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Executive Summary 

Digital technology has been gradually taking over the operations of information processing, 

storage, retrieval and, lately, transmission from analogue technology. However, because real 

world information is fundamentally analogue, information acquisition and generation will 

always require analogue technology. Analogue VLSI designers should therefore focus on 

analogue-to-digital (A/D) and digital-to-analogue (D/A) conversion, designing converters that 

efficiently use the huge number of transistors that can be integrated on a silicon chip. 

Source coding is often employed to transmit digital signals over digital channels of lim-

ited capacity. By exploiting structure in the information, source coding allocates more re-

sources to important features in the signal and sometimes allocates no resources to insignifi-

cant features. This report proposes that the total A/D interface on an integrated circuit, which 

will include both A/D and feedback D/A converters, is like a channel of limited capacity. 

Since real world information often has considerable structure, analogue and digital circuitry 

should be used to source code the signals passing through this A/D interface. 

Digital coding of speech was investigated to explore source coding, since research in 

this area has been intensive. Linear pulse code modulation (PCM), using uniform quantisa-

tion, is the simplest technique to code speech. However, logarithmic PCM is more efficient 

because it exploits the non-uniform probability distribution of speech through non-uniform 

quantisation. A formula is derived for non-uniform quantisation and the K-means clustering 

algorithm is used to find a locally optimal quantiser, which consistently improves the signal-

to-noise ratio (SNR). Two heuristics were designed to produce good results in a fraction of the 

time required for optimisation. Because speech is non-stationary, adaptive non-uniform quan-

tisation, where optimisation is applied to speech frames, was also devised to enhance the 

segmented SNR and improve the perceptual quality. Vector quantisation, of pairs of consecu-

tive samples, improves the results further by exploiting simple correlations in voiced speech. 
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Linear predictive coding, used in modern coders, subtracts a linear prediction from the 

speech and encodes the result, which has a lower dynamic range than the original speech. 

Code-excited linear prediction models this difference signal by a sequence of Gaussian ran-

dom vectors. Such an assumption is found to be very good except when the vectors are ana-

lysed contextually, opening the door for a better stochastic model and better coding results. 

To develop source coding of signals by analogue and digital circuitry, modulation of 

oversampled signals was examined next. Digitising a signal at many times the Nyquist rate 

spreads the quantisation noise power thinly over a wide band. Decimation then down-samples 

the signal, eliminating noise at high frequencies. Delta modulation reduces the dynamic range 

of the signal before quantisation by first subtracting a simple prediction. Delta-sigma modula-

tion shapes the quantisation noise spectrum so that more power lies at high frequencies. A 

cascaded modulator was proposed, where a delta-sigma modulator resolves the error of a delta 

modulator. These circuits were tested using signals derived from an artificial random process. 

When the process equalled the sum of a high dynamic range narrow-band process and a low 

dynamic range wide-band process, the proposed modulator outperformed the others. 

This report establishes the usefulness of source coding, some principles behind it, and 

shows that it is possible to source code signals for A/D conversion with simulated circuitry. 

Further research must prove the feasibility and usefulness of source coding for efficient A/D 

conversion with real circuitry. Such research should focus on a specific application where the 

A/D demands exceed the capabilities of current low cost technology and where the input 

information is not arbitrary. An application that meets these criteria is the development of a 

high resolution, high frame rate, and high dynamic range, colour digital video camera. This 

report proposes a two-year plan for this work, aiming to submit a chip layout for fabrication 

after one year and to test the chip, and document the design and results, in the second year. 
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I. Introduction 

A. Purpose 

This report proposes that source coding of signals, using VLSI circuitry, may be used to im-

prove the conversion of analogue information to digital information. 

B. Context 

The public often requires electronic systems to acquire, process, store, retrieve, transmit and 

generate real world information, the physical information found in nature. These operations 

may be implemented in an analogue, a digital, or a hybrid analogue-digital paradigm. The 

analogue paradigm operates with analogue information only, using quantities that may change 

continuously with time and that may take on any value in a continuous interval, whereas the 

digital paradigm operates with digital information only, using quantities that may change at 

discrete moments in time and that may take on any value within a discrete set of values. The 

hybrid paradigm operates with a combination of analogue and digital information. 

Historically, all six information operations were first implemented in the analogue para-

digm. However, the invention and refinement of the microprocessor (µP), analogue-to-digital 

(A/D) converter, digital-to-analogue (D/A) converter, and digital signal processor (DSP) have 

developed the digital paradigm. At present, three of the six operations, namely processing, 

storage, and retrieval, are implemented predominantly in the digital paradigm because of the 

predictability and repeatability of digital circuits and the availability of general purpose com-

puting and high-level specification. Information transmission is currently moving to the digi-

tal paradigm. However, the acquisition and generation of real world information may never be 

implemented exclusively in the digital paradigm because real world information is fundamen-

tally analogue. Relativistic and quantum effects aside, measurable quantities in the real world 

may change continuously with time and may take on any value in a continuous interval. 



A digital circuit is predictable because, given the same inputs and initial state, the same 

outputs are always generated. Noise such as thermal drift and background electromagnetic 

radiation typically do not affect the operation of the circuit. A digital circuit is repeatable 

because every copy of the circuit performs exactly the same function (providing the fabrica-

tion is not faulty). Variation in device parameters from one copy to the next does not really 

affect functionality. Analogue circuits for computation or memory have run-time and imple-

mentation uncertainties associated with them.1,
3 As a result, the precision of analogue circuitry 

must be estimated from empirical results whereas the precision of digital circuitry is fixed by 

the number of bits used in the encoding and computing of information. 

Perhaps the most important advantage of the digital paradigm is the availability of a 

general purpose, or stored-programmable, computer such as a Von Neumann machine (e.g. a 

µP). These machines process information according to instructions that are read into memory, 

requiring only one piece of complex hardware to implement arbitrarily complex processing. 

While analogue computers do exist, they do not display much versatility without reconfigura-

tion of hardware. Additionally, a digital program may be specified in a high level language 

that can automatically be converted to low level machine instructions. Although languages do 

exist for the specification of analogue computation, their usefulness is limited given the non-

existence of a general purpose analogue computer. 

Nonetheless, a significant research effort has been expended in the study of more gen-

eral and versatile analogue information processing, particularly in artificial neural network 

processing.2 Analogue neural networks delivered the promise of massively parallel non-linear 

computation, where tens of thousands of synaptic operations were performed simultaneously 

on a single VLSI chip having millions of transistors, since each synaptic operation could be 

implemented with relatively few transistors.3 Digital implementations of parallel neural net-

works could not approach the material or power efficiency of analogue implementations. 
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However, massively parallel computation is easily slowed by the serial communication of 

input and output data.3 Secondly, the imprecision of analogue computation makes network 

learning difficult.4 Thirdly, developments in the theory of neural networks has tended to rec-

ommend the use of relatively small networks.5 Because of these fundamental problems, ana-

logue neural network technology has not succeeded beyond a few research applications. 

As a result of these developments, the trend has been for digital technology to dominate 

the operations of information processing, storage, retrieval, and transmission. 

C. Hypothesis 

Since the operations of information acquisition and generation will always require analogue 

technology, analogue VLSI designers should focus on the niche of A/D and D/A conversion, 

designing converters that efficiently use the huge and ever-growing number of transistors that 

can be integrated on a silicon chip. This report focuses on A/D conversion. 

Information Theory provides a framework for studying information representation and 

transmission.6 It introduces the concept of source coding whereby the statistics of a signal, or 

a source that emits symbols regularly over time, are used to map the signal efficiently to a 

binary sequence. Source coding has been successfully used to compress digital signals for 

transmission over digital channels of limited capacity. Digital algorithms exploit the structure 

in the information before transmission, allocating more resources to important features in the 

signal and sometimes allocating no resources to insignificant features. 

An integrated circuit that interfaces with the real world includes A/D and D/A convert-

ers. The capacity of each converter is simply the product of the number of bits it converts and 

the frequency at which it operates. Taken together, these converters define an analogue-digital 

interface on the integrated circuit, a bi-directional channel with a capacity in each direction 

equal to the sum of the A/D or D/A converter capacities. This report hypothesises that source 

coding the signals that pass through this channel, using circuitry, would improve conversion. 
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Figure 1 shows an abstraction of this report, where a real world signal is first encoded 

by analogue circuitry, passed through an analogue-digital interface, and finally decoded by 

digital circuitry to produce a digital representation of the signal. The system is itself a com-

plex A/D converter, which exploits the statistics of the information under conversion with 

hybrid circuitry to use efficiently the limited capacity of the simple embedded A/D and D/A 

converters (e.g. comparators and switched ladders) that make up the interface. 

Input 
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Analogue domain 

Source 
encoding 
circuits 

Source 
decoding 
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Simple A/D 
converters 

Simple D/A 
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Output 
signal 

Digital domain 

Figure 1. Source coding of signals for efficient A/D conversion. 

Feedback D/A converters are useful in a source coded A/D converter because they allow 

the digital domain to inform the analogue domain of the features in the signal that appear to 

be redundant. Therefore, the analogue domain can alter the way it passes information through 

the feed-forward A/D converters, allocating more resources to other features. The D/A con-

verters can also provide a reliable and accurate memory for use by the analogue circuitry. 

D. Scope 

The rest of this report is organised as follows. Chapter II presents background theory, referred 

to by other chapters, on random processes, sampling, and quantisation. To explore source 

coding, Chapter III reviews digital algorithms for speech compression and develops new 

ideas. Chapter IV explores source coding by simulated analogue and digital circuitry, extend-

ing the theory of oversampled modulation. Finally, Chapter V draws conclusions about source 

coding and proposes further work to complete the research introduced by this report. 
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II. Signal Coding Theory 

A. Random processes 

This chapter reviews the theory of signal coding, which underlies A/D conversion. To begin 

with, A/D converters operate on signals that are realisations of random processes, meaning 

that there is always some uncertainty about a signal prior to conversion. If everything about a 

signal were known in advance, there would be no need for conversion since the signal could 

be synthesised perfectly. A random process X(t) defines an ensemble of signals xi(t) and a rule 

that assigns a probability to any event associated with the observation of one of these signals.6 

In other words, the random process is a sample space S where each sample si corresponds to a 

signal, as shown in Figure 2. Note that observing the random process at time τ results in a 

random variable X(τ) having some probability density function fX(x). 

s3 

Sample space S 

s1 

s2 

x1(t) 

x2(t) 

x3(t) 

t = τ 

t 

t 

t 

Figure 2. An example of a random process. 

