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Abstract 
This paper presents the Alpha EV8 conditional branch pre- 
dictor The Alpha EV8 microprocessor project, canceled in 
June 2001 in a late phase of  development, envisioned an 
aggressive 8-wide issue out-of-order superscalar microar- 
chitecture featuring a very deep pipeline and simultaneous 
multithreading. Performance of such a processor is highly 
dependent on the accuracy of its branch predictor and con- 
sequently a very large silicon area was devoted to branch 
prediction on EVS. The Alpha EV8 branch predictor relies 
on global history and features a total of 352 Kbits. 

The focus of this paper is on the different trade-offs per- 
formed to overcome various implementation constraints for 
the EV8 branch predictor. One such instance is the pipelin- 
ing of the predictor on two cycles to facilitate the prediction 
of up to 16 branches per cycle from any two dynamically 
successive, 8 instruction fetch blocks. This resulted in the 
use of three fetch-block oM compressed branch history in- 

formation for accesing the predictor. Implementation con- 
straints also restricted the composition of the index func- 
tions for the predictor and forced the usage of only sing&- 
ported memory cells. 

Nevertheless, we show that the Alpha EV8 branch pre- 
dictor achieves prediction accuracy in the same range as the 
state-of-the-art academic global history branch predictors 
that do not consider implementation constraints in great de- 
tail 

I Introduction 
The Alpha EV8 microprocessor [2] features a 8-wide su- 

perscalar deeply pipelined microarchitecture. With mini- 
mum branch misprediction penalty of 14 cycles, the per- 
formance of this microprocessor is very dependent on the 
branch prediction accuracy. The architecture and technolo- 
gy of the Alpha EV8 are very aggressive and new challenges 
were confronted in the design of the branch predictor. This 
paper presents the Alpha EV8 branch predictor in great de- 
tail. The paper expounds on different constraints that were 

* This work was done while the authors were with Compaq during 1999 

faced during the definition of the predictor, and on various 
trade-offs performed that lead to the final design. In par- 
ticular, we elucidate on the following: (a) use of a global 
history branch prediction scheme, (b) choice of the predic- 
tion scheme derived from the hybrid skewed branch predic- 
tor 2Bc-gskew[ 19], (c) redefinition of the information vector 
used for indexing the predictor that combines compressed 
branch history and path history, (d) different prediction and 
hysteresis table sizes: prediction tables and hysteresis tables 
are accessed at different pipeline stages, and hence can be 
implemented as physically distinct tables, (e) variable his- 
tory lengths: the four logical tables in the EV8 predictor 
are accessed using four different history lengths, (f) guaran- 
teeing conflict free access to the bank-interleaved predictor 
with single-ported memory cells for up to 16 branch pre- 
dictions from any two 8-instruction dynamically succesive 
fetch blocks, and (g) careful definition of index functions 
for the predictor tables. 

This work demonstrates that in spite of all the hard- 
ware and implementation constraints that were encountered, 
the Alpha EV8 branch predictor accuracy was not compro- 
mised and stands the comparison with virtually all equiva- 
lent in size, global history branch predictors that have been 
proposed so far. 

The overall EV8 architecture was optimized for sin- 
gle process performance. Extra performance obtained by 
simultaneous multithreading was considered as a bonus. 
Therefore, the parameters of the conditional branch predic- 
tor were tuned with single process performance as the pri- 
mary objective. However, the EV8 branch predictor was 
found to perform well in the presence of a multithreaded 
workload. 

The remainder of the paper is organized as follows. Sec- 
tion 2 briefly presents the instruction fetch pipeline of the 
Alpha EV8. Section 3 explains why a global history branch 
predictor scheme was preferred over a local. In Section 4, 
we present the prediction scheme implemented in the Al- 
pha EV8, 2Bc-gskew. This section also presents the design 
space of 2Bc-gskew. The various design dimensions were 
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harnessed to fit the EV8 predictor in 352 Kbits memory  bud- 
get. Section 5 presents and justifies the history and path in- 
formation used to index the branch predictor. On the Alpha 
EVS, the branch predictor tables must support two indepen- 
dent reads of  8 predictions per cycle. Section 6 presents the 
scheme used to guarantee two conflict-free accesses per cy- 
cle on a bank-interleaved predictor. Section 7 presents the 
hardware constraints for composing index functions for the 
prediction tables and describes the functions that were even- 
tually used. Section 8 presents a step by step performance 
evaluation of  the EV8 branch predictor as constraints arc 
added and turn-around solutions are adopted. Finally, we 
provide concluding remarks in Section 9. 

2 A l p h a  E V 8  f r o n t - e n d  p i p e l i n e  

To sustain high performance,  the Alpha EV8 fetches up 
to two, 8-instruction blocks per cycle from the instruction 
cache. An instruction fetch block consists of  all consecutive 
valid instructions fetched from the I-cache: an instruction 
fetch block ends either at the end of an aligned 8-instruction 
block or on a t aken  control flow instruction. Not  taken 
conditional branches do not end a fetch block, thus up to 16 
conditional branches may be fetched and predicted in every 
cycle. 

On every cycle, the addresses of  the next two fetch 
blocks must be generated. Since this must be achieved in 
a single cycle, it can only involve very fast hardware. On 
the Alpha EV8, a line predictor [ 1 ] is used for this purpose. 
The line predictor consists of  three tables indexed with the 
address of the most recent fetch block and a very limited 
hashing logic. A consequence of  simple indexing logic is 
relatively low line prediction accuracy. 

To avoid huge performance loss, due to fairly poor line 
predictor accuracy and long branch resolution latency (on 
the EV8 pipeline, the outcome of a branch is known the ear- 
liest in cycle 14 and more often around cycle 20 or 25), the 
line predictor is backed up with a powerful program counter 
(PC) address generator. This includes a conditional branch 
predictor, a jump predictor, a return address stack predic- 
tor, conditional branch target address computation (from 
instructions flowing out of  the instruction cache) and final- 
address selection. PC-address-generation is pipelined in t- 
wo cycles as illustrated in Fig. 1: up to four dynamically 
succesive fetch blocks A, B, C and D are simultaneously in 
flight in the PC-address-generator. In case of  a mismatch 
between line prediction and PC-address-generation, the in- 
struction fetch is resumed with the PC-address-generation 
result. 

