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Abstract 

This paper proposes that a parallel implementa- 
tion of the genetic algorithm (GA) on the Internet 
will improve the algorithm’s performance. It is moti- 
vated by the possibility of aiding research into com- 
plex search and optimization problems that use the 
GA. Requirements and constraints regarding paral- 
lelization of the GA are identified. A parallel GA is 
developed for an ideal PRAM architecture and is 
shown to have an asymptotic running time of O(log 
n), an improvement over the sequential GA. A paral- 
lel GA is also designed for a Unix network and has an 
asymptotic running time comparable to the ideal sys- 
tem. The algorithm is a decentralized, asynchronous, 
and fault-tolerant design that matches characteristics 
of the network. The GA population is divided into 
colonies that are distributed among processors. 
Trade policies are executed for the exchange of genes. 

I INTRODUCTION 

Many problems studied in research and develop- 
ment require a parameter search or optimization of some 
kind. Exhaustive examination of the search space is 
often impractical. A feasible approach, however, is to 
use an inexhaustive search technique that yields sub- 
optimal but reasonable results in a realistic time frame. 
One such technique is the genetic algorithm (GA). 
While the CA may offer results in realistic time frames, 
it may still require days or weeks of execution time 
when tackling difficult and not-well-understood prob- 
lems. It is thus desirable to develop a faster implementa- 
tion of the GA to improve the pace of related research. 

Most scientific and engineering research institu- 
tions, such as universities, possess networks of comput- 
ers, often running the Unix operating system and 
communicating with Internet protocols. Such an array of 
computers represents a significant, and readily available, 
parallel processing power. This paper proposes that these 

computers may be used cooperatively to improve the 
performance of the CA. 

A design of the CA for parallel execution on a net- 
work of computers should meet certain criteria. Table 1 
highlights these requirements. 

Table 1. Requirements of a parallel CA. 
(1) Improves speed and search power of CA 
(2) Does not undermine GA fundamentals 
(3) Minimal communicatiodsynchronization 
(4) Does not compromise security 
(5) Is considerate to other users 
(6) Is adaptable to network dynamics 
(7) Launches quickly from any machine 
(8) Can function for long periods of time 
(9) Possesses fault tolerance 
(10) Is capable of termination 

It might be argued that improving speed and search 
power, as stated in Requirement (l), are really the same 
goal. That is, a parallel implementation may perform the 
same execution in a shorter time or more execution in 
the same time as compared to a non-parallel system. 
While this trade-off usuaIly exists, there are other possi- 
bilities. For example, the limitations of a sequential sys- 
tem may prevent it from performing a task at all, while a 
parallel system may complete it. 

Requirement (2) stipulates that a parallel CA must 
adhere to the fundamental principles of the algorithm. 
Running the CA independently on every machine in the 
network would be unacceptable as a parallel solution 
because it would violate principles of selection and 
reproduction in the GA. 

I1 THEORETICAL CONSIDERATIONS 

2.1 Asymptotic Running Times 
To analyse the algorithms developed in this paper, 

we compared their asymptotic running times. This tech- 
nique simplifies analysis by ignoring details such as 
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machine speeds and compilers. It measures the funda- 
mental behaviour of the algorithm with respect to the 
input size. Because of varying notation and definitions in 
the literature, we shall use the following notation and 
definitions [CoLR89]. If g(n) is an upper bound of f (n)  
and h(n) is its lower bound, then 

f (n)  = O(g(n)) if there exists positive con- 
stants c and no such that 0 sfin) I c . g(n) for 

all n 1 no. (1) 

f(n) = R(h(n)) if there exists positive con- 
stants c and no such that 0 5 c . h(n) sfin) for 

all n 2 no. (2) 

2.2 Flynn’s Taxonomy 
Parallel processing can be realized in many differ- 

ent computing architectures. Flynn’s taxonomy classifies 
these architectures based on the pattern of interaction 
between instructions and data [Kins96]. A multiple 
instruction multiple data (MIMD) architecture consists 
of processing elements (PES) that can execute different 
instructions on different data in parallel. A MIMD multi- 
computer system is where communication between PES 
is via message passing (as opposed to shared memory). 
This classification represents the most loosely coupled 
architecture in Flynn’s taxonomy. 

Because of the relative independence of PES, 
MIMD multicomputer systems are difficult to use. How- 
ever, these systems are also more likely to support fault- 
tolerance for the same reason. A fault that occurs in one 
PE is less likely to hinder other PES. Thus, a good paral- 
lel design will take advantage of hardware robustness 
and continue despite partial shutdown of some PES. In 
addition, a MIMD multicomputer architecture may be 
the parallel architecture that is most readily available. 
Any subset of the Internet, with two or more computers, 
is an example of a MIMD multicomputer architecture. 

2.3 Parallelization Granularity 
The granularity of a parallel algorithm summarizes 

how the overall task is divided into parallel subtasks 
[Posk97]. Fine-grain parallelization sees the overall task 
as a set of machine instructions where subtasks are a few 
machine instructions long. Coarse-grain parallelization 
sees the overall task as a set of somewhat smaller sub- 
tasks, which are each executed in full by a single PE. 
Medium-grain parallelization falls in between these two. 

The optimal choice of granularity depends on the 
time required to transfer data between PES and the time 
required to execute operations on a PE. If the ratio of 

communication time to execution time is high then a 
coarse-grain parallel algorithm should be used [Jose97]. 

On a network of Unix machines, memory accesses 
take on the order of nanoseconds whereas communica- 
tion of a few bytes takes on the order of microseconds to 
milliseconds depending on traffic (assuming an Ether- 
net-based network). Thus, to improve the performance 
of the GA while minimizing communication overhead, 
we should choose a coarse-grain parallelization strategy. 

