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Abstract

Logarithmic CMOS image sensors capture high dynamic range scenes without satu-
ration or loss of perceptible detail but problems exist with image quality. This thesis
develops and applies methods of modelling and calibration to understand and improve
the fixed pattern noise (FPN) and colour rendition of logarithmic imagers. Chapter 1
compares CCD and CMOS image sensors and, within the latter category, compares
linear and logarithmic pixel designs. Chapter 2 reviews the literature on multilinear
algebra, unifying and extending approaches for analytic and numeric manipulation of
multi-index arrays, which are the generalisation of scalars, vectors and matrices. Chap-
ter 3 defines and solves the problem of multilinear regression with linear constraints for
the calibration of a sensor array, permitting models with linear relationships of parame-
ters across the array. Chapter 4 develops a steady state model for the digital response of
a logarithmic pixel to light stimulus and uses it to characterise and correct FPN, which
proves to depend nonlinearly on illuminance, by calibration of simulated and experi-
mental data. Chapter 5 models the transient response of logarithmic imagers, for typ-
ical source follower readout circuits, and shows with simulation and experiment how
transient operation and design may cause FPN, which may partially be corrected by a
steady state calibration. Chapter 6 extends the steady state model of the image sensor
to examine and reduce the dependence of FPN on temperature, comparing in simula-
tion and experiment methods of calibration that use pixel responses under both dark
and light conditions. Chapter 7 describes the calibration of pixel responses in terms
of a standard colour space, extending previous models suitable for FPN correction but
unsuitable for colour rendition, and shows that colour rendition of a Fuga 15RGB log-
arithmic camera competes with that of conventional digital cameras. Finally, Chapter 8
discusses and summarises the main results of this thesis and outlines future theoretical,
simulation and experimental work.
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Chapter 1

| ntroduction

1.1 Motivation

The importance of visual information to society may be measured by the technolog-
ical endeavour over millenia to record observed scenes on an independent medium.
Artistic license aside, amateurs and professionals have sought to render images with
a maximum of perceptual accuracy and a minimum of effort. The culmination of this
undertaking is the digital camera. However, the development of the digital camera is
far from complete.

Although digital cameras have in many ways surpassed the capabilities of film
cameras, the human eye remains the ultimate standard for comparison and it vastly
outperforms the best cameras in many respects. Furthermore, widespread economic
interest in cameras, with a market demand expected to reach 60 million by the year
2002 [7], has sustained reseach and development in a variety of image sensor designs,
which make up the operational core of the digital camera. The various designs may be
broadly grouped into two categories: charge coupled device (CCD) sensors and com-
plementary metal-oxide-semiconductor (CMQS) sensors. Table 1.1 compares these
electronic sensors to photographic film and the human eye.

The eye is a remarkable organ not simply because of its ability to sense light but
especially because of its ability to process light information before even sending a
signal to the brain. Far more information enters the eye, in terms of the positions
and wavelengths of observed photons, than can realistically be transmitted down the
optic nerve, or processed by the visual cortex, in real time. By genetic design, the eye
encodes the vast visual input in such a way that the limited neural output retains the
most significant descriptors of the scene while the rest are discarded [8].

With his work on the silicon retina, Carver Mead helped bring biological inspira-
tion into the image sensor community [9]. This effort sought to replicate biological
structures of the eye, concerned with information encoding, using analogue electron-
ics. Although the focus of many years of research, some of it still ongoing, the work
did not lead to an economical camera that renders images realistically (but this was
not always the goal). Endeavours at biological inspiration in image sensing that were



CHAPTER 1. INTRODUCTION

Table 1.1: The human eye versus silicon (and film). Numbers given are typical values,

as of 1999, following Dierickx [6].

Criterion Eye CCD CMOS Film
Spectral resp. 400-700nm 400-1000nm 400-1000nm | 300-700nm
Peak quant. eff. | < 20% > 50% > 50%

Dynamic range | 40-120dB 80dB 66-120dB 20-80dB
Dark limit 10~ 3lux 107*-0.1lux | 10~*-1lux ~ Olux
Noise photons 10 10 100 100

Integ. time 0.3s 40ms-5min 40ms-10s+ Unlimited
Max. frame rate | ~ 15Hz 10kHz > 10kHz 1 shot only
No. of pixels 12-107 cones | 8-10°-9-107 | 8-10° > 10°
Pixel pitch 2-3pum 5-10pm 5-10pum 10-20pm
Image size 3cm lmm-1lcm 1lmm-2cm Film size
Rad. hardness lmrad 10krad 10krad-?

Op. temperature | 36°C 73K-200°C 0K-200°C 0K-100°C
Power dissip. < 1mW 500m'W 50mW None
Colour quality Ideal Poor Poor Poor
Photometry Impossible Easy Easy Possible
Preprocessing Extensive None None None
Access method Data driven Serial only Serial/random | Optical only
Data path 5-10° nerves | 8-10 bits 8 bits None

Unit price Invaluable 100 euros 10 euros 0.1 euros
Dev. cycle 5 - 10° years 5 years 2 years 20 years
Number of fabs | 3-10° 10 1000 10

commercially successful sought less to reproduce biological structure and more to re-
produce biological function and relied less on analogue electronics and more on digital
electronics [10, 11]. Semiconductor physics is vastly different from cellular biology
and therefore information processing structures must be tailored to the medium. Fur-
thermore, the reliability and flexibility of digital over analogue electronics has led a
general trend in the semiconductor industry to favour the former over the latter.

This thesis concerns the biologically inspired digital cameras composed of logarith-
mic as opposed to linear image sensors. These sensors, which may be built in CMOS
but not in CCD technology, are semi-successful in that they are available commercially
but remain of interest only to researchers and developers because of problems with
image quality. The hypothesis advocated here is that by deriving a model of the log-
arithmic CMOS image sensor, supported by semiconductor theory, and by deriving a
method to calibrate the model, validated with simulated and experimental data, it will
be possible to understand precisely how these digital cameras fall short of rendering
an image with a maximum of perceptual accuracy and a minimum of effort. Such an
understanding may be used to improve the image quality, as shall be shown, at an ex-
pense of digital processing. Such an understanding may also be used, in the future, to
design a better logarithmic CMOS image sensor.

Section 1.2 gives a background to CCD and CMOS image sensors, to linear and
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Figure 1.1: CCD image sensors march photogenerated charge systematically from an
array of pixels to an output amplifier.

logarithmic CMOS designs and to problems with image quality in the latter, outlining
promises and challenges of various options. Section 1.3 previews the theory, simula-
tions and experiments that comprise the remaining chapters.

1.2 Background
121 CCDversusCMOS

Figure 1.1 depicts the architecture of an interline transfer CCD image sensor [12],
typical of video rate CCD imagers [13]. Light striking the photosensitive area of each
pixel creates charge carriers in the doped silicon substrate and these carriers collect in
a potential well, which is created in each pixel by a voltage applied to a gate electrode.
After a programmable period of time elapses, the charge is shifted to another well in
the pixel, shielded from light by opaque metallisation, by modulation of gate voltages.
As a result, all photosensitive wells are simultaneously emptied of charge. While the
collection process resumes from scratch in each pixel, the charges stored in the shielded
wells are shifted repeatedly in parallel from one row to the next by modulation of gate
voltages. The charges in the bottom row are shifted into a separate row of shielded wells
called the output register. In the time between shifting of rows into this register, the
charge in each well of the register is shifted repeatedly in parallel from one column to
the next by modulation of gate voltages. The charge in the last column of the register is
shifted to an amplifier where it is converted to a voltage for driving external electronics.
In this manner, an array of photogenerated charge is marched systematically to the
amplifer before the next image is available [14, 15].

Figure 1.2 shows the architecture of a CMOS image sensor [15], which is similar
to a memory array. Each pixel consists of a photodetector, usually a photodiode or a
photogate, and one or more transistors and capacitors depending on the design (which
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Figure 1.2: CMOS image sensors operate like memory arrays with photosensitive pix-
els instead of memory cells.

varies considerably). As before, light striking the photodetector creates charge carriers
that are used to produce a signal, which may be a voltage or current. The way in
which the signal is produced and the type of signal depends on the pixel design. For
example, an early design called the passive pixel sensor (PPS) integrated the charge
onto a capacitor to produce a voltage. To read a pixel, a row scan circuit and a column
scan circuit decode a supplied address and enable the row and column lines of the
pixel. As with cells in a memory array, all pixels in a column drive a common buffer
via a shared column bus. When a particular row is selected, all pixels in that row drive
their respective column buffers. All column buffers drive a common amplifer via a
single output bus. Only one buffer, selected by the column scan circuit, operates at a
time. Thus, by scanning of the address space, each pixel may drive its photogenerated
signal to the output amplifier. In a PPS, the capacitor in each pixel is connected to its
column bus by a transistor switch (the column buffer is connected to the output bus
by another transistor switch). Modern pixel designs, called active pixel sensors (APS),
have additional transistors in each pixel and column circuit to amplify the signal.
CCDs dominate the image sensor market, taking 90% of share in 2001, for many
reasons [16]. The semiconductor industry has had three decades of experience in the
making and selling of CCD sensors, whereas CMOS sensors have been viable for less
than a decade [14]. Investment and development of CCDs continues apace with Sony,
Matsushita, NEC and Texas Instruments announcing megapixel sensors in recent years.
In applications demanding high resolution and sensitivity, CCD sensors are preferred
because they deliver a better image quality than CMQOS sensors, especially for still pho-
tography [7, 17, 15]. Variations in device characteristics, such as feature dimensions
and silicon doping levels, from pixel to pixel and column to column leads to substan-
tial fixed pattern noise with CMQOS [13, 15]. There is also a high temporal noise from
thermal and 1/f sources with CMOS sensors because signals are transferred to the
outside world via multiple transistor stages [18]. Fixed and temporal noise is smaller
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with CCD sensors because charge packets are transferred almost perfectly within the
sensor and pass to the outside world via a single output stage [15, 18]. In CCD technol-
ogy, the percentage of the pixel area devoted to photodetection, called the fill factor, is
high compared to CMOS technology, giving a better photoelectric efficiency [14]. Fur-
thermore, CCD sensors are fabricated in dedicated processes that are fully optimised
for imaging [15]: junction and depletion depths are positioned for optimal spectral
sensitivity and minimum crosstalk [19]; special attention is paid to minimising dark
current, a parasitic effect in photodetectors, so that it is lower with CCD technology
than with CMOS [19, 7]; and CCD technology is designed to make good capacitors,
maximise signal-to-noise ratio (SNR) and achieve a high charge transfer efficiency (up
10 99.999%) [14]. Typical CCD sensors achieve SNRs better than 60dB, where a 42dB
SNR is the threshold for a VHS-quality still picture.

Nonetheless, CCD technology faces many challenges. CCD manufacturers use spe-
cialised fabrication processes that have their roots in the early days of MOS integrated
circuits and are incompatible with modern CMOS processes that make today’s more
complex mixed-signal integrated circuits [13]. As a result, CCDs cannot be integrated
easily with CMOS circuits, such as timing and control logic, because of additional fab-
rication complexity and increased cost [20, 13]. Even with integration, CCDs are high
capacitance devices so adjacent CMQOS circuits would dissipate too much power [20].
Therefore, these circuits are added externally, requiring extra components and board
space. For high charge transfer efficiency, CCDs require specialised processes with
large voltage swings and multiple supply and bias voltages, which further complicates
the system [20, 14, 13]. CCDs also suffer from blooming and smear, especially when
imaging a scene containing bright lights. Blooming occurs when the depleted region
under a gate fills with charge and excess charge spills into neighbouring depleted re-
gions. Smear, appearing as vertical stripes, occurs when photogenerated charge leaks
into shielded wells during the parallel transfer of charge packets in each column to the
output register. Most modern CCDs have structures to reduce these effects.

The gap between CCD and CMOS in terms of sensitivity is diminishing and is
expected to close for future high performance multimegapixel sensors [7]. As CCDs
transport their charge packets to external electronics through a single output stage, high
frequencies of charge-to-voltage conversion are required for a high pixel count and
frame rate [15]. Already, CCDs are having difficulties meeting the demands of the high
performance video market since CCD noise performance, which is the main advantage
over CMOS for still photography, worsens by a factor of five to ten at higher speeds
[17]. For good quality images, the CCD readout rate is limited by sequential access
and the need for nearly perfect charge transfer [20]. These factors are exacerbated with
shrinking feature sizes because more pixels need reading in the same time with smaller
pixel sizes but the same image size and frame rate [7]. With millions of pixels, random
accessibility may become important as the data flow requirements for full frame video
may challenge microprocessors. Due to their intrinsically serial readout, CCDs cannot
support random access [20, 13]. For the same reason, the CCD process suffers from
poor yields (and CCD sensors suffer from susceptibility to radiation damage) [20, 14].
If a defect appears in a single pixel of a CCD sensor then it interrupts the charge transfer
process of the column, rendering most of the column useless.

Because of CCD limitations, CMOS technology has been gaining ground where
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system integration may be traded against the moderate image quality that is readily
available [7]. CMOS image sensors may be fabricated in standard CMOS processes,
allowing analogue and digital signal processing circuits to be integrated on the same
die as the sensor array [14, 15]. The PPS technology, developed before the APS tech-
nology, was unpopular because of poor image quality. However, APS technology raises
the SNR and photoelectric efficiency of CMOS imagers near to those of CCDs. APS
offers lower noise readout, improved scalability and higher speed compared to PPS
[20]. As standard CMOS processing allows sensors to take advantage of the enormous
infrastructure and learning curve of the semiconductor industry, CMOS imagers are be-
ginning to compete against CCDs in many areas of the consumer market [14]. Industry
sources predict CMOS sensors will take over CCD sensors in consumer-grade digital
cameras, the worldwide market for which is estimated to be 8.5 million in 2001. The
estimated market for CMOS imagers in general is 60 million in 2002 [7]. Applications
include robotics, machine vision, guidance and navigation, automotive technology and
consumer electronics (e.g. video phones, computer inputs and home surveillance) [20].

Many large players have entered the emerging market for CMOS imagers, includ-
ing Texas Instruments, Motorola, Toshiba and Rockwell [14, 7]. Intel plans to market
digital cameras for PCs using CMOS sensors that it will manufacture. STMicroelec-
tronics and Photobit are the leading suppliers of CMOS sensors, which take up 10% of
the imager market in 2001 [16]. A trend in the semiconductor industry is to outsource
to achieve economies of scale (the CEO of Photobit expects 50% of all integrated cir-
cuits to be fabricated by the world’s three leading foundries by 2002) so there are also
56 fabless CMOS imaging companies. Though CCDs presently dominate the market,
there are only about five large manufacturers [14]. The fact that CMOS sensors can
be built by more people means there will be more competition and ultimately lower
prices. For CMOS imagers, product differentiation will increasingly be found in the
circuit design, chip architecture and system integration levels whereas CCD product
differentiation is mostly found at the device and process design levels [19].

CMOS pixels will scale better with technology not because the photodetectors are
any better than CCDs but because more and more additional circuitry can be placed
in each pixel without affecting pixel size, fill factor or sensitivity [14]. In theory, pixel
sizes do not need to go below 5um x 5um because of the diffraction limit of the camera
lens [19]. However, since in a common Bayer patterned colour imager, a 2 x 2 mosaic
of pixels (with red, green and blue filters) defines an effective colour pixel, further
downscaling of single pixels may be useful to fit one effective colour pixel into the
optical lens resolution limit [7]. Apart from adding circuits to pixels, analogue-to-
digital converters (ADCs) can be integrated on the image sensor die and, with digital
signal processing and other functions, a one-chip camera becomes possible [14]. This
has the advantage that all off-chip communication can be digital but, more importantly,
the integration of circuits on one die reduces the power, size and cost of the system.

There are several other advantages of CMOS over CCD. The similarity in readout
between CMOS imagers and memory arrays means pixels may be randomly addressed,
which is desirable [20, 13]. For the same reason, defects tend to affect individual
pixels in a CMOS sensor leading to better yields and hence a cheaper product [14].
Since modern CMOS imagers have amplifiers present in each pixel, charge to voltage
conversion operates at low frequencies even in the case of a high pixel count [15].
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Video performance relies more on signal processing and driving than on low noise
performance of pixels [17]. Even in aspects of light sensation, CMOS may exceed
CCD technology [13]. CMOS photodiode imagers typically have 60-65% absolute
quantum efficiency at peak. For standard CCD, the absolute peak quantum efficiency
is about 35% because of semitransparent polysilicon gates above each pixel, which
partially obstruct incoming light especially in the blue portion of the spectrum.

Despite numerous advantages and enormous interest in CMOS technology, a dom-
inant changeover from CCD to CMOS will not be soon [14]. Presently, CMOS sensor
offerings are at the low end of the market, e.g. webcams, where cost is more important
than performance [17]. Whereas CMOS foundries are sufficient for acceptable resolu-
tion sensors, achieving high resolution and quality comparable to CCDs requires dedi-
cated processes [16]. Front-end process modifications such as additional implants and
back-end process modifications such as color filters and microlenses are essential for
implementing commercially viable image sensors. Fundamentally, as multiple metal
layers hamper high resolution imaging, spacings need to be made as thin as possible.
Fabless providers will have to make arrangements with foundries for add-on CMOS
process modules tweaked at least for general imaging. Furthermore, using standard
CMOS technology to make an image sensor does not automatically result in a major
price advantage in the finished camera [19]. A non-negligible fixed cost with all digital
cameras is due to optical related processes such as optical testing, optical cleanliness,
optical packaging, on-chip colour filter arrays and on-chip microlenses.

Since standard CMOS technology develops to optimise the power-delay, reliability
and cost-performance of logic and memory circuits, if device characteristics germane
to imaging are not considered as the technology evolves then CMOS imagers may not
benefit from device scaling [19]. However, to reach the resolution standards that CCDs
today dictate, CMOS sensors must use downscaled processes [7]. Yield, die cost and
lens cost also benefit from a small pixel and therefore a small die size. While standard
CMOS may provide adequate imaging at the 2—-1um generation without any process
change, modifications to the fabrication process and innovations of the pixel architec-
ture are needed to enable good quality imaging at the 0.5um generation and beyond
[19]. Optimisation of CMOS imagers begins to diverge from that of CMOS logic and
memory at the 0.35-0.25um generation. If foundries are willing to tailor the junc-
tion and/or channel implants and selectively or globally removing the opaque silicide
module, accepting the cost and/or performance degradation associated with doing so,
CMOS imagers may be scaled to 0.25-0.18um. The use of silicon-on-insulator then
poses a significant problem. As CMOS technologies approach the 0.13-0.1um genera-
tion, parasitic off currents, gate tunnelling currents and p-n junction tunnelling currents
begin to approach the dark current density observed today and both tunnelling currents
increase exponentially with further device scaling. Related to device scaling, voltage
scaling reduces the dynamic range of standard CMOS imagers by decreasing the full
signal charge capacity. Enhancements and deviations from standard processes will be
necessary to keep up sensitivity with downscaled generations [7].

The long-term challenges facing CMOS imaging have not escaped the attention of
academia and industry. Various specialised devices have been developed to increase
sensitivity without costing too much in pixel area, including the photogate, the pinned
photodiode and the thin-film-on-ASIC pixels [7]. Foundries are recognising the mar-
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Figure 1.3: Linear CMOS pixels integrate photogenerated charge, sensed by a diode,
onto a capacitor, i.e. the depletion capacitance of the diode.

ket potential of CMOS image sensors and are responding to the needs of the technol-
ogy [16]. The Taiwan Semiconductor Manufacturing Corporation, the world’s lead-
ing foundry, announced that it will use its entire process family, from 0.8m down to
0.35pm and below to support CMOS image sensor production. Foundries can optimise
for 20 different processes simultaneously and may expand for up to 100 processes. In
the long run, lower costs associated with using standard CMOS processes may not be
the winning advantage of CMOS over CCD. The real advantage of CMOS imaging
is the high level of on-chip logic, memory and signal processing possible, as well as
the capability for random access, all of which remain basically impossible with CCDs
[19, 7]. In addition, and perhaps more importantly, the lower operating voltage and
lower power consumption will be the determining factor in many applications. espe-
cially consumer electronics and mobile computing.

1.2.2 Linear versuslogarithmic

There are many different types of CMOS pixel designs in the literature and the mar-
ket. Two concepts of particular distinction, however, are integrated versus continuous
response pixels [21, 22]. The former, which is by far more common, is normally char-
acterised by a linear response. The latter, which is the focus of this thesis, is normally
characterised by a logarithmic response.

Figure 1.3 shows a typical APS design, which is a linear pixel that employs in-
tegration [14, 7, 15, 18]. Light incident on the photodiode generates charge carriers,
which are collected on the capacitor formed by the gate of the amplifying transistor
T2. After a programmable integration time has elapsed, the voltage on the capacitor
is read out on the column bus by enabling the row select line of the pixel, turning on
the switch transistor T3. This voltage is linearly related to the total charge, which in
turn is linearly related to the incident illuminance. By pulsing the reset line high, the
voltage at the gate of T2 may be reset to the supply level via the switch transistor T1.

1When an NMOS transistor is used for reset instead of a PMOS transistor, as shown in Figure 1.3, steady
state is not always reached during reset (for typical reset times) and the final gate voltage of T'2 depends on
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Figure 1.4: Logarithmic CMOS pixels convert photogenerated current, sensed by a
diode, into a voltage using a load transistor in weak inversion.

The integration may then be repeated.

Figure 1.4 shows a typical logarithmic pixel [23, 24, 25, 26]. Remarkably, the only
difference between the circuit schematics of Figures 1.3 and 1.4 is the diode connection
of transistor T'1 and the lack of a reset line in the latter. These changes mean that
light incident on the photodiode generates a current, linearly dependent on the light
intensity, that continuously flows through the load T1. Because this current is small
relative to the load, T'1 operates in weak inversion leading to a logarithmic current-to-
voltage conversion. As before, the signal voltage appears at the gate of transistor T2
and transistor T3 is a switch used for connecting T2 to the column bus when the row
select line is enabled.

Both types of sensor are susceptible to fixed pattern noise (FPN), which is caused
by a variation of device parameters, especially threshold voltages, from pixel to pixel or
column to column [21, 22]. The linear pixel of Figure 1.3 has a substantial advantage
in this respect, owing to integration. By modifying the column buffer to read the pixel
response after reset and subtracting this result from the pixel response after integration,
a method known as double sampling, FPN due to pixel variations may be reduced [20].
Double sampling also reduces transistor 1/ f noise, which is a temporal rather than a
spatial effect. Furthermore, by subtracting from the signal level the reset level prior to
integration, rather than the reset level after integration, the reset noise or the uncertainty
in the gate voltage of T2 upon reset (also called £7°C' noise) may be reduced. Such an
operation is termed correlated double sampling. By introducing another reset level at
the column buffers, delta difference sampling reduces FPN due to column variations.
Due to its continuous response, the logarithmic pixel of Figure 1.4 suffers greatly from
FPN as there is normally no reset level in the pixel to enable double sampling [21, 22].

However, logarithmic pixels have an advantage over linear pixels in terms of dy-
namic range [27, 25, 28, 4]. Real scenes span over eight decades of illuminance, rang-
ing from 10~3lux in starlight to 10>~103lux for indoor lighting, to 10°1ux for bright
sunlight and to higher levels for specularities or direct viewing of bright sources (such

its initial value, which may cause image lag [18]. However, an NMOS is often used because it leaves more
room in the pixel layout for the photosensitive diode.
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Figure 1.5: An image from IMS Chips shows how linear cameras (CCD or CMOS)
saturate when they encounter a high dynamic range scene whereas logarithmic cameras
(CMOS only) capture perceptible detail in the bright and dark parts of the scene [4].

as oncoming headlights or the sun).> Under normal conditions, the useful dynamic
range does not exceed five decades at once (shadows to sunlight) but a sixth may be
added to discriminate highlights [29]. Typical linear CCD and CMOS APS sensors
may capture three decades of dynamic range whereas logarithmic CMOS sensors may
capture six decades [4]. Figure 1.5 compares images of a high dynamic range scene,
defined to encompass over three decades of light intensity, taken by a linear CCD sensor
(linear CMOS sensors have comparable performance) and a logarithmic CMOS sen-
sor. The linear sensor can adapt over a high dynamic range by aperture adjustment or
global control of integration time but saturated patches of black or white appear when
imaging a high dynamic range at once [25]. The logarithmic sensor can capture detail
in bright and dark parts of a scene simultaneously, approximating human perception.
Human perception roughly approximates Weber’s law, which states that the thresh-
old to sense the difference between the illuminance of a fixation point and its sur-
roundings is a fraction, about 1-10%, of the surrounding illuminance [30]. Even if
signal-to-noise ratios of linear sensors could be improved to resolve six decades of
dynamic range, it would be difficult to meet the quantisation requirements [25]. For
example, while it takes 14 bits to quantise illuminance with 10% accuracy over a three
decade range, it would take 24 bits to do the same over six decades. Achieving the

2llluminance measures light power per square metre weighted by the spectral response of the human eye.
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latter degree of quantisation would be costly for still photography and very difficult at
video rates. Even if it were possible and economical to digitise a scene with 24 bits
per pixel (per colour channel) most bits would be wasted when the image is displayed
to a human. By Weber’s law, human perception has less absolute sensitivity to bright
illuminances than to dim ones [30]. An alternative is to use for six decades the same
degree of quantisation used for three decades (normally less than 14 bits) but this would
lead to a lack of perceptible detail, especially at dim illuminances. The best solution is
to encode illuminances on a logarithmic scale so that a fractional threshold becomes a
constant threshold, ideal for uniform quantisation over a high dynamic range [4]. On
a logarithmic scale, capturing six decades of illuminance with 1% accuracy requires
only 12 bits of quantisation.

There have been other approaches to achieving a high dynamic range image sensor
but most result in a low fill factor (the percentage of pixel area devoted to light collec-
tion) or a large pixel [25]. For example, embedding multiple amplifiers within linear
pixels, multimode sensors permit varying sensitivity levels, configured by switches,
from pixel to pixel. Still, with few sensitivity levels, saturated patches may appear or
there may be a failure to capture perceptible detail. Another approach converts the
photogenerated signal in a linear pixel to a pulse frequency. Every time the integrated
charge reaches a threshold, a pulse is generated and the pixel is reset thereby avoid-
ing saturation. The illuminance is measured by the counting of pulses. Unfortunately,
threshold voltage mismatch causes frequency errors, which are multiplicative rather
than additive. Sensors with local exposure control are similar to pulse frequency sen-
sors in that a reset is generated when the integrated charge exceeds a threshold but,
here, the threshold is high instead of low. The time taken to reset a pixel is used to
measure illuminance. In dim lighting, the response is quite slow.

Two methods to increase the dynamic range of integrating sensors that show promise
are well capacity adjustment and multiple sampling but both have undesirable dips in
the SNR as a function of illuminance (these drops are smaller for multiple sampling)
[25, 31]. With well capacity adjustment, at any point in time, photogenerated charge
in excess of the limit imposed by a potential barrier flows over the barrier into a charge
sink. Normally, this results in clipping and it was originally implemented to suppress
blooming (a phenomenon worse than saturation whereby charge overflows from satu-
rated pixels into adjacent unsaturated pixels). However, by starting with a lower poten-
tial barrier and increasing it with time, this method can be used to create a monotonic
compression curve. In other words, well capacity adjustment implements a nonlinear
response with an integrating sensor. There is a decrease in fill factor, or an increase in
pixel size, with this method as well as the addition of a control mechanism.

Multiple sampling, of which dual sampling is a specific and common example, in-
volves reading the signal level of each pixel at multiple instants of the integration period
[25, 31]. These multiple samples are post-processed to produce a single image. The
idea is that bright illuminances will be sampled without saturation at the earlier instants
and that dim illuminances will be sampled with less noise at the later instants. Multi-
ple sampling does not affect the fill factor or pixel size with photodiode APS circuits
because readout is nondestructive. However, multiple column bus processing chains
are needed with photogate APS circuits because of destructive readout, which makes
the method impractical beyond dual sampling. Even with photodiode APS circuits, it
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Figure 1.6: Since logarithmic pixels operate continuously, they permit high speed
imaging especially when frame size is traded for frame rate. In this example from
IMS Chips, the subframe rate of 4000Hz is 16 times faster than the full frame rate [4].

is difficult to achieve more than two samples per frame because of the high readout
speeds that are required, especially at video rates. On the other hand, two samples may
not be sufficient to represent the areas of the scene that are too dark to be captured in
the first image and too bright to be captured in the second.

Although multiple sampling may enable linear sensors to capture high dynamic
range scenes, it limits the frame rate and may suffer from blur with scenes that contain
motion. Furthermore, linear sensors are not randomly accessible in time unlike log-
arithmic sensors [32, 24]. This is because of the integrating nature of linear sensors,
which means responses are available at discrete intervals of time, versus the continu-
ous nature of logarithmic sensors, which means responses are available at any moment.
Availability of random access in both space and time makes logarithmic sensors ideal
for motion detection and tracking [33, 26]. As the readout of a logarithmic imager
mirrors that of a memory array, pixel responses may be read in any order at any time
[4]. It is not necessary to read an entire frame if only a subframe contains the interest-
ing information, as shown in Figure 1.6. Logarithmic sensors easily permit a tradeoff
between frame size and frame speed, useful in applications such as optical inspection,
robotics, navigation, character or code recognition, position feedback systems, ranging
and sizing, very fast dimensional measurements on continuous production lines, and
web or wire thickness measurements [32, 24]. Even at low frame rates, the ability to
select and read subframes reduces the data flow requirements on microprocessors.

The response of a logarithmic pixel is available continuously, i.e. at any moment
in time, but the response is not instantaneous [24, 25]. The time a logarithmic pixel
takes to respond to a change in illuminance depends on filtering effects associated
with the charging or discharging of capacitances in the pixel [26]. Due to the weak
inversion operation of the load transistor, the response time is a nonlinear function of
illuminance. However, this is not a problem because high photocurrents give a fast
response to intensity modulations while low photocurrents average the photon shot
noise with a slow response [33]. Furthermore, despite the variation, the response time
is typically fast. Using modulated lasers, Tabet et al measured the small signal 3dB
bandwidth of a logarithmic pixel to be 97.5kHz at an indoor light level (437lux) [26].
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IMS Chips measured the large signal settling time, with its logarithmic sensor, for a
10%-to-1lux change in illuminance to be 8ms (a step change in the reverse direction
settles in 0.8us) [4]. Because of the combined capability of high dynamic range and
high frame rate, the automotive industry is increasingly looking to logarithmic sensors
to fulfil the requirements of traffic applications [33].

1.2.3 Logarithmic CMOSimage sensors

Logarithmic CMOS image sensors are useful for high dynamic range and high speed
imaging [4]. However, the problem of FPN needs addressing, especially for industrial
and commercial applications involving safety of personnel and the public. Further-
more, colour rendition with logarithmic sensors is a contentious issue, as observed by
Yadid-Pecht, because the nonlinear output makes subsequent signal processing diffi-
cult [25]. Indeed, the theory of colour rendition has been developed for linear sensors,
something overlooked by both C-Cam Technologies and IMS Chips in their commer-
cial versions of colour logarithmic image sensors, which display responses as if they
were from linear sensors [34, 4]. Nonetheless, FPN remains the primary concern for
both monochromatic and colour imagers.

Various approaches for dealing with FPN have been suggested and may be broadly
categorised into analogue and digital techniques. Analogue techniques to reduce FPN
modify the pixel and/or readout circuit operation. For example, Ricquier et al devel-
oped an image sensor that permitted hot carrier degradation of the threshold voltage of
the amplifying transistor in each pixel (T2 in Figure 1.4) [23]. In addition to dissipating
a lot of power, this method was very slow and needed repetition because the threshold
voltages would initially relax back towards their original values.

Kavadias et al developed a method to reduce FPN by modifying the pixel and read-
out circuitry to include a reset level [27, 28]. Each pixel may be calibrated against a
reference current in place of the normal photodiode current. With double sampling,
this method removes offsets due to threshold voltage variations. As subtraction of the
two levels is done in analogue at the end of each column, additional offsets created by
the column amplifiers must be minimised. Furthermore, the current source for the reset
level needs to be constant from pixel to pixel, which can be difficult. A disadvantage
of double sampling is that it interrupts the continuous operation of the pixel, since cali-
bration occurs every frame, and reduces the response time especially at low light levels
(when the time to recover from reset is longer). Additionally, the calibration process is
performed in a current regime different to the actual operating conditions and there is
a noticeable residual FPN due to leakage current, doping density and gate-oxide thick-
ness variation. Sensitivity variations of each pixel are pronounced because of the small
dimensions of the photodiode but they may not be corrected with this approach.

Loose et al also developed a method for analogue reduction of FPN [21, 22]. As
with Kavadias et al, this method replaces pixel photocurrents with reference current
sources once per frame by careful use of switch transistors. However, instead of the
usual double sampling, an amplifier feeds a voltage back, during calibration, to the
gate of the weak inversion load transistor (which, unlike T1 in Figure 1.4, is not tied
to the supply). The gate voltage is adjusted so that the pixel response to the reference
current equals a reference voltage, which compensates for threshold voltage variation.
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The cost is a large pixel size due to a high number of transistors and a capacitor, for
storing the correction locally, per pixel. As many feedback amplifiers and reference
current sources as there are columns are needed. These circuits have to match precisely
to avoid additional variations between individual columns. Unfortunately, parasitic
photocurrents discharge the capacitors that store the offset correction. Discharge time
is inversely proportional to ambient illumination, making it difficult to set the time
between calibration and readout. It should be short for high illuminances because of a
fast discharge but long for low illuminances because of a slow recovery of the response.
Furthermore, a residual variation exists due to capacitance mismatch and current mirror
mismatch from column to column and switch transistor variation from pixel to pixel.

Although research and development of analogue methods to reduce FPN continue,
digital methods have been employed in two commercial versions of logarithmic CMOS
image sensors—the Fuga 15 series originally developed by the Interuniversity Micro-
Electronics Center (IMEC) but now supplied by C-Cam Technologies and the HDRC
series developed by the Institute for Microelectronics Stuttgart (IMS) and marketed by
IMS Chips [35, 4]. Both approaches use three transistors and a photodiode per pixel,
as in Figure 1.4. The Fuga 15d sensor, an early commercial sensor, had an array of
512 x 512 pixels, manufactured with a 50% yield in a 0.7um 5V technology [32, 36].
IMEC also reported the fabrication of a 2048 x 2048 sensor in a 0.5um 5V technology,
with a high yield if a small number of bad pixels are acceptable [24]. The Fuga 15d
and the 2048 x 2048 sensor, which was not commercialised, had a full frame rate of
about 8Hz but both could be subsampled to increase the frame rate. The HDRC VGA
2 sensor, manufactured in a 0.35um 3.3V technology, delivers 640 x 480 pixels at a
full frame rate of 45Hz but it can also be subsampled [4].

Both the Fuga 15 and HDRC series of logarithmic image sensors implement digital
reduction of FPN [35, 4]. An image of a uniform scene, such as a white sheet of paper
under uniform illumination, is taken and stored, usually off-chip in an EEPROM. This
image captures the lowest order variation of pixel responses, called offset variation, and
is subtracted from subsequent images that are captured. However, Marshall and Collins
have noted that FPN reduction degrades as the illumination of captured scenes departs
from the illumination of the uniform scene used for calibration [10]. Hoefflinger et
al considered a digital correction of gain variation, as well as offset variation, with
an early HDRC sensor but no results were published comparing this method to offset
correction only [33]. Yadid-Pecht suggested that FPN had a nonlinear dependence on
illumination but she neither characterised this dependency nor sought to correct it [25].

Marshall and Collins and Loose et al suggested that threshold voltage variation
would be affected by temperature [21, 10, 22]. A variation between the temperature
dependences of pixel responses would be more problematic than a uniform tempera-
ture dependence. However, none of these dependences were characterised. Instead,
Marshall and Collins suggested a digital method for FPN correction that considered
both temperature and illumination dependence [10]. They advocated using an autofo-
cus system to defocus a scene to obtain a calibration image that may then be subtracted
from the focused image of the scene. This approach required frequent mechanical oper-
ation and introduced spatial high pass filtering to the image, unsuitable when rendering
images for human observers in a perceptually acceptable way.

Evident by the commercial examples, digital approaches to correct FPN are promis-
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ing for images taken with logarithmic CMOS image sensors. However, considering the
ubiquity of linear sensors (CCD or CMOS) in the marketplace, widespread use of log-
arithmic sensors remains curtailed. Thus, a comprehensive model of pixel responses
is required to understand the cause and nature of problems with image quality, includ-
ing colour rendition. In addition, a way to calibrate logarithmic sensors is required to
render images with a maximum of perceptual accuracy, robust to temperature and illu-
mination changes, without sacrificing the capability for high dynamic range and high
frame rate that makes the technology attractive. Indeed, a combination of digital and
analogue approaches may ultimately be needed to achieve this challenging task.