3 G l o b a l  v s  L o c a l  h i s t o r y  

The previous generation Alpha microprocessor [7] in- 
corporated a hybrid predictor using both global and local 
branch history information. On Alpha EV8, up to 16 branch 
outcomes (8 for each fetch block) have to be predicted per 

Cycle 1 
B locks  C and D 

Phase 0 i Phase 1 

I 

Cycle 2 Cycle 3 
Blocks  A and B B locks  Y and Z 

Phase 0 Phase 1 Phase 0 i 

Line )rediction 
is corn Dieted 

)rediction tables read 
is completed 

PC addressgeneration 
is completed 

Phase I 

Figure 1. PC address generation pipeline 

cycle. Implementing a hybrid branch predictor for EV8 
based on local history or including a component  using lo- 
cal history would have been a challenge. 

Local branch prediction requires for each prediction a 
read of the local history table and then a read of the predic- 
tion table. Performing the 16 local history reads in parallel 
requires a dual-ported history table. One port for each fetch 
block is sufficient since one can read in parallel the histo- 
ries for sequential instructions on sequential table entries. 
But performing the 16 prediction table reads would require 
a 16-ported prediction table. 

Whenever an occurrence of a branch is inflight, the spec- 
ulative history associated with the younger  inflight occur- 
rence of  the branch should be used [8]. Maintaining and 
using speculative local history is already quite complex 
on a processor fetching and predicting a single branch per 
cycle[20]. On Alpha EV8, the number of  inflight branch- 
es is possibly equal to the max imum number of  inflight in- 
structions (that is more than 256). Moreover,  in EV8 when 
indexing the branch predictor there are up to three fetch 
blocks for which the (speculative) branch outcomes have 
not been determined (see Fig. 1). These three blocks may 
contain up to three previous occurrences of  every branch in 
the fetch block. In contrast, single speculative global histo- 
ry (per thread) is simpler to build and as shown in Section 8 
the accuracy of the EV8 global history prediction scheme is 
virtually insensitive to the effects of  three fetch blocks old 
global history. 

Finally, the Alpha EV8 is a simultaneous multithreaded 
processor [25, 26]. When independent threads are running, 
they compete for predictor table entries. Such interference 
on a local history based scheme can be disastrous, because 
it pollutes both the local history and prediction tables. What  
is more, when several parallel threads are spawned by a s- 
ingle application, the pollution is exacerbated unless the lo- 
cal history table is indexed using PC and thread number. 
In comparison, for global history schemes a global history 
register must be maintained per thread, and parallel thread- 
s - from the same application - benefit from constructive 
aliasing [ 10]. 
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4 T h e  b r a n c h  p r e d i c t i o n  s c h e m e  

Global branch history branch predictor tables lead to a 
phenomenon known as aliasing or interference [28, 24], in 
which multiple branch information vectors share the same 
entry in the predictor table, causing the predictions for t- 
wo or more branch substreams to intermingle. "De-aliased" 
global history branch predictors have been recently intro- 
duced: the enhanced skewed branch predictor e-gskew [15], 
the agree predictor [22], the bimode predictor [ 13] and the 
YAGS predictor [4]. These predictors have been shown to 
achieve higher prediction accuracy at equivalent hardware 
complexity than larger "aliased" global history branch pre- 
dictors such as gshare [14] or GAs [27]. However, hybrid 
predictors combining a global history predictor and a typ- 
ical bimodal predictor only indexed with the PC [21] may 
deliver higher prediction accuracy than a conventional sin- 
gle branch predictor [14]. Therefore, "de-aliased" branch 
predictors should be included in hybrid predictors to build 
efficient branch predictors. 

The EV8 branch predictor is derived from the hybrid 
skewed branch predictor 2Bc-gskew presented in [19]. In 
this section, the structure of the hybrid skewed branch pre- 
dictor is first recalled. Then we outline the update policy 
used on the EV8 branch predictor. The three degrees of 
freedom available in the design space of the 2Bc-gskew pre- 
dictor are described: different history lengths for the pre- 
dictor components,  size of  the different predictor compo- 
nents and using smaller hysteresis tables than prediction ta- 
bles. These degrees of freedom were leveraged to design the 
"best" possible branch predictor fitting in the EV8 hardware 
budget constraints. 

4.1 General  structure of  the hybrid skewed pre- 
dictor 2Bc-gskew 

The enhanced skewed branch predictor e-gskew is a very 
efficient single component branch predictor [15, 13] and 
therefore a natural candidate as a component for a hybrid 
predictor. The hybrid predictor2Bc-gskew illustrated in Fig. 
2 combines e-gskew and a bimodal predictor. 2Bc-gskew 
consists of  four 2-bit counters banks. Bank BIM is the bi- 
modal predictor, but is also part of  the e-gskew predictor. 
Banks GO and G1 are the two other banks of the e-gskew 
predictor. Bank Meta  is the meta-predictor. Depending 
on Meta,  the prediction is either the prediction coming out 
from BIM or the majority vote on the predictions coming 
out from GO, G1 and BIM 

4.2 P a r t i a l  update policy 

In a multiple table branch predictor, the update policy 
can have a bearing on the prediction accuracy [15]. Par- 
tial update policy was shown to result in higher prediction 
accuracy than total update policy for e-gskew. 

Applying partial update policy on 2Bc-gskew also results 
in better prediction accuracy. The bimodal component ac- 

b 

I I 

modal predictio~ I - -  

e-gs kew prediction 

metaprediction 

PaED'~LON 

I address  ]h is tory  I 

Figure 2. The 2Bc-gskew predictor 

curately predicts strongly biased static branches. Therefore, 
once the metapredictor has recognized this situation, the 
other tables are not updated and do not suffer from alias- 
ing associated with easy-to-predict branches. 

