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Abstract

Hybrid image sensors combine advantages of the two leading imaging technologies (the

fill factor of CCD, and the signal processing of CMOS) via vertical integration. This report

derives a simple model for the photodetector of the hybrid image sensor, and the affiliated set

of differential equations. This bounded-value problem is subsequently solved numerically in

1D, and a simple analytical model is derived from the numerical solution. Lastly, simulation

results are presented, including an optimum photodetector length for best current signal

level.

Index Terms

Hybrid image sensors, photodetectors, vertical integration, numerical solution, analytical

model.

I. Introduction

The advent of the pinhole camera permitted for the first time the capture of images; the

evolution of more complex film cameras in the 19th and 20th centuries revolutionized the way

in which visual information was captured, disseminated, and understood. In recent decades,

the prevalence of digital cameras has initiated a second revolution in terms of accessibility

to visual information.

The two currently prevailing digital imaging technologies on the market are the charge-

coupled device (CCD) and the complementary metal-oxide-semiconductor (CMOS). Al-

though they each present their individual strengths and weaknesses, strong interest from

manufacturers from across the divide has led to a strong convergence of performance char-

acteristics. For instance, while CMOS sensors were initially touted for the low-cost, low-
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quality market, in recent years they have been adopted in high-performance digital SLRs

(most prominently, in Canon’s product offering). Over the past decade, CMOS technology

has made inroads in the CCD-dominated digital camera market to the point that parity has

been achieved between these two rival technologies [1].

Vertical integration holds the promise of combining the strengths of both CCD and

CMOS sensors in one device. Hybrid image sensors are one type of vertically-integrated

device; in this report photodetectors of such hybrid image sensors are simulated for the

purpose of optimizing the photodetector length for best current signal reception.

II. CCD vs. CMOS

The CCD is essentially an analog shift register wherein charge is transferred through

successive capacitive stages. The CCD (as shown in Fig. 1) consists of an array of pixels,

whose individual area is mostly photosensitive to the incident light. Excess charge carriers

formed in the semiconductive layer accumulate in potential wells for each individual pixel.

Charge is transferred repeatedly across the rows by the simultaneous emptying of potential

wells, and then across the columns to an output amplifier. The main advantage of CCD

detectors is that the area available for photodetectors (referred to as fill factor) is maximized,

thus allowing for the capture of more light photons (increased quantum efficiency), and a

better image quality due to the higher resolution and sensitivity. CCD photodetectors were

quickly adopted by the astronomical community to replace photographic films especially

because of the very good sensitivity characteristics associated from a larger fill factor. With a

four-decade old market presence, fabrication processes for CCD photodetectors are optimised

for image quality (high SNR), efficient charge transfer, accurate detector geometry, and

minimized parasitic dark current. Conversely, the disadvantage is that CMOS circuitry for

signal processing is not easily integrated with the CCD detector, often being added externally.
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This added level of complexity increases fabrication costs of CCD technology and delays

the conversion from analogue to digital signal. The CCD detector itself is susceptible to

damage due to the successive stage nature of signal retrieval, which means that the loss of

an individual stage results in the loss of an entire column.

[Fig. 1 about here.]

The CMOS chip is, by contrast, an active pixel sensor. A CMOS detector is arranged

as a memory array of pixel cells, with each individual pixel addressable by row and column

as depicted in Fig. 2. Incident light strikes the photodetector, which also creates excess

charge carriers that produce a signal. Extra circuitry is placed next to the photodetector for

signal detection, and the conversion from analogue to digital signal format. The advantage

of CMOS detectors is that they can potentially use fewer components and are inherently less

susceptible to analogue noise due to the integration of on-pixel signal processing. Further-

more, CMOS pixels are individually addressable eliminating the difficulties associated with

successive charge transfer. CMOS technology can be manufactured more cheaply in CMOS

foundries, use less power, and have faster integration times, but may result in lower quality

images and needing more advanced calibration techniques [1].

[Fig. 2 about here.]

III. Vertical Integration Emerging Technologies

A spate of technologies has emerged in recent years that seek to combine the benefits of

both CCD and CMOS in a more compact package. A technique to achieve this end is via

vertical integration, the capture of incident light on the photodetector on a top level and

ASIC signal processing circuitry on a lower level. This achieves the high fill-factor prevalent

in CCD and also the near placement of circuitry relative to the individual pixel as in CMOS.
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This paradigm mimics the human eye, which also features a top layer of photodetectors (the

retina) and signal processing in subsequent levels.

