
Interfacing the C328 UART JPEG Camera to the
AT91EB55

Zachary Byrne

April 12, 2010

The Interface

The camera module has a serial connection and uses an RS-232 style of communication at
a voltage of 3.3V. The camera’s command set and functionality are described very well in
the module user manual, so this document will instead focus on the AT91EB55 side of the
system as well as some gotchas that we encountered.

Command Structure

Each command is a series of 6 bytes which consists of a header (always 0xAA), a command
id, and 4 parameters. The commands and their parameters are discussed in the user manual.

Sending Commands

The AT91 library contains functions specifically for sending multiple bytes over the usart.
for sending commands, the at91 usart send frame() function will transmit full buffers over
the usart instead of single bytes.

Receiving Commands

Like at91 usart send frame(), there is also at91 usart receive frame(). This function stores
incoming data in a buffer directly. In this case oversived buffers are recommended as the
data can sometimes become offset in the buffer.

Synchronizing the Camera

Before any pictures can be taken, the camera’s serial connection must be synchronized with
the evaluation board’s usart. As described in the user manual sychronization is completed
by repeatedly sending the SYNC command to the camera and waiting for it to acknowledge.
This can be accomplished with the following code.
#define CMD SIZE 6
#define SYNC ATTEMPTS 60
#define BAUDS115200 (32000000 / (16 ∗ 115200))

u i n t i , s t a tu s ;
char ∗ bu f f e r ;
char sync [CMD SIZE] = { 0xAA, 0x0D , 0x00 , 0x00 , 0x00 , 0x00 } ;
char ack [CMD SIZE] = { 0xAA, 0x0E , 0x0D , 0x00 , 0x00 , 0x00 } ;

/∗Create t h e b u f f e r ∗/
bu f f e r = malloc (2 ∗ CMD SIZE) ; /∗ o v e r s i z e d b u f f e r in case o f o f f s e t ∗/
memset (bu f f e r , 0 , 2 ∗ CMD SIZE) ;

/∗Open the u s a r t ∗/
at91 usar t open (& USART2 DESC, US ASYNC MODE, BAUDS115200 , 0) ;

1

/∗ Set up th e r e c e i v e b u f f e r ∗/
a t 9 1 u s a r t r e c e i v e f r ame (& USART2 DESC, bu f f e r , 2 ∗ CMD SIZE, 20) ;

/∗Send the sync command∗/
/∗Camera needs sync s en t up to 60 t imes to d e t e c t baudra t e ∗/
for (i = 0 ; i < SYNC ATTEMPTS ; i++)
{

/∗Send SYNC∗/
a t91 usa r t s end f rame (& USART2 DESC, sync , CMD SIZE) ;
p r i n t f (‘ ‘ sync attempt %d\n ’ ’ , i) ;

s t a tu s = a t 9 1 u s a r t g e t s t a t u s (& USART2 DESC) ;

/∗Check i f someth ing was r e c e i v e d ∗/
i f (s t a tu s & (US ENDRX | US TIMEOUT))
{

/∗Try to g e t t h e frames ∗/
i f (bu f f e r [1] == 0x0E

&& bu f f e r [2] == 0x0D
&& bu f f e r [7] == 0x0D)

{
/∗Send ACK∗/
a t91 usa r t s end f rame (& USART2 DESC, ack , CMD SIZE) ;
break ;

}
}

}
f r e e (bu f f e r) ;

Initializing the Camera and Other Similar Commands

Many of the commands that can be sent to the camera module simply respond with an
acknowledgement packet. These commands can be controlled in much the same way as
synchronizing. The difference in this case is that the command is sent once and the status
register check is placed in an infinite while loop. This could be accomplished like this:
#define CMD ATTEMPTS 5

/∗Attempt to send the command s e v e r a l t imes ∗/
for (i = 0 ; i < CMD ATTEMPTS ; i++)
{

/∗ Set up th e r e c e i v e b u f f e r ∗/
a t 9 1 u s a r t r e c e i v e f r ame (& USART2 DESC, bu f f e r , 2 ∗ CMD SIZE, 20) ;

/∗Send command∗/
a t91 usa r t s end f rame (& USART2 DESC, command , CMD SIZE) ;

while (1)
{

s t a tu s = a t 9 1 u s a r t g e t s t a t u s (& USART2 DESC) ;

/∗Check i f someth ing was r e c e i v e d ∗/
i f (s t a tu s & (US ENDRX | US TIMEOUT))
{

/∗Try to g e t t h e frame∗/
i f (bu f f e r [1] == 0x0E && bu f f e r [2] == CMD ID)
{

return TRUE;
}
break ;

}
}

}

One thing to note is that although the user manual only lists preview resolutions up to
160x120, using the same values as the jpeg resolutions for 320x240 and 640x480 are valid
parameters for preview images as well.

Capturing Pictures

The C328 has several different capture modes outlined in the user manual. The two that affect
the way you interact with the module are whether the image is compressed or uncompressed.
Uncompressed images are received from the camera in a single transmission unlike compressed
images which are received in packets. The user manual shows examples of both modes and
the code examples above are a decent starting point. One thing to mention is that the default
heap size in the linking scripts provided in the lab is only 30 KB, where a 160x120 image in

2

16 bit RGB is roughly 40 KB, so the heap will need to be bigger or you can add some extra
ram.

Gotchas

While reading up on these modules online I saw a few reoccuring issues people were having.
Most of them were a result of not reading the maunal, but I did see one or two of them come
up.

Synching

Sometimes the cameras simply will not sync. It happens about one time in twenty, but the
only thing you can do is cycle the power and try again.

High Resolution JPEGS

Whenever I would try to initialize the camera with a JPEG resolution of 640x480 the camera
would start returning NAKs indicating a parameter error. I did not search for a fix since we
wanted to work with uncompressed images anyways.

3