2.4 The PRAM Model 
The parallel random-access machine (PRAM) 

model provides a framework for theoretical development 
of parallel algorithms [ChTi96]. A PRAM is a MIMD 
multiprocessor system with an unbounded set of PES, 
each with its own local memory, that communicate 
through shared memory. Shared memory accesses are 
assumed to take O(1) time and the PES are inherently 
synchronized. Although such a system does not exist, 
algorithms for the PRAM provide a basis against which 
other implementable algorithms can be compared. 

Suppose that the running time of the fastest algo- 
rithm to solve a problem of size n, on a sequential 
machine, is bounded (below) by RCf(n)). Given a parallel 
machine, with a constant number p of PES, suppose the 
fastest algorithm to solve the same problem is bounded 
(above) by O(g(n)). For a PRAM, it can be shown that 
g(n) cannot be asymptotically better than f (n)  [Jose97]. 
That is,f(n) = O(g(n)) always. Since most parallel archi- 
tectures are no more powerful than a PRAM, this sug- 
gests that parallelizing an algorithm for a fixed number 
of processors can never asymptotically improve the run- 
ning time over the running time of the best sequential 
algorithm for the same problem. 

If we allowed p, the number of PES, to grow with n, 
the input size, then asymptotic improvement becomes 
possible from parallelism. As such, the parallel algo- 
rithms that will be described here make the assumption 
that p = O(n). Practically speaking, no architecture can 
support an indefinite growth in p.  However, we could 
have p scale with n in a way that reflects the available 
number of processors and the likely range of n. 

2.5 The Genetic Algorithm 
The genetic algorithm (GA) is an algorithm to 

search a parameter space probabilistically for an optimal 
set of parameters. The algorithm is provided with a sca- 
lar $fitness function F(X) that operates on a vector of 
parameters X = [xl, x2, ... xk]. In a manner loosely based 
on biological evolution, the algorithm attempts to find 
the vector of parameters for which F(X) is maximized. 

The vector X is analogous to an individual in biol- 
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ogy, its parameter xi is analogous to a chromosome. The 
bits that make up 4 are analogous to genes. Table 2 pro- 
vides a definition of the GA (there are others) [Jose97]. 
Extra parameters that must be provided are italicized. 
The population size, replacement ratio, and mutation 
rate are represented by n, r, and m. Operators to generate 
new individuals, test termination, perform cross-over 
and mutation are also needed. A cross-over of two indi- 
viduals produces a new individual with characteristics of 
both parents. A mutation of an individual produces a 
new individual with a small gene difference. 

Table 2. A prototypical genetic algorithm. 
Generate n individuals for a population P. 
Repeat steps (1) to (6) until a termination 

condition is met. 
(I) Create an empty next generation Pnext. 
(2) Evaluate the fitness of individuals in P. 
Individuals are selected in steps (3) and (4) 
according to probability F(X)EF(X). 
(3) Select (l-r)n individuals from P and add 
them to Pnext. 
(4) Select m pairs of individuals and add the 
result of a cross-over operation to Pnext. 
( 5 )  Irrespective of fitness, mutate individuals 
in Pnext according to probability m. 
(6) Replace population P by PneXt. 

Return the individual with highest fitness. 

In Table 1, we stated that a parallel GA should not 
violate GA fundamentals. We can identify three main 
principles of the GA, First, in each generation, the GA 
searches for an optimal individual along many different 
paths. Second, individuals contribute more to future gen- 
erations if their current fitness is high relative to the pop- 
ulation. Third, the genes and chromosomes of all 
individuals (the gene pool) are not isolated in pockets 
but recombine globally to produce new individuals. 

2.6 GA for the PRAM 
A GA for an n processor PRAM can allow each 

processor to own one individual in the populations P and 
Pnext. Because steps (l), (Z), ( 5 )  and (6)  of Table 2 do 
not involve interaction between individuals, each PE can 
operate on its own individuals in parallel to other PES. 
These steps can thus be performed in O(1) time for one 
iteration of the loop, or one epoch. 

By numbering the PES from 1 to n, we can guaran- 
tee the correct proportion of replacement and cross-over 
by stipulating that the bottom (l-r)n processors perform 
step (3) and the top m perform step (4). Except for the 
selection of one or two individuals by each PE, all of 

steps (3) and (4) can be executed in parallel. The selec- 
tion of individuals is based on a fitness comparison 
between individuals and warrants further discussion. 

An analogy of the probabilistic rule outlined in 
Table 2 is a roulette wheel of n sectors where the area of 
each sector equals the fitness of a distinct individual. The 
roulette wheel can be implemented as an array of sorted 
partial sums of all fitnesses [Jose97]. Selecting an indi- 
vidual involves picking a random number in (0,CFl and 
searching the array for the position where the number 
falls between adjacent partial sums. Once this array is 
constructed, PES can select one or two individuals in 
parallel since concurrent reads are allowed. With a 
binary search, this would take Oflog n) time. 

The array of partial sums can be constructed by the 
PES in Oflog n) time using the parallel prefix algorithm 
[CoLR89]. Therefore, one epoch of a parallel GA for the 
PRAM would run in Oflog n) time. By comparison, a 
sequential GA must at least compute the fitness of n 
individuals, incurring a running time of Q(n). 

111 SYSTEM DESIGN 

3.1 Decentralization 
The parallel GA for the PRAM is not implementa- 

ble on a MIMD multicomputer environment. To design a 
GA for the Unix network, that meets the requirements of 
Table 1, decentralization was the first design choice. 