A. Thin Film on ASIC

The structure of a thin film on ASIC (TFA) photodetector can be seen in Fig. 3. Light en-

ters through a transparent substrate, and a subsequent transparent conductive oxide (TCO)

layer permits light passage; amorphous hydrogenated silicon (a-Si:H) acts as the photosen-

sitive film. Excess charge carriers generate a current signal that is received at the aluminum

contacts, and then further to the CMOS readout circuitry (located in the ASIC layer in

the substrate below a separating insulation). The advantages of TFA are that fill factor is

maximized, that the photodetector material properties can be changed for different light re-

ception, and that signal processing is done close to the photodetector. However, the thin film

must be grown on the ASIC in a multi-step process, which can make fabrication expensive

and susceptible to parameter changes when exposed to heat during a subsequent fabrication

step. Lateral current between adjacent photodetectors contributes to image smearing to the

extent that it may be necessary to grow insulation barriers between adjacent photodetectors

and/or use regulatory circuitry for maintaining a level potential at the aluminum contacts

[2].

[Fig. 3 about here.]

B. Silicon-On-Insulator

The silicon-on-insulator (SOI) photodetector receives light via a conductive substrate;

an epitaxial crystalline silicon layer is excited by light to produce excess carrier charges and

a corresponding current signal [3]. The signal processing circuitry is embedded in silicon

device layer, separated by an insulating layer. This structure can be observed in (refer to
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Fig. 4).

[Fig. 4 about here.]

C. Flip Chip

Flip-chip structure is similar to the TFA, but rather than growing the thin film on top of

the ASIC layer, a hybrid technique is utilized. The film is grown separately and then flipped

on top of the IC layer, bonded on metallic contacts. This hybrid technology is more conducive

to fabrication than TFA, having the benefit of eliminating the multi-stage growing process. It

is theoretically more difficult to obtain a small pitch due to alignment requirements, although

in actual practice TFA detectors exhibit larger pitch size. The structure of the flip-chip is

shown in Fig. 5.

The hybrid image sensor technology is preferred for investigation of vertical integration

because of its relative ease of fabrication whilst maintaining good performance characteristics.

[Fig. 5 about here.]

IV. Problem Statement

The drift-diffusion differential equations are studied in a one-dimensional hybrid pho-

todetector with the goal of determining a photodetector length lopt that optimizes the con-

trast ratio of signal current density Jph (due to optical generation from the incoming photon

flux) to background current density Jdk (a dark, parasitic effect) for best imaging quality.

Light enters the photodetector and excites the Fermi energy levels of the semiconductive

amorphous hydrogenated Silicon to generate excess holes δp and excess electrons δn (always

in electron-hole pairs), with an exponentially attenuated optical generation profile across

the photodetector length. Drift current is associated with the difference in potential be-

tween the two terminals of the photodetector, whereas diffusion current is due to difference
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in the concentration of the excess carrier charges generated by light excitation across the

photodetector.

This represents a bounded-value coupled set of nonlinear differential equations. A nu-

merical solution is sought to determine the distribution of the potential and the excess

charge carriers across the photodetectors. The design goal of this simulation is to determine

an optimal length for which the contrast ratio β is maximal, with contrast defined by:

β =
Jph

Jdk

(1)

V. Photodetector Model

The photodetector model is simplified to take into account only the variation in flux

across the length of the photodetector (a 1D model) as based on the optical attenuation of the

material. This model is abstracted to a two-terminal device with three different regions Fig.

6. A potential difference VAB is applied across the two terminals. A central semiconductor

of length l represents the photodetector itself, with two resistive regions at either end of the

semiconductor of conductivities σA and σB and lengths lA and lB respectively. Essentially,

the effect of the added interface resistances is to change the potential at the boundaries of

the semiconductor region due to the potential drop across the resistor region. This ensures

that there exists an optimum length.

[Fig. 6 about here.]