1.3 Method
131 Theory

The modelling and calibration of image sensors involves the analytical and numerical
manipulation of images. While a single image has the two dimensional structure of a
matrix, a collection of images, e.g. taken with varying temperature or illuminance, may
be naturally represented by an array of higher order than the matrix. Antzoulatos and
Sawchuk [37], Blaha [38] and Snay [39] argue that an algebra of multiple index arrays
facilitates the analytical and numerical manipulation of certain data. Such an approach
is applied in this thesis and entails a review and extension of the subject of multilinear
algebra, which formulates the basic operations on arrays.

Calibration of an image sensor involves specifying a model to relate the output to
the input and estimating the parameters of the model from image data. Under certain
conditions, multilinear regression is a suitable technique for estimation, which is useful
even with nonlinear models to reduce the number of parameters that require nonlinear
optimisation. Since an image sensor is also an array of pixel sensors, the task of mod-
elling and calibration should consider possible relationships between the parameters
of sensors in an array, as it leads both to better understanding of the cause and nature
of parameter variation as well as to robust parameter estimation [40, 41, 42]. For this
purpose, constrained regression is required and, to efficiently process the vast quan-
tities of image data used in this thesis, attention must be given to the formulation so
that computation takes a reasonable amount of processor time and memory space. All
computations were done using MATLAB 5.3 on Sun Sparc workstations.

Because image sensors are composed of electronic circuits, the relationship be-
tween the output and the input are described using conventional models of electronic
devices. Many models exist for these devices (transistors, diodes etc.) at varying levels
of complexity and accuracy [43]. To facilitate analysis, Level 1 models omitting the fi-
nite output resistance in saturation (or the Early effect) are used to model transistors in
the saturation or triode region. Level 3 models are used for transistors in the subthresh-
old region (there is no Level 1 model and the Level 2 and 3 models are identical) and
the Shockley model is used for diodes. Further simplifications are often made. Tran-
sistors configured as switches are usually assumed to be ideal open or short circuits in
the off and on states. Sometimes, more complex models are employed, when for ex-
ample the Level 1 model fails to describe the temperature dependence of a parameter.
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Occasionally, the limitations of such models are discussed when they prove significant.
While models of image sensors derived in this fashion permit an understanding
of the physical factors involved in a relationship, these models often contain too many
parameters for estimation, both from a practical and theoretical perspective. Apart from
the computational complexity of estimating too many parameters, it may be impossible
to distinguish one parameter from another, e.g. when they are added or multiplied
together, purely from input versus output considerations. Thus, physical models are
abstracted to mathematically equivalent but simpler models prior to calibration.

1.3.2 Simulation

In order to calibrate a model of an image sensor, it is necessary to have data. One
way to produce this data is by simulating a circuit schematic of an image sensor, a
group of pixels or a single pixel. A simulation is limited mainly in two ways. First,
the schematic may not contain all the circuit elements present in a real sensor such as
parasitic resistances, capacitances, diodes and transistors. Second, the models used by
the simulator to describe the behaviour of circuit elements are only approximations of
the behaviour of real elements. These models, however, are far more sophisticated than
the Level 1-3 models used for theoretical analysis [43].

Nonetheless, simulation has many advantages. The cost of simulation in time and
money, especially for variations in circuit design or over broad test conditions, is small
compared to that of experiment. More importantly, simulation allows the study of cir-
cuits under controlled and well defined circumstances, which helps to disentangle cause
and effect when many causes and effects exist simultaneously. Thirdly, simulation al-
lows the observation of many states and variables internal to a circuit or device that
could not be observed in experiment without either specialised equipment, foresight
prior to circuit fabrication or disruption of circuit operation in the process.

Simulations were done using the Spectre simulator in Cadence 4.4.5 for a 0.35um
3.3V AMS CMOS process (for a p-type substrate with three metal layers and one
polysilicon layer) [44]. Transistors and diodes were modelled using BSIM3 Version 3
with parameters supplied by AMS [43]. The nominal width of all transistors was set
to 1um, as that was the width of the substrate contact (so hardly any space would be
saved in a layout using smaller widths), and the nominal length was set to 0.6um, as
that was the minimum length recommended by AMS for transistors in circuits sensitive
to threshold voltage variation [45]. A parasitic diode model, which describes the p-n
junction formed between n-type diffusion and p-type substrate, was used to represent
diodes. As these diodes were used to simulate photodiodes in pixels, they were set
to a 6.32um x 6.32um size that corresponds to a photosensitive square in a 10um x
10pm pixel with a 40% fill factor, which are the specifications of the HDRC VGA 2
logarithmic pixels built in a 0.35um 3.3V process by IMS Chips [4].

The Spectre simulator permitted various types of analyses, four of which were used
for the simulations reported in this thesis. DC analysis calculates the voltages and cur-
rents of all nodes and branches in the circuit schematic assuming a steady state con-
dition. This analysis may be performed while sweeping the voltage or current of an
independent source, either in linear or logarithmic steps. Transient analysis, on the
other hand, calculates voltages and currents of nodes and branches as a function of
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time, where the time step is selected by the simulator and may vary during the sim-
ulation. These voltages and currents depend on the initial conditions specified by the
user and steady state values are reached only when the simulation runs for a suffi-
cient duration. Although independent sources cannot be swept directly with transient
analysis, arbitrary voltage and current waveforms may be used as stimuli. The third
type—parameteric analysis—repeats a simulation but each time changes a parameter
according to a given sequence of values. This analysis can be used with DC or transient
analysis to sweep, for example, a voltage or current source or the ambient temperature.

The fourth type of analysis, used in this thesis alongside the DC and parameteric
(but not the transient) analyses, is Monte Carlo analysis. Normally, in a simulation, all
circuit devices have exactly the same values for model parameters, although the node
and branch voltages and currents may differ. Monte Carlo analysis chooses parameter
values by mathematical functions on pseudorandom samples from statistical distribu-
tions. The functions and distributions are tailored to the simulated process and, thus,
are provided by AMS. There are three types of Monte Carlo analysis in Spectre. Pro-
cess variation simulates the statistical distribution of parameters assuming the electrical
properties of devices are uniform across a die but non-uniform from one process run
to the next. Mismatch variation, on the other hand, simulates the variation of electri-
cal parameters on a die from device to device, neglecting the distance between devices,
but ignores the variation from process run to process run. Lastly, process and mismatch
variation includes both effects. As this thesis concerns the individual calibration of im-
age sensors and each sensor consists of one die from one process run, only mismatch
variation is simulated.

1.3.3 Experiment

Experiments were performed using a Fuga 15RGB camera from C-Cam Technologies
[35]. Although this sensor does not represent the latest or best technology in loga-
rithmic CMOS imaging, it belongs to the most sucessful generation of the Fuga series
developed by IMEC, being a colour version of the Fuga 15d [32]. IMEC was a pioneer
in the field, developing logarithmic imagers with publications as early as 1992 and re-
leasing the Fuga 15 series commercially in the late 1990s. The Fuga 15d has long been
the subject of independent research in logarithmic imaging and is still sold today [10].
Nonetheless, strong competition has appeared from IMS Chips in the last two years
with its commercial series of HDRC sensors [4]. This series, which also offers colour,
originates from work at IMS with publications as early as 1993.

The Fuga 15RGB was supplied as a camera system complete with lens and housing
[35]. However, the camera needed to be operated by an external computer via a PCI
card and a ribbon cable. C-Cam Technologies supplied a device driver and sample
code to run the camera [34]. For the experiments in this thesis, a Microsoft Visual C++
application was created, giving control over camera parameters such as readout timing
and frame size, implementing image processing and display operations and permitting
the export of captured images in bitmap format. Figure 1.7 shows a screenshot of the
application. The screenshot demonstrates the problem with colour rendition.

Figure 1.8 shows an unprocessed image taken with the Fuga 15RGB. The manufac-
turer provides a rudimentary way to reduce the grainy distortion of the image, which is
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Figure 1.7: A Microsoft Visual C++ application was developed to run the Fuga 15RGB
camera. As shown in this example, colour rendition is poor with logarithmic sensors
without image processing beyond FPN reduction.
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Figure 1.8: An image taken with the Fuga 15RGB, displayed unprocessed (top left),
with built-in offset correction (top right), with additional median filtering (bottom left)
and further greyscale interpolation (bottom right).
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due to FPN [35, 34]. The PCI card can subtract a frame of 8-bit integers, stored in an
EEPROM on the card, from captured images. The feature may be calibrated by imag-
ing a uniform scene and saving the data in the EEPROM (the PCI card subtracts the
mean from this data). Figure 1.8 shows the result of the built-in offset correction (after
calibration with a white sheet of paper). The result contains speckle, most visible in the
shadow under the top shelf, and vertical stripes. The speckle is caused by dead pixels,
which appear not to respond to scene stimulus. In reality, they do respond but only
very weakly. The stripes appear because the Fuga 15RGB was made by depositing red,
green and blue colour filters on alternating columns of a Fuga 15d. Median filtering
removes the speckle effectively, as shown in Figure 1.8. The filter replaces each pixel
value by the median value of itself and the two nearest vertical neighbours. This design
minimises the effect on resolution and does not corrupt the colour information. Me-
dian filtering is used only when images are displayed in this thesis but not prior to any
calibration. Thus, dead pixels are modelled as having statistically extreme parameter
values. By interpolating the corrected response of a pixel and its four or two nearest
horizontal neighbours, a colour or greyscale image may be derived without stripes, as
shown in Figures 1.7 and 1.8 for colour and greyscale respectively. However, rendition
may be poor without colour or contrast processing. Furthermore, the manufacturer ob-
serves that FPN calibration needs to be repeated when illumination conditions change
or when timing parameters are changed.

The Fuga 15RGB sensor has an on-chip 8-bit ADC [35, 34]. Therefore, analogue
pixel responses are quantised with eight bits of accuracy. Because of FPN, which
causes a wide variation in pixel responses even for a uniform scene, and because ex-
periments reported in this thesis drive the camera from two to three and a half decades
of dynamic range, pixel responses often saturate the ADC range. However, the camera
allows the ADC range to be shifted by a programmable offset. By changing the ADC
offset, saturated pixels may be brought into the ADC range. This feature offers an ex-
tra two bits of information per pixel. Denoting the response of a pixel over the actual
8-bit range as 3’ and the response of the pixel over the effective 10-bit range as y then
(1.1) gives the relationship between the two, where G is a gain parameter (determined
by regression analysis to be about -1.56), Ay is the 8-bit ADC offset and e accounts
for error in the relationship due to temporal noise and ADC nonlinearity. The standard
deviation of this residual error was estimated to be 0.9LSB over a wide range of Ay
values (from 10 to 255LSB) and over about two decades of illuminance (using over-
head fluorescent lighting) at room temperature. This shows that the temporal noise and
ADC nonlinearity are small.

Y =y+GAy +e (1.1)

If 4’ does not saturate for a pixel, i.e. 1 < gy’ < 254, then y may be estimated
within the limits of the error using the previously estimated value of G and the known
value of Ay, as in (1.2). Rather than choosing Ay carefully for each pixel to avoid
saturation, which is slow, a more practical approach is to take a few images of a scene
for different values of Ay, spread out to capture the range of yy. The actual response
y' should not saturate for one or more of these frames (unless the effective response y
is outside the 10-bit range, in which case the pixel is assigned 0 or 1023LSB if it is
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Figure 1.9: Actual responses y;, of ten pixels for multiple ADC offset settings Ayy,.
Actual responses may saturate at 0 or 255LSB but, if responses do not saturate for at
least one ADC offset, effective responses y may be estimated for no ADC offset.

always dark or bright respectively). If a pixel is unsaturated in P images of a scene
for ADC offsets Ay, where 1 < k < P, then the corresponding P actual responses
Yy}, may be used to estimate the effective response y of the pixel, as in (1.3). Such an
averaging reduces the effects of temporal noise and ADC nonlinearity.

y~y —GAy 1<y <254 (1.2)
L F

y~ 5 (0 — GAyr) 1<y}, <254 (13)
k=1

Figure 1.9 gives an example of this multiframing approach for ten pixels, each
responding to a different stimulus. Six values of the ADC offset are used ranging
from 10 to 255LSB, typical of the experiments in this thesis, and the figure plots the
actual response of each pixel for each image. Note that these responses sometimes
saturate the 8-bit range. The effective response of each pixel, calculated according to
(1.3), is projected onto the ordinate axis (i.e. Ay = 0). Note that pixels may have
different values for P in (1.3). This multiframing approach is used for all experiments
to avoid unneccessary saturation of responses. Each effective image in an experiment is
computed from several actual images, taken with different ADC offsets. Furthermore,
all subsequent modelling and calibration refers to the effective response y of each pixel
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and not to any of the actual responses y;.. Although this procedure is an experimental
inconvenience, it brings the number of bits per pixel of the Fuga 15RGB in line with
that of the HDRC VGA 2, which uses a 10-bit ADC [4].

1.3.4 Organisation

The rest of this thesis is organised as follows. Chapter 2 reviews the literature on
multilinear algebra, unifying and extending approaches for analytic and numeric ma-
nipulation of multi-index arrays, which are the generalisation of scalars, vectors and
matrices. Chapter 3 defines and solves the problem of multilinear regression with linear
constraints for the calibration of a sensor array, permitting models with linear relation-
ships of parameters across the array. Chapter 4 develops a steady state model for the
digital response of a logarithmic pixel to light stimulus and uses it to characterise and
correct FPN, which proves to depend nonlinearly on illuminance, by calibration of sim-
ulated and experimental data. Chapter 5 models the transient response of logarithmic
imagers, for typical source follower readout circuits, and shows with simulation and
experiment how transient operation and design may cause FPN, which may partially
be corrected by a steady state calibration. Chapter 6 extends the steady state model of
the image sensor to examine and reduce the dependence of FPN on temperature, com-
paring in simulation and experiment methods of calibration that use pixel responses
under both dark and light conditions. Chapter 7 describes the calibration of pixel re-
sponses in terms of a standard colour space, extending previous models suitable for
FPN correction but unsuitable for colour rendition, and shows that colour rendition of
a Fuga 15RGB logarithmic camera competes with that of conventional digital cameras.
Finally, Chapter 8 discusses and summarises the main results of this thesis and outlines
future theoretical, simulation and experimental work.
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Multilinear algebra

2.1 Introduction

What is essentially one concept has variously been called array [38], hypermatrix [37],
multidimensional array [46], multidimensional matrix [47], multilinear [48] and (er-
roneously) tensor [48] algebra in the literature. Although disagreeing in terminology
and notation, authors have agreed on the usefulness of multilinear algebra, a general-
isation of linear algebra that includes arrays of higher order than scalars, vectors and
matrices. Multilinear algebra was originally invented as a means of performing ma-
trix differentiation [37] but applications have included the block analysis of system
sensitivity [47], the analysis of variance [48], the modelling of distributed parameter
systems [49] and the analysis and synthesis of massively parallel computing structures
[37]. Of relevance to the modelling of image sensors, Antzoulatos and Sawchuk argue
that algebraic manipulation of planar data structures—typical in image processing—
requires operations more powerful than those afforded by classical linear algebra [37].
Of relevance to the calibration of image sensors, Blaha and Snay argue, giving exam-
ples from least squares estimation, that array equations are sometimes more efficient,
in terms of the processor time and memory space required to compute a solution, than
corresponding matrix equations [38, 39].

There are important similarities and differences between multilinear algebra and
tensor calculus but this connection is either avoided or dealt with superficially in the
literature [48]. The contents of either an array or a tensor are numbers that correspond
to a point in a specific multidimensional space. These numbers form a tensor only if
they obey certain transformation laws under a change of the coordinate system used
to describe the point [50]. Tensors have certain properties that are independent of the
underlying coordinate system. For these reasons, they are used to represent various fun-
damental laws in physics and mathematics [50]. On the other hand, arrays may not be
tensors and multilinear algebra has little to do with differential geometry. Nonetheless,
the index notation and conventions of classical tensor calculus [51] are more power-
ful for describing operations on arrays than the notation and conventions of various

23
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definitions of multilinear algebra in the literature.!

The multilinear algebras described by Blaha and Snay [38, 39], Milov [47], Take-
mura [48] and Suzuki and Shimizu [49] limit the rich types of multiplication possible
with tensor notation and conventions, which permit an arbitrary combination of inner
and outer products between two arrays [50]. Libkin et al [46] and Baumann [52] define
algebras suitable for describing and executing powerful queries on array databases but
these algebras are too far from tensor calculus to be of general use mathematically.
Antzoulatos and Sawchuk restrict tensor notation and conventions on purpose in the
process of defining a powerful but complex algebra [37]. Equivalence and assignment
are different in this algebra, which may lead to confusion and error in derivations. For
example, multiplication between two arrays may be ambiguous without assignment of
the result to a third array, which means binary products are actually ternary operations.
Despite these weaknesses, some definitions of multilinear algebra have strong features
that standard descriptions of tensor calculus lack.

In linear algebra, matrix inversion is no less important than matrix multiplication.
By contrast, conventional expositions of tensor calculus omit inversion though mul-
tiplication is a central concept [51, 50]. The reason is because tensor equations may
in many cases be rewritten as matrix equations, often done when operations such as
inversion are required [40]. Such an approach is not suitable for multilinear algebra
where inversion, though neglected by many authors in the field, is no less fundamental
than it is in linear algebra, especially when a derivation involves the manipulation of
inverses. Blaha and Snay [38, 39] and Suzuki and Shimizu [49] discuss inversion but
their consideration is limited by restrictions on multiplication present in their respec-
tive algebras. Antzoulatos and Sawchuk implicitly consider array inversion since their
algebra imposes a specific mapping between an array and a matrix [37]. This duality
serves as a means to transfer an equation into the domain that is most convenient for
a particular type of operation or representation and then to transfer back [37]. Despite
this feature, inversion like multiplication suffers from the complexity of the algebra.
Furthermore, array expressions may not mix freely with matrix expressions in an equa-
tion due to the separation of domains.

Antzoulatos and Sawchuk define an array operation that has no analogue in clas-
sical linear algebra or tensor calculus—element-wise multiplication [37]. However,
their particular definition is inconsistent with tensor notation and conventions, which
is one of the reasons why they invent a more complex algebra, and they do not explore
the properties of the operation. From an analytical viewpoint, they do not consider its
relevance to inner and outer products nor do they appreciate its connection to unary op-
erations such as array contraction. From a computational viewpoint, they do not realise
the advantages of element-wise multiplication in calculating the variance of a stochas-
tic array. Lastly, Antzoulatos and Sawchuk [37], like Blaha and Snay before them
[38, 39], observe that an automatic mapping exists between array equations and matrix
equations but they do not account for element-wise multiplication in their mapping.

Unifying and extending various concepts in the literature of multilinear algebra, this
chapter defines a multilinear algebra that is compatible with tensor calculus, formalises

IModern definitions of tensor calculus use an index-free approach that, although elegant, is undesirable
in terms of computational applicability [48].
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inversion in the array domain, includes element-wise multiplication and encompasses
linear algebra (meaning scalars, vectors and matrices may be used with arrays eas-
ily). Section 2.2 defines an array formally and outlines the fundamentals of multilinear
algebra. Section 2.3 provides implementations of array multiplication and inversion
in MATLAB. Section 2.4 describes the analytical and computational applications of
stochastic, sparse and cell arrays. Specific applications are found in Chapter 3.

2.2 Fundamentals

Linear algebra is a calculus for scalars, vectors and matrices. A scalar needs no indices
for it always represents a single element whereas the scalar elements of a vector are
identified by one index. The scalar elements of a matrix are identified by two indices—
the row and column numbers. Multilinear algebra, by extension, is a calculus for arrays
where scalar elements are identified by multiple indices. Data organised into multiple
index arrays arises naturally in a variety of scientific disciplines [46]. Furthermore,
a variety of artificial sources such as simulators, image renderers and data warehouse
population tools generate array data [52].

Formally, a scalar array a; of order IV, for a nonnegative integer NV, and positive
d
integer dimensions d = (d: d- ... dy ) is a function that maps every vector of NV inte-

gersi= (i1 iz ... in ), Where 1 < i < di, to a scalar element. The dimensionality of
an array a;, denoted dim ay, is the product H,L dy, of its dimensions and should not
d

d
be confused with the order of an array. For example, scalars, vectors and matrices are
analogous to arrays of order zero, one and two respectively. On the other hand, an array
with a dimensionality of one, two or three may represent a point in a geometry of one,
two or three spatial dimensions. The dimensionality of a scalar is one by definition.
For simplicity, the array al may be referred to as a, a; or a when the omitted

vector of dimensions d or |nd|ces iis either implied by the context or irrelevant to the
discussion. Furthermore, the dimensions may be written as d; x ds - - - d to emphasise
dimensionality and the indices may be written with no punctuation as i ...ix for
brevity. Indices may also be written as superscripts to make a distinction in tensor
calculus, relevant to differential geometry, between covariant and contravariant indices.
For equality, addition or subtraction of arrays to be meaningful, as in (2.1), arrays
must have corresponding dimensions. In other words, the dimensions of corresponding
indices, i.e. indices identified by the same variable, must be the same and all indices
must correspond. The equality, addition or subtraction of arrays means the equality,
addition or subtraction of their elements, identified by corresponding indices over the
entire domain of index values. If a variable is assigned to an index in an array ex-
pression then the meaning of the expression does not change with a substitution of the
variable. Thus, (2.1) is equivalent to (2.2), where the variable h has been replaced by
the variable k. In general, the positions of variables that are assigned to indices of an
array matter, as in (2.3), just as the positions of the arguments of a function matter.

Chij = Gijn t+  bjin (2.1)
LxMxN MxNxL NxMXxL
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Crij = Gk + b (2.2)
LXMXN MXN XL NXxMxL
aij F# @ji (2.3)

NXxN NXxXN

Most unary operations on an array, such as negation, operate element-wise without
changing the order or dimensions of the array. Two exceptions are the operations of
contraction and attraction, as in (2.4) and (2.5). Contraction of an array over two or
more indices of equal dimension, identified by a repeated variable, is equivalent to a
summation of array elements over the domain of the variable. Attraction of an array
over two or more indices of equal dimension, identified by a repeated and underlined
variable, is equivalent to a selection of array elements over the domain of the variable.

bij = ikjk (2.4)
b,‘jk = Qikjk (25)

Contraction or attraction of an array results in an array of fewer indices and di-
mensions by the number of identified indices less one. Multiple contractions and/or
attractions over disjoint sets of indices are possible and are distinguished by the use of
different variables. In tensor calculus, an array may be contracted over only two indices
and attraction does not exist. As seen in the next section, these changes are introduced
in multilinear algebra because of element-wise multiplication.

So far, only scalar arrays have been considered. Vector and matrix arrays may
be defined in analagous terms to scalar arrays. A homogenous array of vectors a;
or matrices A; is denoted by (optional) dimensions d and indices i as with an arra(;

d
of scalars a;. The vectors or matrices indexed by a homogenous array must be of

uniform siz% and this size may be indicated by superscripts. Section 2.4.3 discusses
heterogenous arrays, where vectors and/or matrices indexed by an array may not have
the same size. Vectors of size NV are assumed to be NV x 1 column vectors unless
specified to be 1 x N row vectors. Equality, addition, subtraction, contraction and
attraction of vector and matrix arrays proceed as with scalar arrays.

Note that vectors and matrices are not equal to scalar arrays of order one or two.
A distinction exists because the row and/or column indices of vectors and matrices,
unlike array indices, are required to obey the rules of linear algebra. However, any
index or pair of indices of a scalar array may become a row and/or a column index, as
described in the next section, to make a vector or matrix array.

2.2.1 Multiplication

An inner product of two arrays of corresponding dimensions, indicated by repeated
index variables as in tensor calculus, is a scalar equal to the sum of all products of
corresponding elements. An outer product of two arrays of order M and N, indicated
by differing index variables as in tensor calculus, is an array of order A + N that in-
dexes the product of every pair of elements with one element taken from each operand.
The dimensionality of the result equals the product of the operand dimensionalities.
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Examples of inner and outer products are given in (2.6) and (2.7) respectively.

C=a; bz (26)
30ij
Chijk = Gnibj (2.7)

An element-wise product of two arrays of corresponding dimensions, indicated
by repeated and underlined index variables, is an array of corresponding dimensions
that indexes the product of every pair of corresponding elements. Since element-wise
products represent an intermediate concept between inner and outer products, they are
called inter products hereafter for brevity. An example is given in (2.8).

Cij = agbg (28)

Inner, outer and inter products are the fundamental types of array multiplication.
Note that the product of an array with a scalar is an outer product, as in (2.9). A mixed
product of two arrays, as in (2.10), indicates a combination of inner, outer and inter
products, each applied over specific indices according to the above conventions.

Cjj'k = aijkb,-jfk (2.10)

Multiplication of vector or matrix arrays, as in (2.11), obeys the rules of both lin-
ear algebra and multilinear algebra. Thus, products of vector and/or matrix arrays do
not commute in general and the number of columns on the left side of a product must
equal the number of rows on the right side. However, any product of two scalar arrays
is always commutative, which proves useful to simplify expressions. This distinction
between vector or matrix arrays and scalar arrays is one reason why vectors and matri-
ces are not the same as first and second-order scalar arrays.

CHeN = ANEBEN (2.11)
PXQXR PxR QXR

Any product between one array and the sum or difference of two other arrays is
distributive. Outer products of multiple arrays are associative. Inner, inter and mixed
products of multiple arrays are not always strictly associative but always have associa-
tion identities. For example, the ternary inner product a;b;c; differs from either the left
or right associations in (2.12), which also differ from each other. The left association
is the outer product of ¢ with the inner product of a and b whereas the right association
is the outer product of a with the inner product of b and c.

(aibi)c; # ai(bic;) (2.12)

However, the ternary inner product a;b;c; equals the left and right association iden-
tities in (2.13), which replace the inner products inside the parentheses of (2.12) with
inter products. Similarly, the ternary inter product a;b;c; equals the left and right as-

sociation identities in (2.14), which indicate an inter product between the array outside
parentheses and the inter product inside parentheses with a second underline.

(aibi)c;i = a;i(bic;) (2.13)
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In tensor calculus, which lacks inter products, an index variable may not repeat
more than once in a product, not counting pairs that disappear within parentheses.
Otherwise, products of multiple arrays, e.g. a;b;c;, may not associate into an equivalent
sequence of binary operations, which is important for derivations and computations.
Mixtures of inner and outer products are strictly associative, as in (2.15), when no index
variable repeats more than once. The same may be said for mixtures of inter and outer
products, as in (2.16), or for any mixed product. Multilinear algebra does not restrict
the repetition of index variables since inter products enable association identities.

(aibi)e; = ai(bic;) (2.15)

(aibi)cj = ai(bicj) (216)

The binary operations of inner and inter products logically follow from the unary

operations of contraction and attraction and the binary operation of outer products. An

inner product may be rewritten as the contraction of an outer product, as in (2.17), and

an inter product may be rewritten as the attraction of an outer product, as in (2.18).

These properties help to derive association identities for mixed products, since outer

products are strictly associative, and to simplify array expressions. Tensor calculus

does not allow an array to be contracted over more than two indices because of the
connection to inner products, which are restricted for the sake of associativity.

arby, = cxr | cij = a;b; (2.17)

agby = cxr | cij = a;b; (2.18)

The advantage of defining inner and inter products directly, i.e. without resorting
to the use of outer products, lies in computation. Computing an outer product of two
arrays, each of dimensionality IV, requires the product of every pair of elements, with
one element taken from each array, and takes O(/N?) time and space. Computing an
inner or inter product of the same two arrays, however, requires the product of only
corresponding elements and takes O (V) time and space, with or without summation.

Scalar arrays may transform into vector or matrix arrays via an inner product with a
vector or matrix basis array. The vector basis array, denoted () fv ,indexesoverl < i <
NN the vectors of size IV that are zero except for the ;" element, which is one. Likewise,
the matrix basis array, denoted ();; “", indexes over 1 <i < M and1 < j < N the

matrices of size M x N that are zero except for the (i, j)" element, which is one. An
inner product of a scalar array with a basis array, as in (2.19) and (2.20), assigns one or
two array indices to vector or matrix indices (i.e. rows or columns) respectively.

aij = ah,-j ()h (219)
Ap = anij ()z] (2.20)
The basis arrays also serve a tabular purpose by arranging the elements of a scalar

array into a vector or matrix for convenient display, as in (2.21) and (2.22). The su-
perscript T in (2.21) denotes transposition of the column vectors indexed by the basis
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Table 2.1: Possible binary operations on arrays where the operands and result have
an order of zero, one or two. New operators are needed in linear algebra to express
operations that involve inter products. Assume that a, b and c equal a;(),, b:(), and
ci(); and that A, B and C equal a;;(),;, bi; (),; and c;;(),; respectively.

Op. | Multilinear | Linear (old) | Linear (new)
1 |c=ab c=ab c=ab
2 | c=a;b; c=a'b c—aeb
3 c:a,-jb,-j c=trATB | c=AeB
4 ci = a;b c=ab c=ab
5 | ci =a;b; c=aob
6 C; :(Lijbj c=Ab c=Ab
7 ci:al-jby' c=AcB
8 Cij = (J,,'bj C= abT C= abT
9 Cij = (J,,'jb C=A)b C=Ab
10 cij:aﬁbi C=Ab>b
11 Cij = aikbkj C=AB C=AB
12 Cij = aijbij C=AoB

array. Transposition swaps row and column indices but has no effect on array indices.

T

anij (), = (@155 a2y aLij) (2.21)
LXxMxN

ap11 ap12 Ap1N

ap21 Ah22 ap2 N
anij ()i = (2.22)
LxMxN

AhpM1  AhM2 ApMN

In this manner, vector and matrix arrays are related very simply to scalar arrays.
Because scalar arrays of order zero, one and two are analogous to scalars, vectors and
matrices, linear algebra may express some (but not all) products of such arrays that
result in an array of order zero, one or two. Table 2.1 demonstrates that classical linear
algebra may express eight out of twelve possible products. The remaining operations,
which involve inter products, may be expressed with three new operators because Op-
eration 5 is equivalent to Operations 7, 10 and 12 when the dimension of j is one.

Operation 3 in Table 2.1 exists in classical linear algebra but, for N' x N matrices
A and B, computing the trace of a matrix product takes O (N 3) time whereas an inner
product of the equivalent arrays needs O(N ?2) time. The symbol e often denotes the
inner product of vectors, as in Operation 2, and may be used to denote the inner product
of matrices. Operations 2 and 3 may be used to transform a vector or matrix array into
a scalar array, as in (2.23) and (2.24), using the vector or matrix basis arrays. The
complementary pairs of transformations in (2.19) and (2.20) and in (2.23) and (2.24)



CHAPTER 2. MULTILINEAR ALGEBRA 30

Table 2.2: Useful unary operations on arrays of order one or two. The results are arrays
of order zero or one. New operators are needed in linear algebra to express operations
that involve inter products. Assume that a and A equal a;(); and a;;(),; respectively.

Op. | Multilinear | Linear (old) | Linear (new)
1 b=ay b=trA b=trA
2 | b=aa; | b=]al? b= |lall*
3 b:a,-jaij b:tI‘ATA b= ||1§||2
4 | b;=ayu b = diag A
5 bz = ;G4 b = (a)2
6 bz = Qj;Gij b = <A>2

both involve inner products, either over array indices or over vector or matrix indices.

(2.23)
(2.24)

anij = aij ® (),

ahij = Ah ® ()z]

Operation 7 in Table 2.1, denoted by the symbol ¢, takes an inter product over the
row indices of A and B and an inner product over the column indices. Operation 10,
denoted by the symbol >, takes an inter product over the row indices of A and b and an
outer product over the column index of A. A similar product may be defined, denoted
by the symbol <, that takes the operands in the reverse order. Operation 12, denoted
by the symbol o, takes an inter product of A and B. Properties of commutation, dis-
tribution and association of these operators may be derived readily in light of their
multilinear equivalents and earlier discussion. Minor variations of the operations in
Table 2.1 exist, which may be expressed with the listed operators and transposition.

As contraction and attraction operate on two or more indices of an array, there
are analogues for these unary operations with matrices, which have two indices. Fur-
thermore, several binary operations in Table 2.1 imply unary operations when both
operands are the same. Table 2.2 lists unary operations that appear in this thesis, three
of which do not exist in classical linear algebra. Operation 1 gives the trace of a ma-
trix, analogous to contraction. Operation 2 gives the squared norm of a vector. For an
N x N matrix in Operation 3, computing the trace of a matrix product takes O(N 3)
time whereas an inner product of the equivalent arrays needs only O(N2) time. Thus,
the squared norm of a matrix is defined for efficiency. Operation 4 gives the diagonal
elements of a matrix, analogous to attraction. Operations 5 and 6 give the squared form
of a vector and matrix, defined to be the squared norm of each row.

222

Multiplication and inversion are connected. The purpose of finding an inverse is usually
to cancel one term in a product via multiplication. Alternately, inverses are connected
to identities as the product of an array and its inverse should yield an identity, which
is an array that leaves another array unchanged upon multiplication. In multilinear

| nver sion
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algebra, there are often more than one identity for a given array, depending on the type
of multiplication, and so there are often more than one inverse. Some identities and
types of multiplication specify non-unique inverses of certain arrays. For example, the
unit scalar is an identity that defines the inner product inverse of a vector a, denoted
a~! in (2.25), which is not unique in general.

aea =1 (2.25)

A useful class of identities and types of multiplication are those that define unique
inverses of given arrays. For example, the NV x N identity matrix I and ordinary matrix
multiplication define a unique inverse of any N x N matrix A, denoted A ~! in (2.26),
if it exists. Usually, the definition of an inverse includes a dual relation, as in (2.27),
where a complement of the operation (e.g. by commutation) also produces an identity.

AA =1 (2.26)
A'A =1 (2.27)

An identity that leaves an array unchanged with only an outer product is the unit
scalar. There is no identity that leaves an array unchanged with only an inner product
because a strict inner product of two arrays results in a scalar. An identity that leaves
an array aj, i.€. a;,4,...in, Unchanged with only inner and outer products is the product
of delta arrays d;, i 0y, - - - 0i i1, denoted &; i for short, where elements indexed by
0;; are zero when ¢ # ¢’ and one when 7 = 4’. Multiplication by a delta array implies
a substitution of index variable, as in (2.28). An identity that leaves an array a; un-
changed with only an inter product is the unit array 1;, which is one for all values of i.
Thus, in multilinear algebra, identities are products of delta arrays and unit arrays.

aiéij = aj (228)

Let @ and a~! be arrays of equal dimension with index variables h composed of
distinct variables i, j and k, arranged in any sequence. Then @ and @~! in (2.29) and
(2.30) are identical to @ and a—* with a permutation of the index variable sequence.
These permutations facilitate the definition of inverse.

dijk = Qn (2.29)

G = Oy (2.30)

An inverse of the array ay, for the identity d; j Lk is the array a;l when relations (2.31)

and (2.32) hold. The symmetry of these relations means that an inverse of an, for d; j 1k

is also an inverse for d; i 1. Thus, a;; ' may also be called an inverse of ay, over i and
Jj, where k and the two identities are implied.

ikl = 05 1 (2.31)

&ijk&;jlk = (Si,i’ 1k (2.32)

More than one inverse may exist for a given array. For example, a,jl.lj is an inverse
of ap;; for dpp Or 84054, or over h and 43, when (2.33) and (2.34) hold. However,
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a,jl.lj is also an inverse of ay;; for 15,5, or over no indices, when (2.35) holds. In the
latter case, the relations and identities in (2.31) and (2.32) are identical.

ahija;,lij = 6hh’ (233)
ahija;;j, = 6“'/ (5]]r (234)
ama& = ]-hij (235)

The context of a derivation usually implies which particular inverse and identity is
being used. For example, given a and ¢ in (2.36), b may be derived in (2.37) using
a~' as defined by (2.35) but not by (2.33) and (2.34). Nonetheless, the inverse may be
specified explicitly, as in (2.38), by including the implied identity.

hijbhijk = Chijik (2.36)
bhijk = QpijChijh (2.37)
bhijk = (Lnij/anij)cnij (2.38)

An inverse of ayp, for d; ;- 1 is unique if it exists. If different inverses by, and cp
exist then (2.39) and (2.40) hold by definition (2.31) for each inverse, where &, b and ¢
equal a, b and ¢ with a permutation of index variables h into the sequence i, j and k.

digichiyic = 035 i (2.39)
GijkCiyk = 05,5 L (2.40)

The left sides of (2.39) and (2.40) are equal because the right sides are the same. Equat-
ing the left sides and multiplying by b with an inner product over j and an inter product
over k gives (2.41), which may be rewritten in (2.42) with an association identity.

bl_]k(al_]kbl_]’k) b K (@ijkCijk) (2.41)

(b jactisgie) iy = (bivediigae) Gy (2.42)

The product in parentheses on each side of (2.42) equals d; i 1k, as in (2.43), by defini-
tion (2.32) for the inverse b (with commutation). Multiplication of b and & on each side
of (2.43) by this identity proves that b equals ¢, as in (2.44), contradicting the premise
that b and ¢ are different. Thus, the inverse of ay, over i and j is unique if it exists.