The partial update policy implemented on the Alpha EV8 
consists of  the following: 

• on a correct prediction: 
when all predictors were agreeing do not update (sec 
Rationale 1) 
otherwise: strengthen Meta  if the two predictions were 
different, and strengthen the correct prediction on all 
participating tables GO, G1 and BIM as follows: 
-strengthen BIM if the bimodal prediction was used 
-strengthen all the banks that gave the correct predic- 
tion if the majority vote was used 

• on a misprediction: 
when the two predictions were different, first update 
the chooser (see Rationale 2), then recompute the over- 
all prediction according to the new value of the choos- 
er: 
-correct prediction: strengthens all participating tables 
-misprediction: update all banks 

Rationale 1 The goal is to limit the numbcr of strength- 
ened counters on a correct prediction. When a counter is 
strengthened, it is harder for another (address,history) pair 
to "steal" it. But, when the three predictors BIM, GO and 
G1 are agreeing, one counter entry can be stolen by another 
(address, history) pair without destroying the majority pre- 
diction. By not strengthening the counters when the three 
predictors agree, such a stealing is made easier. 

Rationale 2 The goal is to limit the number of  counters 
written on a wrong prediction: there is no need to steal a 
table entry from another (address, history) pair when it can 
be avoided. 

4.3 Using distinct prediction and hysteresis arrays 

Partial update leads to better prediction accuracy than 
total update policy due to better space utilization. It also 
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allows a simpler hardware implementation of a hybrid pre- 
dictor with 2-bit counters. 

When using the partial update described earlier, on a cor- 
rect prediction, the prediction bit is left unchanged (and not 
written), while the hysteresis bit is strengthened on partic- 
ipating components (and need not be read). Therefore, a 
correct prediction requires only one read of  the prediction 
array (at fetch time) and (at most) one write of  the hystere- 
sis array (at commit time). A misprediction leads to a read 
of  the hysteresis array followed by possible updates of  the 
prediction and hysteresis arrays. 

4.4 Sharing a hysteresis bit between several coun- 
ters 

Using partial update naturally leads to a physical imple- 
mentation of the branch predictor as two different memory 
arrays, a prediction array and a hysteresis array. 

For the Alpha EV8, silicon area and chip layout con- 
straints allowed less space for the hysteresis memory array 
than the prediction memory array. Instead of  reducing the 
size of  the prediction array, it was decided to use half size 
hysteresis tables for components G1 and Meta.  As a result, 
two prediction entries share a single hysteresis entry: the 
prediction table and the hysteresis table are indexed using 
the same index function, except the most significant bit. 

Consequently, the hysteresis table suffers from more 
aliasing than the prediction table. For instance, the follow- 
ing scenario may occur. Prediction entries A and B share 
the same hysteresis entry. Both (address, history) pairs as- 
sociated with the entries are strongly biased, but B remains 
always wrong due to continuous resetting of  the hysteresis 
bit by (address, history) pair associated with A. While such 
a scenario certainly occurs, it is very rare: any two consec- 
utive accesses to B without intermediate access to A will 
allow B to reach the correct state. Moreover, the partial up- 
date policy implemented on the EV8 branch predictor limits 
the number of writes on the hysteresis tables and therefore 
decreases the impact of aliasing on the hysteresis tables. 

4.5 History lengths 

Previous studies of the skewed branch predictor [15] and 
the hybrid skewed branch predictor [19] assumed that ta- 
bles GO and G1 were indexed using different hashing func- 
tion on the (address, history) pair but with the same history 
length used for all the tables. Using different history lengths 
for the two tables allows slightly better behavior. Moreover 
as pointed out by Juan et at. [12], the optimal history length 
for a predictor varies depending on the application. This 
phenomenon is less important on a hybrid predictor featur- 
ing a bimodal table as a component. Its significance is fur- 
ther reduced on 2Bc-gskew if two different history lengths 
are used for tables GO and G1. A medium history length 
can be used for GO while a longer history length is used for 
G1. 

[BIM I GO [ G1 I Meta I 
prediction table 16K 64K ' 64KI 64K 
hysteresis table 16K 32K 64K 32K 
history length 4 13 21 15 

Table 1. Characteristics of Alpha EV8 branch 
predictor 

4.6 Different prediction table sizes 

In most academic studies of  multiple table predictors 
[15, 13, 14, 19], the sizes of the predictor tables are con- 
sidered equal. This is convenient for comparing different 
prediction schemes. However, for the design of a real pre- 
dictor in hardware, the overall design space has to be ex- 
plored. Equal table sizes in the 2Bc-gkew branch predictor 
is a good trade-off for small size predictors (for instance 
4"4K entries). However, for very large branch predictors 
(i.e 4 * 64K entries), the bimodal table B IM is used very 
sparsely since each branch instruction maps onto a single 
entry. 

Consequently, the large branch predictor used in EV8 
implements a BIM table smaller than the other three com- 
ponents. 

4.7 The EV8 branch predictor configuration 

The Alpha EV8 implements a very large 2Bc-gskew pre- 
dictor. It features a total of  352 Kbits of  memory, consisting 
of 208 Kbits for prediction and 144 Kbits for hysteresis. De- 
sign space exploration lead to the table sizes indexed with 
different history lengths as listed in Table 1. It may be re- 
marked that the table BIM (originally the bimodal table) is 
indexed using a 4-bit history length. This will be justified 
when implementation constraints are discussed in Section 
7. 

5 P a t h  and  b r a n c h  o u t c o m e  i n f o r m a t i o n  

The accuracy of  a branch predictor depends both on the 
prediction scheme and predictor table sizes as well as on the 
information vector used to index it. This section describes 
how pipeline constraints lead to the effective information 
vector used for indexing the EV8 Alpha branch predictor. 
This information vector combines the PC address, a com- 
pressed form of the three fetch blocks old branch andpath 
history and path information form the three last blocks. 