A centralized algorithm would be one where cer- 
tain computers on the network have a significantly dif- 
ferent role than others. For example, a single computer 
may coordinate the activities of the other computers, dis- 
tributing tasks and collecting results. The primary disad- 
vantage of this approach is that if the coordinating 
computer fails, the whole system also fails. Electing a 
new coordinator often takes a considerable amount of 
time [SiGa95]. Another disadvantage is that the speed of 
the coordinator is a bottleneck for the system. Other 
computers may be capable of working faster than the 
pace set by the coordinator. 

Consequently, a decentralized approach is selected 
for the network. A decentralized solution should be fault 
tolerant and adaptable to varying network loads, 

3.2 Parallel Launch 
The first step in executing any algorithm is to 

launch it. Given a pool of p machines, we would like to 
launch a process reliably on every single machine from 
any one machine. This parallel launch problem can be 
solved in either a centralized or decentralized manner. 
The centralized scheme has a launch machine running 
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through a list of all processors and executing the 
required process remotely on each machine. This 
requires R(p) time and if the launch machine crashes 
then potentially many machines will remain unlaunched. 

A decentralized solution to the parallel launch 
problem is as follows. Let us call the program that is run 
on the launch machine, the launcher. The launcher sim- 
ply launches itself on a random machine that it has not 
launched yet, and repeats this procedure until no such 
machines are left. Thus, when a machine is launched, it 
begins to launch other machines. To prevent multiple 
copies of the launcher running on every machine, which 
would be inconsiderate to other users, the launcher can 
abort if it is already running. 

If a launcher process is shut down by a fault, all 
processors (that are not shut down) will still be launched 
providing that one launched machine remains. The 
launcher is therefore very fault tolerant. However, the 
launcher still runs in Q(p) time since it does not know 
that other processes are helping to complete the launch 
task. To remedy this, each launcher process can attempt 
to contact a remote launcher process before launching 
that machine. If it is successful, both processes exchange 
which machines they know have been launched. The 
launcher concludes that the launch task is complete 
when it knows that an attempt has been made to launch 
every machine, and not that every machine has indeed 
been launched (which helps to prevent deadlocks). 

Consider that, at some point, the launcher has been 
executed on k of p machines, where k is small compared 
to p .  Then chances are that each launched machine will 
attempt to launch a distinct unlaunched machine. There- 
fore, in the initial stages, the number of launched proc- 
esses doubles every parallel round. As the number of 
launched machines grows, it will quickly become likely 
that launched machines will choose to launch other 
launched machines. However, the launched machines 
will also learn more quickly of the launch status of all 
machines and will narrow the pool of machines that they 
attempt to launch. Thus, we expect the running time of 
the algorithm to be O(fogp) on average, which is asymp- 
totically faster than the centralized approach. 

We shall call this algorithm the parallel random 
launch algorithm (PRLA). Note that, in principle, the 
PRLA is applicable to any decentralized parallel prob- 
lem. Positive features of the PRLA are that it can handle 
MIMD multicomputer environments that are asynchro- 
nous, dynamic, and faulty, with good performance. 
However, these statements need to be justified by sup- 
porting experimental results. 

3.3 Parallel GA Dilemma 
Not all tasks can be implemented effectively in par- 

allel. Some tasks are inherently sequential where the 
next subtask involves the results of the current subtask. 
We have demonstrated that it is theoretically possible to 
execute one epoch of the GA in O(1og n) time. However, 
the parallel GA for the PRAM uses a medium grain par- 
allelization where each processor handles the execution 
of one individual in the population. 

If we were to implement the PRAM solution on a 
Unix network, we would likely fail to improve the speed 
and search power of the GA. Networked computers typi- 
cally do not share a global memory with O(1) access 
time and do not execute in a synchronous fashion. The 
time required to simulate the global memory and syn- 
chronization (using message passing, for example) will 
likely be large compared to the time spent evaluating the 
fitness of a single individual. 

As discussed in Section 2.3, coarse grain paralleli- 
zation should be employed on the Unix network. Having 
each processor manage a subset of individuals would 
better match the network characteristics. However, to 
recombine individuals for the next generation, each 
processor may have to communicate with every other 
processor since individuals are selected probabilistically 
from the whole population. The synchronization and 
communication required would be inefficient in a highly 
asynchronous, load varying network of computers. 

The next milestone in granularity is one iteration of 
the GA on a whole population (or one epoch). For non- 
trivial problems (like genetic programming [Mitc96]), 
the time taken for one epoch will probably be sufficient 
to make cooperation over the network viable. By allow- 
ing an epoch to execute on a single computer, we elimi- 
nate the problems associated with probabilistic selection 
of individuals. However, at this level, the GA becomes a 
strict sequential problem since the results of one epoch 
are needed before the next epoch can begin. 

Thus, we are faced with a serious dilemma. The 
solution lies in examining the GA carefully and redefin- 
ing the algorithm so that coarse grain parallelism over 
the network becomes feasible. 

3.4 Alternative GA Prototype 
An alternative prototype for the GA, based more on 

sociology than biology, is readily brought to mind. Sup- 
pose that colonies of nC individuals reside independently 
on each of the p processors in the network. The proces- 
sors are analogous to islands in an ocean. Each colony 
performs the prototypical sequential GA of Table 2. 
After an epoch is completed on an island, let half the 
individuals in the colony (chosen randomly) board a ship 
and travel to another island where they are welcomed 
into the colony residing there. 