8 Lichijne = 01 LGigrac (2.43)

bi’j’k = éi’j’k (244)

2.3 Implementation

As described in Section 2.1, several authors in the literature have discussed the mapping
of array (and tensor) expressions to matrix expressions and vice versa. Some authors
describe a manual mapping for a specific problem whereas others describe an automatic
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mapping for more general problems. In the latter case, the authors do not appreciate
that many automatic mappings exist. This section summarises all possible mappings,
neatly described by a class of arrays called encoding and decoding arrays.

An array i; of order IV, i.e. 4;,4,. i, and dimensionality D is called an encoding
array if it is a one-to-one mapping of index vectors i to integer elements 4, where
1 < ¢ < D. For any encoding array i, there is a corresponding decoding (vector) array
i;, which defines the converse one-to-one mapping. An encoding array i; may be used
to encode multiple indices i of another array a; into one index ¢, as in (2.45), creating
an array b; of lower order but equal dimensionality. Conversely, a decoding array i;
may be used to decode one index ¢ of another array b; into multiple indices i, as in
(2.46), creating an array a; of higher order but equal dimensionality. Thus, encoding
and decoding of indices are complementary and reversible operations.

bii = aj (245)
as, = b; (2.46)

Any array expression may be automatically transformed with encoding arrays to
a lattice expression, where a lattice is the name given to a first order matrix array.
Lattice expressions may be evaluated by a sequence of ordinary matrix expressions,
one for each tab of the lattice, which is the name given to the third index of the lattice
(after the row and column indices). The results may be transformed with decoding
arrays back into the original array domain. By making a specific choice of encoding
and decoding that is optimal in the language, array multiplication and inversion are
implemented in MATLAB. Users of MATLAB may therefore work with the high level
description of multilinear algebra, given in Section 2.2, with the confidence that an
accurate and efficient implementation exists. Implementations of multilinear algebra
for other programming languages may be readily derived.

2.3.1 Multiplication

Consider two arbitrary arrays ax and by and the array c, resulting from an arbitrary
product, as in (2.47), indicated by repeated and non-repeated variables between in-
dices x and y where some repeated variables are underlined.? Denoting the repeated
variables that specify inner and inter products by indices h and k respectively and the
non-repeated variables that specify outer products of a and b by indices i and j re-
spectively, the original product may be rewritten with a mapping as the product of two
lattices Ay, and By, as in (2.48), resulting in a third lattice Cy,.

Cy = axby (247)
Cr = ArBg (2.48)
The mapping is given by (2.49)—(2.51) using the matrix basis array and four encod-

ing arrays hn, i;, jj and kx, which are arbitrary except for their dimensions. In these
mappings, multiple indices i of ax and j of b, are encoded into single row and column

2For example, x = hy ...hpiy...ipk1...kpandy = hy...hpj1...jnk1 ... kp, which means
z=141...ip71---JNk1 ... kp. Ingeneral, the indices of each array may be in any sequence.
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indices of A and By, respectively to achieve an outer product in (2.48). Multiple in-
dices h, repeated in ax and by, are encoded into single column and row indices of A,
and By, respectively to achieve an inner product in (2.48). Lastly, multiple indices k,
repeated and underlined in ax and by, are encoded into single tab indices of A} and
B, respectively to achieve an inter product in (2.48).

Ap = ax();p, (2.49)
Biy = by pj (2.50)
Chy = (), (2.51)

The lattice equation in (2.48) implies a sequence of ordinary matrix multiplications,
indexed by k, that may be implemented efficiently in MATLAB, as in Figure 2.1. In
asymptotic terms, the original scalar equation and the final lattice equation require
the same number of floating point operations O(HIJK) and byte storage O(HIK +
HJK +IJK),where H, I, J and K are the dimensionalities of encoding arrays A,
i1, j; and ky respectively. This is because the lattice equation does not introduce any
additions or multiplications and elements of lattices A, By and C;, have a one-to-one
correspondence with elements of arrays ax, by and c,. Furthermore, the mapping in
(2.49)-(2.51) may be implemented in O(HIK + HJK + IJK) time and space with
MATLAB, using the permute and reshape functions.

Note from (2.48) that if no inter product is involved in an array multiplication then
the operation is equivalent to a single matrix multiplication. Therefore, matrix equa-
tions (which are effectively second order) underlie array equations involving only inner
and outer products and lattice equations (which are effectively third order) underlie ar-
ray equations that also involve inter products.

2.3.2 Inversion
With the permutations in (2.29) and (2.30), the relations in (2.31) and (2.32) that de-

fine the inverse ' of an array ax for the identity &; ; 1k Or & ¢ 1k, or over i and j,
transform to lattice equations (2.52) and (2.53) by the mapping given below.
AEAlzl =11 (2.52)
AMA =140 (2.53)
For encoding arrays 5, j; and ki that are arbitrary except for their dimensions, lattices
Ay, and A,;l in (2.52) and (2.53) are one-to-one mappings in (2.54) and (2.55) of
arrays ay and a;ll. The difference of index order in the matrix basis arrays of (2.54)
and (2.55) serve to avoid a transposition in (2.52) and (2.53).
Akk = ah()iijj (254)
ALl =00 (2.55)

The lattice transformation shows that array inverses may be computed by mapping
the relations (2.31) and (2.32) to a sequence of matrix equations, indexed by & in (2.52)
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Function ¢ = atimes (a,b,ha,hb,ka, kb), where a and b are arrays of order M and N
with dimensions da and db, ha and ka consist of distinct integers in [1,M] with i taking
those integers that remain, hb and kb consist of distinct integers in [1,N] with j taking
those integers that remain, returns an array c that is the multiplication of a and b, with an
inner product over indices ha of a and hb of b and an inter product over indices ka of a and
kb of b. The indices of ¢ correspond, in sequence, to indices i of a, j of b and ka of a (or
kb of b). Inter products may be omitted with the syntax ¢ = atimes (a,b,ha, hb).

function ¢ = atimes(a,b,ha, hb,ka,kb)

if nargin <= 4

ka = [];
kb = [1;
end
M = max([ha ka ndims(a)l) ;
N = max([hb kb ndims (b)]) ;
da = [size(a) ones(1l,M-ndims(a))];
db = [size(b) ones(l,N-ndims(b))];
dh = da(ha);
dk = da(ka);

if isequal (dh,db(hb)) & isequal (dk,db (kb))
X = 1:M;
= 1:N;
([ha kal) 0;
([hb kb]) 0;
(
(

= x(logical(x)) ;
= y(logical(y));
= da(1i);
j = db(3);
= prod(dh)
= prod(di) ;
)
)

Q0 H KN
-

7

I

= prod(dj

= prod(dk) ;
permute (a, [1 ha kal);

= permute (b, [hb j kbl) ;

= reshape(a,I,H,K);

= reshape(b,H,J,K) ;

= zeros(I,J,K);

Qoo oo XROHID
Il

for k = 1:K
c(:,:,k) = a(:,:,k)*b(:,:,k);
end

¢ = reshape(c,[di dj dk 1 1]);
else

error (' Incompatible dimensions.’);
end

Figure 2.1: Array multiplication implemented in MATLAB.
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and (2.53), each of which may be solved independently by ordinary matrix inversion.
The lattice inverse may be mapped back to the array domain using the matrix basis ar-
ray and decoding arrays. Although the lattice inverse A,;l will depend on the encoding
arrays used in the transformation, the array inverse a,,* will not because of its unique-
ness. Array inversion may be implemented efficiently in MATLAB, as in Figure 2.2,
since the forward and backward mappings are insignificant compared to the matrix
inversions. A single function call abstracts the details of inversion from the user.

Existence of the array inverse in (2.31) and (2.32) hinges on the existence of each
matrix inverse in the sequence of matrix equations implied by (2.52) and (2.53). Thus,
for the array ap to be invertible over i and j, the number of rows and columns of
the lattice Ay in (2.54) must equate, which implies the dimensionalities of ¢; and jj
must equate. Providing this holds, the array is invertible if and only if the determinant
of each matrix indexed by the lattice is nonzero. With this observation, the squared
determinant of an array an over indices i and j, denoted detij an in (2.56), is defined
as the cumulative product of the squared determinant of matrices indexed by the lattice
A, which is a mapping of a1, using encoding arrays ¢;, j; and kx and the matrix basis
array. Therefore, the inverse of an array ay, over indices i and j exists if and only if the
squared determinant of ay, over i and j exists and is nonzero.

detij an = {

The reason for the square in (2.56) is that lattices A, that result from different en-
codings of the same array ay, are related to each other by a permutation of row, column
and tab (the third index of the lattice) numbers. As the sign of a matrix determinant
may change with a permutation of the rows and columns of the matrix, the sign of the
cumulative product of matrix determinants depends on the choice of encoding arrays.
Squaring the determinants ensures uniqueness. In general, a unique definition for an
array operation that is independent of any lattice transform seems preferable.

dim k . . . .
e T (det Ag)? | Ay, = ah()iijj, dim4; = dim jj

. . (2.56)
undefined, otherwise

24 Applications

As described in Section 2.1, predecessors of the multilinear algebra described herein
have had several applications. Although it would be possible to review these applica-
tions in terms of the formulation given here, showing its efficiency in deriving previ-
ously complex results, these applications have little relevance to the modelling and cal-
ibration of image sensors. Thus, new applications are considered below, some straight-
forward and complete and others difficult and incomplete. These ideas are employed in
Chapter 3 to find an efficient solution of the generic and raster sensor array problems.

24.1 Statistical variance

A stochastic array is an array with elements drawn randomly from some joint proba-
bility density function. Alternately, a stochastic array is a sample from a (possibly in-
finite) population of arrays of equal dimensions. As with scalar random variables, the
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Function ainv (a, i, k), where a is an array of order N and dimensions d, vectors i and
k consist of distinct integers in [1,N] and vector j consists of those integers that remain,
returns an array of equal order, dimensions and index sequence to a that is the inverse of a
over index positions i and j. The syntax ainv (a, i) assumes an empty vector k.

function a = ainv(a,i,k)

if nargin <= 2

k = [];
end
N = max([i k ndims(a)]);
d = [size(a) ones(l,N-ndims(a))];
h = 1:N;
h([i k]l) = 0;
j = h(logical(h)) ;
di = d(1i);
dj = d(j);
I = prod(di);

if I == prod(dj)
dk = d(k);
K = prod(dk) ;
a = permute(a, [1 J k]);
a reshape(a,I,I,K);

for k = 1:K
a(:,:,k) = inv(a(:,:,k));
end

a = reshape(a,[dj di dk 1 1]);
a = ipermute(a, [j 1 k]);
else
error (' Impossible inversion.’)
end

Figure 2.2: Array inversion implemented in MATLAB.
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expected value £{z} of a stochastic array z is simply the mean array z of the popula-
tion. The expected value of a linear function of a stochastic array = with non-stochastic
coefficient arrays a and b, as in (2.57), may be simplified in the usual way.

S{aijk + bhikxhjg} = Qijk + bhikg{xhjk} (2.57)

Armed with the expectation operator, three different types of variance may be de-
fined for a stochastic array «: an outer variance C{z} called the covariance, an inter
variance V{z} called simply the varianceand an inner variance S{z} called the scalar-
variance. These are obtained in (2.58)—(2.60) from the expectation of an outer, inter
and inner product of z, less the expected value of z (i.e. Z), with itself.

C{zn} = &{(zn — Tn) (2w — Tn)} (2.58)
V{zn} = E{(zn — Zn)(zn — Tn)} (2.59)
S{zn} = &{(rn — Zn)(zn — Tn)} (2.60)

In terms of linear algebra, if the stochastic array « is effectively a stochastic vector
then the outer variance is the covariance matrix of the vector, the inter variance is
a vector consisting of the diagonal elements of the covariance matrix and the inner
variance is a scalar equal to the trace of the covariance matrix. If the stochastic vector is
of size IV then calculating the covariance matrix needs at least O(N?) time and space.
Because linear algebra has no provision for the inter product of vectors, calculating the
inter variance using only the operators of classical linear algebra implies calculating
the whole covariance matrix with a minimum O(N?) complexity.

In cases where the outer variance is unnecessary, which is often true in the statisti-
cal description of stochastic variables estimated by regression, then multilinear algebra
provides an opportunity to calculate the inter variance in O(N) time and space. In
general, calculating the inner variance also requires at least O(V) time and space,
counting the time and space required to process and store the arguments of the inner
product. Calculating the inner variance may be more efficient with multilinear algebra
than with classical linear algebra as the former provides an operator to compute the in-
ner product of two matrices (the stochastic vector may be a function of other matrices)
without requiring matrix multiplication. The inter variance, however, provides much
more information than the inner variance at possibly the same computational cost.

2.4.2 Exploitation of sparsity

Arrays of order IV were defined as functions over vectors of IV integers. An alternative
definition of an array is a collection of elements arranged in a rectangular fashion such
that the coordinates of each element is given by a vector of IV integers. The reason
a functional definition is preferable is because it does not imply a particular storage
class. In some situations, it is more efficient to store a mathematical description of
an array without storing a single element. This is often true for the encoding arrays
used to transform array equations to lattice equations. For example, h;; in (2.61) is an
encoding array that may be used to vectorise a second order array, as in (2.62).

hij =i+ M(] - ].) (261)
MXxN
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a = Gjj ()hi]_ (262)

An important class of arrays, as with matrices, are those arrays with a minority of
nonzero elements, called sparse arrays. Sparsity may be exploited to improve both the
time and space performance of an algorithm, by limiting arithmetic operations where
possible to nonzero elements and by storing only nonzero elements. One way to store
a sparse array is to keep a list of nonzero elements together with their corresponding
indices. If there are M nonzero elements in an array of order IV then storage requires
O(M N) space since the indices are vectors of IV integers. Using an encoding array
i; that is a linear function of indices i, as in (2.63), a storage method that requires
O(M + N) space transforms the sparse array a; into a sparse vector a, as in (2.64).
The M nonzero elements of a and their corresponding row numbers are stored with the
N + 1 coefficients j and & of the linear function in (2.63).

i=iej+k (2.63)
a=a(), (2.64)

Sparse vector or matrix arrays may be transformed to sparse scalar arrays (using
the vector or matrix basis arrays) and stored by the method described above with the
additional storage of the vector or matrix size. This approach is efficient when the vec-
tor or matrix array contains a minority of nonzero vectors or matrices, which are dense
themselves, when the vectors or matrices indexed by the array are sparse themselves or
when there is a combination of the two. Since array operations may be implemented
by a sequence of matrix operations, sparse arrays were stored as native sparse vectors
in MATLAB, using the mapping in (2.63) and (2.64), and were transformed to native
sparse matrices when performing array multiplication or inversion. MATLAB’s imple-
mentation of sparse vectors and matrices is efficient in the sense that the time taken for
vector or matrix operations is generally proportional to the number of arithmetic oper-
ations on nonzeros or the number of nonzeros in the result, whichever is greater, and
the space taken for storage is generally proportional to the number of nonzeros [53].

However, when used to represent sparse arrays, the implementation of sparse vec-
tors and matrices in MATLAB is sometimes inefficient. Transforming a sparse array
equation into a sequence of sparse matrix equations (or a single sparse matrix equation
when there are no inter products) involves rearranging the elements of the sparse vector
or matrix used to represent the array. Because MATLAB stores the elements of a sparse
vector or matrix in column major order [53], this implementation requires an implicit
sorting operation on the indices of the nonzero elements. If there are O(IN) nonzero
elements in a sparse array then the time required to perform an array operation is at
least O(N log N) in MATLAB because of the rearrangement of elements. If the time
required to perform the underlying arithmetic operations of the sparse array operation
is less than O(N log V) then sorting is the limiting factor. Furthermore, MATLAB
stores extra information to optimise sparse vector and matrix operations [53] that may
exceed O (V) space when used to represent sparse arrays of O(N') nonzeros.

Although the present implementation of sparse arrays is not optimal, a more de-
tailed study of sparse arrays may, in future, improve the time and space performance so
that they are not limited by bookkeeping but by arithmetic operations and nonzero stor-
age. One property of array operations that may be exploited is that, although they are



CHAPTER 2. MULTILINEAR ALGEBRA 40

implemented by a sequence of matrix operations, they are independent of the particular
choice of encoding arrays. Furthermore, ongoing database research into sparse array
manipulation and storage may prove fruitful, particularly in the use of set operations on
nonzero indices, which may be optimised using hashing (instead of sorting). Indeed,
various researchers have advocated using hashing with sparse matrices.

24.3 Systemsof equations

So far, arrays of scalars, vectors and matrices have been discussed, where the latter two
are effectively arrays of higher order because the vectors or matrices indexed by the
array were all required to have the same size. The concept of an array of homogenous
arrays, therefore, is essentially an array of higher order. A different and useful concept,
however, is the array of heterogenous elements, be they scalars, vectors, matrices or
arrays of scalars, vectors or matrices. These collections are called cell arrays.

Cell arrays are indicated using Greek instead of Arabic subscripts. For example,
X, denotes a cell array of order one and dimension IV (i.e. with one variable a used

tévindex N matrices of possibly different sizes). Elements of a cell array are cells that
may be arbitrary scalar, vector or matrix arrays. Normally, the symbol for a cell array
represents the extent of actual cells in the array so that X, represents an array of cells
that are either scalars, vectors or matrices, as in (2.65). As another example, bg;; in
(2.66) is a 2 x 4 array of cells, indexed by « and 3, that are scalar or vector arrays of
order zero, one or two, using neither index ¢ nor j, either index 7 or j or both indices 4
and j. The cell basis arrays { } , and {}aﬁ are used to display other cell arrays like the
vector and matrix basis arrays () ; and (), are used to display vectors and matrices.

X {3 ={n x X3} (2.65)

b1 biz; biz; b }
basij{}as =  bouy
sij{}as {b21i ba2j bazi b2y

Cell arrays are particularly useful in simplifying the representation and manipula-
tion of array equations. For example, consider the linear algebra equation in (2.67).

(2.66)

yM =X Pb [t + X 4 X Peb Lt (2.67)

If the matrices and vectors on the right side of (2.67) are homogenous (i.e. P, = P, =
P3) then the equation may be rewritten as (2.68) with matrix and vector arrays. If they
are heterogenous then (2.67) may still be simplified using cell arrays, as in (2.69).

yM = XM*PpP (2.68)
yM =X Fapl (2.69)

Although the matrices and vectors indexed by X, and b, in (2.69) may be heteroge-
nous, their sizes are constrained. The number of rows in each matrix indexed by X,
must equal the number of rows in y. For each «, the number of columns in X , must
equal the number of rows in b,. These constraints are specific to the inner product
(over o) X, b, and vary for the inter product X . b, and the outer product X, bys.
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In addition to rules governing multiplication, much may be said about the inversion
of cell arrays, especially in the solution of systems of array equations (a problem which
occupies Chapter 3). Consider the example of two matrix equations (2.70) and (2.71)
that may be expressed by a single cell equation (2.72).

Y1 = X11b1 + X12b2 (270)
y2 = Xo1by + Xooby (2.711)
Yo = Xaﬁbﬁ (272)

Suppose y and X are known and b is required in (2.72). Constraints on the cells permit
the cell equation to be transformed to the partitioned matrix equation in (2.73).

yi X1 X2\ (b1
= 2.73
<YZ> <X21 Xzz) <b2> ( )
If there is a solution for the vector made up of by and b, in (2.73) then there is a unique
cell array X;é that is the inverse of X, in (2.72) such that (2.74) holds.

bs = X 5¥a (2.74)

Thus, cell arrays obey certain algebraic properties that may be exploited by a more
comprehensive (metalinear) algebra, yet to be developed. The possibility to automate
the forward and backward transformation of cell array equations to partitioned matrix
equations is enticing because cell array equations, e.g. (2.72), are no less useful for
large systems of array equations than for small systems, e.g. (2.70) and (2.71). How-
ever, because there still remain many unanswered questions regarding their properties,
cell arrays are used in this thesis only for their notational convenience.

2.5 Conclusion

An array of order NV is a functional mapping from a vector of IV integers to a scalar,
vector or matrix field. What linear algebra is to scalars, vectors and matrices, multilin-
ear algebra is to scalar, vector and matrix arrays. Vector and matrix arrays may easily
be converted to scalar arrays and vice versa. Multilinear algebra derives from tensor
calculus but permits attraction, arbitrary combinations of inner, inter and outer products
and inversion of arrays for certain identities (with existence and uniqueness theorems).
Multiplication and inversion of arrays may be transformed to lattice equations with
encoding arrays, where lattices are first order matrix arrays. Lattice equations may
be solved by a sequence of matrix multiplications or inversions. The results may be
transformed into the original array domain with decoding arrays and do not depend
on the choice of encoding and decoding arrays. The underlying mechanics of array
multiplication and inversion are easily and efficiently automated in MATLAB.
Multilinear algebra shows that four basic binary operations are missing from clas-
sical linear algebra because the latter does not permit inter (or element-wise) products.
Operators are introduced to define these operations for vectors and matrices. Three
useful unary operations are also defined for vectors and matrices, involving attraction
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and inter products. Stochastic, sparse and cell arrays were considered. For stochastic
arrays, three types of variance were defined—outer, inter and inner variance—which
have different minimum computing time and storage space requirements. Sparse arrays
are arrays where only a minority of elements are nonzero. It pays in computing time
and storage space to exploit this sparsity and a simple MATLAB implementation was
discussed, although it is not optimal in time and space because of an internal sort and
bookkeeping. Lastly, cell arrays provide a convenient way to describe and manipulate
arrays of heterogenous elements, useful in solving systems of array equations.



Chapter 3

Constrained regression

3.1 Introduction

An image sensor with IV pixels is essentially an array of NV sensors. Consider an array
of N sensors where the response of each sensor is a linear function of P inputs plus
Gaussian noise. Calibration of this sensor array may be accomplished by estimating the
PN coefficients of the multiple linear functions from the M responses of each sensor
to M input vectors, where M > P. Assuming all sensors respond to the same input
vector, for each observation of the calibration, these conditions may be modelled by
(3.1), where Y is an M x N matrix of sensor responses, X is an M x P matrix of
input vectors, B is a P x N matrix of linear coefficients and X is an M x N matrix of
Gaussian noise, assumed to be independent from sample to sample.

Y=XB+X (3.1)

_The parameters B of the sensor array may be estimated by multilinear regression,
as B in (3.2), where Y is pre-multiplied by the pseudo-inverse of X [42, 54].

B=X"X)"'Xx"Yy (3.2)

Note that the formulation in (3.2) is the solution of N independent multilinear regres-
sion problems, one for each column of Y, with a single matrix equation. Assuming
N > M, this solution takes O(P M N) floating point operations (flops) and requires
O(M N) bytes of storage. It is effectively an O(V) time and space algorithm if the
number of sensors is much larger than the number of observations, i.e. N > M, as
shall be assumed in the context of imaging.

Suppose parameters of the sensor array obey certain linear constraints. Enforcing
these constraints during calibration leads to more accurate parameter estimates, espe-
cially in the presence of noise [40, 41, 42]. The constraints may relate parameters of
one sensor to parameters of another sensor so calibration ceases to be one of NV inde-
pendent regressions but one of a single constrained regression, called the generic sen-
sor array problem. In addition to parameter estimation, the generic problem requires
estimation of the variance of the Gaussian noise, which measures the residual error in

43
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Y11 > Y12 o DR Y1N- >

Y21 > Y22 o DR Y2N> >

YnNy1 > YN, 2 o ER YNy N> >
Y Y Y

Y

Figure 3.1: A rectangular array of N; x N5 sensors. The response of each sensor is
denoted y;, ;, and responses are scanned in raster fashion.

the model, and the variance of each estimated parameter, which is the uncertainty of
the calibration due to noise. In cases where the exact constraints on parameters are
unknown, these statistics help to distinguish good hypotheses from bad ones [40].

Ideally, a solution to the generic problem would take O(XN) time and space, as
with the unconstrained sensor array problem, but this chapter shows it is not always
possible. One class of the generic problem of particular interest to imaging, where it
is always possible to do so, is called the raster sensor array problem. Consider an
N1 x N, rectangular array of sensors with responses y;, j,, where 1 < j; < N; and
1 < j» < Nj, that are scanned in raster fashion, as depicted in Figure 3.1. The response
at each sensor in each column is read serially to a column buffer and the response at
each column buffer is read serially to an output buffer. Assume the response y , ;. at
the output buffer, which is read for row j; and column j, of the sensor array, depends
on parameters that may vary from sensor to sensor, parameters that may vary from
column to column and parameters that may not vary. This is a special case of the
generic problem, where parameters must satisfy one of these three constraints.

Methods to solve the generic and raster problems, which are useful in the modelling
and calibration of image sensors, are derived in Sections 3.2 and 3.3. The generic
problem is investigated because it is more flexible than the raster problem and, as the
equations are simpler, it facilitates an explanation of the solution. Though it may be
solved in O(V) time and space as a special case of the generic problem, assuming
an efficient sparse array implementation in MATLAB, the raster problem is investigated
separately to optimise the O (V) time and space performance. Extensions of the generic
(and raster) problems are considered in Section 3.4, where sensors may respond to
different input vectors for each observation in the calibration or when responses may
depend on parameters in a nonlinear fashion. Section 3.5 simulates a raster sensor
array problem to illustrate the usefulness of constrained regression and to demonstrate
the time and space performance of various methods of solution.
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3.2 Generic methods

Magnus and Neudecker derive a solution to the multilinear regression problem with
linear constraints using best affine unbiased estimation, which yields the same result
as least squares estimation at greater theoretical complexity [42]. The authors suggest
that least squares is not a method of estimation but of approximation and that it is a
remarkable coincidence that the results are equal. However, Wang and Rhee note that
the maximum likelihood estimator of a multilinear regression problem (with or without
constraints) always equals the least square estimator when the error belongs to a Gaus-
sian distribution [55]. Wang and Rhee also discuss maximum likelihood estimation
when the error belongs to any [, distribution (e.g. {, is a Laplacian distribution and /»
is a Gaussian distribution) [55]. Because the error is always assumed to be Gaussian in
this chapter, least squares estimation is used throughout.

This chapter assumes that all matrices needing inversion have full rank. Magnus
and Neudecker discuss the solution of rank deficient problems (e.g. redundant con-
straints or insufficient linearly independent observations) [42]. This chapter also as-
sumes that there are only equality constraints on the regression parameters. Wang
and Rhee [55] and Ghiorso [41] consider problems that involve inequality constraints.
Such problems require a simplex-tableau approach in the theory of linear program-
ming. Lastly, this chapter assumes that Gaussian errors are statistically independent
from sample to sample. Magnus and Neudecker discuss ways of including known sta-
tistical dependencies of the error in the regression problem [42].

To solve the problem of constrained regression, Magnus and Neudecker use a La-
grangian method, where the constraints are explicit [42]. Ghiorso uses a different
method, where the constraints are implicit—a regression problem with constrained
parameters is equivalent to another regression problem with unconstrained but fewer
parameters [41]. Both methods are applied in this section to solve the generic problem
because the method of explicit constraints is the most obvious approach whereas the
method of implicit constraints has better time and space performance.

3.2.1 Explicit constraints

Equation (3.3) models the generic problem for an array of NV sensors, indexed by the
variable j. Observations of the response of each sensor are given by vectors of size
M, indexed by the N-dimensional array y ;. Each row of the M x P matrix X gives
the input vector seen by all sensors for each observation. Parameters of the sensor
functions are given by vectors of size P, indexed by the N-dimensional array b ;. The
vector array e; represents the Gaussian error. The L constraints on the parameters are
given explicitly in (3.4), where A ; is an N-dimensional array of L x P matrices and
c is a vector of size L. Note that the inner product over j in (3.4) permits constraints
relating parameters in one sensor to parameters in another.

y; = ij +€; (3.3)
Ajbj =cC (34)

Equations (3.5) and (3.6) assert that the stochastic error has zero mean and that the er-
ror, with an unknown standard deviation of o, is statistically independent from sample
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to sample. The regression problem is to find an estimate Bj, of the actual parameters
b, that minimises the sum square error (SSE) defined in (3.7).

E{Gj} = Oj (35)
Clej} = 02651 (3.6)
SSE(b;) = 15]ly; — Xby||? (3.7)

If this problem is formulated using linear algebra, as in (3.8), then the parameters
b; must be rearranged as a vector so that the constraints A ; in (3.4), when rearranged
as a matrix, may relate parameters of one sensor to parameters of another.

by
b

by
However, vectorisation of b; requires (3.3) to be rewritten in matrix form, as in (3.9),

where the input matrix X is repeated N times in a larger M N x PN sparse input
matrix. This N-fold redundancy wastes time and space during computation.

Y1 €1

y2 o X . b, €2
= S+ (3.9)
. : . . 0 . .

yN 0o --- o0 Xx/ \b~n EN

To minimise the SSE in (3.7) subject to the constraints in (3.4), a Lagrangian is
defined in (3.10) with a vector A of L multipliers. The partial derivatives of the La-
grangian with respect to b; and X are given in (3.11) and (3.12). The SSE is minimised
subject to the constraints when the partial derivatives of the Lagrangian equal zero.

L(bj,A) = SSE(b;) + (A;b; —c)TA (3.10)
oL
ab; ~ —2X"(y; — Xb;) + ATA (3.11)
% = Ajbj —C (312)

Setting (3.11) and (3.12) equal to zero and solving for b ; gives the estimate Bj in
(3.17), with intermediates listed in (3.13)-(3.16). The estimator that solves the uncon-
strained regression problem is by; in (3.16).

D= X'x)! (3.13)
E; = DAY (3.14)
F; =E;(AE;) ™! (3.15)

BO]' = DXTy]’ (316)
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Table 3.1: Asymptotic time and space performance for a dense and sparse solution to
the generic and raster problem, using explicit constraints.

Time O(+) Space O(+)
Equation | Dense Sparse | Dense Sparse
(3.13) PZM PM
(3.14) | LP2N P2N | LPN PN
(3.15) L?PN LPN
(3.16) PMN MN
(3.17) LPN LPN
(3.18) PMN MN
(3.19) LPN PN LPN
Total L?PN LPN
bj =bo; — F;(A;by; —c) (3.17)

Equation (3.18) estimates the variance of the error 62 using the estimated param-
eters Bj. The SSE is divided by the degrees of freedom, which equals the number
of equations (i.e. L constraints and M NN observations) minus the number of variables
(i.e. PN parameters). This ensures that the estimated error variance is unbiased. Equa-
tion (3.19) estimates the inter variance of the parameters V{Bj}, using the estimated
error variance. The exact inter variance may be known only with the exact error vari-
ance. Note that the inter variance in (3.19) involves a mixed product of lattices E ; and
F;, with an inter product over the row indices and an inner product over the column
indices, as in Operation 7 of Table 2.1, and an inter product over the tab indices.

g SSE(b;)
2 _ J
O =T MN PN n ~ 5 (3.18)
V{b;} = 6%(1; diagD — E; o F;) (3.19)

Assuming the number of constraints is proportional to the number of sensors, i.e.
L « N, the number of observations is much less than the number of sensors, i.e. M <
N, and the number of parameters per sensor is less than the number of observations,
i.e. P < M, Table 3.1 gives the time and space requirements for the explicit method,
i.e. to compute (3.13)—(3.19). Except for (3.14), (3.15) and (3.17), all equations take
O(N) time and space. With a dense implementation, (3.14) is O(N?) in time and
space. However, for the raster problem, A ; and E; have O(N) nonzero elements,
which means (3.14) has O(NN') performance when implemented with sparse arrays.

Although A; and E; have O(IV) nonzero elements for the raster problem, their
product in (3.15) has O(N?) nonzero elements. Inversion of this dense product takes
O(N?) time. The inverse in (3.15) has O(N?) nonzero elements, which means the
product of E; with the inverse takes O(N?) time (considering the sparsity of E;).
The result F; has O(N?) nonzero elements, which means (3.17) takes O(N?) time
and space. Therefore, the explicit method takes O(N?) time and O(NN?) space for the
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raster problem with a dense or sparse implementation, which is also the worst case
performance of this method for the generic problem.

3.2.2 Implicit constraints

Enforcing linear constraints on a space of PN parameters b is equivalent to defining
b; as the linear transformation, with coefficients U; and bg;, of an unconstrained
subspace of () parameters a, as in (3.21). The transformation implicitly ensures that
the constraints are satisfied. With this idea, minimising the SSE in (3.7) subject to
(3.3)—(3.6) is equivalent to minimising the SSE in (3.24) subject to (3.20)—(3.23).

y; = Xb, +¢; (3.20)

b; = Uja + by; (3.21)
£{ej} =0, (3.22)
C{ej} = 0261 (3.23)
SSE(bj) = 1j|ly; — Xby||? (3.24)

The required equivalence between explicit constraints (3.4) and implicit constraints
(3.21) means that (3.25) holds for the entire space spanned by the vector a.

Va: Aj(Uja + boj) =c (3.25)

If (3.25) holds then so does (3.26), which means U ; is in the null space or kernel of A ;
and may be determined by row reduction of A ;. Alternatively, A ; may be determined
if U; is given. Because of the null space relationship, the number of explicit parameters
PN in (3.3) or (3.20) equals the sum of the number of explicit constraints L in (3.4)
and the number of implicit parameters @ in (3.21), as in (3.27).

0=A,U; (3.26)
PN=L+Q (3.27)

Using (3.25) and (3.26), the vector c¢ and vector array bo; may be calculated from
each other as in (3.28) and (3.29). The time and space cost of the transformations are
immaterial because the user is assumed to be capable of providing either representation
of the constraints, which is true for the raster problem.

C = AjbOj (328)

bo; = A (A;A]) e (3.29)

An advantage of implicit over explicit constraints is that no Lagrangian is needed to
minimise the SSE with the former. With the substitutions in (3.30) and (3.31), the SSE
in (3.24) may be reformulated in (3.32) as an exact function of the implicit parameters

a. The minimum of the SSE with respect to a is found by solving for the vector that
makes the partial derivative in (3.33) equal to zero.

Z; =Y; — Xb()j (330)
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Table 3.2: Asymptotic time and space performance of a dense and sparse solution to
the generic and raster problem, using implicit constraints.

Time O(+) Space O(+)
Equation | Dense Sparse | Dense  Sparse
(3.30) PMN MN

(3.31) | PQMN PMN | QMN MN
(3.34) | Q?MN  Q* | QMN Q?
(3.35) | QMN  Q* | QMN  @?
(336) | PQN PN | PQN PN
(3.37) | QMN MN |QMN MN
(3.38) | PQ?N  PQN PQN
Total | Q°MN PQN | QMN PQN

W; = XU; (3.31)
SSE = ]-szj - VVjElH2 (332)
0SSE
T —2W/ (z; — W;a) (3.33)

The solution a that minimises the SSE in (3.32) is given by (3.34) and (3.35), which
are similar to (3.13) and (3.16). This parameter estimate, in a subspace of the original
parameter space, may be linearly transformed into an estimate in the original space, as
in (3.36). Because of the equivalence of the representations, the estimator Bj in (3.17)
equals the estimator f)j in (3.36), although the equations are substantially different.

V=(W/w;* (3.34)
a=VW,z; (3.35)
b; = U;a + by; (3.36)

As before, (3.37) estimates the variance of the error 2 using the estimated param-
eters Bj. Note that (3.18) and (3.37) are identical because (3.7) and (3.24) are identical
and (3.27) ensures the denominator (i.e. the degrees of freedom) is the same. Equa-
tion (3.38) estimates the inter variance f/{Bj} of the estimated parameters.

., SSE(b;)
60 = T _JQ (3.37)
V{b;} =62(U,;V) o U, (3.38)

Assuming the number of implicit parameters is proportional to the number of sen-
sors, i.e. @ o« N, Table 3.2 gives the time and space requirements of the implicit
method, i.e. to compute (3.30), (3.31) and (3.34)—(3.38). With a dense implementation
of all arrays, the implicit method takes O(N?) time and O(N?) space like the explicit
method. The limiting equations are (3.34) and (3.38) as all others take O(NN?2) time.
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However, with a sparse implementation of arrays U; and W, these equations take
O(N?) time for the raster problem. The number of nonzeros in U; is O(PN) and
W, calculated in (3.31), has a similar sparsity with O(A{ N') nonzeros.