5.1 Three fetch blocks old block compressed his- 
tory 

Three fetch blocks old history Information used to read 
the predictor tables must be available at indexing time. On 
the Alpha EV8, the branch predictor has a latency of  t- 
wo cycles and two blocks are fetched every cycle. Fig. I 
shows that the branch history information used to predict 
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a branch outcome in block D can not include any (specu- 
lative) branch outcome from conditional branches in block 
D itself, and also from blocks C, B and A. Thus the EV8 
branch predictor can only be indexed using a three fetch 
blocks old branch history (i.e updated with history informa- 
tion from Z) for predicting branches in block D. 

Block compressed history Ighist When a single branch is 
predicted per cycle, at most one history bit has to be shifted 
in the global history register on every cycle. When up to 
16 branches are predicted per cycle, up to 16 history bits 
have to be shifted in the history on every cycle. Such an 
update requires complex circuitry. On the Alpha EV8, this 
complex history-register update would have stressed critical 
paths to the extent that even older history would have had 
to be used (five or even seven-blocks old). 

Instead, just a single history bit is inserted per fetch block 
[5]. The inserted bit combines the last branch outcome with 
path information. It is computed as follows: whenever at 
least one conditional branch is present in the fetch block, 
the outcome of the last conditional branch in the fetch block 
(1 for taken, 0 for not-taken) is exclusive-ORed with bit 
4 in the PC address of  this last branch. The rationale for 
exclusive-OR by a PC bit the branch outcome is to get a 
more uniform distribution of history patterns for an appli- 
cation. Highly optimized codes tend to exhibit less taken 
branches than not-taken branches. Therefore, the distribu- 
tion o f "pu re"  branch history outcomes in those applications 
is non-uniform. 

While using a single history bit was originally thought 
of  as a compromising design t rade-off-  since it is possible 
to compress up to 8 history bits into 1 - Section 8 shows 
that it does not have significant effect on the accuracy of the 
branch predictor. 

Notation The block compressed history defined above 
will be referred to as lghist. 

5.2 P a t h  information from the three last fetch 
blocks 

Due to EV8 pipeline constraints (Section 2), three fetch- 
blocks old lghist is used for the predictor. Although, no 
branch history information from these three blocks can be 
used, their addresses are available for indexing the branch 
predictor. The addresses of  the three previous fetch blocks 
are used in the index functions of  the predictor tables. 

5.3 Using very long history 

The Alpha EV8 features a very large branch predictor 
compared to those implemented in previous generation mi- 
croprocessors. Most academic studies on global history 
branch predictors have assumed that the length of the global 
history is smaller or equal to Io92 of the number of  entries 
of  the branch predictor table. For the size of  predictor used 
in Alpha EV8, this is far from optimal even when using 

Ighist. For example, when considering "not compressed" 
branch history for a 4"64K 2-bit entries 2Bc-gskew predic- 
tor, using equal history length for GO, G1 and Meta ,  history 
length 24 was found to be a good design point. When con- 
sidering different history lengths, using 17 for GO, 20 for 
Me ta  and 27 for G1 was found to be a good trade-off. 

For the same predictor configuration with three fetch 
blocks old lghist, slightly shorter length was found to be 
the best performing. However, the optimal history length 
is still longer than logs of  the size of  the branch predictor 
table: for the EV8 branch predictor 21 bits of  lghist history 
are used to index table G1 with 64K entries. 

In Section 8, we show empirically that for large predic- 
tors, branch history longer than logz of  the predictor table 
size is almost always beneficial. 

6 Conf l ic t  free  b a n k  in ter l eaved  b r a n c h  pre-  
d ic tor  

Up to 16 branch predictions from two fetch blocks must 
be computed in parallel on the Alpha EV8. Normally, since 
the addresses of  the two fetch blocks are independent, each 
of the branch predictor tables would have had to support two 
independent reads per cycle. Therefore the predictor tables 
would have had to be multi-ported, dual-pumped or bank- 
interleaved. This section presents a scheme that allowed the 
implementation of  the EV8 branch predictor as 4-way bank 
interleaved using only single-ported memory  cells. Bank 
conflicts are avoided by construction: the predictions as- 
sociated with two dynamically successive fetch blocks are 
assured to lie in two distinct banks in the predictors. 

6.1 Parallel access to predictions associated with 
a single block 

Parallel access to all the predictions associated with a s- 
ingle fetch block is straightforward. The prediction tables 
in the Alpha EV8 branch predictor are indexed based on a 
hashing function of address, three fetch blocks old lghist 
branch and path history, and the three last fetch block ad- 
dresses. For all the elements of  a single fetch block, the 
same vector of  information (except bits 2, 3 and 4 of  the 
PC address) is used. Therefore, the indexing functions used 
guarantee that eight predictions lie in a single 8-bit word in 
the tables. 

6.2 Guaranteeing two successive non-conflicting 
accesses 

The Alpha EV8 branch predictor must be capable of  de- 
livering predictions associated with two fetch blocks per 
clock cycle. This typically means the branch predictor must 
be multi-ported, dual-pumped or bank interleaved. 