This algorithm satisfies the three essentials of the 
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GA for a population of size n = pnc and allows for via- 
ble coarse grain parallelism. First, a population of n indi- 
viduals is always examined. Second, at the colonial 
level, an individual is more likely to influence the next 
local generation if its fitness relative to the colony’s total 
fitness is high. Because of the continual migration of 
individuals, the descendants of every successful individ- 
ual will eventually end up in every colony and will com- 
pete against individuals from other colonies. Thus, an 
individual is more likely to influence future global gen- 
erations if its fitness is high relative to the population’s 
total fitness. The third essential of the GA is that recom- 
bination of genes occurs across the entire gene pool. 
Although only the genes of individuals within the colony 
are recombined in every colonial epoch, continual 
migration ensures the recombination of genes from 
diverse parts of the entire population. 

Because the network of Unix computers is inher- 
ently asynchronous, each island will finish its colonial 
epoch at different times. However, if we integrate the 
characteristics of the network into the GA prototype then 
we will not require synchronization and its associated 
overhead. Let each island have a harbour which can 
hold one ship. When a ship of individuals arrives at a 
harbour, it remains there (without any evolution) until it 
is accepted by the island. After an island finishes its 
epoch and releases a ship into the ocean, it then accepts 
waiting individuals. If a ship at sea encounters a full har- 
bour then it tries another island. The harbour is a buffer 
to handle the asynchronous nature of the network. 

3.5 Trade Policies 
The above discussion assumes that the genes from 

any colony will make their way to every other colony 
but this will depend on how ships select islands, which 
we shall call a trade policy. For example, policies could 
be defined where a group of islands form a clique in 
which individuals never find their way in or out. 

An ordered trade policy that ensures genes from a 
colony make their way to every other colony is as fol- 
lows. Number each machine from 0 to p-1 and have the 
ship leaving island k select island k+l mod p .  One prob- 
lem with this policy is that it imposes specific (though 

problems concerning fault tolerance. 
Let us define a round of the GA to be a period in 

which every processor completes at least one epoch. The 
duration of a round on the network will vary but, on 
average, it will take O(nc) time since epochs are exe- 
cuted in parallel. To best ensure the GA essentials are 
met, a trade policy should distribute genes from any one 
colony to every other colony in a minimal number of 
rounds. For example, the ordered trade policy described 

symmetric) roles to each processor which may lead to 

above requires O(p) rounds to redistribute genes com- 
pletely. If it were possible to redistribute genes in O ( I )  
rounds then we would be back to the GA of Table 2. 

3.6 Optimal Slrade Policy 
We would like to know what the best possible trade 

policy is and the minimal number of rounds for gene 
redistribution. Consider a colony A amongst p total colo- 
nies. After one round, every colony will have sent indi- 
viduals to another colony. Thus, the original gene pool of 
colony A will now be shared between two colonies A and 
B. After another round, the best possible scenario is for 
colonies A and B to send individuals to two colonies that 
are different from A,  B, and each other. 

Therefore, every round, we can at most double the 
number of colonies that contain genes (or descendants) 
from the original group of individuals in colony A.  Since 
there are p colonies in total, it wiIl take O(fog p )  rounds 
for the original set of genes to be distributed completely. 
Note that this can occur simultaneously for all sets of 
genes in all original colonies. The optimal trade policy 
for four colonies is shown in Fig. I. 

I Round I 
A B 

A C 
0 C a  b ]  

1 ( a b  cd ) 

A B 1 2 ( abcd abcd ) 

C D 

B D 

( c  H d  I 

( ab cd ) 

)C+( ab:d )I C C abcd 
I I 

Fig. 1. Optimal trade policy for four colonies. 

3.7 Decentralized Trade Policy 
The optimal trade policy requires considerable 

coordination between colonies since each must carefully 
avoid certain other colonies every round. Implementing 
this coordination would either require a coordinator or 
an imposed ordering on the processes of some kind. 
Both of these approaches would cause problems for fault 
tolerant computing. Therefore, we must find an altema- 
tive decentralized policy. 

A completely decentralized trade policy is for 
every ship at sea to select an island at random from those 
islands that it has not already visited. We shall attempt to 
show that this policy will take O(1og p )  rounds on aver- 
age to redistribute all genes in the population. To begin 
with, for a given colony A,  we will determine how long 
it will take for the genes presently in colony A,  or the 
original genes, to reach all p colonies. 

Let ki represent the number of colonies that contain 
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original genes after i rounds with ko = 1. Given ki, we 
can determine the expected value of ki+l, or E{ki+l}, as 
follows. After each round, every colony will have 
received a ship of individuals from some other colony. 
Because all selections are random, it is equally likely for 
a colony to have received a ship from any of the p colo- 
nies. Thus, in the i+l round, the probability that a colony 
receives a ship with original genes is kilp. At the start of 
the i+l round, there are p-ki colonies which do not have 
original genes. The expected number of colonies in this 
group that receive original genes is approximately @- 
ki)ki/p which makes E{ki+l} equal to approximately 
ki+@-ki)ki/p. This equation is rewritten below. 

Equation 3 agrees with the intuitive idea that, when 
k is small relative top, the number of colonies with orig- 
inal genes roughly doubles each round. This doubling 
tendency decreases as k increases since genes are more 
likely to be sent to colonies that have already received 
original genes. If we assume that the actual number of 
colonies after i+l rounds that have received original 
genes is approximately equal to the expected number of 
colonies that have received original genes then we can 
obtain the recurrence relation of Eq. 4. Note that this 
assumption is not always reasonable because actual val- 
ues may be quite different from expected values. How- 
ever, we shall still make the assumption. 

colonies have received original genes after 9 rounds. The 
curve never actually reaches zero because there is 
always a finite probability that a few colonies will take 
forever to receive the original genes from colony A.  