Exploiting the sparsity leads to a reduction in time and space requirements for
(3.31), (3.36) and (3.37) from O(N2) to O(IN). However, (3.34), (3.35) and (3.38)
retain O(N?) time and space requirements because matrix V' in (3.34) remains dense
(it is related to the covariance of parameters, which tends to be dense because of rela-
tionships between parameters). The product of W ; with itself in (3.34) is sparse with
O(N) nonzeros but leads to a dense matrix upon inversion. Nonetheless, the sparsity
of U; and W enables the raster problem to be solved in O(N?) time with implicit
constraints whereas it takes O(N?) time with explicit constraints.

3.2.3 Cholesky factorisation

While an O(N?) time and space solution to the raster problem is better than an O(N?3)
time and O(V?) space solution, an O(V) time and space solution is by far more useful
when N is large (as it often is with image sensors). Such a solution is possible with
the implicit method and Cholesky factorisation. For the implicit method, if the num-
ber of nonzeros in U; is O(PN) then a sparse implementation of U; and W ; leads
to O(PM N) time requirements and O(M N) space requirements except for (3.34),
(3.35) and (3.38), as in Table 3.2, because the ) x @ matrix V tends to be dense.
However, the product of W' ; with itself in (3.34) remains sparse and has O(Q) nonzero
elements. Only upon inversion does sparsity disappear.

Because W;ij is a positive definite matrix then a Cholesky factor W of the
product exists, which is an upper triangular square matrix that satisfies (3.39) [56].

WiWe =W/ W; (3.39)

Since the product W}Wj is sparse of O(Q) nonzeros, its Cholesky factor is also
sparse with O(Q) nonzeros and takes O(Q) time to compute. Moreover, the inverse
of the Cholesky factor, denoted V¢, is also sparse with O(()) nonzeros and inversion
takes O(Q) time to compute. Most importantly, the dense matrix V in (3.34) is a
product of the inverse Cholesky factor with itself, as in (3.40).

V=V,Vi (3.40)

With Cholesky factorisation, there is no need to compute V because (3.35) and
(3.38) may be rewritten in (3.41) and (3.42) using the inverse Cholesky factor to avoid
producing this dense matrix. As a result of the Cholesky factorisation, (3.41) takes
O(MN) time and uses O(M N) space and (3.42) takes O(P N time and uses O(PN)
space. The order of operations in (3.41), indicated by parentheses, is crucial to achieve
this performance improvement. Thus, the implicit method with Cholesky factorisation
takes O(PM N) time and O(M N) space to solve the raster problem. Since IV is much
larger than P or M, this method essentially takes O(IV) time and space.

=Ve(VE(Wz))) (3.41)

a
V{b;} = 62(U;Ve)? (3.42)
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As for the explicit method, if the positive definite product A ;E; in (3.15) is sparse
then it is profitable to find its Cholesky factor G¢, as in (3.43). This factor may be used
to simplify (3.15), (3.17) and (3.19), as in (3.44)—(3.46). However, the explicit method
with Cholesky factorisation does not yield any improvement for the raster problem be-
cause A ;E; is dense, causing a dense Cholesky factor and a dense inverse. Nonethe-
less, other classes of the generic problem may result in a sparse product A;E;, in
which case Cholesky factorisation would be profitable.

G(¢G¢ = AjE; (3.43)
F) =E;G;" (3.44)
b; = bo; — F,(Gz' " (A;bo; — ¢)) (3.45)
V{b;} = 62(1; diag D — (F})?) (3.46)

3.3 Raster method

A sparse implementation of the implicit method with Cholesky factorisation requires
O(N) time and space to solve the generic problem when the coefficient array U ; and
related arrays W; and WjTWj have O(NN) nonzeros. The raster problem meets these
criteria. However, the expected O (V') performance may not be realised in MATLAB be-
cause of a sub-optimal sparse array implementation. Instead of using a generic method
to solve the raster problem, an O (V) time and space method to solve the raster problem
may be derived that does not require sparse arrays or Cholesky factorisation. Even if a
better sparse array implementation existed, this raster method is more efficient than a
generic method to solve the raster problem in non-asymptotic terms (i.e. it is a faster
and smaller O(NN) method). Nonetheless, the generic method is much more flexible
for the analysis of sensor arrays.

Equations (3.47)-(3.51) formulate the raster problem using cell arrays, with the
sensor index j of Section 3.2 decoded into row and column indices j; and j, as in
Figure 3.1. The PN parameters of the N; x N, sensor array are partitioned into three
heterogenous arrays, corresponding to those P; N parameters by, ;, that vary from
sensor to sensor, those P, N parameters by;, ;, that vary from column to column and
those P; N parameters bs;, ;, that do not vary. These constraints may be imposed either
explicitly, analogous to (3.4), or implicitly, analogous to (3.21). Both formulations lead
to the same solution but implicit constraints are chosen in (3.48), where a1, j,, as;,
and a3 represent the subspace of fewer parameters. Equations (3.49) and (3.50) state
the assumptions on the Gaussian error and (3.51) defines the SSE.

Yiijo = Xabajijo + €j1jo (3.47)
bajija{te = {@1i Lpazs 1jj.as} (3.48)
E{€jijnt = 0o (3.49)
Clejijn} = 020,510,511 (3.50)

SSE(bOzjljz) = 1j1j2 ||YJ1j2 - Xabaj1j2 ||2 (351)
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The maximum likelihood estimator of b, , in (3.47) is found by minimising the
SSE in (3.51) with respect to a, , j,, a2j, and as. The partial derivatives of the SSE
with respect to these variables are given in (3.52)—(3.54).

8SSE
o = ~2X1 (Virj — Xabajja) (3.52)
15142
0SSE
o = 20Xz (Viij — Xabajiss) (3.53)
2j2
OSSE
da = _2jlj2X3T (yJ'1J'2 - Xaba]’ljz) (3.54)
3

In the process of finding the estimates &, ;, ;,, 425, and a3 that make (3.52)—(3.54)
equal zero, a number of intermediates are derived, given in (3.55)—(3.63), which could
be avoided if a metalinear algebra existed to automatically solve the system of equa-
tions (3.52)—(3.54) subject to (3.48). Note that (3.55) and (3.56) involve inter products
of cell arrays and that (3.55) implies a sequence of heterogenous matrix inversions.

R, = (X' Xa) ™" (3.55)
Sa = Ro X' (3.56)
Saﬁ = SaXB (357)
S123 = S13 — S12S23 (3.58)
X =X, (3.59)
X’2 = X2 — X1812 (360)
XI3 = X3 — X18123 — X2823 (361)
= Yiije
Vi. = 1; ]]Vj (3.62)
o1, Vi
y=1, N, (3.63)

Although S, in (3.57) describes nine matrices, only three are important—the ones
on the right hand side of (3.58). The remaining six are either identity matrices (when
a = [3) or zero matrices (when o > (3). Equations (3.62) and (3.63) are averages of the
M N sensor responses y ;, ;,, taken over each column and over all sensors respectively.

Equations (3.64)—(3.66) give the implicit parameters a that minimise the SSE.
These may be transformed in (3.67) to determine the maximum likelihood estimator
Bajl j» Tor the parameters of the raster sensor array problem. Note that the parameters
a3 in (3.64), which do not vary from sensor to sensor, depend only on the average re-
sponses over all sensors. The parameters a,;, in (3.65), which vary from column to
column, depend on the average responses over each column and over all sensors re-
spectively. The parameters a,;, ;, in (3.64), which vary from sensor to sensor, depend
on all responses as well as the averages mentioned above.

a3 = S3¥ (3.64)
agj, = 52¥;, — 15,8233 (3.65)

a1j,jo = S1¥jij» — Lj; S1282j, — 1;,5,S1383 (3.66)



CHAPTER 3. CONSTRAINED REGRESSION 53

Table 3.3: Asymptotic time and space performance of a (dense) solution to the raster
problem (using implicit constraints).

Equation(s) Time O(-) | Space O(-)

(3.55)~(3.57), (3.60)and (3.61) | PZM PM
(3.58) pP3 pP?
(3.59) and (3.64) PM PM
(3.62) and (3.63) MN MN
(3.65), (3.66) and (3.68) PMN MN
(3.67) and (3.70) PN PN
Total PMN MN

bajljz{}:g = {élj1j2 ljl 321'2 ljljz 33} (367)

As before, (3.68) uses the estimated parameters Bajl j» to estimate the error vari-
ance 62, where the number of implicit parameters @ is given in (3.69). Py, P, and P;
are the number of parameters per sensor that vary from sensor to sensor, that vary from
column to column and that do not vary respectively. As in (3.18) and (3.37), the error
variance is the SSE divided by the degrees of freedom and is an unbiased estimate.

52 _ SSE(baj,j)
€ MN —Q
Q =PN + PN, + Ps (3.69)

(3.68)

The estimated error variance is used to estimate the inter variance of the param-
eters fi{f)ajljz}, given in (3.70). These variances are pre-multiplied by 13, ;,, which
means all sensors have the same parameter variances although the sensors may have
different parameters. Such a symmetry exists only for the raster problem. Examples
of the generic problem may be constructed, solvable in O(N) time and space using
the implicit method with sparse arrays and Cholesky factorisation, that have sensor-
dependent parameter variances.

diagRy (S12R2)0S12 + (S123R3)0S123
1 N1 N
VIb, — N liag R SssRs3)oS
V{bahh}{}a = 0'521]'1J'2(“a]§(1 2 + ( 23 1\3[)0 23) (370)
6’21' . diagRg
€ ~J1J2 N

/\2 o
0clj

Table 3.3 gives the time and space requirements for the raster method, i.e. to com-
pute (3.55)—(3.70). There are no sparse arrays and no Cholesky factorisation is needed.
Cholesky factorisation of the product X.I'X, in (3.55) may be helpful from a non-
asymptotic point of view but dense matrix inversion in MATLAB uses LU factorisation
anyway, which is also efficient. As Table 3.3 shows, the raster method needs O(PM N)
time and O(M N) space, which effectively means an O(N') performance.
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Table 3.4: Asymptotic time and space performance of a dense and sparse solution to
the generic problem with sensor-varying input, using implicit constraints.

Time O(+) Space O(+)
Equation Dense Sparse | Dense  Sparse
(3.73) PMN PMN

(3.74) | PQMN PMN | QMN PMN
(3.34) | Q?2MN  @Q* | QUN @2
(3.35) | QMN  Q*> | QMN Q2
(336) | PQN PN | PQN PN
(3.37) | QMN MN | QMN MN
(3.38) | PQ2N  PQN PQN
Total | Q°MN PQN | QMN PQN

3.4 Extensions

3.4.1 Sensor-varyinginput

Equations (3.3), (3.20) and (3.47) relate the observed responses y ; or y;, ;, of the
sensor array to the A input vectors making up the rows of X or X, so that each sensor
in the array receives the same input vector for each observation of the array response.
A more liberal formulation would permit each sensor to see a different input vector for
each observation. For example, one observation of an image sensor is an image that
may represent different luminances at each pixel, rather than the same luminance as is
normally done for calibration purposes. Interestingly, such a liberal formulation of the
generic problem results only in a minor change to the method of solution. Although it
may also be done for the explicit method, the case of sensor-varying input is formulated
below for the implicit method.

Equations (3.20) and (3.24) are modified to Equations (3.71) and (3.72), where
the lattice X; represents the PA/ N sensor-dependent inputs. This is another example
of the usefulness of the inter product. The remaining equations in Section 3.2.2 are
unchanged except for the substitutions in (3.30) and (3.31). These are replaced by
(3.73) and (3.74), reflecting the sensor-dependence of the input.

v = Xibi +€; (3.71)
SSE(b;) = 1,lly; — X,b;|I* (3.72)
zj =y; — X;bo; (3.73)

W; = XiUi (3.74)

Table 3.4 gives the time and space requirements of the implicit method for sensor-
varying input, i.e. to compute (3.73), (3.74) and (3.34)—(3.38). The only changes
compared to Table 3.2 are in the space requirements for (3.73) and the sparse version
of (3.74). The required space is at least as much as it takes to store the dense lattice
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X ;. For the raster problem, the time requirements of the sparse version of (3.74) equals
that of (3.31) because the sparsity of U; dominates the result W ;, which continues to
have O(M N) nonzeros. The performance of the remaining equations in Section 3.2.2
as well as the Cholesky factorisation in Section 3.2.3 does not change.

Thus, the sensor-varying input problem is hardly more difficult than the sensor-
constant input problem. Similar modifications to those described above for the implicit
method may be derived for the explicit or raster methods. These modifications mostly
involve multiplications and inversions that entail inter products.

3.4.2 Nonlinear optimisation

Multilinear regression may be applied to estimate parameters of a model so long as
the output, which may be nonlinear functions of the dependent variables, is a linear
function of the inputs, which may be nonlinear functions of the independent variables,
and Gaussian error. For example, multilinear regression may be applied to estimate the
parameters a and b in the model given by (3.75), where y is the dependent variable, x
is the independent variable, c is a constant and ¢ is the Gaussian error.

y=a+bln(c+z)+e (3.75)

The nonlinearity in (3.75) is no complication because the equation may be rewritten by
(3.76)—(3.78), where x is a row vector of inputs and b is a column vector of parameters.

y=xb+e (3.76)
x= (1 In(c+w)) (3.77)
b=(a b)" (3.78)

However, if ¢ in the example of (3.75) is not a constant but a parameter then nonlin-
ear optimisation is required because a linear decomposition of inputs and parameters,
as in (3.76), is impossible. Nonlinear optimisation involves minimisation of the SSE
in (3.79) over parameters b in (3.78) and ¢ in (3.77). Nonetheless, for any value of ¢
(providing ¢ > —xz), the values of b that minimise the SSE in (3.79), denoted b, may
be estimated by multilinear regression. Thus, the minimum SSE is a known function
of ¢ alone and nonlinear optimisation needs to estimate one parameter instead of three.

SSE(b,c) = ||y — x(c)b]|? (3.79)

Generalising the above example, a nonlinear sensor array problem, where rela-
tionships between dependent and independent variables of sensors in an array include
nonlinear parameters and constraints, may be simplified with constrained multilinear
regression. Let the vector w denote the fewest parameters in the nonlinear problem
whereby, when w is constant, the remaining parameters b; may be estimated by mul-
tilinear regression with linear constraints. Thus, the minimum SSE over b; and w is a
known function f(w) over w alone, as in (3.80), where f)j is an estimate of b; derived
by the generic or raster methods (possibly with sensor-varying input) for given w. The
vector w may be estimated by minimising f(w) with nonlinear optimisation.

f(w) = SSE(b;, w) (3.80)
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If the nonlinear problem includes either linear or nonlinear constraints on the pa-
rameters w (nonlinear constraints are not permitted on the parameters b;) then an
explicit or implicit method may be used to enforce these constraints, as before. An
explicit method involves the nonlinear optimisation of a Lagrangian function £(w, A),
as in (3.81), with a vector function g(w) of constraints and a vector A of multipliers.
An implicit method transforms the constrained optimisation of f(w) over a space of
parameters w to the unconstrained optimisation of another function f (W) over a sub-
space of parameters w. A combination of the two methods is also possible whereby
some constraints, e.g. the linear ones, are expressed implicitly with the rest expressed
explicitly (it may not be possible to express some nonlinear constraints implicitly).

Lw,A)=f(w)+g(w)e (3.81)

The error variance o for nonlinear optimisation may be estimated as before, by di-
viding the SSE realised with estimated parameters Bj and w by the degrees of freedom.
The degrees of freedom in the calibration equals the number of equations, including
linear and nonlinear constraints, minus the number of variables, counting linear and
nonlinear parameters. Nonlinear optimisation, however, complicates the estimation of
parameter variances V{b;} and V{#}. Given that the gradient of the SSE with respect
to w is zero for the estimate w, due to nonlinear optimisation, the inter variance of
Bj may be estimated by the generic or raster methods (possibly with sensor-varying
input) to a first order approximation. A better approximation requires the hessian of
the SSE with respect to w for the estimate w, which is also needed to estimate the inter
variance of w. For simplicity, nonlinear problems considered in this thesis ignore the
stochasticity of the estimate w to avoid calculation of the hessian.

3.5 Simulations

In this section, an example of the raster problem is simulated to illustrate the use of
constrained regression in the modelling and calibration of sensor arrays. The time
and space performance of different methods to solve the problem are compared (all
methods give the same solution). The example consists of an array of N1 x N2 sensors,
as in Figure 3.1, where the output of each sensor is a linear function of a single input.
Each sensor therefore has an offset and gain parameter.

3.5.1 Modelingand calibration

Three different models are simulated for the sensor array described above. In the
sensor-varying gain (SVG) model, the gain may vary from sensor to sensor. In the
column-varying gain (CVG) model, the gain may vary only from column to column.
Thirdly, in the non-varying gain (NVG) maodel, the gain does not vary at all. For each
model, the offset may vary from sensor to sensor irrespective of the constraints on the
gain. Ten observations were generated for each model and each sensor in a 10 x 10
array of sensors by varying the input from one to ten in integer steps. The offset and
gain parameters were chosen randomly from a uniform probability distribution ranging
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Table 3.5: The number of explicit constraints L and implicit parameters ) for three
models of a sensor array with 200 explicit parameters PN.

Model L @

Sensor-varying gain (SVG) 0 200
Column-varying gain (CVG) | 90 110
Non-varying gain (NVG) 99 101

Table 3.6: The residual error, or square root of the estimated error variance 2, when
simulated SVG, CVG and NVG scenarios are calibrated for SVG, CVG and NVG
hypotheses. Over-constrained models give worse results (which are italicised).

Scenario Residual error
SVG 010 0.85 0.88
CVG 0.10 010 1.00
NVG 0.10 0.10 0.0

Hypothesis: SVG CVG NVG

from zero to one. Finally, Gaussian error with a mean of zero and a standard deviation,
i.e. o, of 0.1 was added to the sensor responses.

Each of these models may be calibrated by the generic or raster methods, where the
number of observations M is ten, the number of parameters per sensor P is two, the
number of sensors N is 100 (as N; = 10 and N, = 10) and the number of explicit con-
straints L and implicit parameters () depend on the model, as in Table 3.5. Note that L
and @ always sum to the number of explicit parameters PN (i.e. 200), as in (3.27). For
the SVG model, there are no explicit constraints so the implicit parameters equal the
explicit parameters. The CVG and NVG models show increasing numbers of explicit
constraints (on the gain) and therefore decreasing numbers of implicit parameters.

The user may not know exactly what constraints apply to the model parameters
of a sensor array. However, hypotheses may be tested and compared according to the
estimated error and parameter variances 52 and V{b;}, which are often square rooted
to give standard deviations called the residual error and parameter uncertainties re-
spectively. A hypothesis that over-constrains the parameters results in a higher residual
error because the model is incompatible with the scenario. A hypothesis that under-
constrains the parameters results in higher parameter uncertainties because the extra
degrees of freedom in the model attempt to calibrate the stochastic error.

Table 3.6 gives the residual error when simulated responses for the SVG, CVG and
NVG scenarios are calibrated for the SVG, CVG and NVG hypotheses. If the hypoth-
esis is incompatible with the scenario (italicised entries) then the residual error is high.
However, if the hypothesis is compatible, even if it is not precise, the residual error
approximates the actual standard deviation of the Gaussian error because the estimator
is unbiased when the model is compatible. Therefore, the residual error distinguishes



CHAPTER 3. CONSTRAINED REGRESSION 58

Table 3.7: The parameter uncertainties, or square root of the estimated parameter vari-
ances V{b}, when simulated SVG, CVG and NVG scenarios are calibrated for SVG,
CVG and NVG hypotheses. Under-constrained models give worse results (italicised).

Scenario Parameter uncertainties
SVG Offset: 0.26 0.56 0.53
Gain: 010 0.7 0.10
CVG Offset: 0.27 020 0.57
Gain: 011 0.06 0.10
NVG Offset: 0.26 0.19 0.18
Gain: 011 0.06 0.03
Hypothesis: SVG CVG NVG

only compatible models from incompatible ones.

If there is more than one hypothesis that is compatible with the scenario then a
distinction between them may be made by comparing the parameter uncertainties. Ta-
ble 3.7 shows, for scenarios in Table 3.6 where the residual error is similar between
hypotheses, that the parameter uncertainties identify the correct model (boldface en-
tries). When the constraints of the scenario are matched by the constraints of the hy-
pothesis, there is less uncertainty in the estimated parameters. If the hypothesis has
fewer constraints than the scenario (italicised entries) then the estimated parameters
are more likely to be corrupted by the Gaussian error in the observations. Appropriate
constraints in a hypothesis compensate for stochastic error in the observations.

Therefore, constrained regression is useful in the analysis of sensor arrays, both for
identifying relationships between parameters of a model and for calibrating the model
to minimise, first, the residual error and, second, the parameter uncertainties.

3.5.2 Timeand space performance

The previous section demonstrated the usefulness of constrained regression for the
modelling and calibration of an array with N = 10 x 10 sensors, where the output of
each sensor is a linear function of a single input. The same problem is examined in
this section but with an evaluation of the time and space performance in MATLAB of
various methods of solution as NV varies from 1 to 1000, where N and N- approximate
V/N so that the sensor array is roughly square, as with image sensors.

Figure 3.2 shows the number of flops required as a function of NV by the explicit and
implicit methods, without and with Cholesky factorisation, and by the raster method.
The number of flops, for each point in the figure, represents the total number of arith-
metic operations needed to solve the nine multilinear regression problems required
to produce Tables 3.6 and 3.7 (all methods give the same results). When N is large
enough, the explicit method takes O(IN3) time. In contrast, the implicit method takes
O(N?) time without Cholesky factorisation but O(V) time with Cholesky factorisa-
tion. The raster method is the fastest and takes O (V) time.
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Figure 3.2: Number of flops versus number of sensors to solve a simulated problem by
the explicit, implicit and raster methods, without and with Cholesky factorisation.

The explicit and implicit methods were implemented, for the results in Figure 3.2,
using sparse arrays. Dense versions were also tested and found to take O(N3) time.
The raster method, however, uses only dense arrays but takes O(N) time. Nonethe-
less, the explicit and implicit methods may be applied to solve a wider class of generic
problems than the raster method, which only solves the raster problem. Furthermore,
although the implicit method with Cholesky factorisation uses only O (V) flops, it takes
O(N log N) time because of a sub-optimal sparse array implementation in MATLAB,
as described in Chapter 2. MATLAB’s flops counter, which was used to produce these
results, does not count the O (N log N') comparisons and swaps involved in an unavoid-
able internal sort. A better implementation of sparse arrays would yield an O(V) time
performance, proportional to the humber of arithmetic operations.

Figure 3.3 shows the number of bytes required to solve the nine multilinear re-
gression problems required to produce Tables 3.6 and 3.7 as IV varies from 1 to 1000.
The explicit method, without or with Cholesky factorisation, and the implicit method,
without Cholesky factorisation, take O(N?) space. However, the implicit method,
with Cholesky factorisation, and the raster method need only O(V) space. The raster
method is the smallest, almost an order of magnitude better in memory use than the
second best method. Memory use affects processing time because a greater memory
requirement entails more frequent disk access if the required memory does not all fit
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Figure 3.3: Number of bytes versus number of sensors to solve a simulated problem by
the explicit, implicit and raster methods, without and with Cholesky factorisation.

inside the working memory of the computer at one time.

Figures 3.4 and 3.5 show the time and space requirements of the explicit and im-
plicit methods implemented using only scalars, vectors and matrices, including sparse
vectors and matrices, and the operators of classical linear algebra. The performance
of the raster method, which may not be derived with classical linear algebra, is given
for comparison. The explicit method takes O (N 3) flops, as in Figure 3.2, and the im-
plicit method takes O(IN2) flops irrespective of Cholesky factorisation. A degradation
in performance with the latter occurs because classical linear algebra does not have
the operators to compute the inter variance and must necessarily compute the outer
variance of the estimated parameters to obtain the parameter uncertainties, which is
an O(N?) task. The covariance of parameters tends to be dense due to relationships
across the sensor array. For the same reason, the space requirements of the explicit and
implicit methods are O(IN?) in Figure 3.5, regardless of Cholesky factorisation.

Thus, the raster problem may be solved using O(XN) flops and bytes as a special
case of the generic problem by the implicit method with Cholesky factorisation. How-
ever, this solution requires O(N log N) time because of imperfections in the sparse
array routines. Nonetheless, the raster method solves the problem in O(N) time and
space using only dense arrays. The best performance that may be obtained using clas-
sical linear algebra is O(/N?) in time and space, which is unacceptable for large N.
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Figure 3.4: Number of flops versus number of sensors to solve a simulated problem,
using classical linear algebra, by the explicit and implicit methods, without and with
Cholesky factorisation. Performance of the raster method is given for comparison.

3.6 Conclusion

This chapter examined the problem of constrained regression for the analysis of sensor
arrays. In the generic problem, the parameters of the array may be linearly constrained
in an arbitrary way. In the raster problem, sensor parameters may be linearly con-
strained in one of three ways, due to raster scanning of the array. The generic problem
may be solved by formulating it as a multilinear regression problem with explicit lin-
ear constraints on the parameters or as a multilinear regression problem over a linear
subspace of the parameter space whereby the constraints are implicit. Performance is
expected to be O(V) in time and space when the constraint array of the explicit method
or the transformation array of the implicit method has O (V) nonzeros, certain products
of these arrays also have O (V) nonzeros and the computing of dense inverses and outer
variances are avoided with Cholesky factorisation and inter products. A formulation to
solve the raster problem alone, called the raster method, was derived that operates in
O(N) time and space with no sparse arrays. These results are useful for the efficient
modelling and calibration of sensor arrays.

An example of the raster problem was simulated in MATLAB. The example demon-
strated that the relationship between parameters of a model may be deduced by cali-
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Figure 3.5: Number of bytes versus number of sensors to solve a simulated problem,
using classical linear algebra, by the explicit and implicit methods, without and with
Cholesky factorisation. Performance of the raster method is given for comparison.

bration of hypotheses, using constrained regression, and comparison of the residual
error and parameter uncertainties. The residual error distinguishes hypotheses that are
compatible with the scenario from those that are incompatible. The parameter uncer-
tainties identify specific hypotheses from more general (and also compatible) ones.
When the correct model is calibrated, the residual error and parameter uncertainties
are minimised. The simulation also demonstrated that the explicit method for solv-
ing the generic problem performs poorly on the raster problem, needing O(N ) time
and O(N?) space, because the sparsity conditions for O(V) performance are not met.
However, the implicit method for solving the generic problem provides a solution to
the raster problem that takes O(V) flops and bytes, although it takes O(N log N) time
because of an imperfect sparse array implementation. The raster method takes O (V)
time and space to solve the raster problem, using no sparse arrays. Linear algebraic
solutions to the generic problem were also implemented for the explicit and implicit
methods (the raster problem cannot be solved directly with classical linear algebra).
However, these solutions could not achieve a performance better than O(N2) on the
raster problem because classical linear algebra does not possess inter product operators.



Chapter 4

Fixed pattern noise

4.1 Introduction

As described in Chapter 1, the biggest problem with logarithmic CMOS image sen-
sors is fixed pattern noise (FPN), which is a distortion that appears in an image due
to variations of device parameters across the sensor. Dierickx, Scheffer, Loose and
others have developed digital and analogue methods to correct FPN by assuming it is
independent of illuminance [32, 24, 21]. Loose et al briefly considered FPN as a linear
function of illuminance but were unable to compensate for this dependence with their
analogue circuit architecture and concluded that it was not significant [21]. However,
Yadid-Pecht notes that FPN varies nonlinearly with illuminance in a logarithmic sensor
but she neither characterises nor attempts to correct this distortion [25]. This chapter,
however, makes a detailed study of FPN in logarithmic CMQOS image sensors.

Section 4.2 uses semiconductor theory to model the response of a single logarithmic
pixel to illuminance. Section 4.3 considers various models of FPN that may arise in an
array of such pixels and derives methods of calibration, using constrained regression
and images of a uniform scene. Section 4.4 describes the correction of FPN in arbitrary
images using calibrated models. With simulation and experiment, Sections 4.5 and 4.6
compare the calibration and correction of the various FPN models.

4.2 Modeling

Figure 4.1 shows the process by which light stimulus, of illuminance z, falling on
a pixel in a typical logarithmic CMOS sensor is converted to a digital response 1.t
Before the light reaches the photodiode in the pixel, it is attenuated due to absorption
and reflection by the aperture and lens of the camera, which may be represented by
gains G 4 and G . The attenuation may vary spatially, i.e. from pixel to pixel across the
image sensor, which is known as vignetting. Photons absorbed by the photodiode form

LIn Figure 4.1, the pixel circuit is from Scheffer et al [24] and the remaining circuits are from Mendis et
al [20]. The column circuit uses a PMOS source follower to compensate for the voltage shift by the NMOS
source follower in the pixel circuit [20].

63
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Figure 4.1: From an illuminance z to a digital response y in one pixel of a logarithmic
CMOS image sensor. Transistors T2 with T4 and T5 with T7 form an NMOS and
PMOS source follower (SF) respectively, when T3 and T6 are turned on.

electron-hole pairs that are swept out by the electric field across the device to produce
a current Ip, given in (4.1). This photocurrent is linearly related to the incident light
intensity over many orders of magnitude. The relationship depends on the quantum
efficiency, which may be represented by a gain G, and the light-sensitive area A of
the photodiode.

IP = GAGLGQAx (4.1)

The photodiode in Figure 4.1 is reverse biased to prevent any current flowing to
ground through it except for the photocurrent. However, a small leakage current I g,
known as the reverse bias saturation current, also flows to ground through this diode.
The total current Ip + I sets the gate voltage V22, given in (4.2), of transistor T2 via
the diode-connected load transistor T'1, where Vpp is the supply voltage. Designed to
operate in the subthreshold region, T1 has a logarithmic current-to-voltage relationship
that is valid over several decades of current amplitude.

. nT kT Ip + Is
V2 = v, — p ln< T ) — Vi (4.2)

Transistor T3 is a switch that is either an open or a short circuit between T2 and the
common bus for a column of pixels. This column bus is biased by transistor T4. When
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T3 is off, T2 is disconnected from the bus and does not affect its voltage. When T3 is
on, a similar switch is off for all other pixels in the column and the gate voltage V3 ° of
transistor T5, given in (4.3), equals the source voltage V4 2 of T2. As T2 and T4 have
the same drain-source current, when T3 is on, and as both operate in saturation, their
gate-source minus threshold voltages VA2 — V,}2 and V24 — V.1 are linearly related
with a dependence on the ratio of current gains & ™2 and K T4.

T4

VR = VIV e (VA Vi) 43)
When a pixel is connected to the bus for its column, all pixels in the same row are
connected to their respective column buses. However, the analogue-to-digital converter
(ADC) processes only one voltage at a time. Therefore, the column buses are switched
in sequence onto a common output bus, which is biased by transistor T'7, using a two-
transistor circuit similar to the one described above. When transistor T6 is switched
on, T5 is connected to the output bus and the voltage V4 p¢ at the input of the ADC,

given in (4.4), equals the source voltage V¢ of T5.

T5 _ 1,T5 KT rr o1r
Vape =Ve” =V’ = KT (Vad =vr") (4.4)

Rather than getting into the details of ADC circuits, equation (4.5) abstracts the
digitisation of voltage V4 p¢ by a clipping function, to limit the maximum and mini-
mum output values, and by rounding off, which introduces quantisation error. Further-
more, the ADC adjusts its input V4 pc by an offset F4pe and gain G 4pc¢ to fit the
domain of voltages to the range of integer codes (e.g. 0-255LSB for an 8-bit ADC).

y = round (Clip (FADC + GADcVADcf)) (4.5)

If the input voltage does not cause clipping, digitisation may be modelled by a
quantisation error term eg, with a range of £0.5LSB, that is added to the output.
Furthermore, the whole process in Figure 4.1 will add noise components at various
stages. However, the noise shall be modelled by a single random variable e - added to
the output. A further term €, may be added to the output to account for error in the
underlying device models. Considering these remarks, equation (4.6) gives the digital
response y of a pixel.

Yy =Fapc+GapcVapc +eg +en+em (4.6)

Grouping the equations and physical parameters above, equations (4.7)—(4.11) give
the digital response y of a pixel as a logarithm of the illuminance z, with three abstract
parameters a, b and ¢, named the offset, gain and bias, and a stochastic error e. A
pixel-to-pixel or column-to-column variation of a, b, ¢ or a combination thereof causes
FPN. Therefore, these parameters must be estimated by calibration to correct FPN in an
image. Furthermore, the residual error and parameter uncertainties must be estimated
to validate the model and determine the accuracy of calibration and correction.

y=a+bln(c+x)+e 4.7)
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4.3 Calibration

Calibration of a logarithmic image sensor may be accomplished by minimising the sum
square error (SSE) between the actual response y in (4.7) and the estimated response g
in (4.12), to illuminance x, over parameters a, b and c. The estimated response differs
from the actual response by lacking a stochastic error ¢, which is unpredictable.

g=a+bln(c+x) (4.12)

For M different illuminances z;, where 1 < i < M, that are observed uniformly by
N pixels in an image sensor, the SSE is given in (4.13), where y;; and g;; are the
actual and estimated responses with 1 < j < N. The stochastic error ¢;;, which is the
difference between y;; and g;;, is assumed to be statistically independent from sample
to sample and to follow a zero-mean Gaussian distribution.

SSE = 1;;(yij — 9:5)° (4.13)

There are potentially 3V variables in a calibration, counting the three explicit pa-
rameters a, b and ¢ per pixel. However, since the complexity and robustness of calibra-
tion depend on the number of parameters needing estimation, no more variables should
be permitted than are absolutely necessary. The number of variables may be reduced
by constraining the parameters. Many different types of constraints are possible. The
most plausible assume that a variation of the offset, gain, bias or a combination thereof
occurs because of a variation in their underlying physical parameters. These physical
parameters, given in (4.8)—(4.10), may be divided into three groups: those that belong
to the pixel circuit (i.e. photodiode and transistors T1-3), the column circuit (i.e. tran-
sistors T4 and T5) or the output circuit (i.e. transistor T7 and the ADC) of Figure 4.1.

Assuming that physical parameters in each circuit group either vary from device to
device or remain constant across the die, three possibilities exist for abstract parameters
a, b and c—each may vary from pixel to pixel, from column to column or not at all.
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Table 4.1: Estimated response §;; of the 5" logarithmic pixel to illuminance z; for
the four models of FPN with spatially constant bias ¢, where I; = In(1;¢ + z;). The
number of implicit parameters @ is given for cases where z; is known and unknown.

Model :l)ij Q Q
1 1,'ja, + ljbli 3 M
2 1,-aj+1jbli N +2 M+ N-1
3 1,‘j(l+bjli N+2 M+N
4 1iaj+bjli 2N +1 M +2N -2
Known z; | Unknown z;

Strictly speaking, the gain and bias in (4.9) and (4.10) do not depend on column circuit
parameters and so may not vary from column to column. However, a consideration
of column-to-column variation is deferred until Chapter 5. As a result, there are eight
possible hypotheses for constraints on the parameters in a logarithmic image sensor.
These may be divided into two groups of four—one for constant bias and one for vary-
ing bias. As described below, constant bias models may be calibrated by multilinear
regression whereas varying bias models require nonlinear optimisation.

4.3.1 Constant bias

Table 4.1 gives the four models of FPN where the bias does not vary from pixel to
pixel, with I; given in (4.14), and lists the number of implicit parameters @ in each.

li = ln(lic + SL'Z) (414)

If the bias ¢ and illuminance z; in (4.14) are known then models in the table are ex-
amples of the raster problem and calibration may be achieved using the raster method.
In general, the bias is unknown. The illuminances may be known if produced by a
calibrated light source of variable intensity or if the output of an uncalibrated light
source of variable intensity is measured with a light meter. The illuminances may also
be known if produced by a constant light source, measured with a light meter, with
neutral density filters or aperture settings used to simulate varying intensity.

Nonetheless, it is desirable to avoid measurements where possible. This may be
done by taking the illuminances z; in Table 4.1 to be M unknown parameters, which
must be added to (). Such an action, however, introduces a new complication. Observe
that the estimated response g in (4.12) is invariant under transformations (4.15)—(4.17),
which means that the SSE in (4.13) does not have a unique global minimum for any
of the models in Table 4.1. Transformation (4.15) does not apply to the third model,
however, because a may not vary in this model but b may vary. These degeneracies
mean that there are three fewer implicit parameters for each model in Table 4.1 (two
fewer for the third model), which explains the deductions from Q.