Random processes may be further described as stationary or non-stationary. Let X(t1), 

X(t2), …X(tk) denote the random variables created by observing the process X(t) at times t1, t2, 

…tk and let PX(t1),X(t2),…X(tk)(x1,x2,…xk) denote their joint probability density. Shifting all the 

observation times by T creates k new random variables X(t1+T), X(t2+T), …X(tk+T) with a 

joint probability density PX(t1+T),X(t2+T),…X(tk+T)(x1,x2,…xk). A random process X(t) is stationary, 
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in the strict-sense, if PX(t1),X(t2),…X(tk)(x1,x2,…xk) equals PX(t1+T),X(t2+T),…X(tk+T)(x1,x2,…xk) for all T, 

all k, and all choice of t1, t2, …tk.6 The significance of stationarity is that the statistical charac-

terisation of the process is time-invariant. An example of a stationary process is a sinusoidal 

oscillator having a fixed frequency and amplitude but a random, uniformly distributed, phase. 

Signals produced by a random process may certainly exhibit structure. The process may 

not use all possible amplitudes equally. Consider a process that generates binary pulses of 

random duration that begin at random moments in time. Over time, such a process concen-

trates its probability mass at two amplitudes – the pulse amplitude and the baseline amplitude. 

Another process may exhibit relationships between signal amplitudes separated by an interval 

in time. For example, a periodic signal may be predicted perfectly once its period is deter-

mined. Two important statistical measures of a process, alluded to by these examples, are its 

probability density function and its autocorrelation function. 

The probability density function fX(x,t) of a random process X(t) is the probability that 

the output of the process, at time t, is within a differential dx of the amplitude x.6 The autocor-

relation function RX(t1,t2) is the correlation E{X(t1)X(t2)} between two random variables X(t1) 

and X(t2) defined at times t1 and t2 on the process X(t).6 A white, or uncorrelated, random 

process has an autocorrelation function that is zero for all t1 ≠ t2. If the process is stationary, 

the probability density function is independent of time, simplifying to fX(x), and the autocorre-

lation function depends only on the time difference τ = t2-t1, simplifying to RX(τ). 

Random processes produce sample signals that often undergo further processing. When 

a time-invariant random process X(t) passes through a linear time-invariant filter, the result is 

straightforward to compute from the transfer function of the filter and the power spectral 

density of the process.6 The transfer function H(f) is the Fourier Transform of the filter’s 

response h(t) to an impulse. It gives the gain and phase shift of a sinusoid with frequency f 

that passes through the filter. The power spectral density SX(f) is the Fourier Transform of the 
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autocorrelation function RX(τ) of the process. It gives the average power delivered by the 

process in an infinitesimally small frequency band centred on the frequency f. Passing X(t) 

through H(f) creates a random process Y(t) with a power spectral density SY(f) given by 

Equation 1. The equation may be understood by noting that (1) the phase of a sinusoid does 

not affect its power and that (2) doubling the amplitude of a sinusoid quadruples its power. 

Equation 1. ( ) ( ) ( )fSfHfS XY
2=  

Following a simplifying convention employed in the literature, the rest of this report 

will refer to both a random process X(t) and a realisation x(t) as signals x(t). Any reference to 

underlying statistics implies a random process and not a realisation. For example, x(t) stands 

for a process in the expectation E{x(t)}. The distinction will be made explicit when necessary. 

B. Sampling and quantisation 

An analogue signal x(t) takes on values at any time t in a given interval. Similarly, each value 

that is taken may be any amplitude x in a given range. When the analogue signal is converted 

to a digital signal y[n], it is sampled in time and quantised in amplitude. Sampling captures 

the signal at a finite number of moments, indexed by the integer n, in a given interval. Like-

wise, quantisation represents the continuous range of values that the signal may take with a 

finite set of amplitude levels y. Figure 3 gives an example of sampling and quantisation. 
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Figure 3. An example of sampling and quantisation, y[n] = ⎣x(nT)⎦. 
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Sampling a signal x(t) at intervals of T (denoted x[n] in discrete-time) does not corrupt 

any information if the sampling frequency fS = 1/T is more than twice the bandwidth fB of the 

signal.6 However, quantisation of a signal does corrupt some information. Uniform quantisa-

tion of x into y can be modelled by a linear function with an error term, y(x) = Gx+e(x).7 

Figure 4 gives an example of this model, where the quantisation levels are placed symmetri-

cally about the axis with a uniform spacing of Q = 2, called the quantisation step-size, and 

where the quantisation process merely rounds the amplified input Gx to the nearest quantisa-

tion level. It is typical in the literature to use a gain G of unity, as is done in the figure. Note 

that, if the input to the quantiser does not saturate, the error term e(x) is bounded by ±Q/2. 
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x e(x)

Unsaturated Unsaturated 

Figure 4. Linear model of quantisation, y = Gx+e(x). 

Using the linear model of quantisation with unity gain, the processes of sampling and 

quantisation may be represented by y[n] = x(nT)+e(x(nT)) = x[n]+e[n]. If the input signal x[n] 

changes from sample to sample by random amounts on the order of Q, without saturating, 

then the error signal e[n] will be white, or uncorrelated from moment to moment, and will 

have a uniform probability density in the interval –Q/2 to +Q/2.7 Furthermore, if the error has 

statistical properties that are independent of the signal then it may be represented by a noise 

source.7 Figure 5 depicts the linear discrete-time model of quantisation (which implicitly 

includes sampling) that results from these assumptions. 
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White noise e[n] 

Input x[n] Output y[n] 

Quantiser 

Figure 5. Linear discrete-time model of quantisation. 

The noise power σe
2, or expected square value of e[n], is calculated in Equation 2 by 

treating the quantisation error as uniformly distributed in an interval of size Q, centred on 

zero, with a probability 1/Q.7 Note that the expected value µe of e[n], or E{e[n]}, is zero. 

], is calculated in Equation 2 by 

treating the quantisation error as uniformly distributed in an interval of size Q, centred on 

zero, with a probability 1/Q.7 Note that the expected value µe of e[n], or E{e[n]}, is zero. 

Equation 2. Equation 2. [ ]{ }[ ]{ }
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Since the quantisation error is treated as white, or completely uncorrelated, noise then 

the power spectral density Se(f) of the noise e[n] is a constant.6 In addition, the noise power 

given by Equation 2 must all fall in the band |f| ≤ fS/2 of the power spectral density, assuming 

a two-sided spectral representation, since e[n] is sampled at fS.6

,
7 Equation 3 calculates Se(f). 
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A simple way to reduce the noise power and its spectral density is to reduce the value of 

the quantisation step-size Q. However, a reduction in Q corresponds to a reduction in the 

unsaturated range of the quantiser. If an input signal causes saturation, the quantisation error 

is no longer bounded by ±Q/2 or the above equations. Therefore, to permit the same dynamic 

range of input signals, the number of quantisation levels have to increase if the step-size 

decreases. Nevertheless, increasing the number of quantisation levels increases the hardware 

complexity and the quantiser non-linearity (i.e. the model in Figure 5 is less accurate since the 

staircase function in Figure 4 is less likely to have regularly spaced corners). 
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C. Optimal quantisation 

The previous section modelled quantisation as the addition of statistically independent white 

noise to the quantiser input. However, the distortion introduced by quantisation is wholly 

dependent on the input signal. Linear assumptions, which ignore this dependence, may hinder 

the use of source coding to improve quantisation. 

As shown in Figure 6, a general K-level quantiser is a non-linear mapping from a set 

{Qi} of K disjoint subsets {Q1,Q2,…QK} or partitions of the input domain or x-axis, the union 

of which covers the entire axis, to a set {qi} of K points {q1,q2,…qK} or quanta of the output 

domain or y-axis.8 Quantisation, given in Equation 4, determines to which partition Qi of the 

x-axis the input belongs and then outputs the quantum qi on the y-axis. Note that the quantisa-

tion index i may be encoded by a binary integer that is N = ⎡log2K⎤ bits long. 

Equation 4. ( ) { } { }( )KiKi QQQQxqqqqxy ΚΚ ,,|,, 2121 ∈∈∈=  

q1 q2 q4 q3 

Q1 Q1 Q2 Q3 Q4 
x 

y 

Figure 6. An example of generalised quantisation. 

Assuming ideal sampling, the output sample y[m] of the quantiser at time n = m depends 

non-linearly on the single input sample x[m]. If the input x[n] is stationary then the output y[n] 

must also be stationary, meaning that the statistical characterisation of the input or output is 

time-invariant. Equation 5 gives the power σe
2 of the quantisation noise e[n] = y[n]-x[n], 

where fx(x) is the time-invariant probability density function of the input.8 The equation shows 

that the noise power depends on the probability distribution of the input, the choice of quanta, 

the choice of partitions, and the assignment of quanta to partitions. 
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Equation 5.  [ ]{ } ( )( ) ( ) ( ) (∑∫∫
=

∞

∞−

−=−==
K

i
Q xixe

i

dxxfxqdxxfxxyneE
1

2222σ )

If two quanta qa and qb are equal then it is possible to reduce the number of quantisation 

levels K without affecting the noise power by joining Qa and Qb and eliminating one of the 

redundant quanta. Similarly, if the probability density function is zero in a partition Qi then K 

may be reduced without changing the noise by adding Qi to any other partition and discarding 

the quantum qi. If either of the previous conditions hold then the noise power may be reduced 

by dividing a partition into two and creating a new quantum level. Thus, any quantiser that 

duplicates quantum levels or that has a partition with no probability mass is not optimal.8 

Consider a quantiser that does not have the redundancies described above. Holding eve-

rything else constant, the choice of quanta may be optimised to reduce the noise power. Be-

cause each integral in the sum of Equation 5 is independent, the power may be minimised by 

minimising each integral. Equation 6 gives the choice of quantum that minimises each inte-

gral.8 This result may be derived using standard techniques in Calculus, especially by observ-

ing that the given integral resembles a moment of inertia of the region Qi, with mass density 

fx(x), around the point qi. Thus, the integral is minimised if qi is the centre of mass. 