0 2 4 6 8 10 
Numbrof Rods 

Fig. 2. Remaining colonies after i rounds. 

The percentage of remaining colonies after i rounds 
is xilp. Using Eq. 6, we can find how many rounds are 
needed to reduce this percentage to some fixed percent- 
age a [Jose97]. Equations 7 and 8 summarize such an 
analysis. Equation 8 predicts that if we hadp = 100 colo- 
nies then it would take about i = 9 rounds for the per- 
centage of remaining colonies to equal a = 1%. This 
result agrees with the graph shown in Fig. 2. 

(7) 

k2 
ki+ = 2ki-' 

P 
(8) 

. In(-lna) -In[-ln(1-l/p)] 
1" (4) In 2 

According to Eq. 8, for any fixed percentage a, the 
number of rounds that are required are bounded by 0(- 
l n ~ ~ l n ~ l ~ l ~ p ~ ~  is equivalent mathematically to 
o(log p) [Jose971. Although this result involved a few 

age, the number of rounds needed to distribute genes 
from an original colony A to most of the colonies will be 
bounded by O(1og p). Because this occurs simultane- 
ously for all original colonies, the rounds required to 
redistribute genes completely will be similarly bounded. 

Thus, a random trade policy yields a completely 
decentralized parallel GA with a performance similar to 
that of the optimal trade policy. We shall call this parallel 
GA the parallel random genetic algorithm (PRGA). 

Solving the above relation in terms of ko = 1 is dif- 
f i d t  to do directly. However, after i rounds, we can 
define the number of remaining colonies (ones that have 

Value into Eq. 4 leads to a recurrence relation (Eq. 5 )  that 
is more readily solved in terms of xo =p-1 [Jose97]. 

not received original genes) as xi = p-ki. Substituting this approximations, it is reasonable to expect that, on aver- 

2 

( 5 )  
(P - X i )  

p - x i +  = 2 (p - x i )  + ~ 

P 

2 2 i +  1 

(6) 
x i + , = -  xi = p p 1  

P 

Equation 6 is plotted in Fig. 2 for p = 100 colonies 
(and xo = 99). The graph demonstrates that almost all 

3.8 Trials at Sea 
We stated in Section 3.5 that the time required for 
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one round will be bounded, on average, by O(nc), which 
is the time required for one epoch in every colony (exe- 
cuted in parallel). However, this does not consider the 
time required to execute the random trade policy. When 
an island finishes an epoch, it sends a ship of individuals 
to another island. If that island's harbour is full then the 
ship will have to try another island. Our overhead 
increases if it takes many trials on average to find an 
island with an empty harbour. 

Initially, all harbours are empty. After island A fin- 
ishes an epoch, it sends a ship to island B's harbour. The 
ship will have to wait in the harbour until island B has 
finished its epoch. In the interim, other ships that come 
to island B will have to try again. Island C then finishes 
an epoch and sends a ship to another island. However, 
island C's harbour is empty. Its colony is now half its 
previous size and it cannot proceed unless it randomly 
generates new individuals. Let us require, however, that 
an island that finishes its epoch must wait for a ship to 
come to its harbour before starting the next epoch. We 
shall relax this requirement in Section 3.11. 

Let x be the number of islands waiting for a ship to 
arrive in its harbour and let y be the number of ships 
waiting in a harbour to be accepted by the corresponding 
island. If p is the total number of islands then x + y S p 
(since an island cannot be waiting for a ship with a ship 
waiting for acceptance in its harbour). There can also be 
islands with empty harbours that are not waiting for 
ships (they are simply in the middle of executing an 
epoch). When an island finishes its epoch, there are four 
possible scenarios that are outlined in Table 3. 

Table 3. Possibilities for a finished island. 
The island sends a ship to an island waiting 

for a ship, and then waits for a ship to come to 
its own harbour (x and y do not change). 
., The island sends a ship to an island waiting 
for a ship, and then accepts the ship waiting in 
its harbour (x and y are decremented). 
The island sends a ship to an island not 

waiting for a ship, and then waits for a ship to 
come to its harbour (x and y are incremented). 

The island sends a ship to an island not 
waiting for a ship, and then accepts the ship 
waiting in its harbour (x and y do not change). 

In all scenarios, the number of ships waiting in a 
harbour and the number of islands waiting for a ship 
change in lock step. In other words, x-y is always a con- 
stant. When the PRGA is started, all harbours are empty 
and no island is waiting for a ship. Thus, x-y will initially 
and always equal zero. Put another way, the number of 
islands waiting for a ship will always equal the number 

of ships waiting in a harbour. Because x + y 2 p , then x 
and y are at most p/2  each. 

What this implies is that, at any time, no more than 
half the total number of islands will have full harbours. 
Thus, the probability that a ship at sea selects an island 
that has a full harbour is no more than 0.5 since each 
ship selects an island randomly from all islands. There- 
fore, the expected number of trials a ship must make 
before finding an empty harbour is less than two. Conse- 
quently, the average running time of one round is indeed 
O(nc) since a round involves a parallel execution of an 
epoch on every island, which is O(nc), and a parallel 
trade of ships, which is O(1). 