(a,b,c,x) = (a—bln-y,b,ve,yx) (4.15)
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Table 4.2: Estimated response 3;; of the j*® logarithmic pixel in terms of average
response §; for the models of FPN with spatially constant bias ¢, where I; = In(1;c +
x;). The number of implicit parameters @ is given for the case where x; is unknown.

Model :ljij Ui (J,Ii b; Q
1 1]’?71' 1;a + bl; M

2 1,'0,3' + ljgi 1;a + bl; a; — lj(i M+ N-1
3 1,'0,;' +b;gi 1;a + bl; lja—b}a b]/b M+ 2N —2
4 z

1ia’7- + b’ygjz ].l'(_l + l_)lz aj — b;a bj/b M + 2N —2

= (a,b/7,0, (c + 2)7) (4.16)
= (a,b,c—v,x+7) (4.17)

The requirement for nonlinear optimisation to calibrate the models of Table 4.1,
due to nonlinear parameters ¢ and x;, may be avoided with one assumption. For each
illuminance z;, assume that the average of the actual pixel responses, denoted ¢; in
(4.18), equals the average of the estimated pixel responses, as in (4.19). This assump-
tion is reasonable when the standard deviation o. of the zero-mean Gaussian error ¢;;,
which accounts for the difference between actual and estimated responses, is small rel-
ative to the number of pixels. Taking an average over N pixels in (4.18) reduces the
standard deviation by a factor of v/ so that the error may be ignored, as in (4.19).

1 .

gi = Njyij (4.18)
1.

Ui =~ Njyij (4.19)

Applying the assumption in (4.19) for each hypothesis in Table 4.1, the models of
the estimated response g;; may be simplified, as in Table 4.2, by making substitutions
for the offset and gain, denoted a; and b’;, in some cases. The table also lists the number
of implicit parameters () for each model, which is the total number of variables (i.e. 7;,
aj and b’;, as appropriate) minus degeneracies. The average over all pixels of a’; and b’
equals zero and one respectively, which provides one or two degeneracies.

A comparison of Tables 4.1 and 4.2 reveals that the number of implicit parameters
are equal (for unknown ;) except for the third model. The assumption in (4.19) has
increased the number of implicit parameters by N — 2 for this model, which is a small
price to pay for avoiding the nonlinear optimisation required without the assumption.
All the models in Table 4.2 may be calibrated using the raster method. The first model
doesn’t need any calibration as no variables remain after the assumption in (4.19).
The third and fourth models are rendered equal by the assumption, which reduces the
number of hypotheses to three when the bias does not vary.
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Table 4.3: Estimated response §;; of the j*® logarithmic pixel to illuminance x; for the
four models of FPN with spatially varying bias c;, where l;; = In(1;¢; + 1;2;). The
number of implicit parameters @ is given for cases where z; is known and unknown.

Model ﬂij Q Q

1 lija+blij N +2 M+ N
2 li(lj—Fbl,'j 2N +1 M+2N -1
3 1;5a + bjl,'j 2N +1 M + 2N
4 | Liaj +bily; | 3N M +3N -2
[ Knownz; | Unknown z;

4.3.2 Varyingbias

Table 4.3 gives the four models of FPN where the bias may vary from pixel to pixel,
with /;; given in (4.20), and lists the number of implicit parameters () in each.

lij = ln(licj + ljxi) (420)

If ¢; and z; in (4.20) are known then the estimated response ¢;;, for each model in the
table, is a linear function of /;; with offset and gain parameters. The parameters may
not be estimated by the raster method, as derived in Chapter 3, because of the sensor
varying input ;; but the raster method may be extended to account for this condition.

Generally, the biases c; are unknown, which means the number of implicit param-
eters for a model in Table 4.3 is N — 1 times greater than the corresponding number in
Table 4.1 (for known z;). Although z; may be known by taking measurements during
calibration, the illuminances are taken as M unknown parameters as in Section 4.3.1,
which increases ). Such an approach means the SSE in (4.13) does not have a unique
global minimum because transformations (4.15) and (4.17) leave (4.12) unchanged for
each model in Table 4.3, although (4.16) does not apply due to bias variation. For the
third model in the table, (4.15) does not apply because a may not vary but b may vary.
These degeneracies mean there are two fewer implicit parameters for each model, or
one fewer for the third model, explaining the deductions from ) in Table 4.3.

Modelling pixel responses in terms of average pixel responses does not facilitate
calibration when the bias varies although the assumption in (4.19) remains valid (it
depends only on properties of the stochastic error). The reason is because 7;, known
by (4.18), is a linear function of [;, given in (4.21), but models in Table 4.3 may not be
written as a linear function of g; since ;; is not a linear function of l;.

l; = hl»' (4.21)
i — N i .

Thus, nonlinear optimisation of ¢; and «; in (4.20), with sensor varying input ;; in
Table 4.3, is unavoidable for the calibration of models that have varying bias. However,
the raster method, extended to sensor varying input, may be used to estimate offset and
gain parameters that minimise the SSE for any choice of ¢; and «;. Thus, the minimum
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SSE is a nonlinear function of ¢; and x; alone, which reduces the number of parameters
requiring nonlinear optimisation from @ in Table 4.3 (for unknown z ;) to M + N — 2,
or M + N — 1 for the third model, accounting for degeneracies.

Nonlinear optimisation is an iterative process that may be slow when the number of
variables is large, which is the case here as NV represents the number of pixels in an im-
age sensor. Rather than extend the raster method to sensor varying input, which would
be ideal for a class of models (including those that involve columnwise constraints, as
in Chapter 5), a specific method may be derived for each model in Table 4.3 to esti-
mate offset and gain parameters given ¢; and x;. However, instead of doing this for
each model in Table 4.3, only the fourth model is chosen because it is the most general.
From a non-asymptotic point of view, a specific method would be more efficient for a
specific problem than the raster method applied to the same problem.

Given ¢; and z;, the minimum of the SSE over a; and b;, for the fourth model in
Table 4.3, occurs for a; and b’ in (4.22) and (4.23), with intermediates in (4.24)—(4.27).
Note that g, in (4.24) and [; in (4.25) are the averages over illuminance of the digital
output y;; and the logarithmic input Z;; respectively. Additionally, y; in (4.26) and 7’; in
(4.27) are the correlations over illuminance of y;; and {;; and of /;; and /;; respectively.

aj = g; — bjl; (4.22)
o (4.23)
yj = %ym (4.24)
[ = %llj (4.25)
y; = %yqlg - 7l; (4.26)
l; = %l@lg —1;° (4.27)

Equations (4.22) and (4.23) imply the minimum SSE, for the fourth model in Ta-
ble 4.3, is a known function f(c;, z;) of only ¢; and z;. Minimisation of f(c;, z;) over
cj and x; may be accomplished from an initial guess ¢ and z; using the conjugate
gradients method [57]. An initial guess that works well in practise is to assume that all
biases are zero, as in (4.28). With this assumption, the assumption in (4.19) and the
transformations in (4.15) and (4.16), the logarithm of initial illuminances z/ becomes
a linear function of the average responses 7;, where a’ and b’ are arbitrary coefficients
due to the degeneracies. Suitable values for these coefficients are given in (4.30) and
(4.31), which normalise In 2} to have zero mean and unit variance over illuminance.

yi — L;a
Inz) = yT (4.29)
1.
g — Yig
= Myz (4.30)
= 1; ‘
b= M(gi - La')? (4.31)
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Because of the transformations in (4.15) and (4.17), the SSE has no unique min-
imum. These two degeneracies may be eliminated with the constraints in (4.32) and
(4.33) on parameter guesses a; and ¢}, where ¢’ is the minimum of ¢’. Constraint
(4.32) is identical to the requirement, for Models 2—4 in Table 4.2, that the offsets a;
have a zero average. Constraint (4.33) reflects the physical basis of the biases ¢, due
to (4.10), whereby they may not be negative. Both these constraints are satisfied for the
initial guesses of c; and =}, hence a’; and b, in (4.28) and (4.29). These constraints are
not enforced for each guess during nonlinear optimisation but final guesses are trans-
formed with (4.15) and (4.17) so that (4.32) and (4.33) hold. In this manner, parameter
estimates a;, b;, ¢; and &; are derived that specify a unique minimum of the SSE.
lﬁja; =0 (4.32)

éd=0 (4.33)

There is one more constraint on the parameters that is especially important with a
MATLAB implementation, which automatically permits infinite and complex number
results. Because the response of a pixel is always finite and never has an imaginary
part, the inequality in (4.34) must hold, where &’ is the minimum of z (this single
nonlinear inequality may also be written as A N linear inequalities).

d+3 >0 (4.34)

The simplest way to satisfy this inequality is to modify the SSE calculation to return
a high value (oo in MATLAB) when (4.34) is not satisfied and to ensure that the line
minimiser used by the conjugate gradients method copes with such extreme values.
Brent’s algorithm for line minimisation was used with the NETLAB implementation
of the conjugate gradients method, which succeeded in estimating the unique bias and
illuminance parameters ¢; and &; that minimised the SSE subject to the constraints.

Estimated parameters ¢; and 2; may be used to estimate the error variance 62, as in
(4.35). In this formula, the numerator is the minimum SSE and the denominator is the
degrees of freedom, which is the number of actual responses M N minus the number
of implicit parameters () in (4.36) that are fitted to those responses.

Q=M+3N-2 (4.36)

Following (4.22) and (4.23), estimates a; and I3j may be derived from estimates ¢; and
#;. By ignoring the stochasticity of ¢; and &;, the estimated inter variances of a; and
Ej are derived in (4.37) and (4.38). These results, therefore, are expected to underesti-
mate the actual inter variances. The inter variances of ¢; and Z; are not estimated for
simplicity, as they involve the hessian of the SSE with respect to the parameters.

N , 1 _,
V{a;} = &5M(1j + lf/lé) (4.37)
. , 1

V{b;} = 621" (4.38)
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Table 4.4: Estimated response ¢; of the ;I logarithmic pixel to illuminance = ; for the
nil, single and double variation models, where [; = In(1;c + z;), and for the triple
variation model, where [; = In(c; + x;). Spatially varying parameters a;, b; and c;
are unknown linear functions of previously estimated parameters @, b; and ¢;.

Variation | g; a; b | ¢
Nil lja + blj
Single a; +bl; | a; +1;a
Double aj +bil; | a; + Ej(_l
Triple | aj +b;l; | a; + bja/b

<
(=l

> S

4.4 Correction

For simplicity, Models 1, 2 and 3/4 of Table 4.2 and Model 4 of Table 4.3 are called
the nil, single, double and triple variation models respectively. Once these models are
calibrated, they may be used to correct FPN present in an image y; of an arbitrary scene
x;. Image sensors that obey the nil variation model do not really require FPN correction
since no parameter varies from pixel to pixel except for the unpredictable stochastic
error. The nil variation model, therefore, helps to explain how FPN correction is not
about deriving an estimate Z; of the scene «;. Rather, the estimation of a monotonic
function of «; suffices, so long as parameters of the function do not vary from pixel to
pixel. Indeed, because of the degeneracies in (4.15)-(4.17), only functions of « ; are
determinate with the nil, single, double and triple variation models.

Following Section 4.3, Table 4.4 gives the estimated responses g; of a logarithmic
image sensor to a scene z;, which differ from actual responses y; by lacking stochastic
errors €, for the nil, single, double and triple variation models. Because of the degen-
eracies in (4.15)—(4.17), the calibration described in Section 4.3 does not give unbiased
estimates for spatially varying parameters a;, b; and ¢; and does not estimate spatially
constant parameters a and b. As given in Table 4.4, the varying parameters are linear
functions of the estimated parameters @;, b; and ¢; with unknown means a and b and
minimum ¢, which arise from the assumptions and normalisations of the calibration.
Note that b may be estimated for triple variation since b; is an unbiased estimate of b;.

Unknown parameters in Table 4.4 prevent an estimation of the scene x; without
further measurement and calibration, an approach taken in Chapter 7. However, x ;
does not need estimation to correct FPN since each model g; in Table 4.4 may be
rewritten as a linear function with known coefficients of a model yo; in Table 4.5,
where yo; is a logarithmic function of z; with no offset or gain variation . For nil
variation, §; and yo; are the same. For triple variation, yo; includes bias variation but
may be rewritten as a logarithmic function with known parameters of a model x; in
Table 4.5, where xy; is a linear function of 2; with no parameter variation.

Thus, FPN may be corrected for any image y; of a scene z; by estimating y,; and
possibly x;, according to the type of variation in Table 4.5. This estimation may be
performed by minimising the SSE in (4.39) between the actual and estimated responses
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Table 4.5: The estimated response §; of the j*" logarithmic pixel may be written as a
known function of an ideal response y,; for the nil, single and double variation models,
where [; = In(1;c + x;), or zo; for the triple variation model. The ideal response is
an unknown monotonic function of illuminance x ; with no parameter variation.

Variation | ¢; Yoj Zo;
Nil Yoj lja + blj
Single aj + yYoj 1;a + bl;
Double aj + IA)jyoj l;a + l_)lj
Triple &j +I;jy0j ln(éj +.270j) ea/5(1j5+a§j)

Table 4.6: Estimated ideal response §o; Or Zo;, as appropriate, of the j*® logarithmic
pixel to illuminance x; for the nil, single, double and triple variation models. These
estimates use the actual response y; to illuminance «; and previously estimated param-

eters a;, b; and &;, as appropriate, to invert the models in Table 4.5.

Variation | go; Zoj

Single yj — Q;

Double | b, (y; —a;)

Triple | b, (y; — a;) | exp(io;) — &

over the parameters y; or o, as appropriate, giving estimates go; or ;. Such a min-
imisation has a unique analytic solution for each type of variation, given in Table 4.6,
which amounts to inversion of the models in Table 4.5. However, there are no degrees
of freedom to estimate the error or parameter variances.

SSE = 1;(y; — 9;)* (4.39)

Note that correction of FPN due to nil, single and double variation takes a linear
transformation of the image y;, giving a nonlinear representation of the scene go;.
Correction of FPN due to triple variation takes a nonlinear transformation of the image
y;, giving a linear representation of the scene ;. The difference arises because the
former models assume constant bias whereas the latter model assumes varying bias.

45 Simulation

The nil, single, double and triple variation models were calibrated using simulation
data for a 0.35um 3.3V AMS process, as described in Chapter 1. Since the simulator
considers only electronic devices, optical processes were omitted and the stimulus z
of a pixel is simply the photocurrent, as in (4.40). Furthermore, the simulation neither
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Table 4.7: The residual error 6, averages a, b and ¢ of estimated parameters a, b; and
¢; and parameter uncertainties ;; and &; for calibration of the nil, single, double and

triple variation models g;;, where l}j =In(1;¢; + 1;2;), with simulation data y;;.

Variation | §;; O a+oy, b+d; ¢
Nil 1,7 20
Single li&j + 1;4; 44 0.0+ .12
Double | L;a; +b;gi | .29 | 0.0+24 | 1L0BY +.11%
Triple 1idj + bjlij .28 0.0+24 —75mV + .10% | .43
In Vv | mV | mVE+mV A

included an ADC nor considered temporal noise, which means the response y of a pixel
equals the input voltage of the ADC plus the error in the underlying device models, as in
(4.41). These changes imply minor changes to the physical models of the offset, gain,
bias and error in (4.8)—(4.11) but do not change the abstract model of the response in
Section 4.2 or the calibration and correction described in Sections 4.3 and 4.4.

¢=Ip (4.40)
y=Vapc +em (4.41)

The photocurrent was simulated by placing an ideal current source in parallel with
the pixel diode. Using the DC and Monte Carlo analyses of the simulator, the photocur-
rent was varied in half decade steps from 1pA to 1A (i.e. M = 13) and the circuit
in Figure 4.1 was simulated 100 times with randomly varying device parameters (i.e.
N = 100) according to a mismatch model supplied by AMS. Parameters of T7 were
not permitted to vary with iteration as the transistor is common to all pixels. No pro-
vision was made to vary parameters of transistors T4—6 every N, iterations, while
varying parameters of transistors T'1-3 every iteration, which would simulate a colum-
nwise variation of some circuit parameters in an array of N = N; x N, pixels. Instead,
parameters of T'1-6 were varied every iteration, simulating a random selection of 100
pixels taken from different columns of a larger array. AMS did not provide a mismatch
model for diodes so parameters of the photodiode were constant with iteration.

Table 4.7 gives the residual error for calibration of the nil, single, double and triple
variation models with simulated responses y;; to uniform photocurrentz;. Nil variation
has the worst result by far, which shows that FPN may not be ignored in logarithmic
image sensors. Single variation is much better than nil variation and double variation
is almost twice as good as single variation. Thus, gain variation should not be ignored
in logarithmic image sensors. The residual errors for double and triple variation are
similar, which warrants a comparison of parameter uncertainties.

Table 4.7 gives the average value of estimated parameters alongside the parameter
uncertainties. No uncertainty is given for the bias as it is a nonlinear parameter. Param-
eter uncertainties are constant from pixel to pixel with nil, single and double variation,
as in the raster problem of Chapter 3. Parameter uncertainties vary from pixel to pixel
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Figure 4.2: The residual error ., versus photocurrent x; for calibration of the single,
double and triple variation models with simulated data.

with triple variation, as in (4.37) and (4.38), and so averages are reported. The param-
eter uncertainties with double and triple variation are comparable. However, figures
given for triple variation underestimate uncertainty because the stochasticity of nonlin-
ear estimates ¢; and &; were not considered. Thus, double variation is the best model of
FPN for the simulation, which is logical because the simulator does not consider bias
variation. The bias equals the photodiode leakage current I'g, as there are no optical
effects, but 75 does not vary in a Monte Carlo simulation of the AMS process.

Note that the average offset is zero in Table 4.7 with single, double and triple varia-
tion, which occurs because of degeneracies and normalisations of the calibrations. The
average gain is one for double variation because of another degeneracy. However, there
are no degeneracies on the gain in triple variation, which means that estimates are unbi-
ased. Lastly, the small magnitude of the average bias reported for triple variation does
not mean that the leakage current is insignificant. Estimated biases are an unknown
linear function of the true biases due to the degeneracies of the calibration.

Figure 4.2 plots the residual error versus photocurrent for the single, double and
triple variation models. This value is the square root of the estimated error variance 2
in (4.42) for each photocurrent, which equals the SSE between actual and estlmated
responses at one photocurrent divided by the corresponding degrees of freedom (the
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number of pixel responses minus the fractional number of fitted parameters).

Ay — 7.2
52 = 1](sz ym) (4.42)

“T N-Q/M

The residual error should be independent of photocurrent in Figure 4.2 as it measures
the stochastic error. This is not the case with single variation as the residual error is
roughly parabolic. However, the residual error is relatively flat with double and triple
variation and the two models do not differ by much. At high photocurrents, double
variation worsens and triple variation improves, which suggests a small variation of
response due to the onset of saturation in the subthreshold load transistor (i.e. T1 in
Figure 4.1). Though not explicitly considered in Sections 4.2 and 4.3, triple varia-
tion accommodates some of this variation. The residual error versus photocurrent for
calibration of the nil variation model is omitted in the figure for the sake of clarity.

4.6 Experiments

Experiments were done using a 512 x 512 pixel (i.e. N = 5122) Fuga 15RGB logarith-
mic image sensor, which was builtina 0.7um 5V process [32]. The camera, which was
interfaced to a PC, had an 8-bit ADC with a programmable offset voltage, as described
in Chapter 1. By capturing several frames with different offset settings, the resolution
was increased to 10 bits in software. Although it is really a colour camera, the Fuga
15RGB is treated here as a monochromatic camera, which does not prejudice results.
Chapter 7 considers colour in logarithmic image sensors.

Overhead fluorescent lights provided the illumination for the experiments reported
in this section and they did not permit a variation of intensity. Instead, four neutral
density filters were placed in sequence over the camera lens to attenuate the illumi-
nance reaching the focal plane in nominal half decade steps for a total variation of two
decades. The actual attenuations were measured with a light meter to be 0, 13, 21, 32
and 40dB, counting the case of zero attenuation with no filter.

4.6.1 Calibration

The first experiment used five images (i.e. M = 5) of a white sheet of paper under uni-
form illumination, where the measured intensity was varied with neutral density filters.
The nil, single, double and triple variation models of responses y;; to illuminances x;
were calibrated according to Section 4.3. Table 4.8 reports the residual error, average
values of estimated parameters and parameter uncertainties of each calibrated model
(average uncertainties are given for triple variation). Nil variation has the worst resid-
ual error by far. The residual error of single variation is almost four times better than
that of nil variation and the residual error of double variation is over two times better
than that of single variation. These results agree with those of the simulation. Unlike
the simulation, the residual error of triple variation is significantly better than that of
double variation. Therefore, triple variation is the best model of FPN for the experi-
ment. Note that the average of estimated offsets with single, double and triple variation
is zero and the average of estimated gains with double variation is one, as before.
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Table 4.8: The residual error 6, averages a, b and ¢ of estimated parameters a, b; and
¢; and parameter uncertainties ;; and &; for calibration of the nil, single, double and

triple variation models g;;, where l}j = In(1;¢; + 1;2;), with experimental data y;;.

Variation | §;; O a+oy b+d; ¢
Nil Ly 20
Single li&j +1;4; | 5.2 0.0£23
Double | 1;a; +b;5; | 2.3 |0.0+4.7 | 1.0EE £3.1%
Triple Liaj +bjl;j | .68 | 0.0+£1.4 | 66LSB+.92% | 4.8

In LSB LSB | LSB + LSB lux

Figure 4.3 plots the residual error versus photocurrent for the single, double and
triple variation models (the nil variation model is omitted as it has a large error). The
single variation model has a minimum error of 2.6LSB in the middle of the domain,
with error rising on each side to 6.9 and 7.4LSB. The double variation model has a
maximum error of 3.0LSB in the middle, flanked by two minima of 1.1 and 1.6L.SB
and rising to 2.6L.SB at the sides. In contrast, the triple variation model has a relatively
flat error of less than .84LSB. These results suggest that the triple variation model
describes pixel responses very well over the two decade range of illuminance and may
be extrapolated to a high dynamic range with little degradation in performance.

The shape of each plot in Figure 4.3 may be readily explained by considering the
residual error versus illuminance of selected pixels. Figure 4.4 plots the actual and
estimated response of two pixels, for the single, double and triple variation models,
versus the average response of all pixels. While the single variation model fits the
bottom response well, it fits the top response poorly because of a different response
slope. Instead, the estimated response intersects the trend of the actual response in the
mid-range of illuminance, minimising the SSE, which explains the v-shaped curve in
Figure 4.3. The double variation model matches the response slopes of both pixels
but intersects each response trend twice as the actual response follows a curved path
(especially the top one), which explains the w-shaped curve in Figure 4.3. For the top
response, note that single variation near its intersection is better than double variation,
which explains the small region of Figure 4.3 where the former outperforms the latter.
The triple variation model has no problem following the curved responses of both pixels
and the residual error hardly depends on illuminance, as in Figure 4.3.

4.6.2 Correction

Five images were taken of an office scene illuminated by overhead fluorescent lights,
using neutral density filters to simulate intensity variation of the illuminant. Figure 4.5
displays the images after FPN correction, for the nil, single, double and triple variation
models, using parameters estimated in the calibration described previously. The his-
togram of each displayed image has been equalised to facilitate comparison, since the
triple variation correction gives a linear representation of the scene whereas the other
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Figure 4.3: The residual error ., versus illuminance x; for calibration of the single,
double and triple variation models with experimental data.

corrections give a logarithmic representation of the scene. Table 4.9 lists the illumi-
nances of ten features in the scene for the five attenuations realised with the neutral
density filters. The inter-scene dynamic range of any feature is thus 40dB and the
intra-scene dynamic range across features is 29dB, for a total of 69dB.

Because the scenes are the same going from top to bottom in Figure 4.5 except get-
ting darker, an ideal logarithmic sensor, apart from lacking FPN, would give identical
images with histogram equalisation. By this standard, nil variation gives poor results
for two reasons: corrected images have residual FPN and vary with illumination. Single
variation reduces FPN substantially in bright lighting but correction and contrast de-
grade in dim lighting. Double variation performs better than single variation, degrading
slowly in dim lighting. Nonetheless, triple variation gives the best results, having little
residual FPN and maintaining contrast over the 69dB range of illuminance. Perfor-
mance does degrade in dim lighting but, as described in Chapter 7, this occurs mainly
because of stochastic error and bias magnitude rather than parameter variation.

4.7 Conclusion

This chapter has modelled the response y of a logarithmic CMOS pixel to illuminance
2. The model has numerous physical parameters but may be abstracted by a logarithmic
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Figure 4.4: The actual and estimated response y;; and g;; of two pixels versus the
average response ¢j; of all pixels for the single, double and triple variation models.

functiony = a+b1In(c+ )+ € with only three parameters—an offset a, gain b and bias
c—and a stochastic error e. A spatial variation of some or all parameters causes fixed
pattern noise (FPN). Although it is well known that threshold voltage variation, in the
pixel and column source followers, leads to FPN, the model shows other contributions
to offset variation and highlights possible sources of gain and bias variation. Bias
variation makes FPN calibration and correction a nonlinear problem.

Methods to calibrate various models of FPN, by estimating parameters using im-
ages of uniform illuminance, were derived. When the bias is constant from pixel to
pixel, for the nil, single and double variation models, calibration may be accomplished
with the raster method. When the bias may vary from pixel to pixel, for the triple
variation model, multilinear regression may be used to reduce the number of variables
substantially but nonlinear optimisation is required to estimate the remaining variables.
Calibrated models may be used to correct FPN in images of arbitrary scenes. FPN cor-
rection involves the estimation of a monotonic function of the scene illuminance that
lacks parameter variation, entailing a linear transformation of images for constant bias
models and a nonlinear transformation of images for varying bias models.

Pixel responses to photocurrent or illuminance, taken from simulation and experi-
ment respectively, were used to validate the methods of calibration and correction and
to compare the models of FPN. Double variation proved to be the best model of FPN
for a simulated image sensor. Although the residual errors of double and triple varia-
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Figure 4.5: FPN correction of Fuga 15RGB images for the nil, single, double and triple
variation models (left to right). The images, displayed in greyscale with histogram
equalisation, are of one scene with illuminances attenuated by 0, 13, 21, 32 and 40dB
(top to bottom) using neutral density filters over the camera lens.
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Table 4.9: The measured and calculated illuminance of scene features, in the images of
Figure 4.5, for attenuations of 0, 13, 21, 32 and 40dB, due to neutral density filters.

Scene feature Iluminance (lux)

White bar 380 8 36 92 38
Desk paper 270 61 25 6.6 27
Wall, middle 180 41 17 45 19
Floor area 150 34 14 37 15
Door, top 94 21 88 23 .95
Supply knobs 58 13 55 14 .59
Extinguisher 41 93 39 10 .42
Scope screen 31 71 29 77 .32
Chair, back 22 49 20 .53 .22
Chair, base 13 29 12 32 .13
Attenuation (dB) | 0 13 21 32 40

tion were comparable, the parameter uncertainties with the latter were higher. Triple
variation proved to be the best model of FPN for the Fuga 15RGB, with a residual error
significantly better than that of double variation. The difference between the simulation
and experiment occurs because the simulated process did not model the leakage current
mismatch responsible for bias variation. Good models of FPN had residual errors that
were relatively independent of photocurrent or illuminance, over six and two decades
respectively, which suggests they may be extrapolated with good accuracy.

Whether triple variation proves to be a practical model for the calibration and cor-
rection of FPN in logarithmic CMOS image sensors remains to be seen. Nonetheless,
while analogue techniques to correct pixel and column offset variation, such as double
sampling and delta difference sampling, are useful to reduce FPN, they are inadequate
to achieve a maximum of perceptual accuracy over a high dynamic range. The same
may be said for digital calibration and correction of offset variation or even offset and
gain variation. Any linear calibration and correction is a reasonable approximation over
only a small region of a nonlinear distortion. The nonlinear effect of bias variation on
FPN requires more robust circuits or nonlinear calibration and correction.



Chapter 5

Transient response

5.1 Introduction

The previous chapter dealt with the steady state response of logarithmic CMOS im-
age sensors, showing how pixel-to-pixel variations of device parameters leads to fixed
pattern noise (FPN). What this analysis neglected is that voltage changes need time
for rising and falling. It is natural to expect that if insufficient time is provided then
noise would also appear. Consequentially, this chapter examines the transient response
of logarithmic sensors, seeking especially to determine if noise caused by improper
timing is purely random or whether it displays a fixed pattern.

A transient analysis of logarithmic sensors may include the response of the pho-
todiode and the subthreshold load transistor but this is unnecessary for three reasons.
Firstly, the light falling on the photodiode represents light focused from real world
scenes. Such light is normally modulated slowly, except when fast motion is involved.
Secondly, a response bandwidth as low as 24-30Hz satisfies the motion sensing capa-
bility of the human eye and a bandwidth of 48—-75Hz accomodates flicker sensitivity as
well [12]. Thirdly, because the logarithmic pixel operates continuously (unlike linear
integrating pixels), it provides a very high bandwidth for normal lighting conditions.
Studies with pulsed lasers have shown a 3dB bandwidth of about 100kHz [26]. For
these reasons, it can be safely assumed that the transient response of the photodiode
and load transistor is sufficiently quick to approximate the steady state response for the
vast majority of applications.

The transient response of the readout circuit, however, is a crucial factor for the
performance of the sensor. In an array of V; x N, pixels, the pixel responses must be
read serially for a full frame image unless more than one ADC is available and unless
there is space on the die to allow independent pixel addressing and buffering circuits.
Serial readout at a frame rate of R frames per second (fps) requires a pixel scanning
rate of N1 N>R, which would be on the order of 10-100MHz for megapixel sensors
operating at video rates. Furthermore, given that switching the ADC from one pixel
to the next is necessarily a discontinous process, the transient behaviour of the readout
circuit may certainly be a dominant factor of noise in resulting images.

82
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Pixels are normally raster scanned in image sensors, which means that responses
are read left-to-right and top-to-bottom across the array, the same way a page of text is
read. A row is selected and the responses of all pixels in that row are copied into N,
parallel buffers, one for each column. This is the first stage of readout. Each buffer
is then selected in sequence and copied to another buffer that serves the ADC. This is
the second stage of readout. Therefore, the first stage must switch NV, times, i.e. as
many times as there are rows, during the scanning of each frame. The second stage
must switch N7 x N, times, i.e. as many times as there are pixels, for each frame read.
Thus, the transient response of the second stage needs to be NV, times, as many times
as there are columns, faster than the first stage.

Although this chapter examines the readout circuitry of logarithmic sensors, much
of what is said also applies to linear CMOS sensors (but not to CCD sensors as their
readout method is much different). Section 5.2 models the transient response of the
readout circuit. Section 5.3 describes how insufficient settling time causes FPN and
how some of this effect may be accommodated by previous methods of calibration.
Section 5.4 uses simulation results to validate the ideal description of the transient re-
sponse. Section 5.5 uses experimental results of a Fuga 15RGB sensor to demonstrate,
with some deviation from the ideal case, the modelled and simulated effects.

5.2 Modelling

Figure 5.1 shows the circuits comprising one column of a typical logarithmic CMOS
image sensor, following Chapter 4. Each column consists of NV, pixels connected to a
common bus via Ny source followers that share a current source, i.e. transistor T4 in
the figure, but have separate amplifiers, e.g. transistor T2;, for pixel j;. As each pixel
circuit also has a switch, e.g. transistor T3;, for pixel ji, the source follower may be
operated in sequence for each pixel by closing the switch for that pixel and opening
the switches of all other pixels, as shown in the figure for pixel j;. In this manner,
the source follower output or the column bus voltage, denoted V2° as in Chapter 4,

follows the source follower input or the pixel drive voltage, denoted ngh .

Chapter 4 presents only a steady state analysis of the above circuit. To perform a
transient analysis, assume that no more than one switch is on at a time and that the
switches behave in an ideal fashion (except for their capacitance, as described below).
An expression is sought for the column bus voltage v1°(¢), as a function of time ¢, for

reading pixel j; given a pixel drive voltage VGTQ”'1 , which does not vary with time, and
an initial voltage v}? (¢o) of the column bus, when switch T3;, is closed at time to.

When switch T3, is closed in the circuit of Figure 5.1, the column bus will charge
or discharge towards the steady state result of Chapter 4, i.e. (4.3). The rate of charging
or discharging depends on the load impedance seen by the source follower at this node.
Such a load includes the distributed resistances and capacitances of the long metal line
on the die connecting all the pixels in the column (as well as the gate capacitance of
transistor T'5 in Figure 4.1). However, these factors are insignificant compared to the
source-bulk capacitances of the V; switches connected to the node, especially as N, is
on the order of 1000 for megapixel sensors.
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Figure 5.1: The first stage readout of a typical CMOS image sensor consists of N;
amplifier and switch transistors T2 and T3, one pair in each pixel, and a current source
T4, one in each column of pixels. When switch T3, is on, where 1 < j; < Ny, all
other switches are off and T2;, forms a source follower (SF) with T4. The second
stage readout is similar but uses PMOS instead of NMQOS transistors, as in Figure 4.1.

Based on the discussion given above, Figure 5.2 presents a simplification of the
circuit in Figure 5.1 for the purpose of transient analysis. The load capacitance C' is
approximated in (5.1) by taking the source-bulk capacitance C'L3 in (5.2), of a switch
T3, in parallel N; times. The source-bulk capacitance approximates the depletion
capacitance of the reverse biased pn-junction between the source diffusion and bulk
substrate of T3, which depends on the area A} and perimeter P53 of the diffusion
(not the same as the area and perimeter of the transistor) and various process parameters
CJ, CJISW, MJ, MJSW and PB [58, 44]. Note that Cd3, in (5.2) depends on the
source-bulk voltage V53 but a worst case capacitance may be obtained by setting this
voltage equal to zero. There are many other parasitic capacitances that contribute to the
load and source-bulk capacitances but they prove to be small with a detailed simulation.

C ~ N,CE3, (5.1)
ATB 0T PR3 CISW
Cih~ [;Tg MJ DVT3 MJISW (52)
() (%)

Because the drain of T2 in Figure 5.2 is connected to Vpp (and the pixel drive
voltage is never more than Vpp), T2 is always in saturation. On the other hand, T4 is in
saturation only if the column bus voltage is sufficiently high so that V2 — vV, < V4.
Normally, the circuit is designed and the column bias V3 is chosen so that T4 is in
saturation, for the expected range of the pixel drive voltage, with the switch closed.
However, if the column bus is permitted to discharge to ground, as would be the case
when all switches in Figure 5.1 are open, then T4 will be in the linear region for any
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Figure 5.2; The transient response of the first stage readout for a pixel drive voltage may
be derived by analysing a two transistor source follower (SF), formed by T2 and T4
when only one switch is turned on in the circuit of Figure 5.1, with a load capacitance
C'. When the switch is turned on at time ¢, the column bus may have a nonzero voltage
due to readout of the previous pixel in the column or a zero voltage due to discharge.

column bias greater than the threshold voltage. In this region, the transistor behaves
like a resistor between the drain and source, with a resistance determined by the gate
voltage. As this resistance would be small and in parallel with the load capacitance
of Figure 5.2, the overall load impedence would be small. Thus, when the switch is
closed, T2 will conduct a current to charge this impedence very quickly. Therefore,
the column bus voltage will quickly reach a level where T4 enters saturation.

Although it is possible to solve for the transient response analytically for the case
where T4 is in the linear region, using Level 1 models and neglecting the output re-
sistance of T2, little of the transient response is affected by assuming T4 is always
in saturation regardless of the column bus voltage. Proceeding with this assumption,
using Level 1 models and neglecting the output resistance of T2 or T4 in saturation,
a differential equation governing the transient response of the circuit is given in (5.3).
This differential equation may be solved by making the hyperbolic trigonometric sub-
stitution in (5.4) with associated derivative in (5.5).

T5
K™ (VE o (0) Vi) = KM(VE - VP2 + 008 (59
oZP(t) = VA2 Vi + K—M(VM — V%) tanh 6(t) (5.4)
€] = Vg T KTIz\'Gs T :
dvf? KT de
=\ e (Vas — Vr ") sech® (1) (5.5)

Applying the substitutions in (5.4) and (5.5) and the identity in (5.6), the differential
equation in (5.3) may be simplified as in (5.7). Equation (5.7) may be solved easily by
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integration, giving (5.8) with an arbitrary constant 6.

sech? §(t) = 1 — tanh? 6(¢) (5.6)
de A /KT2KT4
—=————Vas - V7" (5.7)
dt C
VEKT2 T4
0(t) = ——5—Vas = Vr ")t o (5.8)

Substituting 6(t) in (5.8) back into (5.4), a solution for v} (¢) is obtained in (5.9).
The constant 8y in (5.9) may be found by noting that at time ¢, the column bus has a
known voltage v}? (to). With this initial condition, solving for 6, results in (5.10).

