distance

• Progression Sequence
• Operational Settings



Instruction Profiles 
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Instructions
Load T(1):  R(β), R(β)
ALU T(2):  R(β), R(β), R(β)
Brch T(3):  R(β), R(β)
Store T(4):  R(β), R(β)

Profile

Instruction Mix
Instruction Dependency
Instruction Distance

(α)

Load 15-30 % 
ALU 25-60 % 
Branch 15-30 % 
Store 10-15 % 

Random α

Random β 0 to Rmax

Random 
Consequence

Average Distance

• First-order approximations:
– Four generic instruction types  
– Random register dependencies (RAW) 
– Average block size
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Instruction Distance 
Branch PCA (Source: A. Phansalkar, et al, 2005)

INT Branch 
Distance 4 –10 Inst.

Load ALU Brch Store

Load

ALU

Brch 4-10

Store

Distance Matrix

• Profiling distance between instructions is key to achieving 
accurate results

– Definition of distance matrix entries is an open research topic

• This work … branch distance set to  6
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Different Approaches

Fetch Decode Issue Execute Commit

Predict
Value Verifyif mispredicted

Source: 
A. Sodani & Sohi 1998Value Prediction (VP)

Instruction Reuse (IR)

Fetch Decode Issue Execute Commit

Check for
previous use

Verify arguments
are the same

if reused

This work … focus is on Value Prediction

Predictions for Load and ALU instructions
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Value Predictors

• History-based
– Last value predication
– Last-n value predictions 
– Finite Context Method (FCM)

• Computational Predictors
– Detect stride, compute future values 

• Hybrids 
– Combination of  FCM and Computational
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Predictor Accuracy

First Level

• Best predictors are Hybrid FCM
– Accuracy ~80% (90% max)
– Requires large tables & complex lookup logic

Value
History

File Value 
Prediction

File

Update
Queue

Second LevelHit/Miss

Index

Predicted
Value

Confidence

Correct Value

Two Stage Table Look-up
PC + Register Value + Stride + Last Five Values
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Exploiting Value Locality

Range of Locality Studied
Perfect: 100% ALU & 100% Load

Upper limit: 60% ALU & 90% Load

Lower level: 20% ALU & 70% load

Source: M. Lipasti & J. Shen, 1996

• Locality varies per instruction
– Load writes (80%)
– ALU writes (20-60%)  
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Simulation: 5-Stage Pipeline

EX

IF ID MEM WB

VP

• C-program used to simulate pipelined execution
• Idealized model:

– Predicted instructions are verified using separate FUs
– No prediction delay or table size limitations
– Rollback scenarios: 0 and 1 cycle delay 

• Single Issue & forwarding
• Speculative Execution
• Rollback Window

Separate
Validation

FU

Predict

EX

EX

Index
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Simulation Parameters

Profile Characteristic

Inst. Occurrence Random Distribution
Load 22%
ALU 50% 
Branch 17% 
Store 11% 

ALU Latency 1 Cycle
Mult/Div: 5 Cycles Aver.
Latency Occurrence 15%

Inst. Dependency Register RAW
Data Dependency Variable:72%  to  0%
Inst. Distance 6 Between Branches
Branch Behavior Delay Slot
Data Stream  Behavior No miss 1 cycle

L2/Mem: 10 Cycles Aver.
Miss Rate  5%

Inst. Stream Behavior Nil

- Target is a generic 
integer-based application

- 10 million synthetic 
instructions
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Results: Baseline without VP
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• Data Dependency (DD) varied - 72% (max) to 0% (min)
• Constant control hazard - Excluded from VP experiments
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VP With &Without Rollback Penalty
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• Unrealistic: 100% locality and 0 cycle rollback
• Also, 72% DD is extreme
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VP versus DD versus Accuracy
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- Upper bound < 40 %
- 50% DD: 10% < VPSpeedup< 30%

VP 
Characterization
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Other VP Results 

• Other researches report VP performance 
improvements of 5-20%*
– Across integer and  floating-point applications
– Across simplescalar and superscalar architectures

• Why the difference (10-30%)?
– No limitations imposed by hardware and tables sizes
– Near-ideal value locality and DD is modeled
– No limitations imposed by control hazards
– Integer versus floating-point specific applications

[*]  J. Markovski & M. Gusev, 2004
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VP for Load Instructions 

• Overcoming long memory latencies  is an attractive 
scenario for the application of VP 

– Overcome CPU/Memory performance gap
– Reduces number of predictions (smaller tables)

• Statistical simulation experiments also performed 
for larger memory latencies:

– L2/Mem average of 10, 50, 100 cycles 



Load Only VP
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– Upper bound < 80 %
– 50% DD: 12% < VPSpeedup< 76%
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Summary

• Predicated upper limits of VP performance:
– 10 to 30% for generic integer-based applications
– <80% for load only VP with large latencies

• Benchmark experiments required to confirm accuracy 
of statistical simulations results ( +/-10%) 
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Conclusion(s) 

• Upper bound of VP performance is not significant, even 
under near-ideal conditions
– Not enough to justify  building generic VP  into a general-purpose 

processors

• Load only prediction  may be applicable for specialized 
applications involving long memory latencies  
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Further Research

• Study integer versus floating point applications using 
specific distance matrix profiles

• Apply VP simulation approach to superscalar and 
speculative multithreaded processors

• Test a thesis:
– Upper limit of VP performance reported in this study is 

representative of behavior found in other pipeline architectures
– Upper bound of VP performance will not very significantly in 

superscalar and multithreaded processors
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Thank You
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