Equation 6. ( ) ( )
( )
( )∫

∫
∫ =−

i

i

i

Q x

Q x

iQ xi
dxxf

dxxxf
qdxxfxq if minimum a is2  

Now suppose that the location of quanta is fixed but the choice and assignment of parti-

tions are optimised instead. From Equation 5, if a point x with probability mass fx(x)dx be-

longs to partition Qi then it contributes (qi-x)2fx(x)dx to the noise power. Therefore, the point x 

should be assigned to the partition Qi with the lowest corresponding value (qi-x)2 to minimise 

the noise. The optimal partitions {Qi} are thus given by Equation 7.8 

Equation 7. ( ) ( ){ }jixqxqxQ jii ≠−<−= ,| 22  
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The K optimal partitions {Qi} must therefore be contiguous intervals whose endpoints 

x1, x2, …xK-1 bisect the segments between adjacent quantum levels, as in Equation 8.8 

Equation 8. 

{ }
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A quantiser may therefore be specified by a 2K-1 dimensional vector p of the ordered 

parameters q1 < x1 < q2 < …xK-1 < qK. The noise power is then expressed by Equation 9.8 
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To find the quantiser configuration that minimises the noise power, all stationary points 

of σe
2(p) must be found by simultaneously solving the set of 2K-1 equations ∇p = 0 generated 

by Equation 6 and Equation 8.8 These stationary points comprise local minima of the noise 

power function and the global minimum will occur at one of these points. An example of 

optimal quantisation is given in Figure 7. Note that the quanta are not uniformly spaced. 

q1 q2 q3 q4 

fx(x) 

Q4 Q3 Q2 Q1 

y 

x 

Figure 7. An example of optimised quantisation. 

This chapter reviewed background theory on random processes, on sampling, and on 

linear and non-linear models of quantisation. Chapter III investigates digital speech coding, 

referring to the material on sampling and quantisation. Chapter IV relies on the theory of 

random processes to describe the effect of oversampled modulation on quantisation noise. 
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III. Source Coding of Speech Signals 

A. Pulse code modulation 

In the last two decades, source coding of digital speech has been extensively researched for 

the purpose of increasing communication capacity by speech compression. To explore source 

coding, this chapter reviews the theory of speech coding and develops some new ideas. 

The simplest coding, termed pulse code modulation (PCM), represents analogue speech 

by a sequence of quantised pulses having integer codes. Figure 8 shows a high-quality 128 

kbps speech signal x[n] digitised by sampling an analogue signal x(t) at 8 kHz and uniformly 

quantising each sample using 16 bits. To facilitate comparison, the simulation results given in 

this chapter refer to this test signal. The signal was chosen randomly from a commercial 

speech database and was not used to develop or optimise any coding algorithm.9

Figure 8. A 128 kbps uniformly quantised PCM speech signal. 
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A 128 kbps digital speech signal may be compressed by waveform coding, or quantising 

each digital sample using fewer bits than the original quantisation. Uniform quantisation 

(discarding the least significant bits in each sample) is optimal only if the signal amplitudes 

are uniformly distributed in the range of possible values. However, the left plot in Figure 9 

shows that the speech amplitudes in Figure 8 are not uniformly distributed. In fact, speech 

samples generally have a probability distribution close to a Laplacian distribution.10
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Figure 9. Probability densities of speech and µ-law compressed speech. 

Given the non-uniform distribution of speech amplitudes, uniform quantisation would 

waste quanta in regions of low probability. Logarithmic PCM encoders apply a logarithmic 

function to the speech waveform and then quantise the result uniformly. A µ-law logarithmic 

encoder compresses the input waveform x[n] using Equation 10 and then quantises the result 

xµ[n] uniformly. The right plot in Figure 9 shows the probability distribution of the µ-law 

compressed waveform for the speech in Figure 8. Apart from values near zero, this distribu-

tion is nearly uniform. Following convention, the compression parameter µ equals 255.10 
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To decode the output of a logarithmic speech encoder, an inverse logarithmic function is 

applied. A µ-law decoder expands the compressed and quantised µ-law waveform yµ[n] using 

Equation 11, resulting in an approximation y[n] to the original signal. Such a logarithmic 

compander effectively implements non-uniform quantisation, as illustrated in Figure 10. PCM 

coding using uniform quantisation without companding is also called linear PCM. 
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Figure 10. Equivalence between companding and non-uniform quantisation. 

There are other forms of logarithmic speech coding besides µ-law compression, an 

American standard. A-law compression, a European standard, uses a piecewise encoding 
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function, linear for small inputs but logarithmic for large ones, given in Equation 12.10 How-

ever, a plot of the A-law function is nearly identical to the µ-law function plotted in Figure 10. 
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Given a perfect Laplacian distribution of amplitudes, m-law compression is optimal.10 

Unlike the µ-law and A-law functions, the m-law function, shown in Equation 13, requires the 

standard deviation of the amplitudes in addition to the maximum amplitude. 
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Figure 11 plots the signal-to-noise ratio (SNR) of linear, µ-law, A-law, and m-law PCM, 

for coding the signal in Figure 8, against the bit rate. The bit rate equals the product of the 

number of bits per sample, ranging from one to eight, and the sampling frequency of 8 kHz. 
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Figure 11. Signal-to-noise ratios for linear and logarithmic PCM. 

Linear PCM is sub-optimal by at least 10 dB SNR for all bit rates, not surprising given 

the probability distribution of speech amplitudes. The µ-law and A-law coders give the best 

(and similar) results. Whereas linear, µ-law, and A-law typically exhibit slopes of over 6 dB 

per quantisation bit, m-law displays more variation in slope. Its performance lies between the 

linear and other logarithmic coders at high bit rates but is superior for some low bit rates. 

Listening tests for linear and logarithmic coded speech do not fully support conclusions 

drawn from SNR analysis. This is mainly due to the aural noise masking property of the 

human auditory system.10 Noise of a certain energy is less noticeable in periods of high 

speech energy than in periods of low energy. The segmented signal-to-noise ratio (SEGSNR), 

plotted in Figure 12, tries to account for this aural property by averaging the SNR dB values 

computed in sequential speech frames of 16 ms each, the approximate syllabic duration.10 

 17



0 10 20 30 40 50 60 70
−40

−30

−20

−10

0

10

20

30

40

Bit Rate (kbps)

S
eg

m
en

te
d 

S
ig

na
l−

to
−

N
oi

se
 R

at
io

 (
dB

s)
linear
mu−law
A−law 
m−law 

Figure 12. Segmented signal-to-noise ratios for linear and logarithmic PCM. 

The SEGSNR results in Figure 12 consistently place µ-law PCM coding at the top, 

agreeing with listening tests, although there is generally little difference between the loga-

rithmic coders. Linear PCM is sub-optimal at all bit rates by about 20 dB SEGSNR. Informal 

listening tests suggest that SEGSNR differences on the order of 1 dB are discernible and that 

0 dB SEGSNR is a useful threshold for intelligibility, though not clarity. Thus, µ-law coding 

is intelligible at and above 24 kbps. However, it becomes clear at 32 kbps and good at 40 kbps 

(toll-quality or telephone-quality speech is arguably achieved at 48 kbps). 

B. Optimised non-uniform quantisation 

Although µ-law companding avoids sub-optimal uniform quantisation, it may still not realise 

optimal quantisation. Optimal quantisation y[n] of a signal x[n], using N bits per sample, is 

achieved by minimising the power σe
2, given by Equation 5, Section II.C, of the quantisation 
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noise e[n] = y[n]-x[n]. Minimising σe
2 results in two conditions: (1) the quantum qi must be 

the centroid of the probability mass f(x)dx over x ∈ Qi and (2) the domain Qi must be a single 

contiguous interval with endpoints halfway between qi and the nearest two quanta. 

The K-means clustering algorithm may be used to optimise the K = 2N quanta {qi} for T 

samples of a signal x[n].8

,11 An initial set of quanta are chosen, either randomly or uniformly. 

The T samples are then divided into K partitions by assigning a sample to the partition Qi 

when it is nearest to the quantum qi. This guarantees condition (2) above. The mean µi of each 

partition is computed, which equals the centroid of probability mass E{Qi} in the partition. 

Condition (1) is satisfied if {µi} = {qi}. Otherwise, the K means are taken as new quanta and 

the procedure is iterated. Assuming the initial quanta are ordered, which allows binary search, 

each iteration may be implemented with O(N⋅T) arithmetic operations. 

Although each iteration of the K-means algorithm is quick, many iterations are often 

needed. To reduce the number of iterations, two novel heuristics were devised that choose 

better initial quanta. The T samples are first divided into two partitions, one containing all 

samples less than the mean and the other containing the rest. Using the same procedure, the 

greedy heuristic divides the partition having the greatest variance into two, yielding three 

partitions, whereas the fair heuristic simply divides both partitions into two, doubling the total 

number of partitions. The greedy and fair algorithms are iterated respectively until K parti-

tions remain, at which point the means of the partitions are returned as quanta. The time re-

quired by the greedy heuristic depends on the data but equals, on average, O(N⋅T) arithmetic 

operations whereas the fair heuristic simply requires O(N⋅T) arithmetic operations. 

Figure 13 plots the SNR versus the bit rate for PCM with optimised non-uniform quan-

tisation (PCM-ONQ), using the K-means algorithm, and for PCM with the greedy and fair 

heuristics but no optimisation. The results of µ-law PCM are repeated for comparison. 
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Figure 13. Signal-to-noise ratios for PCM with optimised quantisation. 

As expected, PCM-ONQ gives better SNR results, at any bit rate, than µ-law PCM. 

Note that the heuristics, especially the greedy one, produce good results without any optimisa-

tion. The slope of the greedy heuristic changes frequently compared to that of the fair. The 

fact that the fair heuristic sometimes performs better than the greedy one is not surprising. 

Both heuristics create K partitions and use the partition means, or centroids, as the quanta. 

Such a scheme does not guarantee that the partition boundaries lie halfway between adjacent 

quanta whereas the PCM quantiser always performs optimal nearest-neighbour quantisation. 

The extent of boundary sub-optimality depends on the heuristic and data. 

Once again, listening tests do not correlate well with the SNR results of Figure 13. 

Therefore, the SEGSNR results for µ-law, PCM-ONQ, and the heuristics are given in Figure 

14. The duration of the speech frames for segmented calculation is 16 ms, as before. 
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Figure 14. Segmented signal-to-noise ratios for PCM with optimised quantisation. 