With the existence of excess charge carriers, free charge is present in the photodetector,

which implies that the internal potential distribution Vint must satisfy Poisson’s equation:

d2Vint

dz
= −

q

ǫ
(δp(z)− δn(z)) (2)
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The continuity equations are derived from two Maxwell equations (Ampère’s law and Gauss’

Law) and model the conservation law for free charge:

r(z)− g(z) = −
1

q

dJp(z)

dz
=

1

q

dJn(z)

dz
(3)

Where r(z) and g(z) are the rates of electron-hole pair recombination and electron-hole pair

generation respectively. Jp and Jn are the hole and electron current densities, which are

given by drift-diffusion. For the hole current-density:

Jp(z) = qµpp(z)E(z)− qDp

d

dz
p(z) (4)

And for the electron current-density:

Jn(z) = qµnn(z)E(z) + qDn

d

dz
n(z) (5)

Using a simple, direct-recombination model:

r(z) = αrp(z)n(z) (6)

and optical generation is attenuated exponentially with length across the photodetector,

giving the ensuing generation function when thermal generation gth is also considered:

g(z) = αrn
2
i

︸︷︷︸

gth

+ηαφ0(1−R)e−αz

︸ ︷︷ ︸

gop

(7)

The electric field is, by definition, the gradient of the potential distribution:

E(z) = −
d

dz
V (z) (8)

The positive charge carrier concentration p(z) is defined in terms of the deviation δp(z) from

the nominal concentration p0:

p(z) = p0 + δp(z) (9)



SIMULATION OF PHOTODETECTORS IN HYBRID IMAGE SENSORS 8

Likewise, for the negative charge carrier n(z) is defined in terms of the deviation δn(z) from

the nominal concentration n0:

n(z) = n0 + δn(z) (10)

To solve this boundary value problem, the basic equations must be augmented by a set of

boundary conditions. For the Poisson equation in (2):

Vint(0) = Vint(l) = 0 (11)

For the continuity system in (3), two bondary conditions are needed. As no external re-

combination is assumed in the model thus far described, this implies that generation and

recombination must be in balance:

∫ l

0

r(z)− g(z)dz = 0 (12)

The fact that these boundary conditions are sufficient and necessary shall be demonstrated

from a numerical standpoint using singular value decomposition.

VI. Numerical Techniques

A. Backslash Operator

The Matlab backslash operator \ is used for efficiently solving linear equations of the

form:

Ax = b (13)

Provided that matrix A is not rank-deficient, the backslash operator solution uses an auto-

matic solver that selects the most efficient numerical technique for determining the equation

roots based upon the form of A (sparse, banded, regular) [4]. If an exact solution cannot
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be found, a least-squares solution will be attempted instead; it is thus important the exact

number of boundary conditions be used to augment the rank-deficient coefficient matrix, or

risk introducing error into the solution. The backslash solution is as follows:

x = A\b (14)

B. Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization technique that diagonalizes arbitrary-

sized matrices on the basis of eigenvectors [5]. For a matrix A of arbitrary m×n size, the

SVD is given by:

A = USV∗ (15)

In the above SVD, U is a unitary square matrix of dimension m, S is m× n with non-

negative entries only on the diagonals, and V∗ is a transpose of V, a unitary matrix over the

field K from which the entries of A are derived. The matrix S contains across its diagonals

the singular values of matrix A. Thus the rank of A can be derived from the number of

non-zero entries in the diagonal of S. This is useful in determining if the matrix A needs to

be augmented by a set of boundary conditions before solving with the backslash operator,

and if the proposed boundary conditions are independent (i.e., not linear combinations of

equations already implied by A).

C. Matrix Ill-Conditioning

An ill-conditioned system occurs when, although the coefficient matrix is not singular,

one or more of the singular values are orders of magnitude less than the rest (i.e., it is close

to being singular). The condition number for the linear equation in (13) gives a measure of
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how accurate digital computation of the system will be:

Cond[A] = ‖A‖‖A−1‖ (16)

D. Fixed-Point Iteration

Fixed-point iteration, sometimes also called successive substitution, is an open method

for determining the root of an equation [4]. In contrast to a bracketed method, fixed-point

iteration only requires one initial guess for the root but there is no guarantee of convergence

to the root. The general fixed-point equation is:

xi+1 = y(xi) (17)

E. Convergence Tracking

Since the fixed-point iteration method does not guarantee convergence, it is necessary to

ensure that a method of trackng the convergence of the root is incorporated in the solution.