3.9 Comparison to the PRAM Solution 
The PRGA preserves the essentials of the prototyp- 

ical GA of Table 2 but is considerably different from it. 
Thus, it is difficult to compare the PRGA with the proto- 
typical GA for the PRAM. Using n processors, the 
PRAM GA operates on a population of size n and takes 
O(1og n)  time to execute one epoch. Using p processors, 
the PRGA operates on a population of size n,  which is 
subdivided into p colonies of size nC where n = pnc. To 
properly compare the PRGA to the PRAM GA, p must 
grow linearly with the population size. A simple way to 
do that is to make the colony size nC a constant (for 
example, 100 to 1000 individuals). Thus, p = nlnc. 

It seems reasonable to define a complete epoch of 
the PRGA, comparable to an epoch on the PRAM, as the 
time it takes for complete redistribution of genes. We 
have shown that this will take, on average, O(1og p )  
rounds and have shown that one round takes, on average, 
O(nc) time. Thus, on average, one epoch of the PRGA 
should take O(nc log p )  time. Since p = n/nc and since 
nc is a constant, the average asymptotic performance of 
the PRGA is O(1og n)  which is comparable to the exact 
asymptotic performance of the GA for the PRAM. 

3.10 Restarting Shut-down Computers 
The PRGA uses the PRLA as a launch vehicle. The 

PRLA quickly launches all computers in the pool that 
are not shut-down or that do not shut down during the 
launch process. Once the launcher, running on each 
launched computer, concludes that the launch is com- 
plete, it executes the PRGA. Suppose that once the 
PRGA is begun, computer A in the pool shuts down. 
After some time, computer B executing the PRGA will 
attempt to communicate with computer A (to deliver a 
ship of individuals). Upon failure, computer B will know 
that computer A either has terminated or has not 
launched yet. If we modify the PRGA and PRLA 
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slightly, we can show that computerB simply has to exe- 
cute the launcher on computer A to restart it. 

We modify these algorithms so that the PRGA can 
receive and identify a connection from the p m A  and 

launcher process running on any computer receives he 
beginGA message, it immediately concludes that the 
p m A  is complete and begins to execute the PRGA. me 
only change this will to the initial launch sequence 
is that it will become faster. the initial launch 
sequence, the first launcher process to enter the PRGA 
will have correctly concluded that a launch attempt has 
been made on every computer. Another launcher process 

3.11 Deadlock, Starvation, and Congestion 
The random nature of the PRGA itself makes it 

suitable for fault tolerance. For example, if a colony sud- 

can still function meaningfully. Although the tasks per- 
formed by the colony was useful to the overall task, it 
was not crucial. Similarly, if a ship of individuals never 
reaches an island, the overall task should still be able to 
proceed. Not all algorithms have this graceful degrada- 
tion property where wbtasks do not need to be com- 
pleted so long as most are 

The PRGA, as we have designed it so far, cannot 

respond with a special message, beginGA. When the denly disappeared from the population, then the PRGA 

that connects to this process will now receive a very 
quick reply to let it know that a launch attempt has been 

proceed effectively if some cdonies disappear or new 
Ones This is because a possibility of deadlock 

made on every 
that a restarted computer will not go though the entire 
P ~ A .  once it connects a computer running the 
PRGA, it will immediately begin the PRGA. 

If a computer shuts down due to a system crash or 
for maintenance, then it likely will not be available for a 

request that in this period from the PRGA will 
result in a launch attempt. To reduce this communication 
overhead we can modify the PRGA further. Let each 
computer in the P R G ~  maintain a list of all computers in 

the state of each computer is as ALIVE. When- 
ever computer A successfully connects to computer B, 
both computers mark each other as ALNE in their status 
lists. If computer A is unsuccessful in making a connec- 
tion with a computer B that is marked ALIVE, then com- 
puter A runs the launcher on computer B and marks the 
state of computer B as RESTART = 1, WAIT = 1. 

the counter RESTART to count 
how many times it has attempted to restart computer B. 

computer A is to completely ignore computer B. mus,  
after each epoch, computerA will decrement the value of 
all non-zero WAIT counters in its status list. In addition, 
when computer A is selecting another computer (to send 
a ship of individuals), it will only select from those corn- 
puters marked ALIVE or that have WAIT= 0. If computer 
A is unsuccessful in connecting to computer B that has 
WAIT = 0, then it IunS the launcher on computer B and 
increments the RESTART counter for computer B. T~ 
ensure that it waits longer this time, it sets the counter 
WAIT to equal the value of the counter RESTART. 

This protocol allows the PRGA to ignore comput- 
ers that cannot be restarted, but to still attempt to restart 
them periodically (the period simply grows). H ~ ~ ~ ~ ~ ~ ,  
as discussed in the section, there is still another 
modification to the PRGA that is necessary to 
that it will continue to function in O(1og n) time. 

mis modification also starvation, and congestion exists if the network is faulty. 
we required that every island which finishes an epoch 
must wait until a ship arrives in its harbour before con- 
tinuing with the next epoch. In a faulty system, all 
islands that are in the middle of an epoch may crash. 
This would leave the waiting islands in a deadlock. Star- 

crash. In that case, the next island to finish an epoch will 
not be 

The random trade policy executed in O(Z) time 
because the number of islands waiting for a ship and the 

step fashion. However, in a faulty system, this lock step 
may be broken, resulting in ships eying many harbours 
before finding an empty one. This congestion would dra- 
matically decrease the performance ofthe PRGA. 