According to Figure 14, the fair heuristic with no optimisation yields a better PCM cod-

ing of speech than µ-law or K-means optimised PCM. The greedy heuristic gives the worst 

performance. A reason for this conclusion is that the K-means algorithm minimises the total 

noise power and hence the SNR, as shown in Figure 13, which is somewhat at odds with 

minimising the SEGSNR, or average SNR, although the latter is a better measure of speech 

quality. Since the fair heuristic partitions the amplitude space without regard to variance, 

partitions with extreme outliers will not steal bits away from smaller, but perceptively more 

important, partitions. Though it is closer than µ-law, the fair heuristic still does not achieve 

intelligible speech at 16 kbps. However, its 24 kbps speech quality is more than intelligible. 

The heuristics and K-means optimisation may be applied to improve the PCM coding of 

signals other than speech, especially those that have non-uniform probability distributions. 
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C. Adaptive non-uniform quantisation 

The assumption so far is that the statistical process underlying the signal x[n] is stationary, 

otherwise the probability density function f(x) in Equation 5 would be a function f(x,n) of 

sample time n. Speech, however, is a non-stationary process but may be modelled as a short-

time stationary process.10 Applying the K-means algorithm to an entire speech signal pro-

duces a non-uniform quantiser that is similar to a logarithmic quantiser. To improve 16 kbps 

speech coding, an adaptive PCM coding scheme (PCM-ANQ) was devised, whereby the K-

means algorithm is used to optimise the quantisation of sequential 16 ms speech frames. 

Figure 15 shows the time-varying quanta of PCM-ANQ, when applied to the speech 

signal of Figure 8. The four non-uniform quanta track different energy regions of the signal 

and each speech sample is quantised to the nearest time-varying quantum using two bits. 

Coding the speech signal by this method results in clear, not just intelligible, speech at 16 

kbps (plus side information). PCM-ANQ was compared to the established technique of adap-

tive gain quantisation (PCM-AGQ), where each frame is uniformly quantised after amplifica-

tion based on the frame variance.10 Adaptive m-law quantisation (PCM-AML) was also inves-

tigated, where Equation 13 was applied to quantise each frame, with time-varying values for 

xmax and σx. PCM-ANQ was noticeably better than the others. For the example in Figure 8, 

SEGSNRs of 8.14, 8.29, and 9.72 dB were obtained using PCM-AGQ, PCM-AML, and 

PCM-ANQ respectively, quantising with two bits per sample. 
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Figure 15. Time-varying quanta (side information) for 16 kbps PCM-ANQ. 

One problem with PCM-ANQ is that a lot of side information is generated. Whereas 

PCM-AGQ needs one parameter per frame and PCM-AML needs two parameters per frame, 

PCM-ANQ needs one parameter per quantum per frame. This side information can be halved, 

using prior knowledge of speech, by equating the quanta above and below zero amplitude. 

Complete coders, that operate using 17 kbps, may then be implemented for all three methods. 

Encoding the side information of PCM-AGQ, PCM-AML, and PCM-ANQ using 1 kbps each 

degrades their SEGSNR results to 8.11, 8.07, and 8.73 dB respectively. 

D. Scalar versus vector quantisation 

Another problem with PCM-ANQ is that it does not exploit the correlations in speech. Speech 

is composed of voiced, or high-energy and regular pitch, sounds and unvoiced, or low-energy 

and noise-like, sounds.10 Generally, voiced sounds are vowels and unvoiced ones are conso-
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nants. Consecutive samples taken during voiced sounds are highly correlated. Figure 16 plots 

the absolute value of the correlation coefficient obtained from the set of paired consecutive 

samples in each 16 ms frame of the speech in Figure 8. The correlation coefficient, of two 

random variables X and Y, ranges from –1 to +1 and equals the covariance E{(X-µX)(Y-µY)} of 

the variables divided by the product σXσY of their standard deviations. 
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Figure 16. Time-varying correlation of consecutive speech samples. 

Listening tests confirm that frames with an absolute correlation coefficient near unity 

are voiced and that frames with a coefficient near zero are unvoiced. Applying a threshold of 

0.5 to the absolute coefficients in Figure 16 shows that at least half of speech is correlated. 

Adaptive non-uniform vector quantisation (VCM-ANQ) was devised to exploit the correlation 

of consecutive samples in voiced speech. The K-means algorithm is used to cluster the pairs 

of consecutive samples, that make up each 16 ms speech frame, into K two-dimensional 
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quanta. Figure 17 depicts the difference between scalar quantisation, at one bit per sample, 

and vector quantisation, at two bits per two samples, for a voiced and unvoiced speech frame. 
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Figure 17. Scalar (X) and vector (O) quantisation of voiced and unvoiced speech. 

As seen in Figure 17, vector quantisation can take advantage of simple correlations in 

voiced speech frames. Ignoring side information, VCM-ANQ at 12 kbps (3 bits per 2 sam-

ples) gives 10.33 dB SEGSNR for the speech in Figure 8, better than PCM-ANQ at 16 kbps. 

However, the side information for the former, at 16 parameters (i.e. eight two-dimensional 

quanta) per 16 ms frame, is much worse than the latter. The side information may be encoded 

in 4 kbps by using eight bits per parameter and by making the quanta symmetric about the 

origin, which halves the number of parameters. At 16 kbps, a complete VCM-ANQ coder 

results in 9.03 dB SEGSNR (a degradation from 10.33 dB above) whereas µ-law coding gives 

-5.16 dB SEGSNR. Better encoding of the side information may reduce the degradation. 

One way to improve upon VCM-ANQ would be to model each speech frame by a few 

statistical parameters, such as the covariance matrix of the set of consecutive sample pairs in 

the frame (the matrix size can be halved due to self-similarity). The optimal frame quanta may 

then be estimated from these parameters alone. Rather than defining an analytical model for 

speech statistics, as is done in m-law quantisation, a neural network may be trained to map the 
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statistical parameters into quanta by minimising the quantisation error during training. More 

work needs to be done but tests indicate that some statistical parameters, like variance, may be 

well predicted from previous quantised samples, allowing a reduction of side information. 

In summary, adaptive non-uniform quantisation codes speech better than logarithmic or 

adaptive uniform quantisation. Vector, as opposed to scalar, adaptive non-uniform quantisa-

tion can exploit simple speech correlations. These methods may be applied to short-time 

stationary signals other than speech to reduce quantisation noise. 

E. Linear predictive coding 

Although the adaptive non-uniform quantisation techniques, developed here, are better than 

classical waveform coding techniques for medium bit rate coding (12 to 18 kbps), techniques 

based on linear predictive coding (LPC) are capable of coding speech with an acceptable 

quality at low bit rates (2 to 6 kbps) and are therefore worth exploring. 

The GSM standard provides toll-quality speech, indistinguishable from a good analogue 

telephone, at 16 kbps.12 Toll-quality coders operating at 8 kbps are currently being developed. 

GSM, and other modern speech coders, use linear prediction. Put simply, these coders rely on 

the high correlation in speech to accurately predict the current sample from previous samples. 

Unfortunately, the SEGSNR measure that was described earlier is not useful for describing 

the performance of these coders because they use properties of the human auditory system, 

such as non-uniform frequency sensitivity, that the measure does not account for. 

Figure 18 shows the typical architecture for an LPC encoder.10 A linear filter H(z) is 

constructed, by analysis of the speech autocorrelation function, that estimates the current 

speech sample from a finite number of previous samples. The excitation d[n], which is the 

difference between the actual speech x[n] and the prediction xest[n], is encoded using a finite 

number of bits and then decoded to produce an approximate excitation c[n]. The decoded 

speech y[n] is produced by adding c[n] to xest[n]. Note that, irrespective of the predictive filter, 

 26



the decoded speech will equal the original if the excitation is encoded perfectly. In other 

words, the error e[n] equals y[n]-x[n], which simplifies to c[n]-d[n]. 

Coded excitation 
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Excitation 
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Excitation 
decoder 
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Coded predictive 
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Figure 18. Speech encoding using linear prediction. 

The LPC decoder, which is a subsection of the encoder, is shown in Figure 19. Both the 

encoder and decoder use the previous coded samples to predict the current speech sample. If 

the encoder were to use the previous actual samples in its prediction, which are not available 

to the decoder, then the error e[n] would not simply depend on the excitation coding error. 

c[n] 

xest[n] Prediction 
H(z)

Excitation 
decoder

y[n] Coded 
excitation 
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Figure 19. Speech decoding using linear prediction. 

The advantage of LPC is that the dynamic range of the differential signal d[n] is less 

than the dynamic range of the speech x[n], meaning that the domain of possibilities to encode 

is smaller.10 The predictive filter H(z) may be kept constant, as in differential pulse code 

modulation (DPCM), but is usually updated slowly, requiring the transmission of side infor-
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mation. Such a time-varying filter models the slowly changing human vocal tract, which 

reflects and absorbs sounds thereby filtering the excitations generated by the glottis.10 

Following a design given in the literature, LPC was implemented for the purposes of the 

next section.12 An all-pole predictive filter was used to predict the current sample by a linear 

combination of the ten previous samples and of three consecutive samples at a longer delay. 

The speech was divided into a sequence of 20 ms frames and, for each frame, autocorrelation 

estimates were used to generate systems of linear equations. Solving these equations provided 

the filter coefficients and delay parameter that minimised the prediction error in that frame. 

The ten short-term filter coefficients were each quantised logarithmically using 47 bits in total 

(fewer bits were allocated to the coefficients of higher delays). The three long-term filter 

coefficients and the delay were quantised uniformly with 12 and 7 bits respectively. These bit 

allocations permitted the time-varying LPC filter to be encoded using 3.3 kbps. Converting 

speech signals to excitation signals, this filter typically reduced the dynamic range by 10 dB. 

Although LPC theory has changed very little in recent years, the design of the excitation 

encoder continues to be actively researched and many alternatives are in use.12 The simplest 

excitation encoder is a uniform quantiser, resulting in adaptive differential pulse code modula-

tion (ADPCM). The GSM standard encodes the excitation using regular pulse excitation 

(RPE). Speech frames of 20 ms, the update rate for LPC, are divided into four 5 ms sub-

frames. The excitation in each sub-frame is modelled as a sequence of thirteen equally spaced 

pulses.12 However, the amplitude of each pulse and the phase of each sequence are optimised. 