One such method is to specify a level of approximate error tolerance ǫT and interrupt the

iterative process when the tolerance limit has been attained between successive iterations

(i.e., ǫA < ǫT ):

ǫA =
‖xi+1 −xi‖

|xi+1‖
× 100% (18)

A maximum number of iterations is specified to avoid an infinite iterative loop in the case

when the method is not converging.

F. Addition of Small Numbers

When adding or subtracting numbers orders of magnitude apart, information about

the smaller number can be minimized and even lost if the order difference approaches the

machine-precision (eps) limit [4]. In the problem at hand, small deviations from the average
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carrier concentration hold important information regarding the internal field distribution

and charge continuity. Thus, for a robust numerical solution it would be necessary to state

the set of equations so that addition of highly dissimilar numbers is avoided.

G. Elementwise Multiplication

A novel operator ◦ is defined for linear algebra manipulation that mirrors the element-

by-element multiplication oftentimes used by computer programmers, as suggested by [1].

The advantage of this operator, as will be shown later, is that it permits the factoring of

certain terms thus avoiding the problems associated with addition of dissimilar numbers.

Drawing parallels to multilinear algebra the ◦ operator functions as follows:

ci = aibi ⇔ c = a ◦b (19)

cij = aijbij ⇔ C = A ◦B (20)

cij = aijbi ⇔ C = A ◦b (21)

H. Finite Differences vs. Finite Element

To numerically solve for the differential equations described previously, a discrete ap-

proximation of the derivative is required. Finite differences are used to discretize the pho-

todetector length domain z for both the Poisson equation and for the continuity system

(thus, a 1D finite-difference scheme); divided finite differences represent the actual discrete

approximation of the derivative, with the resulting difference equations between the nodes

being the analogue of the differential equation. Solving the difference equations yields the

sought values at the nodes. The finite difference method works best for cases when the

domain is regularly-shaped and a rectangular-like grid can be applied easily to obtain the

nodes.

A very popular method to solve boundary value problems is via the finite element
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method. The first step is to rewrite the boundary value problem in a weak, variational

form; the domain is then discretized by the application of a mesh, resulting in an assembly

of finite elements whereby nodal values are to be determined. Interpolation functions can be

applied across the element to give better approximations for points lying along the element

rather than being a node point. A global system of equations is then constructed based on

the connectivities between local elements, and subsequently solved to obtain solutions for

node-points. The finite element method is well-suited for more complex-shapes. A contrast

of the two methods is provided by [6].

In this particular problem, the finite difference method is preferred due to the regular

nature of the domain. The finite difference method is also simpler to implement, and for

regular domains such as these typically performs faster and with smaller error. Matlab’s

built-in BVP4 algorithm for solving boundary value problems employs finite element analysis,

and it fails to converge to a solution for this set of equations.

VII. Numerical Solution

Using the three-region one-dimensional photodetector model as shown in Fig. 6, the

applied voltage VAB across the terminals can then be described as:

VAB = EAlA +

∫ l

0

E(z)dz + EBlB (22)

The electric field across the photodetector E(z) is the summation of the component

due to the applied voltage (Eext) and due to the excess charge carriers generated in the

photodetector (Eint(z)):

E(z) = Eext + Eint(z) (23)
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Where the external electric field is defined such that:

Eext =
1

l

∫ l

0

E(z)dz (24)

And, for the internal electric field:

1

l

∫ l

0

Eint(z)dz = 0 (25)

Also the electric field across the contact resistors can be written in terms of current density

J as:

EA =
J

σA

, EB =
J

σB

,where: J =
1

l

∫ l

0

(Jp(z) + Jn(z))dz (26)

and defining sheet resistances for the two contact resistors in the following manner:

R
′

A =
la

σa

, R
′

B =
lB

σB

, R
′

C = R
′

A + R
′

B (27)

So that (23) can now be written more simply as:

VAB = JR
′

C + Eextl (28)

Mean quantities are defined using the overline (e.g., for the mean hole concentration p):

p =
1

l

∫ l

0

p(z)dz (29)

For the sake of numerical robustness, charge concentrations are defined in terms of deviation

from mean excess charge concentration values:

p(z) = p0 + δp(z) = p + γp(z),where: p =
1

l

∫ l

0

p(z)dz,

∫ l

0

γp(z)dz = 0 (30)

n(z) = n0 + δn(z) = n + γn(z),where: n =
1

l

∫ l

0

p(z)dz,

∫ l

0

γn(z)dz = 0 (31)