On the Alpha EV8 branch predictor, this difficulty is 
circumvented through a bank number computation. The 
bank number computation described below guarantees by 
construction that any two dynamically successive fetch 
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I 
PC address generatiol 
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Figure 3. Flow of the branch predictor tables read access 

blocks will generate accesses to two distinct predictor 
banks. Therefore, bank conflicts never occur. Moreover, 
the bank number  is computed on the same cycle as the 
address of  the fetch block is generated by the line predictor, 
thus no extra delay is added to access the branch predictor 
tables (Fig. 3). The implementation of the bank number 
computation is defined below: 

let BA be the bank number for instruction fetch block A, 
let Y, Z be the addresses of  the two previous access slots, 
let B z  be the number of  the bank accessed by instruction 
fetch block Z, let (y52,y51 .... y6,y5,y4,y3,y2,0,0) be the bi- 
nary representation of address Y, then BA is computed as 
follows: 
if ((y6,y5)==./3z) then .BA=(y6,y5G1) else t3A= (y6,y5) 

This computation guarantees the prediction for a fetch 
block will be read from a different bank than that of the 
previous fetch block. The only information bits needed to 
compute the bank numbers for the two next fetch blocks A 
and B are bits (y6,y5), (z6,z5) and Bz: that is two-block 
ahead [18] bank number computation. These information 
bits are available one cycle before the effective access on 
the branch predictor is performed and the required compu- 
tations are very simple. Therefore, no delay is introduced 
on the branch predictor by the bank number computation. 
In fact, bank selection can be performed at the end of  Phase 
1 of  the cycle preceding the read of the branch predictor 
tables. 

7 Indexing the branch predictor 

As previously mentioned, the Alpha EV8 branch pre- 
dictor is 4-way interleaved and the prediction and hystere- 
sis tables are separate. Since the logical organization of 
the predictor contains the four 2Bc-gskew components,  this 

should translate to an implementation with 32 memory  ta- 
bles. However, the Alpha EV8 branch predictor only im- 
plements eight memory  arrays: for each of the four banks 
there is an array for prediction and an array for hysteresis. 
Each word line in the arrays is made up of the four logical 
predictor components.  

This section, presents the physical implementation of the 
branch predictor arrays and the constraints they impose on 
the composition of the indexing functions. The section al- 
so includes detailed definition of the hashing functions that 
were selected for indexing the different logical components 
in the Alpha EV8 branch predictor. 

7.1 P h y s i c a l  implementation and c o n s t r a i n t s  

Each of the four banks in the Alpha EV8 branch pre- 
dictor is implemented as two physical memory  arrays: the 
prediction memory  array and the hysteresis memory  array. 
Each word line in the arrays is made up of the four logical 
predictor components.  

Each bank features 64 word lines. Each word line con- 
tains 32 8-bit prediction words from GO, G1 and Meta ,  and 
8 8-bit prediction words from BIM. A single 8-bit predic- 
tion word is selected from the word line from each predictor 
table GO, G1, Meta  and BIM. A prediction read spans over 
3 half cycle phases (5 phases including bank number  com- 
putation and bank selection). This is illustrated in Fig. 3 
and 4. A detailed description is given below. 
1.Wordline selection: one of the 64 wordlines of  the ac- 
cessed bank is selected. The four predictor components 
share the 6 address bits needed for wordline selection. Fur- 
thermore, these 6 address bits can not be hashed since the 
wordline decode and array access constitute a critical path 
for reading the branch prediction array and consequently - 
inputs to decoder must be available at the very beginning of 
the cycle. 
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Figure 4. Reading the branch prediction ta- 
bles 

2. Column selection: each wordline consists of  multiple 
8-bit prediction entries of  the four logical predictor tables. 
One 8-bit prediction word is selected for each of  the logical 
predictor tables. As only one cycle phase is available to 
compute the index in the column, only a single 2-entry XOR 
gate is allowed to compute each of these column bits. 
3. Unshuflte:  8-bit prediction words are systematically 
read. This word is further rearranged through a XOR per- 
mutation (that is b i ta t  position i is moved at position i ~3 f ) .  
This final permutation ensures a larger dispersion of the 
predictions over the array (only entries corresponding to a 
branch instruction are finally useful). It allows also to dis- 
criminate between longer history for the same branch PC, 
since the computation of  the' parameter  f for the XOR per- 
mutation can span over a complete cycle: each bit of  f can 
be computed by a large tree of  XOR gates. 
Notations The three fetch-blocks old lghist history will 
be noted H= (h20 . . . .  h0). A= (a52,..,a2,0,0) is the address 
of  the fetch block. Z and Y are the two previous fetch block- 
s. I = (il5,..,i0) is the index function of  a table, (i l , i0) be- 
ing the bank number, (i4,i3,i2) being the offset in the word, 
(i 10,i9,i8,i7,i6,i5) being the line number, and the highest or- 
der bits being the column number. 

7.2 General philosophy for the design of  indexing 
functions 

When defining the indexing functions, we tried to apply 
two general principles while respecting the hardware im- 
plementation constraints. First, we tried to limit aliasing 
as much as possible on each individual table by picking in- 
dividual indexing function that would spread the accesses 
over the predictor table as uniformly as possible. For each 
individual function, this normally can be obtained by mix- 
ing a large number of  bits from the history and from the ad- 
dress to compute each individual bit in the function. How- 
ever, general constraints for computing the indexing func- 
tions only allowed such complex computations for the un- 
shuffle bits. For the other indexing bits, we favored the use 

of  lghist bits instead of  the address bits. Due to the inclu- 
sion of  path information in lghist, lghist vectors were more 
uniformly distributed than PC addresses. In [17], it was 
pointed out that the indexing functions in a skewed cache 
should be chosen to minimize the number  of  block pairs 
that will conflict on two or more ways. The same applies 
for the 2Bc-gskew branch predictor. 

7.3 Shared bits 

The indexing functions for the four prediction tables 
share a total of  8 bits, the bank number  (2 bits) and the 
wordline number ( i l0  . . . .  i5). The bank number compu- 
tation was described in Section 6. 

The wordline number must be immediately available at 
the very beginning of the branch predictor access. There- 
fore, it can either be derived from information already avail- 
able earlier, such as the bank number, or directly extracted 
from information available at the end of  the previous cycle 
such as the three fetch blocks old lghist and the fetch block 
address. 

The fetch block address is the most  natural choice, since 
it allows the use of  an effective bimodal table for component  
B I M  in the predictor. However, simulations showed that the 
distribution of  the accesses over the B I M  table entries were 
unbalanced. Some regions in the predictor tables were used 
infrequently and others were congested. 