T5 t) = VT2 _ VT2 _ KT4 VT4 _ VT4
v’ (t) = Vg T KT2(GS T)
(5.9)
VK T2 T4
X tanh (%(Vgg —ViHt + 0O>
b — tann—" /B2 (Va? = Va? —vg’ (to)
0 = tan KT VT4 _ T4
GS T (5.10)
VET2ZKT4

- ?(Vgg - VTT4)tO
The argument of the inverse hyperbolic tangent in (5.10) may sometimes be greater
than one or less than minus one, in which case the solution 6, is complex. However, the
transient response v (¢) in (5.9) is always real, as may be determined by combining
(5.9), (5.10) and the identity (5.11) to give (5.12) with A(¢) and B in (5.13) and (5.14).

tanh a + tanh g3

h = A1
tanh(a + 5) 1 + tanh atanh 8 (5.11)
. oy [KTE A(t) + B
T5(py _ 1T T T4 _ 1,T4
v () =Vg? = Vi? - K12 (Vas — Vr )m (5.12)
VET2KTA
A(t) = tanh <?(VGT§ — VNt - t0)> (5.13)
By R (VGTQ il vg(t@) (5.14)
e\

Figure 5.3 plots the column bus voltage v£? in (5.12) as a function of time ¢ and
pixel drive voltage V2?2, assuming o and v} (¢o) are zero. Modelling a high-definition
television (HDTV) standard, where images have 1080 x 1920 pixels [12], a load ca-
pacitance C equal to 2.4pF was calculated in (5.1) for a 0.35um 3.3V AMS process
[44] with a source diffusion area AT} of 1.1um? and perimeter P2? of 4.2um (for
switch transistor T:3) and with the number of rows N; equal to 1080. Typical for this
process, threshold voltages V2 and VA were 0.5V and current gains K12 and K14
were 12044 for 1pm wide by 0.6 um long transistors. The 2.2-2.6V range of the drive
voltage V32 in Figure 5.3 is typical of a logarithmic pixel in the AMS process when
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Figure 5.3: The transient response of the first stage readout from a discharged state, as
modelled for an HDTV example, where the column bus voltage v? is plotted against
pixel drive voltage V22 and time ¢. Note that, for any given time, the column bus
voltage is a linear function of the pixel drive voltage.

photocurrents have a 1pA-1u.A range. The source follower bias voltage V4 was 1V,
or double the threshold voltage, giving a bias current I % of 30uA.

As time ¢ increases, A(t) in (5.13) approaches unity and vl°(¢) in (5.12) ap-
proaches the steady state result of Chapter 4. The time it takes for the response to
settle depends a little on the value of B in (5.14), which is a function of the pixel drive
voltage V32 and the initial voltage of the column bus v}?(t,). However, the settling
time depends more closely on parameters of A(t) in (5.13), which means it is propor-
tional to 7 in (5.15). This time constant is comprised of factors partly under control of
the circuit designer. For the example plotted in Figure 5.3, the time constant in (5.15)
equals 40ns, which matches the settling time of the response in the figure.

T = ¢ (5.15)

VEERT(3E - V)

The above derivation gives the transient response of the column bus voltage for any
pixel in a column. The column bus voltage is switched in turn to drive an output bus,
shared by all columns, via a second stage source follower, as described in Chapter 4.
This setup mirrors the parallel source followers of Figure 5.1 except with PMOS tran-
sistors instead of NMOS. Analysis of the transient response of the output bus voltage
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for any column drive voltage is similar to the above analysis and, thus, is not repeated.

5.3 Calibration

If sufficient time is allowed between the switching of a row or column in the sensor
array and digitisation then the response of the column buffer or the output buffer should
settle at the steady state value. The settling time depends on design parameters of the
circuit as well as the initial voltage of the node being charged, i.e. the column bus or
the output bus, and the final voltage, as determined by the steady state equation. For
example, if the initial and final voltage were the same then no charging or discharging
need occur and the settling time would be zero. The settling time allowed by the
readout controller should be based on the voltage changes that are likely to occur in a
logarithmic sensor, when viewing a typical scene, upon switching from a pixel in one
column and row to a pixel in either the next column of the same row or the first column
of the next row, depending on the position of the pixel in the raster scan.

Normally, pixel responses are highly correlated with their neighbours except at
scene edges in the image, where abrupt changes occur. The settling time allowed
must accommodate the variety of charging and discharging demands while meeting
the speed requirements of the application. Inevitably, as the circuit theoretically never
reaches the steady state without an infinite amount of time, some edges in the image
will be slightly smeared along the direction of the raster scan due to insufficient settling.
This effect, which happens also in linear CMOS image sensors, may be compensated
by digital signal processing to sharpen the scene edges in the image, particularly in the
opposite direction of the raster scan.

Care must be taken by the readout controller every time the raster scan completes
reading the array and begins again at the first row and every time the raster scan com-
pletes reading all columns in one row and switches to the next row. Because these
changes often involve extra logic processing in the controller, to generate appropriate
addressing signals or to encode synchronisation bits for display purposes, they may
permit the column bus or the output bus to discharge. Thus, at the start of every frame
readout, the column bus in every column of the array may be required to cover a greater
voltage change, than the usual transition from one row to the next, in the usual settling
time. Similarly, at the start of every row readout, the output bus may be required to
cover a greater voltage change, than the usual transition from one column to the next of
a given row, in the usual settling time. The demands on the output bus are more critical
than those on the column bus as the former must switch about a thousand times faster
(at the pixel scanning frequency) and may have the initial voltage problem a thousand
times per frame (as many as there are rows) instead of just once per frame.

These problems may be avoided by ensuring there is no greater delay between
reading the last pixel in one frame and the first pixel in the next, or between the last
pixel in one row and the first pixel in the next, than there is between reading a pixel
in the middle of the array and its neighbour. As this approach may require a low pixel
scanning rate, wasting time when reading most pixels in the array, a simpler solution
would be for the readout controller to permit extra time to settle at the start of reading
a frame or row. Another solution is to precharge each column bus and the output bus
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to a mid-range voltage when the readout circuit is idle so that readout may resume as
if it were scanning from one pixel to the next. A poorly chosen precharge level would
be as problematic as a discharge level when digitisation occurs prematurely. Note that
increasing the source follower bias currents so that responses settle quickly at the start
of reading every frame or row would waste power when reading most pixels.

If the voltage at the column or output bus does not settle prior to digitisation then
fixed pattern noise may ensue. Consider an image sensor with IV, x N pixels, indexed
by j1 and j> where 1 < j; < Ny and 1 < j» < N,. If the time between scanning of
rows is 7 then it will take V; 7 time to read one frame. If scanning of a frame begins
at time ¢, then scanning of row j; begins at time j, 7 + to, when one period 77 is given
for settling. Assume that the voltage of each column bus at time ¢, is zero. Assume
also that circuit parameters (V, K etc.) are the same from pixel to pixel and column
to column so there is no fixed pattern noise due to stochastic variation. Furthermore,

. . . - - H T2,
assume the sensor is viewing a uniform scene so that pixel drive voltages V, ~** are
uniform. With these assumptions, the sampled voltage v 1° () at time j; 71 +to, denoted

ngl , on the bus of the first column is given by (5.16)—(5.18).
A;, +1,B
T5 _ T T JL JL

VGj51 =1;,(Vg? = Vr) — (VZé - VT)W (5.16)
K

Aj, = tanh <5(VGT§ - VT)j1T1> (5.17)

_Val-vr (5.18)
VEd—vp

Unless T is sufficiently large so that A;, in (5.17) approximates unity for j; = 1,
the column bus voltage VGTJ?’I in (5.16) will depend on row number j,, at least for the
first several rows, despite the uniform scene. When j; gets large enough, the column
bus voltage will settle to the steady state value in (5.19). While these results were
derived for the first column, a similar situation exists for all columns. Thus, even
with no stochastic variation of device parameters, a row-to-row variation might appear
in the digital response of an image sensor due to the transient response of the first
stage readout. A similar and simultaneous column-to-column variation would occur
due to insufficient settling time in the second stage readout when column bus voltages,
indexed by 7, are switched in sequence to drive the output bus from a discharged state.

Vés =1;,(Vg? - Vas) (5.19)

The methods of Chapter 4 to calibrate FPN due to stochastic variation of device
parameters may accommodate some of the FPN induced by premature digitisation.
Without transient effects, the relationship between the pixel drive voltage V}? and
the column bus voltage ng’l is given by a linear equation, as in (5.19), with constant
coefficients from row to row. With transient effects, the same relationship may be
approximated by linear equations with offsets a;, and gains b;, that vary from row to
row (and from column to column for the second stage readout), as in (5.20).

Var =aj +b, Ve’ (5.20)
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Figure 5.4: The offset and gain of the first stage readout, as modelled and simulated for
an HDTV example, that relate the column bus voltage vt linearly to the pixel drive
voltage V2?2 as a function of time ¢. These plots give the offset a;, and gain b, versus

row number j1, where j; 77 is the time since discharge when row j; is sampled.

Taking (5.16) and performing a first order Taylor expansion of vg; in terms of V3?2

around a reference voltage V3?2 gives the offsets and gains, as in (5.21)—(5.24).

aj, =1j (VC?Z - VT) - (Vgg -

1, — A3

b =1, ——— =
J1 J1 (1]_1+Aj_1B)2

K .
Ay, = tan (G (V= Vi

B VE -V
S VEi-V,
GS T

T)

A£+ 1]'71B
1j71+Aj71B

- bjl VC:‘F

2

(5.21)

(5.22)

(5.23)

(5.24)

Continuing the HDTV example, modelled in Section 5.2, the relationship between
the pixel drive voltage and column bus voltage at time ¢, or j177 when t is zero, in
Figure 5.3 approximates a straight line, with time varying offsets and gains given in
Figure 5.4. For small sampling intervals T, Figure 5.4 shows that the offset and gain
vary for small row numbers j; but eventually settle. Furthermore, (5.16)—(5.18) show
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that the relationship between the pixel drive voltage and the column bus voltage is not
perfectly linear. In other words, a first order Taylor expansion of (5.16), as in (5.20), is
only an approximation. The higher order terms of the Taylor expansion are expected to
vary from row to row, which would appear to the calibration methods of Chapter 4 as
a slightly nonlinear FPN in the first few rows. By giving extra settling time at the start
of reading each frame, transient-induced FPN may be vastly reduced.

In reality, the period T is large because it represents the time taken to scan one row.
For an HDTV sensor with 1080 x 1920 pixels read at 30Hz, this period is about 31 us.
Therefore, the column bus voltage will settle before the first row is read. If scanning
of the first row begins as soon as the first row is selected, rather than waiting for one
period as assumed above, some pixels in the first row will suffer from insufficient
settling time though the effect will disappear by the second row. Thus, row-to-row
variation of pixel responses due to insufficient settling time is unlikely or insignificant.
However, column-to-column variation is likely and significant with insufficient settling
time because the period 7%, representing the time taken by the second stage readout to
switch column buffers, is small. For the HDTV sensor, this period is about 16ns, a
fraction of the settling time of the offsets and gains modelled in Figure 5.4, assuming
the second stage transient response is similar to the first.

5.4 Simulation

The circuit in Figure 5.1 was simulated in Cadence using the Spectre simulator and
BSIM3 models for an AMS 0.35um 3.3V process. The widths of all transistors were
set to 1um, the width of the drain and source contacts, and the lengths to 0.6um, the
minimum length recommended by AMS for transistors in analogue circuits sensitive to
threshold voltage variation. Following the HDTV example of Section 5.2, the number
of pixels NV, in the column was set to 1080. This was realised not by having 1079 pixels
with open switches, as implied by Figure 5.1, but by having one pixel with an open
switch, in addition to pixel j;, but with amplifier and switch transistors having widths
of 1079um and with the source and drain diffusion area and perimeter being 1079
times the usual size. Such wide transistors approximate 1079 transistors in parallel but
result in a much faster simulation.

A transient simulation of this setup was performed with the column bias set to
1V, resulting in a source follower bias current of about 20uA, a little lower than the
modelled result of Section 5.2, and the pixel drive voltage V22 was varied from 2.2V
to 2.6V, a range typical of a logarithmic pixel simulated in this process. To simulate
the condition of a uniform scene presented to a sensor array, the pixel drive voltage
of the 1079 parallel pixels with open switches (simulated by a single pixel with wide
transistors) was set equal to V22 during the simulation.

Figure 5.5 plots the results of the above parametric simulation. The figure shows
that the transient response of the column bus voltage behaves as modelled by Fig-
ure 5.3, rising like the step-response of a first-order low pass filter to the steady state
value. The steady state values of the simulated results are lower than those of the mod-
elled results because the Spectre simulation considers many effects not included in the
Level 1 models used for analytical calculations, such as the body effect of T2, the
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Figure 5.5: The transient response from a discharged state of the first stage readout, as
simulated for an HDTV example, where the column bus voltage v}? is plotted against
pixel drive voltage V22 and time ¢. Note that, for any given time, the column bus
voltage is a linear function of the pixel drive voltage.

on-resistance of T3 and the finite output resistance of T2 and T4 in saturation.

Figure 5.5 also shows that the dependence of the column bus voltage v2> on the
pixel drive voltage V3?2 is approximately linear at any given time, with the offset and
gain varying with time. These time varying coefficients were calculated using linear
regression and are plotted in Figure 5.4. The simulated results generally agree with
the modelled results, also given in the figure, and show that a variation in the offset
and gain of the source follower occurs, from row to row (or column to column), if
insufficient time is allowed for the column (or output) bus voltage to settle, especially
when it begins from a discharged state as may happen at the start of reading each frame
(or row). If sufficient time is allowed for the column (or output) bus to charge then the
offset and gain of the linear relationship between V22 and V}® remains constant for
all rows (or columns). The offsets and gains in Figure 5.4 of the simulation results in
Figure 5.5 are smaller in magnitude than those of the modelled results in Figure 5.3
because of the greater accuracy of the BSIM3 models.
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55 Experiments

Experiments were conducted using a 512 x 512 pixel Fuga 15RGB logarithmic sensor,
described in Chapter 1. This imager is a colour version of the Fuga 15d, where pixels
are overlaid in columnwise fashion with red, green and blue filters. As Chapter 7
focuses on colour in logarithmic sensors, the Fuga 15RGB is treated here as if it were
monochromatic. Results presented in this section have been filtered columnwise, after
calibration, by a three point moving average filter to cancel the variation introduced
by the colour filters. Such an operation does not prejudice the results but facilitates
explanation by avoiding unnecessary detail and qualification.

Although the Fuga 15RGB, interfaced to a computer by a PCI card, was capable
of a full frame rate of about 8Hz [35], images were very noisy at this speed. Work-
able performance could be achieved only below 4Hz. The camera offered four timing
settings to the programmer, called the X1, X2, Y and ADC delay by the manufacturer
[34]. The X1 delay controlled the time permitted for settling after a change in the
column number (or X-address). This setting had the greatest effect on the speed and
image, apart from the ADC delay, and was used to control the frame rate. For reasons
that remain unclear, as circuit details of the second stage readout were not supplied, the
X2 delay provided an extra delay every 3224 column of the raster scan. However, this
setting had almost no effect on the speed or image (Fourier analysis of sample images
did not reveal any patterns at 32 column intervals) and was set to the maximum value.
The Y delay, possibly a feature not fully implemented in the device driver, had abso-
lutely no effect though it was supposed to control the time permitted for settling after
a change in the row number (or Y-address). Lastly, the ADC delay controlled the time
permitted for settling at the ADC input and was set to the maximum value. Above a
critical value, the setting had little effect on overall speed or image quality but, below
this value, both speed and noise increased sharply.

After setting the X1 delay, which was an integer between 0 and 255, the frame
rate was computed by measuring the time taken, in Microsoft Windows 98, between
readout of consecutive frames. Some variability existed in this measurement as the
multitasking operating system used preemptive scheduling but it was compensated for
using a moving average filter, a fast processor and by not running other applications
in the background. Images were taken of a sheet of white paper, in fluorescent office
lighting, to provide a uniform scene. The aperture setting of the lens was varied to
simulate intensity variation of the illuminant.

55.1 Settling time

Eight images were taken of a sheet of white paper, varying the aperture from 1.8 to 16 f-
stops to simulate a two decade intensity variation of the illuminant. These images were
taken at the slowest speed of the Fuga 15RGB, at which the frame rate was 0.49Hz.
The sensor responses, denoted y;;, j,, where ¢ ranges over the images (1 < i < 8), j;
ranges over the rows (1 < j; < 512) and j» ranges over the columns (1 < j, < 512),
were averaged over the columns and rows respectively to give rowwise and columnwise
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Figure 5.6: The average response §;;, of each row of the Fuga 15RGB versus illu-
minance x; and row number j;. For any row, the average response depends linearly
on the logarithm of illuminance. Each row number corresponds to the time the row is
digitised from the start of frame scanning by the first stage readout.

response profiles g;;, and g;;, respectively as in (5.25) and (5.26).

Lo tis s
ip = (5.25)
Jija = 7’1?\;;”2 (5.26)

Figure 5.6 plots the average response y;;, of each row versus illuminance (cal-
culated using the f-stop settings and the measured illuminance of the paper) and row
number j1. The row number, which is proportional to the time the row was read after
the start of reading each frame, is on a logarithmic scale to highlight the first few rows
while showing all rows. To avoid cluttering the plot with too many lines, as there are
512 rows, responses were averaged rowwise in exponentially increasing bins.! The fig-
ure shows an insufficient settling time for the first stage readout. Unlike in Figures 5.3
and 5.5, responses of the first row in Figure 5.6 depend on illuminance rather than
equal a constant value, which means the Fuga 15RGB permits some settling from the
initial condition (though not quite enough). The effective settling time for the first stage

1Responses in rows one to nine were not averaged whereas responses in rows 10 to 99, 100 to 499 and
500 to 512 were averaged in bins of 10, 100 and 13 rows respectively.
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Figure 5.7: The average response §;;, of each column of the Fuga 15RGB versus
illuminance z; and column number j». For any column, the average response depends
linearly on the logarithm of illuminance. Each column number corresponds to the time
the column is digitised from the start of row scanning by the second stage readout.

readout is about two rows or 9ms (calculated using the frame rate and total number of
rows in the array). The slow transient response occurs because the Fuga 15RGB was
built in a 0.7um 5V process with large transistors, impedences and voltage changes
and because a real sensor array has many parasitic effects.

Figure 5.7 plots the average response g;;, of each column versus illuminance and
column number j,, which is proportional to the time the column was read after the
start of reading each row. To avoid cluttering the plot with too many lines, as there
are 512 columns, responses were averaged columnwise in bins of 16 columns. The
figure shows an insufficient settling time for the second stage readout, as illustrated in
Figures 5.3 and 5.5, spread out over many columns. Columns are scanned much faster
than rows so an equivalent degree of insufficient settling time for the first and second
stage readouts would nonetheless affect many more columns than rows. The apparent
settling time of 100 columns in Figure 5.7 translates to 0.8ms, not much faster than
in Figure 5.6. Similar to the first row in Figure 5.6, responses in the first column of
Figure 5.7 depend on illuminance because the Fuga 15RGB permits some settling from
the initial condition. However, especially since the sensor was operated at the slowest
speed, this time is vastly insufficient.

For any row number in Figure 5.6 and any column number in Figure 5.7, both fig-
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ures show an approximate linear relationship between the average response and the log-
arithm of illuminance. As with the modelled and simulated results, the gain and offset
of this linear dependence varies in an approximately continuous manner, as opposed
to a purely random manner if there was only steady state FPN. The lack of surface
smoothness in these figures, as compared to Figures 5.3 or 5.5, illustrates the random
device parameter variation (V, K etc.), reduced by the averaging. Original responses
Yij,j» Were calibrated, according to Chapter 4, for the triple variation model and the
experiment was repeated for frame rates of 1.50 and 2.51Hz. The estimated offsets
aj, j»» 0AINS bj, ;, and biases ¢;, ;, for each frame rate were then averaged rowwise and
columnwise. These parameter profiles are plotted in Figure 5.8 with the row number
on a logarithmic scale as before (but no further averaging across rows or columns).

The offset and gain profiles in Figure 5.8 have similar though inverted trends to
the modelled and simulated results in Figure 5.4. Inversion may occur because of
precharging rather than discharging of the column and output bus prior to scanning.
Higher illuminances actually result in lower voltages, due to the inverting subthresh-
old load (in Figure 4.1), which means responses are inverted during digitisation for a
positive gain, as in Figure 5.8. With a discharged initial condition, digital responses in
Figure 5.6 should settle from high to low values for an NMOS source follower, which
comprises the first stage readout of the Fuga 15RGB [35]. The advantage of precharg-
ing of the column bus in Figure 5.2 (e.g. using a PMOS switch with source at Vpp and
drain on the bus) is that the load capacitance C'is discharged by column transistor T4,
which can be made large, rather than charged by pixel transistor T2, which should be
small, towards the steady state result. The makers of the Fuga 15RGB do not specify
the second stage readout circuit but, as parameter profiles have similar trends rowwise
and columnwise in Figure 5.8, it behaves similar to the first stage.

The modelled and simulated results ignored a lot of effects, including bias variation.
Calibration of this variation accommodates some of the transient response, as shown
in Figure 5.8, which affects the dependence of the estimated offset and gain on row or
column number. Note that the bias profile is basin shaped, rowwise and columnwise,
which is consistent with vignetting—an effect modelled in Chapter 4. The bias would
be higher at the edges because photocurrents would be smaller there, due to vignetting,
relative to leakage currents. As the frame rate increases, the parameter profiles change
suggesting a transient dependence. The offset profiles have the simplest dependence
on frame rate, settling more steeply for slow rates than for fast rates.

All the profile plots change shape with frame rate, particularly the columnwise gain
profile, which shows that there is a significant cause of FPN due to transient effects. To
assess the impact of gain variation due to transient effects on FPN, responses y;;, j, may
be calibrated using the double and triple variation models of Chapter 4 with a constraint
preventing the gain in either model from varying within a column, though varying as
b;, from column to column, as in models §;;, ;, of Table 5.1. Such a restriction is
meaningless with single variation because it assumes the gain does not vary from pixel
to pixel. The constrained double variation model may be calibrated efficiently using the
raster method of Chapter 3. The constrained triple variation model may be calibrated
efficiently with a specific method, following Chapter 4 for the unconstrained triple
variation model, involving nonlinear optimisation.

The constrained models in Table 5.1 were calibrated for responses y;;, ;,, recorded
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Figure 5.8: The average offset, gain and bias of each row and column of the Fuga
15RGB, after calibration of the triple variation model at frame rates of 0.45, 1.30 and
2.51Hz. The row or column number corresponds to the time the row or column is read
since the start of reading a frame or row by the first or second stage readout.
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Table 5.1: Estimated response §;;, j, of the (ji,j2)"" logarithmic pixel in terms of
average response g; or to illuminance z;, where l;;,;, = In(1;¢j, 5, + 1j,j,2:), for
the double or triple variation model where the gain b;, may only vary from column to
column. The number of implicit parameters @ is given (assuming x; is unknown).

Variation Uijijo Q
Constrained double | 1;aj,;, +1;,05,9; | M + N + Ny —2
Constrained triple Laj, . + bj_zll-jlj_z M 42N 4+ Ny — 2

Table 5.2: The residual error 6., average values a, b and ¢ of estimated parameters
aj, j»» bj, OF bj 5, and ¢;, ;, and parameter uncertainties 6 and ; for the double and
triple variation models, with unconstrained and constrained gain, where estimated re-
SPONSes ij, j,, With l}jljz =In(1;¢;,j, + 1,4, %), are fitted to actual responses y;;, ;.

Variation gij1j2 O axoy b+ 5’5 ¢
Con.dbl. | 1;a5,5, +1;,05,9: | 24 | 0.0+ .87 LOEB + 13%
Unc. dbl. | L;aj,j, + bj,j,7i 13 | 0.0+2.38 LOER £1.7%

Con. tri. ]-i&jljz + lel’hB .79 0.0£.29 34LSB £ .043% | 24
unc. tri. | Liajj, + bjujulijij | 59 | 00£1.2 | 28LSB+.72% | 35
In LSB LSB | LSB + LSB Tux

at a frame rate of 0.49Hz, along with the unconstrained double and triple variation
models of Chapter 4 (where array index j is decoded into row and column indices
j1 and j»). Residual errors, average parameter estimates and parameter uncertainties
are given in Table 5.2 for these models. Unconstrained double variation has a much
lower residual error than constrained double variation whereas unconstrained triple
variation has a slightly lower residual error than constrained triple variation. Gain and
offset uncertainties show that the constrained estimates are far more certain than the
unconstrained ones, meaningful in the triple variation case as the residual errors are
comparable. As the stochasticity of bias and illuminance estimates were ignored for
both triple variation models, the parameter uncertainties are similarly underestimated.

The residual error versus illuminance is plotted in Figure 5.9 for each calibrated
model in Table 5.2. The figure shows that the residual errors for constrained and un-
constrained triple variation are similar. Both are relatively independent of illuminance.
These results mean that the gain variation observed in the Fuga 15RGB, at least over a
two decade dynamic range, may almost entirely be attributed to a columnwise variation
introduced by insufficient settling time in the second stage readout. Although insuffi-
cient settling time in the first stage readout does introduce a rowwise variation of the
gain, as shown in Figure 5.8, this effect may be neglected at low frame rates because
it affects only a few rows. Comparing constrained and unconstrained double variation
in Figure 5.9 shows that constraining the gain is too restrictive in that case. The reason
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Figure 5.9: The residual error &, versus illuminance z; for calibration of the double
and triple variation models, unconstrained and constrained, to Fuga 15RGB responses.

is because gain variation may accommodate some of the ignored bias variation but the
latter varies significantly within columns. Thus, pixel-to-pixel bias variation must be
permitted for good calibration results.

5.5.2 Switch position

In reality, the first stage readout circuit of the Fuga 15RGB does not precisely match
the one given in Figure 5.1, which may account (with precharging) for some of the
discrepancies between parameter profiles in Figures 5.4 and 5.8. The positions of the
amplifier and switch transistors in each pixel, i.e. T2 and T3, are swapped in the Fuga
15RGB [35], as in Figure 5.10, although IMEC uses the positions in Figure 5.1 for
the 2048 x 2048 logarithmic sensor developed afterwards [24]. Neither the designers
at IMEC nor the suppliers at C-Cam Technologies have published the circuitry for the
second stage readout of the Fuga 15RGB. Most likely, it is similar to the first.

From the point of view of steady state performance, the switch position in Fig-
ure 5.10 is superior to the one in Figure 5.1. When turned on, switch T3, is in sat-
uration for the circuit in Figure 5.10 whereas it is in the triode region for the circuit
in Figure 5.1. Though the steady state analysis in Chapter 4 assumed the switch to be
ideal, in reality it does affect circuit operation. With T2;, and T4 in saturation during
normal operation (for either switch position), having the switch also in saturation, as in
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ﬁ T3, mﬁsj ﬁ T3y,
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Figure 5.10: The first stage readout of the Fuga 15RGB image sensor consists of N;
amplifier and switch transistors T2 and T3, one pair in each pixel, and a current source
T4, one in each column of pixels. When switch T3, is on, where 1 < j; < Ny, all
other switches are off and T2;, forms a source follower (SF) with T4. Note that the
positions of T2 and T3 are reversed compared to the typical circuit of Figure 5.1.

Figure 5.10, leads to a higher gain and a more linear source follower. Consider that the
on-resistance of T3;, in Figure 5.1 depends on its gate-source voltage, which depends
on the column bus voltage. However, the column bus voltage in turn depends on the
on-resistance of the switch because that resistance determines the drain-source voltage
drop across T3;,. These effects degrade the gain and linearity of the source follower.
However, the switch position in Figure 5.10 leads to a poor transient response. The
load impedence that determines the transient response consists primarily of the source-
bulk capacitances of the Ny amplifier transistors, rather than the switch transistors in
Figure 5.1. But the amplifier transistors in Figure 5.10 are not in the cutoff region
as are the corresponding (in terms of position) switch transistors in Figure 5.1. Since
pixel drive voltages maintain their levels irrespective of the switch state, the gate-source
voltage of the amplifier transistors may exceed the threshold voltage. When amplifier
T2;, is in saturation with switch T3;, closed, the amplifier transistors of all other
pixels may be in the triode region where they behave as voltage controlled resistors.
When the amplifier transistors of pixels with open switches in Figure 5.10 behave
like resistors, the load impedence involved in the transient response depends, in addi-
tion to the source-bulk capacitance of each amplifier transistor, on the series connec-
tion of each triode resistance with the drain-bulk capacitance of each amplifier tran-
sistor and the source-bulk capacitance of each switch transistor, taken in parallel over
pixels with open switches. The channel-bulk capacitances of the amplifier transistors
also contribute to the load. Thus, the load impedance for the circuit in Figure 5.10
is considerably higher than the load impedence for the circuit in Figure 5.1. Parasitic
capacitances are not coupled with the latter because the switch transistor is adjacent
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Figure 5.11: The transient response from a discharged state of the first stage readout
in Figure 5.10, as simulated for an HDTV example, where the column bus voltage v?
is plotted against pixel drive voltage V72 and time ¢. The response does not settle in
200ns whereas the one in Figure 5.5, for the typical circuit, settles in less than 100ns.

to the column bus and is always in the cutoff region for deselected pixels. Returning
to the HDTV example described in Sections 5.2 and 5.4, the column bus voltage for
the switch position in Figure 5.10, as a function of pixel drive voltage and time (since
the start of scanning), is given in Figure 5.11. Comparing these simulation results with
the ones in Figure 5.5, the switch position of the Fuga 15RGB leads to a much slower
settling time than for the switch position in Figure 5.1.

Furthermore, as the drain-source resistance of a transistor in the triode region de-
pends on the gate-source voltage of the transistor, the transient response and settling
time of the circuit in Figure 5.10 depends on the gate and source voltage of the am-
plifiers with open switches, i.e. the pixel drive voltages and the column bus voltage.
Triode resistances decrease with increasing gate-source voltage so that coupling of par-
asitic capacitances becomes more significant. A settling time for a readout circuit that
depends in a nonlinear way on drive voltages of deselected pixels, as well as the col-
umn bus voltage due to the selected pixel, is highly undesirable. Simulations show that
these dependencies complicate the transient response even more with precharging of
the column bus prior to scanning. Such nonlinear effects are expected to exacerbate the
FPN that appears in an image sensor due to insufficient settling time, especially over a
high dynamic range when voltages cover a wide range.
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Figure 5.12: The residual error 6, versus illuminance z; for calibration of the single,
double and triple variation models to Fuga 15RGB responses over a high dynamic
range, which shows a performance breakdown especially at bright illuminances.

Indeed, Figure 5.12 shows a breakdown in the calibration methods of Chapter 4 for
an experiment with the Fuga 15RGB over a dynamic range of three and a half decades.
An 800 Watt tungsten lamp, with dichroic filters to simulate a daylight spectrum, was
used to illuminate a sheet of white paper that was imaged eight times, using neutral
density filters to simulate intensity variation of the illuminant at half decade intervals.
The figure plots the residual error versus illuminance after calibration of the single,
double and triple variation models (unconstrained columnwise). All three models give
a poorer performance than in Chapter 4, i.e. Figure 4.3. The shapes of the error curves
are significantly different, particularly in the mid-range of illuminance. Triple varia-
tion, however, still gives the best results and is otherwise nearly flat.

The cause of model breakdown, shown in Figure 5.12, is a transient phenomenon.
For the triple variation calibration, Figure 5.13 plots the standard deviation of the resid-
ual error for each pixel, taken over the eight illuminances (rather than for each illumi-
nance, taken over the 5122 pixels, as in Figure 5.12). The high error in the leftmost
columns of the image, a band that stretches over all rows, is a second stage transient
phenomenon with a highly nonlinear nature, which explains the high error in the triple
variation result of Figure 5.12. This band does not appear for the triple variation cal-
ibration in Chapter 4, which covered a two decade dynamic range. The error band
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Figure 5.13: The residual error 5, ; versus row and column numbers j; and j for
calibration of the triple variation model to Fuga 15RGB responses over a high dynamic
range, which shows a performance breakdown especially in the leftmost columns (but
also in the topmost row) that suggests a transient cause.

occurs because of insufficient settling time and possibly a poor choice of switch posi-
tion in the second stage readout of the Fuga 15RGB. A similar high error, not visible
in Figure 5.13, appears in the topmost row of the image. Instead of modelling and
calibrating this complex phenomenon, the best way to reduce the resulting FPN is to
provide more settling time, at the start of reading each frame and row, and to choose
the switch position in Figure 5.1 over the switch position in Figure 5.10.

5.6 Conclusion

Whereas the previous chapter considered how parameter variation from pixel to pixel
affects the steady state response of a sensor so as to produce FPN, this chapter consid-
ered how the transient response of the sensor can lead to FPN regardless of parameter
variation. A transient analysis of the photodiode and the logarithmic current-to-voltage
converting load was not considered because the bandwidths of these components are
sufficient to meet the demands of most applications. On the other hand, because pix-
els are scanned serially for digitisation by a single ADC, the readout circuit must
switch very quickly prior to digitisation, for megapixel sensors operating at video rates,
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which makes its transient response crucial to image quality. Furthermore, as pixels are
scanned in raster fashion using a two stage process, one to copy all pixel voltages in a
row to column buffers and the other to copy a column buffer voltage to a single output
buffer, each stage has different demands on its transient response. The second stage
must operate on the order of a thousand times faster than the first stage and is hence
more critical to image quality in terms of transient response.

A model of the transient response of a switched source follower circuit, typical
for both the first and second stage readouts, was constructed by solving a differential
equation relating the input and output voltage of the readout stage to the designable
parameters of the circuit and the initial voltage of the output. The model identifies the
load impedence of the circuit to be the parallel combination of the junction capacitances
of all the switches. When one row or one column is selected by the first or second
stage readout, all other rows or columns have open switches, which are transistors in
the cutoff region. The fact that the switches are in the cutoff region when open is
important because it reduces the load impedence and makes it independent of the input
voltages of all deselected source followers. However, an alternate design of the source
follower exists, with the switch and amplifier transistors reversed to improve steady
state linearity but it results in a poorer transient response.

The model developed in this chapter was used to show that if a readout circuit for
an image sensor does not allow sufficient settling time then digitised responses will
vary in a predictable manner from row to row or from column to column, even with a
uniform stimulus and no device parameter variation. Furthermore, these effects would
appear principally as offset and gain variation correlated to the row or column number,
as opposed to purely random offset and gain variation, and therefore could be partly
calibrated using steady state methods. The effects would be most noticeable, and hence
settling time is most important, for the topmost rows or the leftmost columns as the
greatest voltage changes are likely to occur at the start of reading each frame or at the
start of reading each row.

Simulations were carried out in an AMS process using Spectre. For an HDTV ex-
ample, the simulation results agreed with modelled results although there were small
discrepancies because the model used simple equations to describe transistor behaviour.
These results confirmed that insufficient settling time may be a considerable cause of
response variation. Regression analysis showed that, even with insufficient settling
time, the input-output relationship is approximately linear but with an offset and gain
that vary according to the row or column number. For the readout circuit with the
switch in the alternate position, a simulation confirmed that this approach greatly in-
creased the settling time.

Experiments were performed with a Fuga 15RGB sensor. Images were taken of
uniform scenes with different aperture settings, to simulate illuminant variation, and
with different speed settings of the readout. The results demonstrate transient effects
that cause substantial variation of digital responses in a manner similar to the modelled
and simulated response. The results were calibrated using the triple variation model
of Chapter 4. Plots of the offset, gain and bias, averaged separately over all columns
and all rows showed how the offset and gain depended on the transient response. The
rowwise and columnwise bias depended on the transient response but also showed
signs of vignetting. The transient effects appeared to be more significant from column
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to column than from row to row of the experimental results, particularly for the gain.

Calibration of the data assuming triple variation but with constraints on the gains
so that they do not vary within a column but may vary from column to column gives
a residual error almost identical to the case of unconstrained triple variation. The con-
strained model, however, exhibits a much lower uncertainty in the estimated offsets
and gains, which suggests it is a better model to describe FPN in the Fuga 15RGB.
Finally, the Fuga 15RGB uses the atypical configuration for the switch transistor in the
readout circuit, which may be a cause of complex effects on the response over a high
dynamic range. With this readout circuit, the transient response depends on voltages at
the inputs of deselected source followers and varies significantly with the initial output
voltage of the source follower. Experiments conducted over a dynamic range of three
and a half decades, using a tungsten lamp and neutral density filters, demonstrate a
breakdown of previous models for calibration because of transient effects.