Letting conductivity σ be:

σ(z) = q(µpp(z) + µnn(z)),then: σdk = q(µpp0 + µnn0), σph = q(µpδp + µnδn) (32)
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Thus, current density can be written as a composition due to externally applied voltage and

internally from excess charge:

J(z) = Jext + Jint(z) =
(σdk + σph)VAB + lJint(z)

l + (σdk + σph)R
′

c

(33)

where:

Jext = σEext, Jint(z) =
q

l

∫ l

0

(µpγp(z) + µnγn(z))(Eint(z)−Dp

dγp(z)

dz
+ Dn

dγn(z)

dz
)dz

(34)

Boundary conditions must be used to augment the continuity system. From charge neutral-

ity:

1

l

∫ l

0

(δp(z)− δn(z))dz = 0 ⇒ δp = δn (35)

and the value for δn from the recombination/generation charge balance condition:

1

l

∫ l

0

(r(z)− g(z))dz = 0 (36)

substituting for the direct recombination from (6) and generation from (7):

1

l

∫ l

0

(αr(p + γp)(n + γn)− (ηφ0(1−R)e−αz + αrn0p0))dz = 0 (37)

After simplification, the mean excess charge carrier concentration δn is given by the quadratic:

αrδn
2
+ αr(p0 + n0)δn−

ηφ0(1−R)(1− e−αl)

l
+

αr

l

∫ l

0

(γp(z) ◦ γn(z))dz = 0 (38)

The Poisson equation in terms of deviation quantities:

d2V

dz2
=

q

ǫ
(γp − γn) (39)

The boundary condition being the definition of Eint from (25).
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Thus, given the deviation quantities γp and γn, all other quantities of interest, namely

Eint(z), Eext, δn, δp, Jext, Jint(z) are all deducible. Thus, given an initial guess for γp and

γn and using a fixed-point iteration process, the continuity system & Poisson can be used to

update all of these quantities.

Defining matrix D as a differentiation matrix and rewriting the set of differential equa-

tions using the ◦ operator:

r− g = αrp0δn+ αrn0δp+ αrδp ◦ δn−gop (40)

−
1

q
DJp = µpp0D

2V +D(µpI ◦DV + DpD)δp (41)

1

q
DJn = µnn0D

2V−D(µnI ◦DV + DnD)δn (42)

From (40) and (41), in terms of deviation quantities:

γp(αrn0I+ µp(I ◦ (DE+
p0q

ǫ
) + I ◦E)−DpD

2) + γn(p0αr −
µp

q
) = (43)

gop −αr(p0 + n0 + δn)δn + γp ◦γn (44)

Likewise from (40) and (42):

γp(αrn0I−
µnq

ǫ
) + γn(αrp0I−µn(I ◦ (DE+

n0q

ǫ
) + I ◦E)−DnD

2) = (45)

gop −αr(p0 + n0 + δn) + γp ◦γn (46)

Which system is augmented with the two extra conditions derived from the definition of the

deviations γp and γn:

∫ l

0

γpdz = 0 (47)
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∫ l

0

γndz = 0 (48)

And lastly, the Poisson equation from (39) in terms of deviation vectors and differenti-

ation matrix D:

DEint = −
q

ǫ
(γp −γn) (49)

Where Eint was substituted instead of DV . The boundary condition is now:

∫ l

0

Eintdz = 0 (50)

VIII. Analytical Solution

To derive an analytical solution, a reasonable approximation to make is that the devi-

ations γp and γn are negligible compared to the mean excess carrier concentration. Thus,

letting:

γp = γn = 0 (51)

Which implies that the quadratic equation in (38):

αrδn
2
+ αr(p0 + n0)δn−

ηφ0(1−R)(1− e−αl)

l
= 0 (52)

And hence, all other implied quantities follow:

Eint = Jint = 0, Eext =
VAB

l + (σdk + σph)R
′

c

,J = Jext =
(σdk + σph)VAB

l + (σdk + σph)R
′

c

(53)

In the dark case (i.e., φ = 0), it follows that:

δn = σph = Eint = 0, Eext =
VAB

l + σdkR
′

c

, J = Jdk =
σdkVAB

l + σdk

(54)
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IX. Numerical Implementation

The numerical implementation must be modularized for ease of debugging and reuse,

must be extensible for addition of new materials & test case parameters, and robust for a

wide region of input flux and applied voltages.