Using a mix of lghist history bits and fetch block ad- 
dress bits leads to a more uniform use of the different word 
lines in the predictor, thus allowing overall better predic- 
tor performance. As a consequence, component  B I M  in the 
branch predictor uses 4 bits of  history in its indexing func- 
tion. 

The wordline number used is given by 
(i 10,i9,i8,i7,i6,i5)= (h3,h2,h 1,h0,a8,a7). 

7.4 Indexing B I M  

The indexing function for B I M  is already using 4 his- 
tory bits, that are three fetched blocks old, and some path 
information from two fetched block ahead (for bank num- 
ber computation). Therefore path information from the last 
instruction fetch block (that is Z) is used. The extra bits for 
indexing B I M  are (il 3,i12,il 1 ,i4,i3,i2)= (a 11 ,a9~a5,alO0 
a6,a4,a3 ~ z6,a2 @ z5). 

7.5 Engineering the indexing functions for GO, G1 
and Meta 

The following methodology was used to define the in- 
dexing functions for GO, G1 and Meta .  First, the best histo- 
ry length combination was determined using standard skew- 
ing functions from [17]. Then, the column indices and the 
XOR functions for the three predictors were manually de- 
fined applying the following principles as best as we could: 
1.favor a uniform distribution of column numbers for the 
choice of  wordline index. 
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Column index bits must be computed using only one two- 
entry XOR gate. Since history vectors are more  uniformly 
distributed than address numbers, to favor an overall good 
distribution of column numbers, history bits were generally 
preferred to address bits. 
2. if, for the same instruction fetch block address A, two 
histories differ by only one or two bits then the two occur- 
rences should not map onto the same predictor entry in any 
table : to guarantee this, whenever an information bit is X- 
ORed with another information bit for computing a column 
bit, at least one of them will appear alone for the computa- 
tion of one bit of  the unshuffle parameter. 
3. if a conflict occurs in a table, then try to avoid it on the 
two other tables: to approximate this, different pairs of  his- 
tory bits are XORed for computing the column bits for the 
three tables. 

This methodology lead to the design of  the indexing 
functions defined below: 

Indexing GO To simpli~, the implementation of column s- 
electors, GO and Meta  share i15 and i14. Column selection 
is given by 
(i 15, i 14, i 13, i 12, i 11 )= (h7 • h l  1,h8 G hl  2,h4 @ h5,a9 ~3 
h 9 , h l 0  • h6). 
Unshufling is defined by (i4,i3,i2)= ( a4 • a9 ~ a13 
a12 ~ h5 • h l l  G h8 G z 5 , a 3 G a l l ® h 9  O h l 0 O h l 2 G z 6  
@a5, a2(~al4~alO@h6 @h4 E3h7 @a6). 

Indexing G1 Column selection is given by 
(i15, i14, i13, i12, il 1)= 
( h l 9 ~ h l 2 , h l  8E3hl 1,h 17@h 10,h 16@h4,h 15~h20).  
Unshuffling is defined by (i4,i3,i2)= 
( a 4 0 a l  1E)al4Ga6®h4@h6 Gh9Oh 14@h15Oh16E3z6, 
a3@al 0@al 3E3h5@h 11 ~ h  t 3@h 18Gh 19~ h20Gz5,a2 @a5 
®a9@ h4 G h 8 E 3 h 7 ® h l 0 ~ h l 2 ® h l 3 G h l 4 ® h l 7 )  

Indexing Meta  Column selection is given by 
(i15, i14, i13, i12, il 1)= (h7®hl  l,h8@h12, 
h5 ~ h  t 3,h4Oh9, a9Oh6). 
Unshuffling is defined by (i4,i3,i2)= (a4@al0@a5 
G h 7 ® h l 0 @ h l 4 @ h l 3 ~ z 5 ,  a3Ga12~a14@a6E3h40 h6 
@h8 E3h14, a2E3a9@ al  l ® a l 3 G  h5@h9Ghl  l@h12@z6) 

8 Eva luat ion  

In this section, we evaluate the different design decisions 
that were made in the Alpha EV8 predictor design. We first 
justify the choice of  the hybrid skewed predictor 2Bc-gskew 
against other schemes relying on global history. Then step 
by step, we analyze benefits or detriments brought by design 
decisions and implementation constraints. 

8.1 M e t h o d o l o g y  

8.1.1 Simulation 
Trace driven branch simulations with immediate update 
were used to explore the design space for the Alpha EV8 

branch predictor, since this methodology is about three or- 
ders of  magnitude faster than the complete Alpha EV8 pro- 
cessor simulation. We checked that for branch predictors 
using (very) long global history as those considered in this 
study, the relative error in number of  branch misprediction- 
s between a trace driven simulation, assuming immediate  
update, and the complete simulation of the Alpha EV8, as- 
suming predictor update at commit  time, is insignificant. 

The metric used to report the results is mispredictions 
per 1000 instructions (misp/KI). To experiment with histo- 
ry length wider than 1o92 of  table sizes, indexing functions 
f rom the family presented in [17, 15] were used for all pre- 
dictors, except in Section 8.5. The initial state of  all entries 
in the prediction tables was set to weakly not taken. 

8.1.2 B e n c h m a r k  set 
Displayed simulation results were obtained using traces col- 
lected with Atom[23]. The benchmark suite was SPECIN- 
T95. Binaries were highly optimized for the Alpha 21264 
using profile information from the train input. The traces 
were recorded using the ref inputs. One hundred mil- 
lion instructions were traced after skipping 400 million in- 
structions except for compress (2 billion instructions were 
skipped). Table 2 details the characteristics of  the bench- 
mark traces. 

8.2 2 B c - g s k e w  vs  o t h e r  g l o b a l  h i s t o r y  b a s e d  p r e -  
d i c t o r s  

We first validated the choice of  the 2BC-gskew predic- 
tion scheme against other global prediction schemes. Fig. 5 
shows simulation results for predictors with memorizat ion 
size in the same range as the Alpha EV8 predictor. Dis- 
played results assume conventional branch history. For all 
the predictors, the best history length results are presented. 
Fig. 6 shows the number of  additional mispredictions for 
the same configurations as in Fig. 5 but using log2 of  the 
table size, instead of the best history length. 