Like steady state effects due to device parameter variation, transient effects due to
insufficient settling time may be a significant cause of FPN in CMOS image sensors.
Although much of this effect may be calibrated by assuming offset and gain variation
due to the flexibility of these steady state models to accommodate transient effects,
the transient effects are inherently more complex and may require digital filtering for
proper compensation. The best solution, however, is to test and avoid poor circuit
designs and to permit sufficient settling time at the start of reading each frame and row.



Chapter 6

Temperature dependence

6.1 Introduction

Electronic circuits in consumer, industrial and military applications are required to
operate in diverse and changing temperatures. Unlike the human eye, image sensors
usually do not exist in a homeostatic environment. Due to semiconductor physics, re-
sponses to the same stimulus may thus vary with temperature. Whereas previous chap-
ters modelled and calibrated fixed pattern noise (FPN) in logarithmic CMOS image
sensors at one temperature, this chapter considers the dependence of FPN on tempera-
ture and how to compensate for it. A variation of device parameters, from pixel to pixel
or column to column, related to temperature and illuminance sensitivity leads to FPN.

In the study of linear CCD and CMOS image sensors, it is well known that the
response of pixels with the aperture of the camera closed, called the dark response,
is a strong function of temperature. In reality, this dark response also bears upon the
response of the pixels with the aperture open (i.e. to a focused image), called the light
response. As the dark response is only affected by temperature and not illuminance,
it may be used to discern and correct unwanted effects of temperature dependence
on the light response of the image sensor. Any unwanted effects due to illuminance
dependence may be compensated using methods similar to those in Chapter 4.

As in Chapter 4, this chapter considers only the steady state causes of FPN. In
reality, the load impedences and settling times described in Chapter 5 are affected by
temperature and may lead to temperature-dependent FPN. However, transient effects
on sensor responses may be minimised by proper design and timing of the readout
circuit, allowing for the worst case load impedence and settling time over the required
temperature and illuminance range.

Section 6.2 models the response of logarithmic CMOS image sensors over tem-
perature and illuminance. Section 6.3 describes calibration of the model using images
of uniform scenes taken at different temperatures and with different illuminances. As
calibration of image sensors may be a costly process, emphasis is placed on reducing
the need for temperature and illuminance measurement, reducing the complexity of the
model and reducing the number of parameters to be estimated. Sections 6.4 and 6.5

106
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evaluate simplified models and calibrations with simulation and experiment.

6.2 Modelling

To model the response y of a logarithmic pixel to temperature 7" and illuminance z, the
model derived in Chapter 4 for illuminance alone, repeated in (6.1), may be extended
by considering the temperature dependence of the physical parameters (of the circuit
in Figure 4.1) that make up the offset a, gain b and bias ¢, repeated in (6.2)—(6.4). The
error ¢, repeated in (6.5), is assumed to be independent of temperature and illuminance.

y=a+bln(c+x)+e (6.1)

a=Fspc+Gapc (VDD

T1 T ITl
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€e=€Q+enN+ep (6.5)

The offset parameter a in (6.2) is affected by temperature in a number of ways.
Threshold voltages V- have a linear dependence on temperature, as in (6.6), and current
gains K depend on temperature by a power law, as in (6.7). These equations are taken
from the HSPICE Level 28 model as the simpler Levels 1-3 models used in Chapter 4
do not consider the temperature dependence of Vi or K [43]. T} is simply a reference
temperature. Vg and K are the threshold voltage and current gain at that temperature.
The multiplier TCV and exponent BEX determine how quickly the threshold voltage
and current gain vary with temperature.

Vi = Vo — TCV(T — To) (6.6)

BEX
w=no(L) o

Returning to the Level 3 model, the parameter V,,,, in (6.2) signifies the gate-source
voltage that is the threshold between the weak and strong inversion regions of transistor
operation [43]. This threshold depends linearly on temperature, as in (6.8). As I, in
(6.2) is the drain-source current at this voltage, its dependence on temperature is given
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in (6.9) using the Level 1 model of current in the saturation region (ignoring the finite
output resistance of transistors in saturation) [43].

kT

Vou = Vir + —”q (6.9)

Ipn = K(”kT> (6.9)
q

The gain parameter b depends on temperature in only one way, which is already
considered in (6.3). Using the Level 3 model, the slope of the subthreshold response,
i.e. voltage versus current on a logarithmic scale, of a diode-connected transistor is a
multiple of temperature in Kelvin, as in (6.10) [43].

kT I
VDS - nTl (IDS> + Von (610)

Assuming that the optics of a camera are stable with respect to temperature vari-
ation, and neglecting any dependence of quantum efficiency on temperature, then the
bias parameter ¢ in (6.4) depends on temperature in only one way. In the simplest
case, the reverse bias saturation current of the photodiode is an exponential function of
temperature (approximately doubling every 10K), as in (6.11) [43].

Ig = Igpe™/Ta (6.11)

Applying the above temperature dependences of physical parameters to (6.2)—(6.4),
the response y of a logarithmic pixel to temperature 7" and illuminance z is modelled
in (6.12), with abstract parameters ay, b; and ¢; in (6.13)—(6.17). This model assumes
that BEX in (6.7) does not vary from transistor to transistor.

y=ay + a;T +asTInT + b, T In(ce™/"> + ) + € (6.12)
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Iso

= itk (6.17)

C1

A pixel-to-pixel or column-to-column variation of a1, a2, as, by, ¢; or any combi-
nation thereof would cause FPN in an image sensor (7'a is not expected to vary). As
(6.12) shows, any type of FPN would be temperature-dependent unless only a varied.
Strictly speaking, only a; and a» may vary from column to column as other parameters
do not depend on column transistors T4—6 in the circuit of Figure 4.1.

6.3 Calibration

To calibrate a sensor having N pixels over temperature and illuminance, images are
taken of a uniform scene at L different temperatures denoted 7', where 1 < h < L,
and M different illuminances x;, where 1 < i < M. At the At temperature and the
ith illuminance, the response of the j*® pixel, where 1 < j < N, is denoted yy,;;. Due
to (6.12), the actual response yp;; may be estimated by g;; in (6.18), which lacks an
error term ep; 5, with I5; in (6.19). The error is assumed to be independent from sample
to sample and to follow a zero-mean Gaussian distribution. Note that (6.18) assumes a
variation of offsets a;, and gain b, from pixel to pixel, representing 4 N variables

ghij = lpai; + 1iangh + 1ia3jTﬂln Ty + blele (6.18)
lni = In(Liere™/ T 4 1,2) (6.19)

There are only two variables ¢; and T'a in (6.19) as bias variation has not been
considered. Chapter 4 shows that including bias variation makes both calibration and
correction nonlinear. While including bias variation leads to better results, the method
is not practical in cost sensitive applications. Later sections in this chapter shall clar-
ify the limitations of ignoring bias variation. Chapter 4 also showed that nonlinear
optimisation may be avoided even when illuminances x; are assumed to be unknown.
Whereas temperatures 7}, and illuminances z; may be known, the cost of calibration
may be reduced in terms of computation and measurement by assuming they are un-
known, which adds L + M variables. However, if 7%, and «; are unknown then g;; in
(6.18) is unchanged by the transformations in (6.20), which means there are two fewer
variables, in reality, for a total of L + M + 4N.

(a1j7a2j7 azj, bljaclaxiaThaTA) =

(6.20)

a2j—a3zjIny as; bij
(a1, 2=, 22, 22 ey, w4, Th, YTA)

(a1j,a2; — bijlny,asj, bij,ver, vei, Th, Ta)
;-Y b /-Y b /-Y b

Parameters in (6.18) may be estimated by minimising the SSE in (6.21) between
the actual responses yp;; and estimated responses gy;;. For any choice of ¢, x;, T},
and T in (6.19), the raster method of Chapter 3 may be used to estimate a; and
b1; by encoding variables i and 4 into a single variable that indexes the LM images.
Nonetheless, counting the degeneracies in (6.20), nonlinear optimisation is required to
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estimate the L + M parameters ¢;, z;, T; and Ta. Nonlinear optimisation may be
avoided by the offset cancellation and temperature proxy methods described below.

SSE = 11ij(ynij — Gnij)> (6.21)

6.3.1 Offset cancdlation

The nonlinear parameters ¢y, x;, T, and T'a in (6.19) may be reduced by assuming
the average of the actual responses over all pixels, denoted 3; in (6.22), equals the
average of the estimated responses over all pixels, as in (6.23). The assumption is good
when N, the number of pixels, is large and the error €;;;, between actual and estimated
responses, follows a zero-mean Gaussian distribution.

1

Yhi = N Yhii (6.22)
1, .
Yhi & Njyhij (6.23)

With the above assumption, gp;; in (6.18) and g, in (6.23) may be rewritten as
(6.24) and (6.25), where ay ;, by ;, a), and b, are given in (6.26)-(6.29). Note that gp,;
is known from the data in (6.22). The number of implicit parameters in (6.24) equals
LM+ L+4N —4, counting ¥ps, Th, a;cj and b} ; and deducting for degeneracies. There
are four degeneracies, due to (6.26) and (6.27), whereby the average of a }, ; and b’ ; over
all pixels is zero and one respectively. Thus, the number of implicit parameters have
increased by L M — M — 4 but the number of nonlinear parameters have been decreased

by M, eliminating ¢y, x;, Ta and associated degeneracies.

Unij = 1niay; + Liah; Tp + 105, Ty InTh + Y ;G (6.24)
Yhi = 101 + 1021 + lid3TE1n TE + BITQlQi (625)
ag
(J,;cj = Qkj — blja (626)
b1
=3 (6.27)
_ 1;
ar = Nakj (628)
_ 1.
b= 57bj (6.29)

For any choice of T}, in (6.24), estimates of a;cj and b’lj that minimise the SSE
in (6.21) may be found with the raster method. However, nonlinear optimisation is
required to estimate the L parameters T;,. Nonlinear optimisation may be avoided
altogether if responses yy0; of all pixels are known at temperatures 73 when the illu-
minance is zero (e.g. by closing the aperture of the camera lens). Following the above
derivations and assumptions, these dark responses may be estimated by g, in (6.30)
with 9 and I, in (6.31) and (6.32). Note that 3¢ is known by (6.33).

gnoj = 1pay; + ab; Ty + a;TpIn Ty + by ;5no (6.30)
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Jho = lpay + a2Th + (_LgTEln TE + BlTQlQO (631)

lho = In(cre™/T) (6.32)
1.

Yno = Njyhoj (6.33)

A comparison of (6.24) and (6.30) suggests that 7', may be eliminated. Subtracting
the dark from the light version of actual and estimated responses gives actual and esti-
mated offset-free responses y;n.j and g;,,; ; in (6.34) and (6.35), where the latter depends
on the difference g;,; in (6.36) between average light and dark responses with only a
gain parameter b’ ; per pixel. All offset parameters a;, ; in (6.24) are cancelled by sub-
traction of (6.30). Note that y;,; is known because y; and g0 in (6.36) are calculated
from the actual light and dark responses in (6.22) and (6.33) respectively.

Yhij = Yhij — Liynoj (6.34)

Uhij = glhij;l— LiGnoj (6.35)
— i
1]yhz

Uhi = Uni — Lillno (6.36)

Estimation of the parameters b} ; in (6.35) may be done by minimising the SSE in
(6.37) between actual and estimated offset-free responses y,,. and gy, ;- This is easily
accomplished with the raster method of Chapter 3. The number of implicit parameters
© for this calibration is given in (6.38), counting offset-free averages g, and gains
b ; fitted to the LM N offset-free responses and subtracting the degeneracy in (6.27)
whereby the average of b ; over all pixels is one. Assuming N is large then the offset
cancellation method involves about 3V less parameters than the original calibration.

SSE = 145 (Yhij — Ghij)’ (6.37)
Q=LM+N—1 (6.38)

While the above derivation did not consider the cases where a;, as, as and b; in
(6.12) do not all vary from pixel to pixel, such a consideration is straightforward with
the above results. Any constraints on the offsets a; do not affect the final model in
(6.35) because all offsets are cancelled with or without constraints. Constraining the
gain b; to remain constant for all pixels results in the model of (6.39) with implicit
parameters in (6.40). Because of the degeneracy in (6.27), whereby the average of b ;
is one, there is no need for the estimation of a single parameter. Offset-free averages 7;,;
are still required to determine the residual error. Despite the similarity of nil variation
in Chapter 4 to the model in (6.39), the former assumes no offset variation whereas the
latter may include offset variation, which is cancelled rather than calibrated.

Uhij = 1iTh; (6.39)
Q=LM (6.40)

According to the steady state model in (6.16), the gain b, is unlikely to vary from
column to column without varying from pixel to pixel because it does not depend on
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parameters of column transistors. However, this steady state model was simple and did
not account for many aspects of transistor behaviour (e.g. finite output resistance in
saturation) that may cause a columnwise variation of gain. Furthermore, as Chapter 5
showed, transient effects may lead to a substantial columnwise component in the gain.
Inclusion of these effects may be achieved with the raster method. Constraining the
gain b, so that it may vary only from column to column gives the model in (6.41) with
implicit parameters in (6.42). The array index j above has been decoded into row and
column indices j; and j, where 1 < j; < N1, 1< js < Nyand N = N N,.

Uhijrjo = LirUjUhs (6.41)
Q=LM+N,—1 (6.42)

An important feature of the offset cancellation method is that the same gain param-
eters apply for temperature and/or illuminance changes. While estimates of the gain
would be more robust against noise if regressed over multiple temperatures and illu-
minances simultaneously, it is possible to regress over only illuminance changes (or
over only temperature changes) when the model is valid. The advantage of this feature
is that there is no need to collect calibration data for more than one temperature (or
illuminance), which greatly facilitates calibration.

6.3.2 Temperature proxy

Analysis of (6.31) suggests another way to eliminate unknown parameters 77, in (6.24).
Equation (6.31) shows that the average dark response §q is a function of temperature
with few parameters. If this function is invertible then T', in (6.24) may be substituted
with a function of 7,9. Unfortunately, the function in (6.31) may not be inverted be-
cause of the nonlinearity 7}, In T}, Furthermore, even if it could be inverted, the same
nonlinearity in (6.24) means that some, if not all, unknown parameters @, and b, would
appear upon substitution as parameters that require nonlinear optimisation.

The only feasible way to eliminate both T}, in (6.24) and nonlinear optimisation of
unknowns in (6.31) is to linearise the T}, In T}, term around an operating point, say the
average temperature 7'. Analysis of (6.31) and (6.32) reveals that 7, is also a function
of T2, which must also be linearised to avoid nonlinear optimisation. First order Taylor
expansions of these two nonlinear functions, around a reference temperature 7', are
given in (6.43) and (6.44) (after simplification).

TEIH Ty ~ Th(l +1In T) - lhT (6.43)
Ti ~ Th2T — ].hT2 (644)

For a reference temperature of 30°C, the worst case error for the linearisations in
(6.43) and (6.44) in a 0-60°C range is 0.1% and 1.2% respectively (note that calcula-
tions are done in Kelvins). While these errors suggest that linearisation is worth trying,
they do not indicate the relative error introduced into (6.24) or (6.31) as this would
also depend on other parameters. The validity of the linearisations may be tested by
fitting the average dark response yo to measured temperatures 77, for a linear model
and the complete model, as well as the complete model minus either the T}, In T}, or the
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T7 term, and comparing the residual error and parameter uncertainties. Although the
relationship between the dark response of any pixel and temperature is identical to the
relationship between the average dark response of all pixels and temperature, taking
the average dark response as a proxy for temperature is more robust than taking the
dark response of any pixel (or the average dark response of a subset of pixels) because
it minimises the effect of stochastic error €5;; when the number of pixels IV is large.

If the linearisations in (6.43) and (6.44) are valid then solving for T';, as a function
of 7o in (6.31), substituting the result in (6.24) and simplifying gives the model in
(6.45) of estimated responses gy;; in terms of the average dark and light responses 450
and yn;, where a;; and by ; are given by (6.46) and (6.27).

Unij = 1nia); + 1iay;Gno + by ;Gni (6.45)
dal,;
afl; = Zn’” (6.46)

Coefficients dy; in (6.46) depend on the unknowns @y, b; and T and the operating
temperature T', which may also be considered unknown with no loss of generality. The
coefficients are given in (6.47), using the notation of Chapter 2, i.e. Section 2.2.1, to
identify indices &£ and [ with the rows and columns of a matrix respectively.

At () =
as + az(1 +InT) + bi(Inc; + 2T /Ta) 0
—a + 63T + Blfz/TA 1 (6.47)
—(_11(].+1HT) —ZLQT—I_nT(lncl + (]. —IHT)T/TA) ]."‘IHT

Estimation of the parameters a;; and b} ; in (6.45) may be accomplished by min-
imising the SSE in (6.21) between actual and estimated responses yx;; and gp;;. A
solution may be found using the raster method of Chapter 3. The number of implicit
parameters () for this calibration is given in (6.48), which accounts for the average light
responses g, offsets a;; and gains b} ; minus degeneracies on the offsets and gains.
The averages of ay; and as; over all pixels are zero because they are linear functions
of aj; in (6.46), which have zero averages due to (6.26). The average of b7 ; over all
pixels is one because of (6.27). The average dark responses g0 are not counted as
implicit parameters in (6.48) because they are not determined from the light responses
Ynij, Which are used to calculate the SSE, residual error and parameter uncertainties.

Q=LM+3N-3 (6.48)

Whereas the above derivation assumed a variation of a; and b, in (6.12) from pixel
to pixel, it is not difficult to apply the temperature proxy method for models where
parameters do not vary at all or only vary from column to column. Such constraints
may be due to steady state effects, e.g. the division of transistors between pixel, column
and output circuits in Figure 4.1 of Chapter 4, or due to the accommodation of transient
effects, e.g. when the response of the second stage readout does not settle from a
discharged or precharged state as in Figure 5.7 of Chapter 5. There are many possible
constrained models, which may be divided into two categories—ones where there is
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Table 6.1: Estimated response §y;; of the j*® logarithmic pixel, in terms of the average
dark and light responses 0 and 7, of all pixels, to temperature T} and illuminance
x; for the three feasible constrained models of FPN without columnwise variation. The
number of implicit parameters @ is given for each model.

Mod. Zjhij Q
1 Lniay; + 1iay;gno + 1jgni | LM + 2N — 2
2 Lhial; + 1Gni LM+ N -1
3 ].j:ljhi LM

no columnwise variation, in which case a single variable j suffices to index pixels, and
ones where there is some columnwise variation, in which case two variables j; and j»
are necessary to index pixels along rows and columns. The importance of comparing
constrained to unconstrained models is that the former, when valid, reduce the number
of parameters in the calibration and lead to lower parameter uncertainties. Furthermore,
the success or failure of particular constrained models compared to the unconstrained
version gives information about the nature of FPN in an image sensor.

Logical considerations limit the number of feasible constrained models. Observe
that offsets ;' of the temperature proxy model depend on intermediate offsets a/, ;in
(6.46), which in turn depend on original gains b,; in (6.26). As the gains b} ; of the
temperature proxy model also depend on b4 in (6.27), it is not possible, in general, for
a;’j to vary less than b} ; varies (i.e. from pixel to pixel, column to column or not at
all). Similarly, as offsets ay; depend on a1, a; and az; and offsets az; depend on as;
and ag;, because of (6.26), (6.46) and the zero in (6.47), it is not possible, in general,
for a’l’j to vary less than agj varies due to an underlying variation of a1, azj, as; or a
combination thereof.

Table 6.1 gives the three feasible constrained models that arise when there is no
columnwise variation and Table 6.2 gives the six feasible constrained models that arise
when there is columnwise variation.  The tables also give the number of implicit
parameters () in each constrained model, accounting for degeneracies. Model 2 in
Table 6.1 and Model 6 in Table 6.2 consider cases where a does not vary from pixel
to pixel. Because of the degeneracy that the average of this offset equals zero, there
is no need to estimate the parameter and the resulting models do not depend on .
Similarly, Model 3 in Table 6.1 considers the case where a{ and a} do not vary, in
which case both offsets are zero. Models 1-3 of Table 6.1 and Models 4-6 of Table 6.2
consider cases where b} does not vary, in which case the gain equals one because of a
degeneracy. All these models may be calibrated with the raster method.

While there are ten possible models for the temperature proxy method, three of
them are the principal ones—the unconstrained model in (6.45) and the first models of
Tables 6.1 and 6.2. The first model in each table is the least constrained of the lot. If it
is incompatible with the data, determined by comparing the residual error of calibration
between constrained and unconstrained versions as in Chapter 3, then all other models
in the same table will also be incompatible. If it is compatible then the other models
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Table 6.2: Estimated response gn;;, j, Of the (j1, j»)*® logarithmic pixel, in terms of the
average dark and light responses 7,0 and g; of all pixels, to temperature T}, and illu-
minance x; for the six feasible constrained models of FPN with columnwise variation.
The number of implicit parameters () is given for each model.

Mod. | Fnijy jo 0

lhia:l:jljz + lia’gjllljzzzho + ljl bileZZhi LM +2N + N> -3
1hia1j1j2 + Lij, A3, Yho + 1; bleyhi LM+ N +2N,—3
Lnij, atj, + Lij ab;, Gno + 15,005, Gni | LM + 3N — 3
Lhialj, j, + Lijy @55, 9n0 + 14, jo Uni LM+ N + Ny —2
1hij1alllj2 + Lij, a/,21j2 Pno + 1,5, Tni LM + 2Ny —2
Lnijials, + 1j1jaGni LM+ Ny —1

OOl WDN PO

require testing to determine if there is a more specific model that is still compatible.

Lastly, note that Models 2 and 3 of Table 6.1 and Model 6 of Table 6.2 do not have
more than one offset or gain term, because the models do not include the average dark
response gpo. Although estimates would be more robust against noise if calibrated over
multiple temperatures and illuminances simulataneously, the models may be calibrated
with data taken at only one temperature for multiple illuminances. Furthermore, the
dark response need not be imaged. Unlike with the offset cancellation method, where
a similar situation exists, the simplification discussed here relies on specific constraints
on the offsets and gain to hold. As Models 2 and 3 of Table 6.1 may be calibrated at
one temperature with no consideration of the dark response, they are analogous to the
single and nil variation models of Chapter 4. The only difference is the insight in this
chapter that the models are valid over multiple temperatures when specific constraints
hold on the physical parameters of Section 6.2.

6.4 Simulations

The circuit in Figure 4.1 of Chapter 4 was simulated using Spectre in Cadence for a
0.35um 3.3V AMS process, described in Chapter 1. All transistors were set to a gate
width of 1pm, which is the minimum width of the drain and source diffusions due to
contact design rules [45]. The gate length of all transistors was set to 0.6m, which
was the minimum length recommended by AMS for transistors in analogue circuits
sensitive to threshold voltage variation [45]. Ignoring optical effects, the pixel stimulus
2 was represented by an ideal current source, in parallel with the reverse biased diode in
the pixel. The ADC was not simulated and, therefore, what was the ADC input voltage
was taken as the pixel response y. These introduce minor changes to the physical
meaning of parameters in (6.13)-(6.17) but not to the abstract model of Section 6.2 or
to the calibration methods of Section 6.3.

To collect the data used for calibration, a simultaneous DC, parametric and Monte
Carlo analysis was performed. The DC analysis varied the photocurrent in half-decade
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Table 6.3: The residual error 6. and parameter uncertainty &,3,1 for calibration of the off-

set cancellation model to simulated offset-free responses y;,; .. Models 1 and 2 consider
unconstrained and constrained cases. Model 3 considers an unconstrained calibration
at one temperature and Model 4 reports the residual error with extrapolation.

Mod. | yp;; (Oryz;;) | 0c &5,1
1 bllj_q;n 42 | .25
2 ]‘jyhi .70
3 lz’ljgjéi .36 | .76

=l
4 b1 Uhs 49
In [ mV mV | ¥

steps from 1pA to 1uA. The parametric analysis varied the temperature from 0°C to
60°C in 5°C steps. The Monte Carlo analysis repeated the simulation 100 times, each
time with different device parameters for each transistor (except the common transistor)
according to statistical distributions specified by AMS that simulate device mismatch
[44]. The results represent the variation in responses over photocurrentand temperature
between 100 randomly selected pixels of a potentially larger image sensor. The fact that
some pixels may belong to the same column and have physical parameters in common
with each other but not with other pixels was not simulated as it was difficult to model
this type of variation in Cadence. Furthermore, transient effects were not simulated so
all results model the steady state response.

The simulated responses may be denoted y;,;;, where h indexes the temperatures
Ty, with 1 < h < 13, i indexes the photocurrents z; with 1 < ¢ < 13 and j indexes
the pixels with 1 < j < 100. By setting the photocurrent to zero and carrying out
the parametric and Monte Carlo analysis as before, the dark responses of the pixels,
denoted y50;, was also simulated over temperature and over the same random selection
of device parameters that simulated mismatch.

6.4.1 Offset cancedllation

Simulated responses were calibrated using the offset cancellation method of Section 6.3.1.
Models 1 and 2 of Table 6.3 give the residual error and parameter uncertainty with this
method for cases where the gain may vary from pixel to pixel and where the gain may
not vary (estimated parameters may differ from pixel to pixel for the raster problem but
uncertainties are the same for each parameter, as shown in Chapter 3). For Model 2,
there is neither a gain parameter to estimate nor a parameter uncertainty as the gain pre-
cisely equals one. Comparison of the residual errors shows that constraining the gain
leads to a worse calibration. As offset-free responses y;”j change on average, over all
temperatures and pixels, by 40mV per decade of photocurrent change, a residual error
of 0.42mV corresponds to a 2.5% contrast sensitivity.

Figure 6.1 plots the residual error versus temperature and photocurrent of the offset
cancellation method with unconstrained gain. The error appears to be independent of
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Figure 6.1: The residual error 6.,, versus temperature T,, and photocurrent z; for
calibration of the unconstrained offset cancellation model to simulated responses.

temperature and photocurrent over sixty degrees and six decades respectively. Note
that the simulation does not include temporal and quantisation noise so these results
show how closely the simple model of Section 6.2 matches the complex model of the
simulator, in the absence of bias variation.

Section 6.3.1 states that the offset cancellation method may be calibrated at a single
temperature because the gain parameters for temperature and illuminance changes are
the same as for illuminance changes alone. Model 3 of Table 6.3 gives the residual
error and parameter uncertainty when offset-free responses at 30°C, denoted yz,;, are
calibrated. The residual error is slightly less than for Model 1 while the parameter
uncertainty is greater, which suggests that the estimated responses overfit the actual
responses at the one temperature.

Using the estimated parameters of Model 3 in Table 6.3, the residual error between
actual and estimated responses over all temperatures, given in Model 4, is slightly
greater than for Model 1. A plot in Figure 6.2 of the residual error versus temperature
and photocurrent shows a small degree of overfitting. The error surface drops at 30°C
into a narrow valley whereas at other temperatures the error rises slowly with photocur-
rent. Nonetheless, the error surface remains relatively flat and random and the residual
error of 0.49mV corresponds to a 2.8% contrast sensitivity over all temperatures and
illuminances despite calibration at only one temperature.
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Figure 6.2: The residual error 6.,, versus temperature T}, and photocurrent z; for
calibration of the unconstrained offset cancellation model to simulated responses at
30°C with subsequent extrapolation to all temperatures.

6.4.2 Temperature proxy

The temperature proxy method of Section 6.3.2 requires the average dark response ¢ o
to be well modelled by a linear function of temperature 7', A more complete model
includes 7}, In T}, and 77 terms. Table 6.4 gives the residual error for calibrating g0
to complete, logarithmic, quadratic and linear models of 7. The logarithmic and
quadratic models equal the complete model without the T? or T} In T}, term respec-
tively. Comparing the residual errors shows that the complete model gives the best
result with the linear model having more than double the error. The quadratic model is
second best but hardly better than the logarithmic model. However, in the process of
calibration, MATLAB warned of an ill-conditioned matrix inversion with the complete
model so the quadratic model is the best well-conditioned result.

Table 6.5 gives the estimated parameters and their uncertainties for each model in
Table 6.4. The sign inversions for some parameters between the complete and loga-
rithmic models occur because parameters adjust to accommodate a loss of complexity.
The nature of parameter adjustment may be deduced with Taylor expansions of the
Ty In Ty, and T7 terms over the average temperature 7. A comparison of parameter
uncertainties shows that the complete model has high uncertainties for all parameters.
The logarithmic and quadratic models have 26% and 25% uncertainties for the T’ In T},
and 777 coefficients respectively (the logarithmic model also has a high uncertainty for
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Table 6.4: The residual error 6. when the simulated average dark response i is cali-
brated to complete, logarithmic, quadratic and linear models of temperature T',.

Mod. ghO 6-6
1 1pa1 + aoTh + &3TE In Ty + blT,g .050
2 1h€l1 + dzTh + CAlgTﬁ In TQ .093
3 | Lnas + aoTy + 0, T7 .091
4 1pa1 + a1}, 14
In A% mV

Table 6.5: The parameter values a; and b, and uncertainties G4, and &61 when the
simulated average dark response i is calibrated to the models of Table 6.4.

Mod. | a; = (5’@1 as 6’@2 as 6'[13 b1 £ 6’5]
1 31+74 | —42+£21 | 7.7+£20 —-13+19
2 19+.79 | 2.7+£13 | —.20+26
3 20+.38 | 15+32 —-.33+25
4 20+.032 | 1.3+£.16
In | V% V% |2y | +%

its T}, coefficient). The linear model is the only one where all parameter estimates are
reliable. Compared to the quadratic model, the linear model has order of magnitude
lower uncertainties for corresponding parameters despite having only one less degree
of freedom. Although the quadratic model has 35% less residual error, linearisation
proves to be a robust assumption over a 0-60°C temperature range.

Figure 6.3 plots the residual error as a function of temperature for the quadratic and
linear models of the average dark response, which shows that the primary advantage of
the quadratic model is at high temperatures. Section 6.3.2 noted that the quadratic term
arises from the exponential dependence of the photodiode leakage current on tempera-
ture. According to the figure, this dependence becomes significant at about 60°C.

Given that linearisation of the T} In T}, and 77 terms is reasonable, Table 6.6 goes
on to examine the temperature proxy method where light responses y,;; are calibrated
in terms of the average dark and light responses 4,0 and y;. Model 1 of the table gives
the residual error and parameter uncertainties for the unconstrained case. Model 2
gives the same for the case where the gain b} is constrained so that it may not vary from
pixel to pixel, in which case it equals one according to Section 6.3.2. A comparison
of residual errors between Models 1 and 2 shows that the latter overconstrains the
calibration. There is no need to test constraints on the other parameters as they may
not vary less than the gain varies, according to Section 6.3.2, and Table 6.6 shows
that constraining the gain is incorrect. Nonetheless, other possibilities were tested but
none of them improve on or compare to Model 1. As actual responses y;; change on
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Figure 6.3: The residual error 6., versus temperature T}, for calibration of the simu-
lated average dark response ;o to quadratic and linear models of temperature.

average, over all temperatures and pixels, by 40mV per decade of photocurrent change,
a residual error of 0.29mV corresponds to a 1.7% contrast sensitivity.

Figure 6.4 plots the residual error as a function of temperature and illuminance
for the unconstrained temperature proxy method. The error appears to be indepen-
dent of both variables and to vary randomly, as in Figure 6.1. Comparing the offset
cancellation method to the temperature proxy method, a natural question arises as to
why the residual error of Model 1 in Table 6.3 proves to be 1.4 times greater than
the residual error of Model 1 in Table 6.6, especially since offset cancellation requires
no linearisation of T In T}, and 777 terms whereas temperature proxy does. The nat-
ural answer is that the former method calibrates the difference of two equally noisy
measurements—the light and dark responses—whereas the latter method calibrates
only one noisy measurement—the light response. The noise in the average dark re-
sponse, which contributes some error to the temperature proxy method, is small due to
averaging. Assuming the stochastic errors in the light and dark responses of each pixel
are statistically independent then the stochastic error in the difference should be /2
or 1.4 times greater. This explanation accounts for the discrepancy of residual errors
between the offset cancellation and temperature proxy methods.

According to Section 6.3.2, constraining the offset aZ in the temperature proxy
method, which is the coefficient of the average dark response g0, SO that it may not
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Table 6.6: The residual error 6. and parameter uncertainties 6 Gar and ¢ O, for calibration
of the temperature proxy model to simulated responses y ;. Models 1 and 2 consider
unconstrained and constrained cases. Model 3 considers a constrained calibration at
one temperature and Model 4 reports the residual error with extrapolation.

Mod. | yni; (OF y7i;) Oc | Oay | Gay | Oy
1 ].hidlllj + 1i&,21jgh0 + blljghi .29 2.2 .93 .29
2 1hid’1’7 + Lidy;Jro + 1;gni | 44 |32 | 14

3 | Liaf; + ;g 29 | 24 11
4 lh,ah + blyyhl .49
In |V mV [mV | 2¥ | ¥

vary from pixel to pixel means that a}; equals zero and responses do not depend on 7.
When this constraint is valid then the temperature proxy method may be calibrated
with responses measured at only one temperature. This constraint is not valid because,
according to Section 6.3.2, offset parameters may not vary less than the gain parameter
and Table 6.6 showed that constraining the gain is incorrect. However, for the sake of
illustration, Model 3 of the table considers the case where the offset a} is constrained
to be constant, in which case it equals zero, but the gain b} is unconstrained. Table 6.6
gives the residual error and parameter uncertainties when this model is calibrated with
light responses at 30°C only, denoted y7;;. The residual errors of Models 1 and 3 are
comparable although parameter uncertainties are greater with the latter, particularly
for the gain. Residual errors are comparable because parameters in Model 3 easily
accommodate for the loss of complexity when there is only one temperature to consider.
Indeed, Model 3 is similar to the double variation model of Chapter 4, in which the
single offset parameter included temperature terms.

When parameters estimated at one temperature for Model 3 of Table 6.6 are used
to estimate the responses for all temperatures, the residual error between the actual and
estimated responses, given in Model 4, is much higher than before. Thus, the best linear
model at one temperature does not extrapolate over multiple temperatures. Figure 6.5
plots the residual error for this model as a function of temperature and photocurrent,
showing that the error is strongly dependent on temperature, with a minimum at the
temperature of calibration, but independent of photocurrent. Nonetheless, there is no
difference overall between the offset cancellation and temperature proxy method for
the given ranges of temperature and photocurrent, as seen in the residual errors of
Model 4 in Tables 6.3 and 6.6. Both methods lead to a 2.8% contrast sensitivity, when
extrapolated from a calibration at one temperature. Although Figure 6.2 suggests better
extrapolation than does Figure 6.5, the noise floor is higher for offset cancellation.
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Figure 6.4: The residual error 6.,, versus temperature T}, and photocurrent z; for
calibration of the unconstrained temperature proxy model to simulated responses.

6.5 Experiments

To test the proposed calibration techniques on experimental data, images were acquired
with a Fuga 15RGB logarithmic sensor. Although the sensor is a colour imager, the
results were treated as if they come from a monochromatic camera, as in Chapter 4
(Chapter 7 considers the modelling and calibration of colour logarithmic image sen-
sors). The Fuga 15RGB sensor has a 512 x 512 array of pixels (i.e. N = 5122). The
camera was placed in an oven together with a 2850lm compact fluorescent lamp. Cal-
ibration data were collected by imaging a uniformly illuminated sheet of white paper
also in the oven. Unfortunately, an oven can only heat the camera and the maximum
temperature was limited by the plastic camera housing. The temperature could only be
varied from 20°C (room temperature) to 50°C.

As the oven’s own heating element produced heat too quickly, so that the exterior
of the camera would heat up faster than the interior, and as the thermostatic control was
unstable at low temperatures, the oven’s heating unit was not used. Instead, the insu-
lated interior of the oven was allowed to warm up slowly, at a rate equivalent on average
to 3°C per hour, using the 44.5W of power dissipated by the fluorescent lamp. This
rate gave plenty of time at each temperature for adjusting the lens aperture to simulate
intensity variation of the illuminant. The illuminance of the white paper was measured
with a light meter to be 45001ux, which did not vary with temperature. The aperture
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Figure 6.5: The residual error 6., versus temperature 7, and photocurrent z; for
calibration of a constrained temperature proxy model to simulated responses at 30°C
with subsequent extrapolation to all temperatures.

setting was varied from 1.8 to 16 f-stops to simulate seven different illuminances at
each temperature. The aperture was also closed and an image was taken of the dark
response at each temperature. These images were taken for every 5°C change in the
temperature, measured using the oven’s digital thermometer. The oven had an internal
fan that circulated air to minimise any spatial variation of the interior temperature.
The fluorescent lamp was used to provide ample light without producing too much
heat, which would make the oven temperature rise too quickly. However, the light
intensity cast by the lamp oscillated at a high frequency, which was recorded by the
camera although invisible to the eye. The oscillation manifested as narrow horizontal
bands that moved slowly across consecutive images (most likely because the oscillation
rate of the lamp and the vertical scan rate of the camera, or their harmonic frequencies,
were close). This beating effect, which is a source of error, is reduced by the multifram-
ing process used with the Fuga 15RGB, as described in Chapter 1, because the bands
fall in different positions in each frame. The number of captured frames per data frame
was nearly doubled, equalling 11, to reduce the beating. The residual error of the mul-
tiframing process over the entire range of temperature and illuminance was 3.6LSB.
Analysis of the residuals showed that the error correlated with the logarithm of illumi-
nance since the band amplitude grew and shrank with aperture variation. Nonetheless,
these residuals measure the deviation of captured frames from data frames whereas the
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Table 6.7: The residual error 6. and parameter uncertainty &,3,1 for calibration of the
offset cancellation model to experimental offset-free responses yj,; ... Models 1-
3 consider unconstrained and constrained cases. Model 4 considers an unconstrained
calibration at one temperature and Model 5 reports the residual error with extrapolation.