To eliminate two of these problems, we use the 
Property that, On average, it should take no more than 
two tries to find an empty harbour. Each island can tabu- 
late the average number of trials its ships took to find an 
empty harbour in recent epochs (for example, Over the 

finds an empty harbour for its ship and updates the aver- 
age number Of it send its ship to 
that harbour only if the average is no more than two. If 
the ship is not sent and if there is no ship waiting in the 
island's harbour, then the individuals are returned to the 
colony for the next epoch. If the S b  is not sent and a 
ship is waiting in the harbour, then the outgoing ship is 
sunk and the individuals in the harbour are welcomed 
into the colony. This mechanism will detect starvation 
(no empty harbour) and congestion (few empty bar- 
bours) and will compensate (reduce full harbours). 

To eliminate the possibility of deadlock, we will 
not require that an iskind wait for a Ship to enter its bar- 
bour before continuing with the next epoch, If its h a -  
bour is empty then it will randomly generate individuals 
to fill the vacated half of the colony and continue on. 
Without the mechanism of the previous paragraph that 

significant amount of time. Therefore, each connection vation arises when &lands with an empty harbour 

to send its ship to any harbour* 

the pool along with Some status information. Initially, number of ships waiting in a harbour changed in a lock- 

Computer A 

The counter WAIT indicates how many colonial epochs last ten epochs). When an island finishes an epoch, it 
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removes individuals, the mechanism described here 
would gradually increase the proportion of full harbours 
(since it increases the total individuals in the system 
without changing the capacity of the colonies). The 
mechanism described here also guarantees that each 
computer in the PRGA will continue immediately with 
the next epoch after finishing the current epoch. It will 
also introduce new genetic material into the system. 

3.12 Parallel Termination 
The PRGA must have a termination condition. The 

condition may be to stop either after a certain amount of 
time has elapsed or after a certain number of epochs 
have been executed by a colony. It may also be when one 
of the colonies produces an individual with a fitness 
above a certain threshold. When the termination condi- 
tion is met somewhere in the network, we would like all 
processors to terminate quickly saving their best individ- 
uals to a file. If the network supports a distributed file 
system then each processor can append their best indi- 
vidual to the same file and the user will only have to look 
at the results stored in one file. However, we will not 
consider how the results are collated and will only con- 
sider the termination process. 

Termination can be accomplished in a similar man- 
ner to launching. A processor, that knows the termina- 
tion condition is met, randomly selects another processor 
that it knows has not received the termination message, 
connects to that processor, and informs it to terminate. If 
it connects to a machine that has already received the 
termination message then they exchange the list of proc- 
essors that they know have received the message. A 
processor terminates when it knows that every processor 
either has received the termination message or could not 
be contacted (it has shut down). It is expected that this 
scheme would distribute the termination message in 
O(1og p )  time where p is the number of processors. 

A pitfall in this approach is due to the fault toler- 
ance of the PRGA. Suppose processor A attempts to 
inform processor B of termination but cannot make a 
connection. It will then assume that processor B is down 
and therefore proceeds with the next machine. However, 
another processor may subsequently restart processor B 

sor B may subsequently restart other computers that 
have terminated (processor A may have terminated by 
now). Another problem arises when all machines that 
currently have the termination message crash. In this 
case, the termination message will have been lost and the 
processors that crashed may be restarted later. 

The solution to this problem is for each processor 
to use local non-volatile memory to store the termination 
message once received and then proceed to inform other 

before receiving the termination message itself. Proces- 

processors. If it is restarted, it can examine the non-vola- 
tile memory and realize that some machine is still exe- 
cuting despite termination. It can then repeat the 
termination algorithm. However, as a fail-safe mecha- 
nism, a time limit should be imposed when the system is 
initially launched, after which all processes terminate. 

3.13 Implementation Remarks 
A significant portion of the design has been imple- 

mented using the C++ programming language and the 
object-oriented paradigm [Jose97]. However, only a few 
remarks are made here about implementation. 

C++ classes were constructed to abstract the ele- 
ments of GA individuals and populations. The GA indi- 
vidual class was designed so that elements of the GA 
that change from problem to problem are contained 
within the class. However, the GA population class can 
be reused unchanged from one GA problem to the next. 

For the PRLA and the PRGA, communication 
between machines was done using Berkeley sockets. 
These algorithms can be implemented using two concur- 
rent processes on each machine, a server and a client. 
The server waits for a connection to which it responds in 
a concurrent fashion (ensuring fast response). The client 
process performs the active work of the PRLA and 
PRGA and connects to remote servers. Once the client 
finishes the PRLA, it proceeds to execute the PRGA. 
The server and client processes on each machine com- 
municate using shared memory and semaphores. 

Unix signals were used to help provide fault toler- 
ance and termination over the concurrent processes on 
each machine. If either the server or client crashes on a 
machine then we want the other process to exit as well. 
By establishing a parent-child relationship between the 
server and client, signals can be automatically sent by 
the Unix kernel to help with this task. 

IV NETWORK CONSIDERATIONS 

Because the system was not fully implemented, it 
was not possible to test many things. However, a net- 
work load analysis was performed and is discussed here. 
This analysis helps confirm some of the underlying 

assumptions behind this proposal. 

4.1 Network Load Analysis 
Table 1 stipulates that a parallel GA for the Internet 

should be considerate to other users. A related question 
that we may ask is whether there is enough free CPU 
resources on the network for a parallel GA to be viable. 
We addressed this question by analysing the loads on the 



University of Manitoba network. The analysis also pro- 
vided justification for the requirement of fault tolerance. 

Analysing the loads on a network is difficult to do 
from scratch. However, the university's computer serv- 
ices collects information on the average number of jobs 
running on each machine in the primary network and 
updates a list of this information every twenty minutes. 
This list is available to any user. To analyse the network 
loads for a large period of time, we wrote a script that 
would repeatedly sleep for twenty minutes, read the list 
of network information and append it to a file. 