A. Solver

The flowchart in Fig. 7 captures an overview of the tasks performed by the numerical

solver routine to calculate a solution given a set of initial conditions. As part of the inputs to

the numerical solver routine the following must be specified: material properties, simulation

parameters, convergence limits. The output consists of a structure that contains all the

sought quantities.

[Fig. 7 about here.]

The solver starts with an initialization process. In this stage all fields in the solution

structure are first declared; then, the light absorption profile is generated, and a number

of the necessary coefficient matrices are created. In particular, for the Poisson system, the

left-hand-side coefficient matrix does not depend on the iterative process so it can be created

before the iteration and will maintain the same values throughout. The Poisson system is

augmented using the definition of Eint as detailed previously in (50), while integrating vectors

are generated for continuity system boundary conditions and also first and second-order

differentiation matrices. Some values can be computed without the need for entering the

iterative process, such as the dark current and also the dark conductivity which are entirely

dependent upon the applied voltage, material properties, and simulation parameters. Initial

guess values for the mean excess charge carrier concentration and for the external field are

computed by solving the quadratic equation in (52) and needed as starting points for the
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iterative process.

The iterative process is controlled by two input simulation parameters: a relative error

tolerance and a maximum number of loops. Default values exist, should these not be specified

when the solver is invoked. The iterative process essentially improves the guess of the excess

charge carrier concentration by recomputing the deviations γp and γn at each iteration. This

is achieved by first solving the continuity equation for the required deviations; then using

these newly updated values the mean carrier charge concentration is obtained as well as values

for other flux-dependent quantities such as internal current density Jint, the photosensitive

conductivity, and the external field Eext. At the end of each iteration, the convergence test

is based upon the newly updated values of deviation versus the previous guess.

Upon termination of the iterative loop, the last stage is the wrapping-up computation

of external field, total field, potential, carrier concentration, and current densities before

returning the solution structure.

B. Numerical Differentiation

For implementing the numerical solver, it is necessary to create a differentiation matrix

D that when multiplied with vector x of size n returns a vector b also of size n with the

values of the derivative at each of the points [4]. Thus preserving the size of the original

vector is one requirement but it must be done such that the degree of error is maintained

constant throughout the output vector. A differentiation matrix is proposed based on the

centre-difference approximation of the first derivative at all centre points, with higher-order

forward- and backward-approximations at the edges that give a constant O(h2) error.

Centre differences:

f
′

(xi) =
f(xi+1)− f(xi−1)

2h
+ O(h2) (55)
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Forward-differences:

f
′

(xi) =
−f(xi+2) + 4f(xi+1)− 3f(xi)

2h
+ O(h2) (56)

Backward-differences:

f
′

(xi) =
3f(xi)− 4f(xi−1) + f(xi−2)

2h
+ O(h2) (57)

And combining all this in a coefficient-matrix form:

D =
















−3
2

2 −1
2

0 0 . . . 0

0 −1
2

0 1
2

0 . . . 0

0 0 −1
2

0 1
2

. . . 0
...

...
...

. . . . . . . . .
...

0 0 . . . −1
2

0 1
2

0

0 0 . . . 0 1
2

−2 3
2
















C. Numerical Integration

Performing integration across the length of the photodetector for various quantities is

sometimes necessary, especially when implementing boundary conditions. For an n sized

column vector x, the n-sized integration row-vector M will output a scalar result I:

Mx = I (58)

A simple integration vector is based upon the compound trapezoidal integration method.

The interval space is divided into n-equally spaced sections:

I =

∫ x2

x1

f(x)dx +

∫ x3

x2

f(x)dx + . . . +

∫ xn

xn−1

f(x)dx (59)

and the trapezoidal rule is applied for each of the composite segments:

I =
b− a

n

(

f(x1)

2
+

n−1∑

i=2

f(xi) +
f(xn)

2

)

(60)

This can be written in the n-sized row vector:

intt =
(

1
2

1 1 . . . 1 1 1
2

)
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D. Matrix Scaling

Matrix ill-conditioning can cause numerical error in digital computation. A technique

to alleviate the ill-conditioning of the system is to multiply each linear equation by a scalar

factor such that the coefficient matrix is normalized with a maximum entry magnitude of 1

for each row. For each row then the scaling factor is given by:

kfactor =
1

max(row)
(61)

With each linear equation of the form:

(kfactor × rown(A))x = kfactorbn (62)

E. Sparsity

The coefficient matrices introduced in the solver are often mostly zeroes except across

banded diagonals. The MATLAB backslash operator automatically detects sparse systems

and choses appropriate routines that take advantage of the system sparsity for faster numer-

ical computation, so it is important to preserve matrix sparsity throughout.