Including LPC and error protection, the total GSM bit rate is 16 kbps for toll-quality speech. 

F. Code-excited linear prediction 

Good quality speech coding may be realised below 8 kbps using code-excited linear predic-

tion (CELP).12 The CELP encoder operates on the excitation signal produced by LPC and, 

like GSM, typically divides a 20 ms LPC frame into four 5 ms sub-frames. These sub-frames 
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contain 40 samples each, given an 8 kHz sampling rate, and are called excitation vectors. The 

efficiency of CELP in encoding the excitation vectors comes from three principles: (1) CELP 

models the excitation vectors as random Gaussian vectors, with a mean of zero; (2) CELP 

maintains a stochastically-populated codebook of Gaussian vectors and exhaustively searches 

the codebook for the vector that best encodes each excitation vector; and (3) only the index of 

the selected vector is encoded since the decoder has an exact copy of the codebook.  

A typical CELP codebook contains 1024 vectors, requiring 10 bits to encode each 5 ms 

sub-frame, and would use 2 kbps to encode the excitation signal. However, there are a few 

other parameters to encode. During the exhaustive search procedure, known as analysis-by-

synthesis, the gain of the selected vector is optimised and must therefore be encoded sepa-

rately. Analysis-by-synthesis coding minimises the weighted error between the reconstructed 

and original speech over the free parameters (which are the pulse amplitudes and phase in 

GSM). The free parameters in CELP are the codebook index and the gain. The error is 

weighted to account for the non-uniform spectral sensitivity of the human auditory system. A 

complete CELP encoder may be implemented at a 4.8 kbps bit rate.12 

Since the analysis-by-synthesis procedure optimises the vector gain, normalising the 

Gaussian vectors to unit length loses no generality. Such a normalisation facilitates a geomet-

ric interpretation of the excitation. Random 40-dimensional Gaussian vectors, of zero mean 

and unit length, happen to be uniformly distributed on the surface of a 40-dimensional sphere 

of unit radius.12 CELP multiplies a sequence of these vectors by a time-varying gain, which 

accounts for the slowly changing speech envelope, to model the excitation signal. 

The fact that CELP produces good quality speech gives support to the assumption that 

the normalised excitation vectors are uniformly distributed on a hyper-sphere. The CELP 

codebook contains a finite population of vectors drawn from this distribution. Although dou-

bling the codebook size increases the code by just one bit, and improves the speech quality, it 
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does double the search time. A codebook of 1024 entries reasonably balances the incremental 

cost of searching with the incremental gain in speech quality.12 However, if a more accurate 

distribution is found, for the normalised excitation vectors, then speech quality may be im-

proved, without increasing the codebook size, by selecting vectors from this distribution. 

An experiment was set up to test the assumption of uniform distribution by comparing 

the distribution of angles between pairs of excitation vectors selected at random with the 

distribution of angles between pairs of random Gaussian vectors. The dot product of two 

vectors in N-dimensional Euclidean space equals the product of their lengths and the cosine of 

the angle between them.13 Therefore, the angle between any two vectors x1 and x2 may be 

found according to Equation 14. This angle has the usual geometric interpretation since two 

vectors, in any number of dimensions, always lie in a two-dimensional subspace (i.e. a plane). 
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If the distribution of angles derived from the excitation vectors matches the distribution 

of angles from the random Gaussian vectors then the assumption of uniform distribution on 

the surface of a hyper-sphere is consistent with the data. Strictly speaking, other distributions 

are possible since transforming the distribution of excitation vectors (i.e. a 40-dimensional 

probability density function) into a distribution of angles (i.e. a one dimensional probability 

density function) is a many-to-one mapping. However, if the two angle distributions do not 

match then the assumption of uniform distribution must be incorrect because performing the 

same many-to-one transformation on two identical distributions must yield the same result. 

Figure 20 shows the distribution of angles between randomly selected vectors from a 

database of 24,000 excitation vectors, plotted against the distribution of angles between ran-

dom Gaussian vectors. The database was generated by applying LPC, as described in the 
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previous section, to 120 seconds of speech from a single male.9 The closeness of the two 

distributions in Figure 20 suggests that the CELP assumption is very good. 
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Figure 20. Distribution of angles between random excitation vectors. 

The probability peak at 90 degrees is not surprising considering that, given a vector x1 

on a three-dimensional sphere, a greater circumference may be traversed by tracing all vectors 

lying on the sphere at right angles to x1 than at any other angle to x1. Therefore, if the vector 

x2 is selected from a uniform distribution according to surface area, it is most likely to make a 

right angle with x1 since there is differentially more surface area at 90 degrees. A similar 

situation exists on the 40-dimensional hyper-sphere but the concepts of area and circumfer-

ence must be replaced by 39-dimensional and 38-dimensional subspaces respectively. 

LPC analysis makes use of the linear predictive properties of speech to reduce the dy-

namic range of the encoded signal. However, there may still be higher-order non-linear pre-

dictive properties in the excitation signal derived from LPC. Figure 21 shows the distribution 
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of angles between consecutive excitation vectors, as opposed to randomly selected excitation 

vectors, derived from the same database used in Figure 20. Since this distribution is different 

from the distribution of angles between random Gaussian vectors (i.e. the CELP model), the 

figure suggests that consecutive excitation vectors are statistically dependent. 
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Figure 21. Distribution of angles between consecutive excitation vectors. 

Figure 21 shows a bimodal distribution, with peaks at angles slightly above 20 and 90 

degrees, perhaps corresponding to periods of voiced and unvoiced speech respectively. Ac-

cording to the figure, the current excitation vector dcurr is equally likely to make a 22 degree 

or a 95 degree angle with the previous excitation vector dprev. A CELP codebook will contain 

almost no vectors at a 22 degree angle from dprev, since the codebook population is the same 

(i.e. spherically uniform) with respect to any reference vector. However, as in previous sec-

tions on waveform quantisation, more code vectors (which are essentially quanta) ought to be 

placed in regions of higher excitation vector probability. The codebook population should 
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therefore be drawn from a non-uniform bimodal distribution, according to Figure 21, on the 

surface of a hyper-sphere having two bands of high probability at 22 and 95 degrees to dprev. 

One way to exploit the non-uniform distribution of consecutive excitation vectors is 

suggested in Figure 22. A reference vector cref is chosen and a codebook is created where the 

distribution of angles between cref and the code vectors ci follows the bimodal distribution of 

Figure 21. To encode an excitation vector dcurr, a unitary matrix A is constructed such that 

Acref equals cprev, where cprev is the previous decoded excitation vector. Note that cprev ap-

proximates the previous excitation vector dprev. During analysis-by-synthesis, the matrix A is 

applied to each code vector, encoding dcurr by rotated vectors Aci instead of vectors ci. In 

other words, the non-uniformly populated codebook is rotated prior to each encoding. The 

decoder has an identical codebook and can also generate A from cref and cprev. 

cref

cprev

dcurr

Figure 22. Exploiting the statistics of consecutive excitation vectors. 

Although rotating the entire codebook to encode each sub-frame is a significant compu-

tation, preliminary results suggest that a more localised search may be possible than full 

analysis-by-synthesis using this method. Preliminary results also suggest an improvement in 

speech quality. However, further work is needed to refine these ideas. 
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IV. Source Coding of Oversampled Signals 

A. Oversampling and decimation 

The previous chapter reviewed and developed the theory of source coding of speech. Since 

the input signals were already digitised, source coding was used to compress the digital in-

formation for transmission over a narrow digital channel. This chapter reviews and extends 

the theory of oversampled signal modulation for A/D conversion. Modulation is interpreted 

here as source coding of an oversampled analogue input signal, by analogue and digital cir-

cuitry instead of a digital algorithm, to transmit the analogue information efficiently through a 

narrow A/D interface in order to produce a digital signal. 

Consider an analogue signal x(t) carrying information of interest in the band |f| ≤ fB. A 

conventional A/D converter would sample and quantise x(t) at the Nyquist rate fS = 2fB to 

produce a digital signal y[n] = x[n]+e[n] with a noise spectral density Se(f) = σe
2/2fB. Such a 

converter must use sharp low-pass filtering before sampling to prevent out-of-band compo-

nents from aliasing into the sampled signal.6 Figure 23 depicts A/D conversion of this kind. 

Information of interest Out-of-band components Quantisation noise 

(c) 

-2fB -fB 2fBfB

(a) 

-2fB -fB 2fBfB

(b) 

-2fB -fB 2fBfB

Figure 23. Conventional A/D conversion: (a) the original power spectrum, (b) after anti-
alias filtering, and (c) after sampling and quantisation. 

Suppose instead that x(t) is digitised at a sampling frequency fS = 2ηfB that is η times the 

Nyquist rate, where the multiplier η is called the oversampling ratio. If the quantisation error 

remains uniformly distributed in -Q/2 to +Q/2 and uncorrelated across samples then the power 

 34



spectral density of the noise reduces to Se(f) = σe
2/2ηfB. Oversampling also allows the anti-

alias function to be performed gradually. Figure 24 depicts A/D conversion of this kind. 

(a) 

-2ηfB -fB 2ηfBfB

(b) 

-2ηfB -fB 2ηfBfB

(c) 

-2ηfB -fB 2ηfBfB

Figure 24. Oversampled A/D conversion: (a) the original power spectrum, (b) after anti-
alias filtering, and (c) after sampling and quantisation. 

The benefits of oversampling are realised by decimation. Oversampled quantisation of 

an analogue signal x(t) yields a digital signal yη[n] = x(nTη)+e(nTη), where Tη = 1/2ηfB. Since 

the information of interest in the input signal x(t) only occupies a bandwidth of |f| ≤ fB, the 

A/D converter should ultimately output a digital signal y[n] at the Nyquist rate 2fB such that 

y[n] approximates x(nT), where T = 1/2fB. The process of decimation converts an oversampled 

digital signal yη[n] into a digital signal y[n] = x(nT)+ε(nT) at the Nyquist rate. 

Decimation is a two-step process of anti-aliasing an oversampled signal and then down-

sampling the result to a lower frequency. The process is entirely digital because the oversam-

pled signal is already digitised. Sharp anti-aliasing is necessary to prevent out of band com-

ponents and quantisation noise, that were captured during oversampled quantisation, from 

folding into the signal band upon down-sampling. The process is illustrated in Figure 25. 
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(a) 

-2ηfB 2ηfB-fB fB

(b) 

-2ηfB 2ηfB-fB fB

(c) 

-2fB 2fB-fB fB

Figure 25. Decimation of an oversampled signal: (a) the original power spectrum, (b) 
after anti-alias filtering, and (c) after down-sampling. 