The script produced several megabytes of informa- 
tion within a week. In its raw form, however, this infor- 
mation was not readily useful. Because it was 
impractical to examine the information by hand or to 
analyse it with a spreadsheet, we wrote programs to ana- 
lyse and summarize the data [Jose97]. 

4.2 Results of Load Analysis 
The load average amongst machines from January 

16 to January 22, 1997, is shown in Fig. 3. The ticks 
along the date line correspond to midnight of that day. 
Note that although the network load average is irregular, 
there are still patterns within it. 
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Fig. 3. Network load average for one week. 

One pattern is that usage of the network peaks 
around midday (when many people check e-mail on 
their lunch break). As the day passes, the network usage 
decreases and remains low until well into the morning. 
The weekend also shows a marked drop in network 
usage (January 18 was a Saturday). From this data alone, 
one might conclude that during weekday afternoons 
there isn't enough network CPU time available (the 
average number of jobs in the run queue of a processor 
indicates how much the CPU is being shared amongst 
competing processes). However, Fig. 3 does not show 
the considerable variation in load averages between 
computers. Figure 4 shows the standard deviation of the 

load averages for the same period. 
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Fig. 4. Network load standard deviation for one week. 

Figure 4 shows that there is considerable variation 
in load averages especially when the network load aver- 
age is high. While some computers are being heavily 
used, there are many others that are relatively free. If the 
PRGA were to be implemented on this network then, 
during the times of slow activity in one area, the other 
computers will still keep going at a reasonable rate. 
Because the PRGA does not depend on a particular 
machine finishing its task before proceeding, it can han- 
dle the network dynamics. To be more considerate, we 
can run the algorithm with a lower priority. Thus, CPU 
usage of the PRGA will vary as the user load changes. 

The reason that figures 3 and 4 end on January 23 
was not because the script was stopped on purpose, but 
because the machine that the script was running on was 
shut down for maintenance. Logs were collected for sub- 
sequent weeks on different machines but on average the 
process was abruptly stopped within a week. More proof 
that machines are frequently taken out of the available 
pool is provided in Fig. 5. 
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Fig. 5. Machine on-line percentage for one week. 
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Figure 5 shows the percentage of time each 
machine in the network was on-line during the week of 
January 24 to January 30, 1997. This data was obtained 
by counting the number of times each machine appeared 
in the log file for that week and normalizing the results. 
If there were no faults in the network then all machines 
would be on-line 100% of the time. The figure suggests 
that, within this week, there were a considerable number 
of shut-downs. However, because all on-line percentages 
are between 80% and loo%, we can conclude that 
machines that were shut down were soon restarted. 
Thus, it was wise to design a system that continues 
despite partial network shut-down and that attempts to 
restart shut-down machines. If this was not done, then 
the PRGA would not run effectively for one week on the 
University of Manitoba Unix network. 

V CONCLUSIONS 

We have discussed how a parallel implementation 
of the genetic algorithm (GA) on the Internet could 
improve the performance of the algorithm and have pro- 
posed a design for such an algorithm. This research is 
motivated by the use of the GA to solve many complex 
problems in realistic time frames where a faster GA 
could increase the pace of such research. 

To begin with, we identified several requirements 
of a parallel GA for the Internet. The design presented 
here addressed most of these requirements. 

Using the parallel random access memory model 
(PRAM) as a theoretical basis, we suggested that the 
best parallel implementation of an algorithm cannot be 
asymptotically better than the best sequential implemen- 
tation of the algorithm unless the number of processors 
grows with the problem size. Using this assumption, we 
developed a parallel GA for the PRAM that is identical 
in function to the sequential prototypical GA. The run- 
ning time for one epoch of this algorithm is O(1og n),  
where n is the population size, an improvement over the 
Q(n) running time for the sequential prototypical GA. 

While the parallel GA for the PRAM provided a 
useful theoretical basis, we did not restrict ourselves to 
developing algorithms for ideal architectures. Instead, 
we applied parallel processing theory to the problem of 
implementing the GA on the Internet. 

The concept of granularity was used to delimit pos- 
sible solutions. Coarse-grain parallelization is the only 
practical way to avoid overhead costs in a MIMD multi- 
computer environment, as is the Internet. However, 
coarse-grain parallelization is infeasible with the proto- 
typical sequential GA. To overcome this dilemma, we 
identified the essentials of the GA and proposed an alter- 

native model, which does not violate these essentials, 
that is suitable for coarse-grain parallelization. 

The alternative model, called the parallel random 
genetic algorithm (PRGA), divided the population into 
colonies residing on each machine. After executing an 
epoch, half the members of a colony migrate to another 
colony using a random trade policy and buffering. This 
procedure occurs in parallel over all colonies. 

Through asymptotic analysis and some assump- 
tions, we showed that the PRGA takes, on average, 
O(1og n) time to execute an epoch. This performance is 
comparable to the exact asymptotic running time of the 
PRAM GA and is an asymptotic improvement over the 
Q(n) running time of the sequential prototypical GA. 

We developed a parallel random launch algorithm 
(PRLA) which matches the characteristics of the Internet 
and can be used to launch decentralized asynchronous 
algorithms like the PRGA. The running time of the 
PRLA was estimated to be O(1og p) ,  where p is the 
number of processors that need to be launched, an 
improvement over a centralized R(p)  approach. 

A considerable portion of the design presented here 
has been implemented and was briefly described. Exper- 
imental results were provided to justify the availability 
of CPU resources on the network and the need for fault 
tolerance. Future work could include completing the 
implementation and running experiments to confirm or 
refute the predicted performance. 
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