Empty matrices are created as sparse using the sparse() command, sparse identity ma-

trices are created with the speye() command, and spdiags() creates sparse matrices based

on the nonzero diagonals.

X. Results

The design goal of this investigation is to assist the design of a flip-chip detector by

determining the optimal length for the point of maximum photocurrent to dark current ratio.

Characterization of the robustness of the method in relation to various levels of injection,

the strength of electric field applied in terms of convergence, as well as comparisons with the

analytical solution. To obtain results, a pipeline is created as shown in Fig. 8
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[Fig. 8 about here.]

A. Analytical vs. Numerical Solutions

The main difference between the analytical and numerical solutions lies in the compu-

tation of deviations γp and γn. In the analytical solution, the deviations are assumed to be

negligible (i.e., set to 0) whilst the numerical solution is an improvement upon the analytical

solution precisely because the iterative process computes actual deviation values.

In Fig. 9, the solution obtained from the numerical method is shown:

[Fig. 9 about here.]

Whilst the solution applying the analytical method is shown in Fig. 10:

[Fig. 10 about here.]

The most striking difference between the numerical and analytical methods is apparent when

plotting the rate of optical generation as in Fig. 11; for the numerical case, it is clear that the

continuity condition is violated as the optical generation does not match the actual optical

generation profile.

[Fig. 11 about here.]

B. Optimal Length

To obtain the optimal length of the photodetector, the solver is run with a varying length

parameter that ranges from 0.01 µm to 1 µm; a photocurrent and dark current are extracted

at each solver pass and the contrast ratio is plotted in Fig. 12. As seen, the maximum occurs

at about 0.1 µm, so this would be the optimum length that attains the best photocurrent

signal relative to the dark, background current, and is the primary result of the investigation.

The contrast ratio is low at small lengths due to the effect of the resistive contacts and also
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at longer lengths due to the decrease in photoconductivity.

[Fig. 12 about here.]

C. Injection Levels

The numerical and analytical solutions are plotted alongside corresponding to a variety

of injection levels as shown in Fig. 13. This ranges from 100 photons

cm2s
(dark case) to 1015 photons

cm2s

(high injection case).

[Fig. 13 about here.]

It can be seen that the numerical and analytical solutions are in accord with one another.

This indicates that the analytical solution is actually quite a good approximation. For mid-

injection, the convergence is very fast, requiring only about two iterations as shown in Fig. 14.

[Fig. 14 about here.]

D. Applied Voltage

A different test is to apply a varying external voltage to the two terminals of the pho-

todetector and determine how the numerical and analytical results differ under different

levels of external field as illustrated in Fig. 15. In this case, the two agree very well when

the external electric field is large but there is a discrepancy at low electric field applied. The

numerical technique does not actually seem to converge for low-electric field.

[Fig. 15 about here.]

XI. Conclusion

Hybrid image sensors provide potential for growth in the imaging science market through

the combination of the benefits of the both mainstay technologies (CCD and CMOS) via
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vertical integration. A brief photodetector model was outlined, and a numerical simulation

was developed on the basis of this model to solve for the excess charge carrier concentration.

An analytical model was derived from the numerical solution, and it was shown that although

it violates the continuity condition and assumes a constant average excess charge carrier

concentration, that results are matched very closely to the numerical simulation. The design

goal of this investigation was to determine the optimal length at which to construct the

photodetector, which, based on the proposed photodetector model, was found to be 0.1µm.
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Fig. 3. Structure of Thin Film on ASIC (TFA) Photodetector
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Fig. 4. Structure of Silicon on Insulator (SOI) Photodetector
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Fig. 9. The deviation and the internal electric field associated with the numerical solution.
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Fig. 10. For the analytical solution the excess carrier concentration is considered negligible
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Fig. 13. The photo-current density calculated using both analytical and numerical methods for varying
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Fig. 14. Tracking shows that the numerical solution converges after only two iterations.
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