Providing a sharp anti-alias filter is used, decimation does not change the power spectral 

density of the quantisation noise in the band |f| ≤ fB. Equation 15 relates the noise power σε
2 in 

the decimated signal to the noise power σe
2 in the oversampled signal. The equation repeats 

the well-known result that oversampled quantisation and decimation, compared to Nyquist 

rate quantisation, reduces the noise power by the oversampling ratio.7 Each doubling of η thus 

adds 3 dB to the SNR, increasing the effective resolution of the converter by half a bit. 

Equation 15. ( ) ( )
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The advantages of oversampling and decimation are: (1) sharp anti-aliasing is moved 

from the analogue to digital domain, where it is easier to implement given the low analogue 

precision of most VLSI processes; and (2) output noise may be decreased without increasing 

the number of quantisation levels. The disadvantages are: (1) a huge oversampling ratio (e.g. 
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billion-fold) is needed to achieve high resolution (e.g. 16 bits), restricting the technology to 

very low bandwidth input signals compared to the VLSI process bandwidth; and (2) the digi-

tal signal processing demanded by decimation requires more silicon area. 

B. Delta modulation 

Sampling a signal x(t) at many times the Nyquist rate decreases the time between consecutive 

samples x[n] and x[n-1] and increases their correlation (if the signal is continuous). Therefore, 

as the oversampling ratio increases, the dynamic range of the difference x[n]-x[n-1] decreases 

compared to the dynamic range of x[n]. Delta modulation of an oversampled signal, shown in 

Figure 26, basically quantises this difference. The similarity between delta modulation and 

DPCM of speech is a reason to interpret the circuit operation as source coding. 

yη[n] 

Digital domain 
fS = 2ηfB 

yη(t) 
∫dt

S&H N-bit 
A/D 

N-bit 
D/A 

- 

+ 
ACC x(t) 

Analogue domain 

Figure 26. A delta modulator. 

The feedback signal yη(t) in the delta modulator predicts the input x(t). The error in the 

prediction, buffered by a sample-and-hold unit (S&H), is digitised by an embedded flash A/D 

converter. If the prediction is less than the input, the A/D converter (an excitation encoder) 

outputs a proportionate positive integer, making the D/A converter output a positive signal to 

increase the prediction. If the prediction is more than the input, the A/D converter outputs a 

negative integer causing the D/A converter to output a negative signal to decrease the predic-

tion. The digital accumulator (ACC) is simply an up/down counter, or digital integrator, that 

increments or decrements the output word using the integer updates from the A/D converter. 
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The integration in the feedback path of Figure 26 is an analogue operation whereas the 

integration in the output path is a digital operation. Providing the leakage in the analogue 

integrator is controlled or compensated, the digital output yη[n] will approximate the analogue 

prediction yη(t). Figure 27 gives a linear discrete-time model of delta modulation, where 

quantisation is modelled as the addition of white and uncorrelated noise. 

e[n] 

q[n] 
z-1

+ 

z-1

- 
x[n] yη[n] 

Figure 27. Linear discrete-time model of delta modulation. 

The transfer function of the delta modulator, expressed as Yη(z) = Hx(z)X(z)+He(z)E(z) 

using superposition, is given in Equation 16. Delta modulation does not distinguish between 

the input and the noise, delaying both by one sample. The functions Hx(z) and He(z) are z-

transforms of the system responses to separate impulses on x and e.14 The response of the 

discrete-time system to a sinusoid of frequency f may be found using z = ejωT and ω = 2πf. 

Equation 16. ( ) ( ) ( ) [ ] [ ] [ 1111 −+−=↔+= −− nenxnyzEzzXzz ]ηηY  

Since the delta modulator only delays the noise, its power spectral density Se(f) remains 

unchanged at the modulator output. Ideal decimation of the oversampled signal yη[n] to the 

Nyquist rate signal y[n] = x[n]+ε[n] eliminates the noise outside |f| ≤ fB, resulting in a output 

noise power σε
2 given by Equation 17, which is the same as the result of Equation 15. 

Equation 17. ( ) ( ) ( )
η
σ

η
σ

σ ηω
εε

222
22

2
e

f

f

Tj

B

e
f

f
ee

f

f

B

B

B

B

B

B

dfe
f

dffSfHdffS ==== ∫∫∫
−

−

−−

 

 38



Although oversampled conversion without modulation seems to have the same noise 

power as delta modulation, the latter is actually better. Delta modulation reduces the dynamic 

range of the quantiser input q[n], lowering the quantiser step-size Q and the quantisation noise 

power σe
2 = Q2/12. Denoting the maximum amplitude of the input by A and the maximum 

slew rate by δ, the noise powers for oversampled conversion without and with delta modula-

tion are given in Equation 18 (N is the number of quantisation bits). For delta modulation, 

doubling η divides the noise power by eight and increases the SNR by 9 dB or 1½ bits. Note 

that the performance of delta modulation is not limited by the dynamic range A of the input. 
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The choice of Q for delta modulation, in Equation 18, keeps the difference between the 

input and prediction within ±Q/2. A smaller value for Q may mean that the prediction will not 

slew as quickly as the input, causing a dramatic increase in noise when the input changes too 

quickly. However, using a large value for Q may increase the granular noise since the predic-

tion often alternates above and below the input during periods of slow change. Optimal choice 

of Q thus depends on the probability distribution of slew rates, an opportunity to source code. 

C. First-order delta-sigma modulation 

Delta-sigma modulation is another method to source code an oversampled input signal to 

reduce the noise in the output signal. Figure 28 depicts a first-order delta-sigma modulator. 

The modulator operates by shaping the quantisation noise spectrum so that less noise remains 

after decimation.7 Oversampling creates a band fB ≤ |f| ≤ (2η-1)fB that is completely erased by 

decimation and is thus insensitive to noise. Delta-sigma modulation source codes an over-

sampled input signal by placing most of the quantisation noise in this band. 
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yη[n] 

Digital domain 

yη(t) 

x(t) 

fS = 2ηfB

+ 
∫dt S&H N-bit 

A/D - 

N-bit 
D/A

Analogue domain 

Figure 28. A first-order delta-sigma modulator.  

Figure 28 shows an N-bit quantiser (the cascade combination of A/D and D/A converter) 

although first-order delta-sigma modulation usually involves two-level quantisation.7 The 

analogue signal yη(t) tracks the digital signal yη[n] almost perfectly since D/A conversion 

introduces almost no error. Increasing the number of quantisation levels, however, would 

increase the non-linearity of the D/A converter and would cause harmonic distortion. 

The integrator in the delta-sigma modulator keeps the average value of the input x(t) 

equal to the average value of the feedback signal yη(t) which forces most of the quantisation 

noise in yη[n] to higher frequencies. Figure 29 shows a linear model, in discrete-time, of a 

first-order delta-sigma modulator. Once again, integration is modelled by accumulation. 

e[n] 

+ 
z-1

- 

q[n] x[n] yη[n] 

Figure 29. Linear discrete-time model of first-order delta-sigma modulation. 

Equation 19 expresses the relationship, using superposition, between the input signal 

and quantisation noise and the output of the first-order delta-sigma modulator. 

Equation 19. ( ) ( ) ( ) ( ) [ ] [ ] [ne ]′+−=↔−+= −− 11 11
ηη nxnyzEzzXzzY  
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According to Equation 19, the modulator adds the first difference e′[n] = e[n]-e[n-1] of 

the quantisation noise to the delayed input signal. Equation 20 relates the power spectral 

density Se′(f) of the filtered quantisation noise to the unshaped power spectral density Se(f).6

,
7
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Figure 30 plots the power spectral densities of the original Se(f) and shaped Se′(f) noise, 

normalised to σe
2/ηfB, versus frequency, normalised to ηfB. Delta-sigma modulation reduces 

the noise power in yη[n] at low frequencies but increases it at higher frequencies. 
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Figure 30. Noise power spectrum of first-order delta-sigma modulation. 

Assuming yη[n] is decimated with perfect anti-aliasing, the power spectral density Sε(f) 

of the output noise ε[n] (i.e. in the final digital signal y[n]) will equal Se′(f) in the band |f| ≤ fB. 

Equation 21, therefore, calculates the noise power σε
2 in y[n]. 
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Every doubling of the oversampling ratio divides the noise power by eight, adding 9dB 

to the SNR and increasing the effective resolution of the converter by 1½ bits.7 Thus, over-

sampling with noise shaping requires a lower oversampling ratio to obtain a given resolution 
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than does oversampling without noise shaping. This improvement is achieved without an 

increase in the number of quantisation levels. First-order delta-sigma modulation and delta 

modulation have similar noise performances with respect to η and N but the former is affected 

by the dynamic range A whereas the latter is affected by the maximum slew rate δ. 

The advantage that first-order delta-sigma modulation gains in the oversampling ratio, 

compared to oversampling without noise shaping, is huge (e.g. a thousand-fold oversampling 

ratio is sufficient to achieve 16 bit resolution). Lower oversampling ratios allow higher band-

width input signals to be digitised for a given resolution and VLSI process speed. However, 

noise shaping requires more analogue precision since the band fB ≤ |f| ≤ (2η-1)fB that is used 

for anti-alias filtering is smaller for a lower oversampling ratio. Secondly, the decimator must 

perform sharper anti-aliasing because noise shaping places much more noise outside the input 

bandwidth. Higher-order digital anti-alias filters consume more silicon area. 

D. Second-order delta-sigma modulation 

It is possible to perform better noise shaping than first-order delta-sigma modulation. A dou-

ble loop or second-order delta-sigma modulator, shown in Figure 31, shifts more noise from 

the information band to the high frequencies so that less remains after decimation.7 

fS = 2ηfB

∫dt 
N-bit 
A/D 

N-bit 
D/A 

+ 
∫dt- 

+ 

- 
x(t) yη[n] 

Figure 31. A second-order delta-sigma modulator. 
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The second-order delta-sigma modulator is essentially a first-order feedback loop within 

another first-order loop.15 A linear discrete-time model of the modulator is given in Figure 32. 

e[n] 

z-1
- 

+ 

- 

z-1

q[n] + x[n] yη[n] 

Figure 32. Linear discrete-time model of second-order delta-sigma modulation. 