The illustrated configurations are: 

• a 4 "32K entries (i.e. 256 Kbits) 2Bc-gskew using his- 
tory lengths 0, 13, 16 and 23 respectively for BIM,  
GO, M e t a  and G1, and a 4"64K entries (i.e. 512Kbits) 
2Bc-gskew using history lengths 0, 17, 20 and 27. For 
limited(log2) history length, the lengths are equal for 
all tables and are 15 for the 256Kbit  configuration and 
16 for the 512Kbit. 

• a bimode predictor [13] consisting of two 128K en- 
tries tables for respectively biased taken and not taken 
branches and a 16 Kentries bimodal table, for a total 
of  544 Kbits of  memorizat ion 1 . The opt imum history 

IThe original proposition for the bimode predictor assumes equal sizes 
for the three tables. For large size predictors, using a smaller bimodal table 
is more cost-effective. On our benchmark set, using more than 16K entries 
in the bimodal table did not add any benefit. 
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Figure 5. Branch prediction accuracy for var- 
ious global history schemes 
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Figure 6. Additional Mispredictions when us- 
ing lo92 table size history 

length (for our benchmark set) was 20. For log 2 histo- 
ry length 17 bits were used. 

• a 1M entries (2M bits) gshare. The optimum history 
length (on our benchmark set) was 20 (i.e lo92 of the 
predictor table size). 

• a 288 Kbits and 576 Kbits YAGS predictor [4] (respec- 
tive best history length 23 and 25 ) the small configu- 
ration consists of a 16K entry bimodal and two 16K 
partially tagged tables called direction caches, tags are 
6 bits wide. When the bimodal table predicts taken 
(resp. not-taken), the not-taken (resp. taken) direction 
cache is searched. On a miss in the searched direction 
cache, the bimodal table provides the prediction. On 
a hit, the direction cache provides the prediction. For 
lo92 history length 14 bits (resp 15 bits) were used. 1 

10 
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Figure 7. Impact of the information vector on 
branch prediction accuracy 

First, our simulation results confirm that, at equivalen- 
t memorization budget 2Bc-gskew outperforms the other 
global history branch predictors except YAGS. There is no 
clear winner between the YAGS predictor and 2Bc-gskew. 
However, the YAGS predictor uses (partially) tagged arrays. 
Reading and checking 16 of these tags in only one and half 
cycle would have been difficult to implement. Second, the 
data support that, predictors featuring a large number of en- 
tries need very long history length and log2 table size histo- 
ry is suboptimal. 

8.3 Quality of the information v e c t o r  

The discussion below examines the impact of successive 
modifications of the information vector on branch predic- 
tion accuracy assuming a 4"64K entries 2Bc-gskew predic- 
tor. For each configuration the accuracies for the best his- 
tory lengths are reported in Fig. 7. ghist represents the 
conventional branch history. Ighist, no path assumes that 
lghist does not include path information, lghist+path in- 
cludes path information. 3-old Ighist is the same as before, 
but considering three fetch blocks old history. EV8 info vec- 
tor represents the information vector used on Alpha EV8, 
that is three fetch blocks old Ighist history including path 
information plus path information on the three last blocks. 

lghist As expected the optimal Ighist history length is 
shorter than the optimal real branch history: (15, 17, 23) 
instead of (17, 20, 27) respectively for tables GO, Meta  and 
G1. Quite surprisingly (see Fig. 7), lghist has same per- 
formance as conventional branch history. Depending on the 
application, there is either a small loss or a small benefit in 
accuracy. Embedding path information in lghist is gener- 
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Figure 8. Adjusting table sizes in the predictor 

ally beneficial: we determined that is more often useful to 
de-alias otherwise aliased history paths. 

The loss of  information from branches in the same fetch 
block in lghist is balanced by the use of  history from more 
branches (eventhough represented by a shorter information 
vector): for instance, for vortex the 23 lghist bits represen- 
t on average 36 branches. Table 3 represents the average 
number of  conditional branches represented by one bit in 
lghist for the different benchmarks.  

Three fetch blocks old history Using three fetch blocks 
old history slightly degrades the accuracy of the predictor, 
but the impact is limited. Moreover,  using path information 
from the three fetch blocks missing in the history consis- 
tently recovers most of  this loss. 

EV8 information vector In summary, despite the fac- 
t that the vector of  information used for indexing the Alpha 
EV8 branch predictor was largely dictated by implementa- 
tion constraints, on our benchmark set this vector of  infor- 
mation achieves approximately the same levels of  accuracy 
as without any constraints. 

8.4 R e d u c i n g  some  table  s izes 

Fig. 8 shows the effect of  reducing table sizes. The 
base configuration is a 4 "64K entries 2Bc-gskew predictor 
(512Kbits). The data denoted by small BIM shows the per- 
formance when the B I M  size is reduced from 64K to 16K 
2-bit counters. The performance with a small BIM and half 
the size for G O  and Me ta  hysteresis tables is denoted by 
EV8 Size. The latter fits the 352Kbits budget of  the Alpha 
EV8 predictor. The information vector used for indexing 
the predictor is the information vector used on Alpha EV8. 

Reducing the size of  the B I M  table has no impact at all 
on our benchmark set. Except for go, the effect of  using half 
size hysteresis tables for GO and Me ta  is barely noticeable. 
go presents a very large footprint and consequently is the 
most sensitive to size reduction. 