Equation 22 calculates the transfer function of the second-order modulator using super-

position. While the first-order modulator simply computes the first difference of the noise, the 

second-order modulator computes the second difference e″[n] = e[n]-2e[n-1]+e[n-2]. 

Equation 22. ( ) ( ) ( ) ( ) [ ] [ ] [nenxnyzEzzXzz ]′′+−=↔−+= −− 11 211
ηηY  

Equation 23 calculates the power spectral density of the shaped noise Se″(f), which is 

plotted in Figure 33. The figure is normalised as in Figure 30 and the unshaped noise response 

is given as a reference. Second-order noise shaping, as compared to first-order, flattens the 

noise response more at low frequencies but quadruples it at higher frequencies. 
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Figure 33. Noise power spectrum of second-order delta-sigma modulation. 

Assuming perfect decimation, Equation 24 computes the noise power in the final signal 

y[n]. The noise power drops by 15 dB for every doubling of η, adding 2½ bits of resolution.7 

As with first-order delta-sigma modulation, the noise power depends on the dynamic range A. 
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Compared to first-order delta-sigma modulation, second-order modulation requires a 

lower oversampling ratio to achieve the same resolution. Second-order modulation can realise 

16-bit resolution at an oversampling ratio of around 128, so that compact disc quality sound 

(16-bit samples at 44kHz) can be digitised with a sampling frequency of around 6MHz.7 

However, the decimator must provide sharper anti-aliasing, requiring more silicon. Analogue 

precision is also needed since the transition bandwidth for analogue anti-aliasing is narrower. 

E. Higher-order delta-sigma modulation 

Because first and second-order delta-sigma modulators have been implemented successfully,15 

an obvious question is whether third and higher-order modulators can be constructed by itera-

tions of the first-order feedback loop, as shown in Figure 34. A linear discrete-time analysis of 

such an architecture would suggest that every doubling of the oversampling ratio would in-
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crease the resolution by L½ bits, where L is the order of the modulator (the number of loops).7 

However, these modulators are difficult to realise for L > 2 due to stability problems.15 

There are two kinds of stability considerations for noise shaping modulators. The first 

requirement is that all poles of the filters Hx(f) and He(f) lie within the unit circle. The second 

requirement is not explicitly modelled by the discrete-time analysis. If the input to the quan-

tiser is too large then the quantiser saturates and the noise power σe
2 is no longer equal to 

Q2/12. The increase in noise power will depend on the degree of saturation. As a result of the 

circuit feedback, an increase in the noise will cause an increase in the input q[n] to the quan-

tiser, saturating it even more. This relationship is equivalent to positive feedback, whereby an 

increase in the noise causes an increase in the quantiser input and vice-versa. The end result is 

a large amplitude oscillation at a low frequency. These oscillations occur if the input signal 

saturates the quantiser when the loop gain is too high (≥ 2).15 

fS = 2ηfB

∫
N-bit 
A/D 

N-bit 
D/A 

+ 
∫ ∫- 

+ 

- 

+ 

- 
x(t) yη[n] 

Figure 34. A higher-order delta-sigma modulator. 

Higher-order modulators may be built by choosing a different architecture. Generally, 

higher-order noise shaping modulators implement a high-order low-pass filter F(z) in place of 

the integrator in the standard delta-sigma modulator.15 A low-pass filter limits the gain in the 

pass band, which is beneficial for stability, whereas the gain of an integrator gets larger and 

larger at lower and lower frequencies. There are techniques to implement most rational poly-

nomials F(z) = P(z)/Q(z), providing the degree of P(z) is not more than that of Q(z).14

,
1 5
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As the order increases, higher-order modulators implement more ideal low-pass filters 

while meeting stability criteria. However, this approach is tantamount to requiring sharp 

analogue anti-aliasing. The decimation requirements must also increase to compensate for the 

sharp rise in noise power above the input bandwidth. Although they do not quite achieve L½ 

bits for every doubling of η, higher-order noise shaping modulators do allow the same resolu-

tion to be achieved with a lower oversampling ratio, than first or second-order delta-sigma 

modulation,7 but even these architectures show a diminishing return above fourth-order.15 

F. Delta2-sigma modulation 

Since the output noise power in delta-sigma modulation is directly related to σe
2, which 

equals Q2/12, a reduction in the quantiser step-size Q would increase the SNR. However, the 

unsaturated range of the quantiser would also be reduced, reducing the input dynamic range 

that can be accommodated. The unsaturated range must, in fact, be greater than the input 

range because the quantiser must quantise two signals simultaneously, namely the input and 

the circulating noise.15 As the modulator order increases, the circulating noise power increases 

(for first-order delta-sigma modulation, q[n] equals x[n-1]-e[n-1] whereas, for second-order 

delta-sigma modulation, q[n] equals x[n-1]-2e[n-1]+e[n-2]). The value of Q must therefore 

increase as the modulator order increases, as given in Equation 21 and Equation 24. 

If the input is correlated then the dynamic range of the signal entering the delta-sigma 

modulator may be reduced by modulating the difference between the input and a simple pre-

diction of the input. Figure 35 introduces an original circuit, named a delta2-sigma modulator, 

where a delta-sigma modulator quantises the prediction error of a delta modulator. 
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fS = 2ηfB 

Figure 35. A delta2-sigma, or cascaded delta delta-sigma, modulator. 

Delta2-sigma modulation, compared to delta modulation, is like linear predictive coding 

with an enhanced embedded excitation encoder. The output is the sum of two digitised signals 

y1[n] and y2[n] from a cascaded delta and delta-sigma modulator. Figure 36 gives a model of 

the modulation, with an extra delay in the delta modulator path for synchronisation. 

Figure 36. Linear discrete-time model of delta2-sigma modulation. Figure 36. Linear discrete-time model of delta
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2-sigma modulation. 
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The transfer function of the delta2-sigma modulator is given in Equation 25. Note that 

the noise e1[n] of the delta modulator does not appear in the output. Effectively, the delta-

sigma modulator resolves the granular noise of the delta modulator. Only the noise e2[n] of 

the delta-sigma modulator contaminates the output and it is shaped towards high frequencies. 

Equation 25. 
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Assuming perfect decimation of yη[n] to y[n], the output noise power σε
2, given in 

Equation 26, is the same as for delta-sigma modulation (with e replaced by e2). 

Equation 26. 
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However, the step-size Q2 of the embedded delta-sigma quantiser does not depend on 

the dynamic range A of the input signal but on the dynamic range of the prediction error d(t). 

The latter is bounded by ±Q1/2, where Q1 is the step-size of the quantiser in the delta modula-

tor. Since Q1 depends on the maximum signal slew rate δ, as in delta modulation, the overall 

noise performance of the delta2-sigma modulator depends on this term and not on the input 

dynamic range. Note that the noise power drops as η5, like double loop modulation. 

G. Simulation results 

The four modulators described in this chapter were simulated in Matlab. Test signals x(t) were 

realisations of a stationary random process X(t), abstracted in Figure 37. The process was the 

sum of a narrow-band white process A(t) and a wide-band white process B(t), having uniform 

probability densities fA(x) and fB(x). The narrow-band process lay in the band |f| ≤ fA with a 

power spectral density equal to A and the wide-band process lay in the band |f| ≤ fB with a 

power spectral density equal to B. Because these two processes were statistically independent, 
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the power spectral density of their sum equalled the sum of their power spectral densities. The 

process X(t) was oversampled at fS = 2ηfB, which introduces some correlation. 

Narrow-band process Wide-band process 

fA-fA fB -fB fS -fS 

A+B 

B 

Figure 37. Power spectrum of an input process constructed for simulation. 

Three simulations were undertaken, varying the oversampling ratio η, the bandwidth ra-

tio fB/fA, and the power ratio AfA/BfB (the power ratio relates directly to the dynamic range 

ratio of the narrow-band to the wide-band process). For each set of parameters, ten sample 

signals x(t) were generated and the SNR was averaged over these realisations. Since the quan-

tiser in the double loop modulator needs a minimum of two bits to encompass both the input 

signal and the circulating noise (Equation 24), the delta modulator and both delta-sigma 

modulators (single and double loop) were implemented with two-bit (N = 2) quantisers. To 

ensure that all modulators had the same A/D interface capacity, the delta2-sigma modulator 

was implemented with two one-bit (N = 1) quantisers (making Q1 equal to Q2). 

Figure 38 shows the SNR performance of the four modulators versus the oversampling 

ratio. For this simulation, the bandwidth ratio equalled 64 and the power ratio equalled 64 

(meaning that the narrow-band process had 8 times the dynamic range within 1/64 times the 

bandwidth of the wide-band process). Given that such a process represents a slowly varying 

signal of high dynamic range superimposed on a quickly varying signal of low dynamic 

range, there is enough correlation for the predictive modulators to outperform the other two. 
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Figure 38. Modulator signal-to-noise ratio versus the oversampling ratio. 

As expected, Figure 38 shows that the SNR improves with increasing η. The first-order 

modulators (delta and single loop) steadily improve at a rate of 9 dB per octave, consistent 

with the theory. At low oversampling ratios, they are better than the second-order modulators 

because the constants in Equation 18 and Equation 21 are smaller than those in Equation 24 

and Equation 26. However, the second-order modulators (double loop and delta2-sigma) 

improve at a rate of 12 to 15 dB per octave, also consistent with the theory. The double loop 

modulator warrants further study as its performance seems to degrade to first-order at η = 16. 

Finally, delta2-sigma modulation is the best modulation scheme above η = 8. 

Figure 39 plots the SNR of the modulators versus the bandwidth ratio, using an over-

sampling ratio of 32 and a power ratio of 64. The bandwidth ratio corresponds to the separa-

tion, in rate of variation, between the high and low dynamic range processes A(t) and B(t). 
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Figure 39. Modulator signal-to-noise ratio versus the bandwidth ratio. 

The leftmost point in Figure 39 corresponds to a unit bandwidth ratio, meaning there is 

no frequency distinction between the high and low dynamic range component processes. In 

other words, the input process is the sum of two white processes of equal bandwidth but 

different average power. Such a process is relatively uncorrelated for low oversampling ratios. 

The predictive modulators are only slightly worse than the noise shaping modulators for this 

situation. However, at a bandwidth ratio of two, each predictive modulator immediately sur-

passes the noise shaping modulator of similar order due to a slight increase in correlation. 

The performance of the noise shaping modulators is not really affected by the band-

width ratio. Increasing the ratio does not affect the maximum amplitude of the input process 

but does decrease its maximum slew rate. Thus, the predictive modulators steadily improve 

their performance until it saturates at a bandwidth ratio of 16. At high ratios, the narrow-band 
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component is effectively a DC signal of random amplitude, limiting the minimum value of the 

process slew rate to the maximum slew rate of the wide-band component. 

As shown in Figure 38, second-order modulation surpasses first-order modulation once 

η is sufficiently high. Each second-order modulator is better than its first-order counterpart 

because of an improvement in or an addition of noise shaping. This result is also evident in 

Figure 40, which charts the SNR performance of the modulators against the power ratio of the 

process. The oversampling ratio was 32 for this simulation and the bandwidth ratio was 64. 

A unit power ratio, at the centre of Figure 40, corresponds to A(t) and B(t) having equal 

dynamic range. Delta2-sigma modulation is then slightly worse than double loop modulation 

but delta modulation is better than single loop modulation. At the left end of the graph, the 

narrow-band process A(t) is one tenth the dynamic range of the wide-band process B(t). Del-

ta2-sigma is again slightly worse than double loop modulation but delta and single loop modu-

lation are similar. However, when the narrow-band component has a large dynamic range, the 

predictive modulators are much better than their noise shaping counterparts. 

As with the bandwidth ratio in Figure 39, the performance of the noise shaping modula-

tors does not really change with increasing power ratio. A change in the dynamic range of X(t) 

affects both the signal power and noise power equally, leaving the SNR results of noise shap-

ing modulators unchanged. However, the correlation in X(t) increases with an increasing 

power ratio since more power is allocated to the slowly varying component A(t). As a result, 

the SNR results of predictive modulation improve with increasing power ratio. 
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Figure 40. Modulator signal-to-noise ratio versus the power ratio. 

In conclusion, this chapter has investigated source coding circuitry that improves A/D 

conversion of oversampled signals. Delta modulation uses prediction to reduce the dynamic 

range of a signal before quantisation. Delta-sigma modulation shapes the quantisation noise 

spectrum so that less falls in the information band. This report combined prediction and noise 

shaping by introducing a delta2-sigma modulator, ideal for converting the superposition of a 

high dynamic range narrow-band process and a low dynamic range wide-band process. 
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V. Conclusion 

A. Source coding principles 

Previous chapters reviewed techniques for source coding of speech and of oversampled sig-

nals and suggested new algorithms and circuit architectures to improve results. From these 

chapters, several conclusions may be drawn about source coding. 

Given a particular information source, the complexity of source coding needed to satisfy 

a certain distortion tolerance is inversely proportional by a high order to the channel capacity. 

The fact that complexity is inversely proportional to capacity is not surprising since more 

work must be done to squeeze the same information through a smaller bottleneck. However, 

at least with speech coding, the rate of increase in complexity as channel capacity decreases is 

surprising. The theoretical and computational effort to traverse linear PCM, logarithmic PCM, 

optimised non-uniform PCM, DPCM, adaptive scalar and vector quantisation, ADPCM, RPE, 

and CELP, outpaces the decrease in bit rate from 128 kbps to 4.8 kbps. 

Furthermore, 4.8 kbps CELP does not offer toll-quality speech whereas 128 kbps linear 

PCM does. Below a certain channel capacity, a required level of speech quality may not be 

possible despite the complexity of source coding. Toll-quality standards below 8 kbps have 

not been established, although more research and better models may help overcome this bar-

rier. The intrinsic unpredictability of most real sources of information implies that a minimum 

channel capacity exists below which the information cannot be adequately represented. 

These principles are important to VLSI source coding. If a digital algorithm cannot meet 

a distortion tolerance for the planned capacity of a VLSI analogue-digital interface then no 

circuit technique would meet the tolerance either. In fact, the interface capacity must be sig-

nificantly higher than the minimum capacity required by the information source because the 

complexity of source coding increases rapidly as the threshold is reached and VLSI circuits 

cannot hope to reproduce the performance of a complex digital source coding algorithm. 
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An important observation is that improvements in source coding and improvements in 

the quantitative measure used to compute the distortion introduced into a signal go together. 

The distortion measure has a significant influence on the source coder design, since the aim of 

the latter is to minimise the former. In the case of real world signals, distortion may be a 

subjective matter and an accurate formulation of the distortion becomes a difficult problem in 

itself. Nonetheless, an objective and computable distortion measure is imperative for source 

coding design to avoid subjective bias, to save time in experimental studies, and to apply 

mathematical techniques to reduce the distortion. The SNR is generally a good distortion 

measure. However, for non-stationary processes like speech, the SEGSNR is a better measure 

for it respects the time-varying nature of the process statistics. 

Improving the distortion measure permits mathematical developments to improve the 

source coder but the reverse is also true. For the source coding designer, an imperfect distor-

tion measure is still a useful tool to rank the source coding candidates for subjective evalua-

tion. If a source coder manages consistently to minimise a particular distortion measure, the 

flaws in the measure become readily apparent in experimental studies on test signals. Explora-

tion of the inconsistencies between the distortion measure and subjective evaluations may 

lead to improvements in the formulation of the measure. 

Knowledge about the information user helps to improve the distortion measure and 

hence the source coder. For example, properties of the human auditory system, such as noise 

masking and non-uniform spectral sensitivity, are exploited in medium to low bit rate coding. 

The user, not the designer of the source coder, ultimately decides which features in the infor-

mation are important and which are insignificant. Similarly, knowledge about the information 

source helps to improve the source coder. The source may have intrinsic constraints that 

restrict the ensemble of signals it can generate. For example, the reflection and absorption of 

glottis excitations by the human vocal tract are responsible for the high correlation of speech. 
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Signals typically exhibit structure through a non-uniform probability distribution of am-

plitudes or a non-uniform power spectral density (meaning that the signal is correlated). The 

former may be exploited by non-uniform quantisation and the latter by using prediction to 

reduce the dynamic range. Higher order statistical structures are possible but are more diffi-

cult to exploit. Source coding is useful because exploiting the statistics of information may 

reduce the distortion introduced when the information is passed through a limited channel. 

The most important conclusion of the work described in this report is that source coding 

is possible with analogue and digital, albeit simulated, circuitry. Oversampled modulation is a 

clear example of source coding. Delta modulation exploits the correlations in oversampled 

signals and delta-sigma modulation exploits the non-uniform spectral sensitivity of the deci-

mator to quantisation noise by shifting the noise to the least sensitive band, namely the high 

frequencies. These two source coding circuits may be combined, since they work in different 

ways, by cascading a predictive delta modulator with a noise shaping delta-sigma modulator. 

The experiments on oversampled modulation show that particular source coders may be 

efficient only for particular information sources. For example, the cascaded modulator deliv-

ers the best performance, amongst the modulators considered, only when the information 

source approximates a high dynamic range narrow-band process added to a low dynamic 

range wide-band process. Source coding sacrifices some generality because assumptions are 

made about the information in the coder design, which may not apply to other signal sources. 

B. Future work 

This report has demonstrated the usefulness of source coding, has established the possibility 

of source coding signals for A/D conversion using simulated analogue and digital circuitry, 

and has presented some general principles about source coding. However, further work is now 

required to demonstrate the feasibility and usefulness of source coding signals for A/D con-

version using real VLSI analogue and digital circuitry. 
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To demonstrate feasibility, a VLSI source coding A/D converter must be designed and 

implemented for a specific application that requires the conversion of a structured information 

source. To demonstrate usefulness, the A/D requirements of the application without VLSI 

source coding should exceed the capabilities of current low cost technology. A suitable appli-

cation is the development of an affordable, high resolution, high frame rate, high dynamic 

range, colour digital video camera. An exact specification must still be determined but meet-

ing all five requirements, not simply a few, appears to be challenging. 

Video information does contain structure that can be exploited, particularly spatial and 

temporal correlations of pixel values.17 Spatial correlations may be converted to temporal 

ones by raster scanning an image. The human visual system has perceptual properties that 

may also be exploited. For example, the eye is more sensitive to red or green light than to 

blue, suggesting fewer encoding resources should be given to the blue reading of a scene.16 

Additionally, the type of lighting in a scene, natural or artificial, affects the spectral distribu-

tion of the illumination, which may be exploited by a source coded A/D converter. 

Furthermore, a scene s(x,y), where x and y are pixel co-ordinates, is typically modelled 

as the product of an illumination i(x,y) and a reflection r(x,y), or the amount of illumination 

reflected by each point in the scene.17 The logarithm of the pixel values thus represents the 

image as a sum of two independent processes ‘log i(x,y)’ and ‘log r(x,y)’. The illumination 

covers a large dynamic range but varies slowly in space whereas the reflection covers a small 

dynamic range but varies quickly. Such structuring should prove useful for source coding. 

Figure 41 shows the first year of a two-year plan for this work. The work will begin by 

reviewing and developing simple digital algorithms to source code images. Once a suitable 

approach is identified, VLSI analogue and digital circuits for the camera and source coded 

A/D converter will be designed. Circuit layout overlaps with design since they are related in 

full-custom VLSI. The plan is to submit a chip for fabrication at the end of the first year. 
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Figure 41. Plan for December 1998 to September 1999. 

Figure 42 shows the second year of this plan. While the chip is being fabricated at the 

start of the year, the design will be documented. Equipment will also be acquired and assem-

bled in anticipation of testing. Once the foundry returns the chip, testing will proceed for 

several months. Results of these tests and final conclusions will be documented at the end of 

the second year. Literature reviews will occur regularly over the two years, to acquire knowl-

edge required for the project and to keep abreast of related developments. Time will also be 

required annually to collect test data from the Web and from high quality still cameras. 
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Figure 42. Plan for October 1999 to September 2000. 

In conclusion, this report has hypothesised that source coding of signals, using VLSI 

circuitry, may be used to improve the conversion of analogue information to digital informa-

tion. Theory and results from the literature and original work have been presented to argue 

that this idea is worth pursuing. Further work to design, implement, and test a digital video 

camera, incorporating a source coding A/D converter, is needed to confirm the hypothesis. 
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