1 2  

Eladdress only, no path 
10 •address only, path 

Onop=h r -II ll 

Q EV8 
8 • EVS+complete hash 

o EI4*64K 2Bc-gskew ~hlst 
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0 
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Figure 9. Effect of wordline indices 

8.5 I n d e x i n g  f u n c t i o n  cons tra in t s  

Simulations results presented so far did not take into ac- 
count hardware constraints on the indexing functions. 8 bits 
of  index must be shared and can not be hashed, and compu-  
tation of the column bits can only use one 2-entry XOR gate 
Intuitively, these constraints should lead to some loss of  ef- 
ficiency, since it restricts the possible choices for indexing 
functions. 

However, it was remarked in [ 16] that (for caches) partial 
skewing is almost as efficient as complete skewing. The 
same applies for branch predictors: sharing 8 bits in the 
indices does not hurt the prediction accuracy as long as the 
shared index is uniformly distributed. 

The constraint of  using unhashed bits for the wordline 
number  turned out to be more critical, since it restricted the 
distribution of  the shared index. Ideally for the EV8 branch 
predictor, one would desire to get the distribution of this 
shared 8 bit index as uniform as possible to spread accesses 
on GO, G1 and Meta over the entire table. 

Fig. 9 illustrates the effects of  the various choices made 
for selecting the wordline number, address onl); no path 
assumes that only PC address bits are used in the shared 
index and  that no path information is used in lghist, address 
only, path assumes that only PC address bits are used in the 
shared index, but path information is embedded in lghist. 
no path assumes 4 history bits and 2 PC bits as wordline 
number, but that no path information is used in lghist. EV8 
illustrates the accuracy of the Alpha EV8 branch predictor 
where 4 history bits are used in the wordline number  index 
and path information is embedded in the history. Finally 
complete hash recalls the results assuming hashing on all 
the information bits and 4"64K 2Bc-gskew ghist represents 
the simulation results assuming a 512Kbits predictor with 
no constraint on index functions and conventional branch 
history. 

Previously was noted that incorporating path informa- 
tion in lghist has only a small impact on a 2Bc-gskew pre- 
dictor indexed using hashing functions with no hardware 
constraints. However, adding the path information in the 
history for the Alpha EV8 predictor makes the distribution 
of  lghist more uniform, allows its use in the shared index 
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Figure 10. Limits of using global history 

and therefore can increase prediction accuracy. 
The constraint on the column bits computation indirect- 

ly achieved a positive impact by forcing us to very careful- 
ly design the column indexing and the unshuffle functions. 
The (nearly) total freedom for computing the unshuffle was 
fully exploited: 11 bits are XORed in the unshuffling func- 
tion on table G1. The indexing functions used in the final 
design outperform the standard hashing functions consid- 
ered in the rest of  the paper: these functions (originally de- 
fined for skewed associative caches [17])exhibit good inter- 
bank dispersion, but were not manually tuned to enforce the 
three criteria described in Section 7.5. 

To summarize, the 352 Kbits Alpha EV8 branch predic- 
tor stands the comparison against a 512 Kbits 2Bc-gskew 
predictor using conventional branch history. 

9 Conclusion 

The branch predictor on Alpha EV8 was defined at the 
beginning of 1999. It features 352 Kbits of  memory and de- 
livers up to 16 branch predictions per cycle for two dynami- 
cally succesive instruction fetch blocks. Therefore, a global 
history prediction scheme had to be used. In 1999, the hy- 
brid skewed branch predictor 2Bc-gskew prediction scheme 
[19] represented state-of-the-art for global history predic- 
tion schemes. The Alpha EV8 branch predictor implements 
a 2Bc-gskew predictor scheme enhanced with an optimized 
update policy and the use of different history lengths on the 
different tables. 

Some degrees of freedom in the definition of  2Bc-gskew 
were tuned to adapt the predictor parameters to silicon area 
and chip layout constraints: the bimodal component is s- 
maller than the other components and the hysteresis tables 
of  two of the other components are only half-size of the pre- 
dictor tables. 

Implementation constraints imposed a three fetch blocks 

old compressed form of  branch history, lghist, instead of the 
effective branch history. However, the information vector 
used to index the Alpha EV8 branch predictor stands the 
comparison with complete branch history. It achieves that 
by combining path information with the branch outcome to 
build lghist and using path information from the three fetch 
blocks that have to be ignored in lghist. 

The Alpha EV8 is four-way interleaved and each bank 
is single ported. On each cycle, the branch predictor sup- 
ports requests from two dynamically succesive instruction 
fetch blocks but does not require any hardware conflict res- 
olution, since bank number computation guarantees by con- 
struction that any two dynamically succesive fetch blocks 
will access two distinct predictors banks. 

The Alpha EV8 branch predictor features four logical 
components, but is implemented as only two memory ar- 
rays, the prediction array and the hysteresis array. There- 
fore, the definition of  index functions for the four (logi- 
cal) predictor tables is strongly constrained: 8 bits must 
be shared among the four indices. Furthermore, timing 
constraints restrict the complexity of hashing that can be 
applied for indices computation. However, efficient index 
functions turning around these constraints were designed. 

Despi te  implementation and size constraints, the Al- 
pha EV8 branch predictor delivers accuracy equivalent to 
a 4"64K entries 2Bc-gskew predictor using conventional 
branch history for which no constraint on the indexing func- 
tions was imposed. 

In future generation microprocessors, branch prediction 
accuracy will remain a major issue. Even larger predic- 
tors than the predictor implemented in the Alpha EV8 may 
be considered. However, this brute force approach would 
have limited return except for applications with a very large 
number of branches. This is exemplified on our bench- 
mark set in Fig. 10 that shows simulation results for a 
4 * l M  2-bit entries 2Bc-gskew predictor. Adding back-up 
predictor components [3] relying on different information 
vector types (local history, value prediction [9, 6], or new 
prediction concepts (e.g., perceptron [l 1]) to tackle hard- 
to-predict branches seems more promising. Since such a 
predictor will face timing constraints issues, one may con- 
sider further extending the hierarchy of predictors with in- 
creased accuracies and delays: line predictor, global histo- 
ry branch prediction, backup branch predictor. The backup 
branch predictor, would deliver its prediction later than the 
global history branch predictor. 
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