Mod. y;”'jljz (OI’ yilijl]é) Oc 6-13’1
1 blllejgg;n 4.2 6.5
2 1; blljg g;” 12 .85
3 15, b} g;n 15 .050
4 lzlljljzgili 4.0 17
5 | Vinbhi 4.2
In LSB LSB %

error in the latter is about /11 times less due to averaging.

As described in Chapter 5, the Fuga 15RGB exhibits a columnwise pattern in its
response due to transient effects. Whereas the simulation in Section 6.4 did not con-
sider such effects, it is impossible to avoid them in the experiment. While transient
effects may be calibrated to some degree with linear models, they are fundamentally
nonlinear especially with certain readout circuits and conditions. In particular, the Fuga
15RGB exhibits a very nonlinear transient response when stimulated with bright illu-
minances, as in this experiment (and in Chapter 5). Fortunately, these effects may be
reduced substantially by discarding the first 100 columns of each image, as was done.
With these considerations, the pixels are indexed here not by a single variable j, where
1 < j < 5122, but by two variables j; and j», where 1 < j; < 512and 1 < j, < 412,
to designate the row and column coordinates respectively so that parameters may be
constrained to vary from pixel to pixel, from column to column or not at all. The pixel
responses at the seven temperatures 77, where 1 < h < 7, and seven illuminances z;,
where 1 < ¢ < 7, are denoted yp;j, j,. Similarly, the dark responses of the pixels at
temperatures T}, are denoted y0;, 5, -

6.5.1 Offset cancdlation

Table 6.7 reports the residual errors and parameter uncertainties when the experimental
data is calibrated for several versions of the offset cancellation method, described in
Section 6.3.1. Models 1-3 consider cases where the gain b7 may vary from pixel to
pixel, from column to column or not at all. A comparison of the residual errors shows
that constraining the gain in any way leads to much worse results, indicating there is
substantial parameter variation within and across columns. As offset-free responses
y;”.jlj2 change on average, over all temperatures and pixels, by 43LSB per decade of
illuminance change, a 4.2LSB residual error corresponds to a 25% contrast sensitivity.
This is much worse than the 1-10% contrast sensitivity of the human eye [30].

Figure 6.6 plots the residual error as a function of temperature and illuminance for
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Figure 6.6: The residual error 6, , versus temperature 7}, and illuminance z; for cali-
bration of the unconstrained offset cancellation model to experimental responses.

the unconstrained offset cancellation method, i.e. Model 1 of Table 6.7. Unlike the
simulation result in Figure 6.1, the error is strongly dependent on illuminance, with a
minimum at the mid-range, and weakly dependent on temperature. The reason for the
failure of the offset cancellation method with the experiment is that the Fuga 15RGB
exhibits bias variation, as shown in Chapter 4, unlike the simulated circuit. While
cancellation of offsets would occur, a subtraction of dark from light responses would
contain bias (in addition to gain) variation. Bias variation must be reduced with better
process technology and circuit design for offset cancellation to be practical.

Models 4 and 5 of Table 6.7 consider the case when the offset cancellation method
is calibrated at one temperature and then tested over all temperatures. Model 4 gives the
residual error and parameter uncertainty when offset-free responses at 35°C, denoted
Yiij,j,» are calibrated. Model 5 gives the residual error between actual and estimated
offset-free responses at all temperatures, using the parameters estimated at the one
temperature. Comparing the residual errors of Models 4 and 5 of Table 6.7 to Model 1
shows little improvement for a calibration at one temperature (which involves less data)
and no worsening for an extrapolation to all temperatures. Comparing Figure 6.6 t0 6.7,
which plots the residual error of the extrapolated model versus temperature and illumi-
nance, shows that extrapolation causes no degradation. Thus, temperature dependence
does not limit offset cancellation although bias variation does.
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Figure 6.7: The residual error ., , versus temperature T}, and illuminance z; for cal-
ibration of the unconstrained offset cancellation model to experimental responses at
35°C with subsequent extrapolation to all temperatures.

6.5.2 Temperature proxy

The temperature proxy method of Section 6.3.2 requires the average dark response ¢ o
to be well approximated by a linear function of temperature 7',. As in Section 6.4.2,
Table 6.8 considers a calibration of the average dark response to complete, logarithmic,
quadratic and linear functions of temperature in Models 1-4 respectively. The residual
error of the complete model is about half that of the logarithmic and quadratic mod-
els, which have equal results. The residual error of the linear model is about six times
that of the complete model and three times that of the other two models. However,
MATLAB warned of ill-conditioned matrix inversions in the process of calibrating the
complete and quadratic models so the best well-conditioned result is that of the log-
arithmic model. Ill-conditioned matrix inversions occur when some parameters in a
model are nearly redundant with respect to the calibration data.

Table 6.9 gives the estimated parameters and their uncertainties for each model in
Table 6.8. The parameter uncertainties corroborate the MATLAB warnings, seeing as
the four parameters of the complete model have 26-27% uncertainties and the three
parameters of the quadratic model have 15-65% uncertainties. The well-conditioned
logarithmic model is not much better as its three parameters have 15-24% uncertain-
ties. With uncertainties of 1.7 and 2.8%, the linear model is the only one with reliable
parameters. Having only one less degree of freedom, its parameter uncertainties are an
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Table 6.8: The residual error 6. when the experimental average dark response g is
calibrated to complete, logarithmic, quadratic and linear models of temperature T7,.

Mod. ghO 6-6
1 1hd1 + dQTh + (AJ,3TE111 TE + blT,g .054
2 1h€l1 + dzTh + (AlgTan TQ A1
3 | Lnas + aoTy + 0y T 11
4 1paq + a2Tp, .34
In LSB LSB

Table 6.9: The parameter values a; and b, and uncertainties G4, and &61 when the
experimental average dark response 4 is calibrated to the models of Table 6.8.

Mod. | a1 ﬂ:&&l d2i&a2 as :ta'a3 b1 i&;h
1 —10,000£26 | 370 £ 26 —64 +26 | 100 £+ 27
2 —370 £ 24 13+ 16 -2+15
3 —72+65 1.5+ 20 —-3.2+15
4 230 £ 1.7 —46+2.8
In |[LSB+% BBrg [IBBiqg 2B 1Y%

order of magnitude better than corresponding ones of the logarithmic model. There-
fore, linearisation proves to be a reasonable, even compelling, assumption.

Because the simulation and experiment involve different technologies (i.e. 0.35um
3.3V and 0.7um 5V respectively), design choices (e.g. device sizes) and other factors
(e.g. optical and ADC effects), parameters in Tables 6.5 and 6.9 may not be readily
compared. One exception is the sign of the estimated temperature coefficient a» for
the linear model, which is positive in simulation but negative in experiment. Higher
photocurrents lead to lower voltages in the simulation, due to the inverting load in
Figure 4.1 of Chapter 4, whereas higher illuminances lead to higher integers in the
experiment, which means the ADC gain of the Fuga 15RGB is negative.

Figure 6.8 plots the residual error versus temperature for the logarithmic and linear
models in Table 6.8 of the average dark response in terms of temperature. The errors of
the logarithmic and linear models do not exceed 0.17 and 0.54LSB respectively in this
range. Compared to the simulation result in Figure 6.3, there is no marked rise in error
for the linear model, which suggests that the exponential dependence of photodiode
leakage current on temperature was not dominant in this temperature range. The same
reason may explain why the logarithmic model performed better than the quadratic
model with the experiment whereas the converse was true with the simulation.

To examine the temperature proxy method further, Table 6.10 reports the resid-
ual errors and parameter uncertainties for calibrations of the light responses y;, j, in
terms of the average dark and light responses 459 and g5;. Models 1-3 consider the
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Figure 6.8: The residual error 6., versus temperature 7}, for calibration of the experi-
mental average dark response g0 to logarithmic and linear models of temperature.

cases where the gain is permitted to vary from pixel to pixel, column to column or not
at all. Examination of the residual errors shows that constraining the gain is incorrect.
There is no need to consider cases where offsets a{ and/or a4 are constrained because
these parameters may not vary less than the gain, as argued in Section 6.3.2. Nonethe-
less, other cases were tested but none improved on or compared to the unconstrained
case. As light responses yxj, j, changed on average, over all temperatures and pixels,
by 43LSB per decade of illuminance change, a residual error of 2.0LSB corresponds
to a 12% contrast sensitivity, much better than with offset cancellation.

Figure 6.9 plots the residual error of the unconstrained temperature proxy method,
i.e. Model 1 of Table 6.10, versus temperature and illuminance. The error is clearly
dependent on illuminance, approximately having a w-shape for any given temperature,
and weakly dependent on temperature. This w-shape echoes the shape of the residual
error versus illuminance for the double variation model in Chapter 4. Chapter 4 showed
that the w-shape arises when responses containing offset, gain and bias variation are
calibrated to a model permitting only offset and gain variation. Thus, differences be-
tween the simulation result in Figure 6.4 and the experimental result in Figure 6.9 are
attributed to the bias variation present in the Fuga 15RGB, as shown in Chapter 4. An-
other source of deviation is the beating effect of the illumination in the experiment,
which causes a tilted w-shape so that the residual error tends to increase with illumi-
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Table 6.10: The residual error 6. and parameter uncertainties Gar and &5,1 for calibra-
tion of the temperature proxy model to experimental responses y;;, j,. Models 1-3
consider unconstrained and constrained cases. Model 4 considers a constrained cali-
bration at one temperature and Model 5 reports the residual error with extrapolation.

Mod. | Ynijyj. (OF Yaijyjn) Oe oay | Oay T
1 Lhiayj, j, + i@y 5, Tno + b1, 5,00 | 20 | 5.7 | 79 11
2 | Lpid),;, + Lialy; 5, G0 + 15,005,090 | 24 |62 |73 | 59
3 | 1waf} ;, +Liay; n0 + 1y jyne | 26 | 68 | 80
4 | 1d; , + 00 0 20 |53 31
5 | Lnid 5, + 005 5 0ni 2.4
In | LSB LSB | LSB | mi28 [ mioB

nance in Figure 6.9. A third source of deviation between the simulation and experiment
is the nonlinear variation of responses due to the transient response of the Fuga 15RGB,
as shown in Chapter 5. Although this has been reduced because the first 100 columns
of all images have been discarded, it cannot be eliminated. Following Chapter 5, it is
possible to show that the error peak in Figure 6.9 correlates with nonlinearities due to
the transient response. In summary, the temperature proxy method accounts for tem-
perature dependence of responses but is limited mainly by bias variation in accounting
for illuminance dependence.

A few observations may be made comparing the offset cancellation and temperature
proxy methods in terms of the experiment. The residual error with the former method,
in Model 1 of Table 6.7, is 2.1 times greater than with the latter method, in Model 1
of Table 6.10. Such a difference may partially be explained, as in Section 6.4.2 for
the simulation, by noting that offset cancellation calibrates the difference of two noisy
measurements whereas temperature proxy calibrates only one noisy measurement. This
explanation accounts for about v/2 or 1.4 of the error ratio. The remaining discrepancy
may be understood in terms of bias variation. Dark and light responses both include
bias variation so a difference of the two, as taken with offset cancellation, would ex-
aggerate the nonlinear variation. Furthermore, although the offset cancellation and
temperature proxy models do not explicitly consider bias variation, estimated parame-
ters will implicitly accommodate some of the effect. As the latter model involves three
times as many parameters per pixel, an accommodation is easier. This observation is
supported by the fact that a constraining of the gain in Table 6.7, for the offset cancel-
lation method, causes a much greater increase in residual error than a constraining of
the gain in Table 6.10, for the temperature proxy method.

Models 4 and 5 in Table 6.10 consider the case, discussed in Section 6.3.2, when
the temperature proxy method is calibrated at one temperature and extrapolated to mul-
tiple temperatures. This approach is logical only when the offset o] does not vary from
pixel to pixel, in which case it equals zero and responses do not depend on the average
dark response, which in turn is logical only when the gain b} does not vary from pixel
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Figure 6.9: The residual error 6, , versus temperature 7}, and illuminance z; for cali-
bration of the unconstrained temperature proxy model to experimental responses.

to pixel. As shown in Models 1 and 3 of Table 6.10, constraining the gain is incor-
rect. Nonetheless, Model 4 considers the case where a} equals zero but b may vary
from pixel to pixel. Because this model corresponds to the double variation model of
Chapter 4, offsets ! will accommodate the loss of af at any one temperature. Indeed,
Table 6.10 reports that the residual error and parameter uncertainties for a calibration
of light responses at 35°C, denoted y4;;, j,, to Model 4 compares to those results of
Model 1. When parameters estimated for Model 4 at one temperature are used to esti-
mate responses at all temperatures, the residual error increases, as given in Model 5.

Figure 6.10 plots the residual error of the temperature proxy method with extrapo-
lation, i.e. Model 5 of Table 6.10, versus temperature and illuminance. Apart from the
features in Figure 6.9 that are repeated, Figure 6.10 shows a dependence of residual
error on temperature, with a minimum at the temperature of calibration. As the tem-
perature range studied in the experiment is half as much as the range in the simulation,
Figure 6.10 does not show the temperature dependence as strongly as does Figure 6.5.
The overall residual error of 2.4LSB translates to a 14% contrast sensitivity, which is
not much worse than for the temperature proxy method without extrapolation (and the
constrainton af). However, the difference would be greater with a wider range because
the error in Figure 6.9 is expected to remain independent of temperature whereas the
error in Figure 6.10 is expected to exhibit more temperature dependence.
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Figure 6.10: The residual error 6, , versus temperature T}, and illuminance z; for cal-
ibration of a constrained temperature proxy model to experimental responses at 35°C
with subsequent extrapolation to all temperatures.

6.6 Conclusion

The response of a logarithmic pixel depends on temperature, as well as illuminance,
because the threshold voltages, current gains, subthreshold slope, crossover current and
leakage current of the circuit depend on temperature. Following semiconductor theory,
a model of pixel response y to temperature 7" and illuminance z isy = a1 + a>T +
asTInT 4+ b, T In(cie’/Ta 4 1) + €. A spatial variation of offsets a;, (except a;), gain
by, bias ¢; or any combination thereof causes temperature-dependent FPN. However,
Ta is a process constant and e represents unpredictable error.

This chapter ignored bias variation, which allowed nonlinear optimisation to be
avoided. Using the light and dark responses of pixels, i.e. when 2 > 0 and z ~ 0,
models of FPN may be devised that do not require measurement of either temperature
or illuminance for calibration. In the offset cancellation method, the difference between
the light and dark responses of a pixel is calibrated to the average such difference of
all pixels for a uniform scene. In the temperature proxy method, which assumes the
average dark response is a linear function of temperature, pixel responses are calibrated
as linear functions of the average dark and light response of all pixels to a uniform
scene. The raster method is used to calibrate unconstrained and constrained models.

Dark and light responses of logarithmic pixels were simulated for an AMS process
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from 0°C to 60°C over six decades of photocurrent. The unconstrained offset cancel-
lation model was calibrated with a residual error of .42mV, which corresponds to a
2.5% contrast sensitivity. As the average dark response was a linear model of temper-
ature with a residual error of .14mV, the unconstrained temperature proxy model was
calibrated with a residual error of .29mV or a 1.7% contrast sensitivity. With either
method, the residual error was independent of temperature and illuminance but con-
straining of parameters leads to worse results. While the offset cancellation method is
simpler, the temperature proxy method works better because it calibrates a single noisy
response rather than the difference of two noisy responses.

Experiments were done with a Fuga 15RGB camera, using an insulated oven, a
compact fluorescent lamp and aperture settings to create a controlled temperature vari-
ation from 20°C to 50°C and to simulate two decades of illuminance variation. The
unconstrained offset cancellation model was calibrated with a residual error of 4.2LSB
or a 25% contrast sensitivity. As the average dark response was a linear model of tem-
perature with a residual error of .34LSB, the unconstrained temperature proxy model
was calibrated with a residual error of 2.0LSB or a 12% contrast sensitivity. With ei-
ther method, the residual error was independent of temperature but not illuminance and
constraining of parameters leads to worse results. The simulation results were better
than the experimental ones mainly because the former did not include bias variation
unlike the latter. Offset cancellation suffers more than the temperature proxy method
because it has fewer parameters to accommodate bias variation.

A calibration of the offset cancellation and temperature proxy models at one tem-
perature with extrapolation to multiple temperatures was also considered. The residual
error with such an approach was independent of temperature only for the offset can-
cellation method because the same parameters applied equally to temperature and/or
illuminance changes. While the simulation results were acceptable, the experimental
results suffered from bias variation. Extrapolation works with the temperature proxy
method only when specific constraints on the parameters are valid, which was neither
the case with simulation or experiment.



Chapter 7

Colour rendition

7.1 Introduction

One problem with logarithmic CMOS image sensors is fixed pattern noise (FPN), con-
sidered in Chapters 4-6. FPN is a substantial but predictable error that appears in an
image due to a steady state variation from pixel to pixel, or a transient variation from
column to column, of parameters that relate stimuli to responses. While FPN correc-
tion is necessary to make logarithmic sensors useful, the accurate rendition of scenes on
display devices by estimation of real world stimuli from pixel responses is also impor-
tant. Rendition is more important with colour images because the eye is more sensitive
to chromatic errors than to intensity errors [30]. Much has been published about colour
rendition in linear sensors but little has been written on rendition in colour logarithmic
sensors, the subject of this chapter.

Section 7.2 unites colour theory in linear sensors with monochromatic theory in
logarithmic sensors to model colour sensation in logarithmic sensors. Section 7.3 de-
scribes a procedure to calibrate this model and Section 7.4 outlines a method to render
the response of a calibrated sensor into a standard colour space. Section 7.5 demon-
strates calibration and rendition with a Fuga 15RGB logarithmic sensor, a colour ver-
sion of the Fuga 15d developed at IMEC [32], and compares colour rendition of the
sensor to that of conventional digital cameras. For simplicity, transient responses and
temperature dependences are not considered in this chapter.

7.2 Modedling

A colour image sensor is made by inserting colour filters in the path of light rays before
they form an image on a monochromatic sensor [12]. Corresponding to human colour
vision, three filters are needed, selective to the red (R), green (G) and blue (B) regions
of the spectrum. Multi-sensor imagers use prisms with special coatings to split and
filter an image into three images, which are captured by separate sensors and combined
to produce a single image. Single-sensor imagers have a pattern of red, green and
blue filters overlaid upon pixels. Though each pixel is selective to only one colour, its

133
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neighbours are selective to the other two. By interpolating pixel responses, a red, green
and blue response may be estimated for each pixel at a small loss of spatial resolution.
As multi-sensor imagers obey a similar theory, the rest of this chapter discusses only
single-sensor imagers.

A colour filter on a pixel modifies the spectral composition of incident light prior
to absorption by the photodiode in the pixel. The photodiode absorbs the filtered light
to varying degrees as a function of wavelength A. Even attenuation in the lens of the
camera is wavelength dependent. Equation (7.1) combines the spectral attenuations of
the lens gz, (A), colour filter g, (A), with £ € {R, G, B}, and photodiode g () into one
function fi () [12]. Equation (7.2) uses fx () to model the photocurrent I, induced
in a red, green or blue pixel by a spectral irradiance s(\) [7].

k() = 92N gr(MN)gp(A) (7.1)
I = /0 Fr)s(A)dA (7.2)

A colour image sensor need not estimate s(\) at each pixel to recreate the sensa-
tion of colour implied by s(\) on a display device (i.e. a monitor or printer) [12]. In
response to a spectral irradiance s(\), human perception of colour may be ascribed to
three numbers X, Y and Z [59]. These numbers are inner products, over the visible
spectrum, of s(A) and three basis functions Z(A), z(A) and 2(\), which were standard-
ised by the Commission Internationale de I’Eclairage (CIE) in 1931. Normally, fr(A),
fa(X\) and fg(A) in (7.1) are designed to approximate linear combinations of Z(\),
g(\) and Z(\) [12]. Therefore, Ig, I; and I in (7.2) may be modelled by linear func-
tions of X, Y and Z, as in (7.3), where x is a vector of X, Y and Z values and dy, is
a vector array of coefficients, called a mask, that relates the photocurrent I, linearly to
x, where k € {R, GG, B} as before.

Ik = dk ®X (73)

Because the circuits of a colour logarithmic sensor are identical to those of a
monochromatic logarithmic sensor, the same equations relate the sensor response to
the photocurrent in a pixel. By following the analysis of Chapter 4 for monochromatic
sensors, the digital response y of a colour logarithmic pixel to a photocurrent I, which
may be for a red, green or blue pixel as in (7.3), may be modelled by (7.4), where a,
b, c and e are called the offset, gain, biasand error respectively. The offset depends on
threshold voltages of the circuit, the gain depends on the subthreshold slope, the bias
depends on the photodiode leakage current and the error depends on random noise.

y=a+bln(c+1I)+e (7.4)

7.3 Calibration

The model in (7.4) gives the response of a logarithmic pixel to irradiance focused upon
it from a point in a scene. To recreate the scene on a standard display, an image must
be rendered from pixel responses. Rendering accuracy depends on calibration of the
parameters that relate the response of each pixel to real world stimuli. The calibration
divides into two parts, one dealing with FPN and the other with colour.
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Table 7.1: Estimated response §;; of the jt" logarithmic pixel to photocurrent 7;;,
where 4 indexes over multiple colour images, for the single, double and triple variation
models. The number of implicit parameters @ is given for FPN calibration.

Variation | ¢;; lij Q

Single Liaj + blij ln(ll-jc + I,'j) 3M+ N -3
Double La; + bjlij ln(ll-jc + I,'j) 3M +2N —6
Triple Liaj +bjlij | In(lic; + ;) | 3M + 3N —6

7.3.1 Varying parameters

FPN arises in a logarithmic image sensor, resulting in non-uniform images of uniform
surfaces, when a, b, ¢ or a combination thereof vary from pixel to pixel. This distortion
is predictable and largely correctable. Chapter 4 identifies three types of FPN of inter-
est. In single variation, only the offset varies with the pixel coordinate j in an array
of N pixels, where 1 < j < N. Double variation involves offset and gain variation
and triple variation involves offset, gain and bias variation. The design and operation
of a sensor may favour one of these types so all three are considered in this chapter.
Nil variation, where no parameter varies from pixel to pixel, is not considered here as
Chapter 4 shows it gives poor results for all levels of illumination.

To correct FPN, the varying parameters are estimated using images of uniform ir-
radiance, preferably white in colour, taken with A different intensities. Indexing these
images by i, where 1 < ¢ < M, the estimated response ¢;; of the sensor (as opposed
to the actual response y;;, which includes an unpredictable error component e;;), is
given in Table 7.1 for single, double and triple variation, where I;; is the photocurrent
induced for each irradiance at each pixel. Defining the sparse array w ;; to equal one
when pixel j is of colour k£ and zero otherwise, I;; is given in (7.5) where I;;, is the
photocurrent induced for each irradiance by each filter. Note that (7.5) implies an inner
product over k with colour values { R, G, B} analogous to index values {1, 2, 3}.

Lij = ujpli (7.5)

There is no need to derive calibrations for the models in Table 7.1 because, when
pixels are partitioned by colour, the calibration of FPN in a colour sensor becomes the
calibration of FPN in three monochromatic sensors. Following Chapter 4, parameters
for each model in Table 7.1 may be estimated by minimising three sum square errors
(SSEs) in (7.6) between the actual responses y;; and the estimated responses g;; for
colours k = R, G, B. These calibrations assume that I;;, in (7.5) is unknown.

SSEy, = Liujk(yij — §i5)° (7.6)

Parameters estimated by minimising the SSEs in (7.6) are not unique. Following
Chapter 4, the single and double variation models in Table 7.1 are invariant under
transformations (7.7)-(7.9). Similarly, the triple variation model is invariant under
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transformations (7.7) and (7.9) but (7.8) does not apply because of bias variation.

(a,b,¢,I) = (a — bln~y,b,ve,vyI) (7.7)
= (a,b/7,0,(c+1)7) (7.8)
= (a,b,c—v,I+7) (7.9)

In each colour partition, estimation of parameters for each model in Table 7.1 is
limited by (7.7)-(7.9). Only those parameters that vary from pixel to pixel are determi-
nate from images of uniform (but unknown) irradiance. For single variation, the means
of the offsets ay, one for each partition, the gain b and the bias ¢ are indeterminate but
the deviation of the offsets from the means, denoted a; in (7.10), is determinate.

Gj = aj — Ujply (7.10)

Similarly, for double variation, the means of the offsets a, the means of the gains
bx, and the bias c are indeterminate. The estimated offsets and gains, denoted @ and b;
in (7.11) and (7.12), are linear functions of the actual parameters, with coefficients that
depend on the partition.
(Alj N a; — bjUjkﬁ (711)
J L bk’
. b;

b &~ —= 7.12
N (712)

For triple variation, the means of the offsets @, and the minima of the biases ¢,
are indeterminate. The means of the gains b;, are determinate because transformation
(7.8) does not apply. The estimated offsets, gains and biases, denoted a, Bj and ¢;
in (7.13)-(7.15), are linear functions of the actual parameters, with coefficients that
depend on the partition in (7.13) and (7.15).

aj ~ aj — bjujp 2% (7.13)
EANEA bk

b ~ b; (7.14)

¢~ ujkea’“/z’“ (cl — uzkék) (7.15)

Equation (7.16) estimates the error variance 62 of FPN calibration. This measure,
the square root of which is called the residual error, equals the total SSE in (7.6) over
the degrees of freedom, which is the number of responses M N minus the number of
implicit parameters () estimated from those responses. Table 7.1 gives the number of
implicit parameters, counting estimates of I;x, a;, b; and ¢; but deducting indetermi-
nate means and minima, for single, double and triple variation.

5> 1;SSE}

o= NG (7.16)
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Table 7.2: Varying parameters a;, b; and ¢; of the single, double and triple variation

models in Table 7.1 are linear functions of estimated parameters @, b; and ¢; of FPN
calibration. However, constant parameters of the same models remain unknown.

Variation | a; b; ¢; Unknowns
Single CALj + ujpar ar, b, c,dy
Double &j + bjujkak jUjkbk ak,bk;ca d;
Triple a; + B;“;k%_:: b wjre™ /O ¢+ ujrly | ap, é, di

7.3.2 Constant parameters

Once the offset, gain and bias parameters that vary from pixel to pixel are estimated,
the mask parameters of Section 7.2 and indeterminate parameters of Section 7.3.1 need
estimation to render an image taken by a colour logarithmic sensor for a standard dis-
play. These parameters do not vary from pixel to pixel though they may depend on the
pixel colour. As with conventional linear sensors [12], colour calibration is done by
imaging a colour chart with patches of known colour and using these ideal values and
corresponding image data to estimate parameters of the colour model.

Consider a calibration using M images of a colour chart, indexed by i, taken with
different illuminant intensities to cover a wide dynamic range. For the single, double
and triple variation models, the estimated response g;; of each pixel in each image of
the colour chart is given in Table 7.1 with photocurrent I;; in (7.17) instead of (7.5),
where x;; is the ideal colour vector of the j** pixel at the 7*® illuminant intensity.

[,'j = ulkdk [ Xil (717)

Owing to the FPN calibration described in Section 7.3.1, varying parameters of
the models in Table 7.1, i.e. a;, b; and ¢; as appropriate, do not require estimation
as they are linear functions, given in Table 7.2, of previous estimates @;, b; and ¢;.
Nonetheless, several unknowns remain after FPN calibration of the single, double or
triple variation models, namely b, ¢, ay, by, & and d; as appropriate. Note that by, is
not considered unknown with triple variation because estimated gains b; correspond to
actual gains b; since transformation (7.8) did not apply for this model.

The unknowns listed in Table 7.2 are not all independent because a transformation
similar to (7.7) applies. Mean offsets a; may be eliminated, as in Table 7.3, for the
single, double and triple variation models by replacing c or ¢, and d;, with ¢}, and dj,,

where I}, ¢, and I;; are defined in (7.18), the table and (7.19) respectively.
Il; = In(Lic + I};) (7.18)
I?fj = U,l‘kd;C o X,‘l‘ (719)

As some pixels in an image of the colour chart may not belong to any colour patch
with known colours x;;, images are segmented to identify the pixels that correspond
to a colour patch. So that FPN does not corrupt segmentation, the images are first cor-
rected as in Chapter 4 for monochromatic sensors, using the results of FPN calibration.
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Table 7.3: A redundancy of unknowns in Table 7.2 is eliminated by replacing a, ¢ or
¢ and dy, with ¢, and dy, where /;; and I;; are in (7.18) and (7.19), for the single,
double and triple variation models. The number of implicit parameters ) is given.

Variation | §;; b; c; A d;, Q
Single ]-i&j + bl;J ujkc;c e /be elk de 13
Double | L;a; + b;lj; | bjukbr | ujrc) ete/bec | e/bedy | 15
Triple 1i&j + I;llij éj + ujkc;g ea—’/i)"—‘éﬁ eai/gﬁdﬁ 12

Unknowns b, by, ¢}, and d}, in Table 7.3 are estimated by minimising the SSE in (7.20)
between the actual and estimated responses y;; and ;; for segmented pixels, identified
by the sparse array v; that is one for pixels with known colours and zero otherwise.

SSE = ].i’l)j (yij — gij)2 (720)

Minimising the SSE in (7.20) for any model in Table 7.3 requires nonlinear opti-
misation as no analytic solution exists for all the unknowns. However, at the minimum
of the SSE, b and b,, for single and double variation are given by (7.21) and (7.22).

b (vj (yij — 1@';11')121') (7.21)
(Liv;li5)
(w0 (yis — Liiy)bl;)

(Lijgvb3157)

b =

(7.22)

Thus, only ¢}, and dj,, which represent 12 variables, require nonlinear optimisation.
A suitable optimisation algorithm is the conjugate gradients method [57]. Care must
be taken to ensure that guesses of ¢}, and dj,, during the optimisation process, keep
the argument of the logarithm in (7.18) positive. This is accomplished by making the
SSE in (7.20) return a large value otherwise (co in MATLAB) and ensuring that the line
minimisation used by the conjugate gradients method copes with such extremes.

Equation (7.23) estimates the error variance &2 of colour calibration. This measure,
the square root of which is called the residual error, equals the SSE in (7.20) divided
by the degrees of freedom, which is M times the number of segmented pixels, in any
image of the colour chart, minus the number of parameters @) estimated from the data,
as given in Table 7.3 for single, double and triple variation.

SSE
6 = ———— 7.23
© M) -@Q (729

7.4 Rendition

The purpose of a colour image sensor is to provide an image of a scene that is similar
to the real scene when displayed. Therefore, pixel responses must be rendered into a
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Table 7.4: Estimated response §; of the ;' logarithmic pixel to a colour stimulus x;,
where I} is in (7.24), for the single, double and triple variation models using estimates

a;, b; and ¢; from FPN calibration and estimates b or by, and ¢, from colour calibration.

Variation | §; l v ¢

Single a; + bl; In(é; + I}) | kG
Double | a; +bjl; | In(& +I}) | bjurbe | wjkés
Triple | a; +b;l; | In(&; +I}) &) + ujiy

Table 7.5: Estimated photocurrent fj of the j*" logarithmic pixel to a colour stimulus
x; for the single, double and triple variation models, which is derived by inverting the
models in Table 7.5 using the actual response y; of the ;I logarithmic pixel.

Variation | I; l; v ¢
Single exp(lj) — ¢ | (yj — dj)/{) ;i Cy,
Double | exp(l;) —¢; | (y; —a;)/ bjujrbr | ujrCy
Triple exp(l;) =& | ( )/

éj + Ujkék

well-defined colour space, such as CIE XYZ [59], that is understood by display de-
vices. Denoting the offset, gain and bias parameters estimated by FPN calibration in
Section 7.3.1 as a;, b; and ¢; and those estimated by colour calibration in Section 7.3.2

as b or by, and &, Table 7.4 gives the estimated response g; of a logarithmic pixel to an
arbitrary stimulus x; for single, double and triple variation, with 17 given in (7.24).

I} = ujrdj, e x; (7.24)

Rendering a response y; into CIE XY Z space involves estimating the corresponding
stimulus x;. First, I in (7.24) is estimated by minimising the SSE in (7.25) between
the actual response y; and estimated response y; of the sensor. Such a minimisation
amounts to inversion of the models in Table 7.4, giving estimates fj in Table 7.5.

SSE = 1;(y; — 9;)* (7.25)

Note that fj estimates (with an unknown gain) the monocolour photocurrent at
each pixel. To estimate red, green and blue photocurrents at each pixel, denoted fjk,
linear interpolation over a small neighbourhood suffices as the stimuli of a pixel and its
neighbours are highly correlated. Due to (7.24), I, depends linearly on the stimulus
x;. Inversion of this dependence in (7.26), using in matrix form the mask d, estimated
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by colour calibration, gives the desired estimate, denoted %, of the stimulus.

—1

d:u% d:2R 6?33 I:jR
Xj=|dic dya dsa lja (7.26)
dip dep dsp I;

Estimated images %; in CIE XYZ space may be easily rendered into other useful
colour spaces, such as CIE Lab or IEC sRGB [59, 60]. In terms of human vision,
Euclidean distances calculated in Lab space correlate with perceptual differences. For
computer hardware and software, however, the SRGB space of the International Elec-
trotechnical Commission (IEC) has been accepted internationally as a default standard.

Equation (7.27) estimates the error variance 6% between ideal and estimated Lab
vectors z;; and Z;;, rendered from x;; and %X;; respectively, for the segmented pixels in
the M images of the colour chart, described in Section 7.3.2. The square root of this
measure is called the perceptual error of colour calibration. Note that the denominators
in (7.23) and (7.27) are equal, representing the degrees of freedom in the estimation,
with @ given in Table 7.3 for the single, double and triple variation models.

M(1v5) - @Q (7.27)

5 =

7.5 Experiments

Experiments were done with a Fuga 15RGB logarithmic image sensor, which had a
512 x 512 pixel array (i.e. N = 5122). Rather than vary the intensity of the overhead
fluorescent illuminant, neutral density filters with nominal optical densities of 0.5, 1.0,
1.5 and 2.0 were used to simulate two decades of intensity variation. Effective illumi-
nances were measured with a light meter for each filter and for the case of no filter.

7.5.1 Calibration

A sheet of white paper provided a uniform scene for FPN calibration. Five images were
taken (i.e. M = 5) using the neutral density filters to span two decades of illuminance.
Following Section 7.3.1, spatially varying parameters of the single, double and triple
variation models were estimated. The residual error of FPN calibration, formulated in
(7.16), was 5.1, 2.2 and 0.6L.SB for these models respectively. Thus, triple variation
represents FPN well for the Fuga 15RGB. These results are similar to the corresponding
results in Chapter 4, where the Fuga 15RGB was treated as a monochromatic sensor.
In terms of FPN, treating a colour sensor as monochromatic did not compromise the
results of Chapters 4-6.

Next, five images were taken of a Macbeth chart, created by McCamy et al [61],
which had 24 painted patches covering a wide gamut of colours. Using the neutral den-
sity filters to span two decades of illuminance, the images covered a dynamic range of
3.5 decades as the patches spanned 1.5 decades of reflectance. Following Section 7.3.2,
spatially constant parameters of the single, double and triple variation models were es-
timated. On average, there were 3,839 segmented pixels in each of the 24 patches in
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Figure 7.1: The residual error &, versus incident illuminance z; for colour calibration
of the single, double and triple variation (theoretical and empirical) models.

each of the five images. The residual error of colour calibration, formulated in (7.23),
was 6.1, 3.9 and 9.4LSB for single, double and triple variation respectively, which
shows that triple variation performs poorly.

Figure 7.1 plots the residual error versus illuminance of colour calibration, with
points marked by circles. That triple variation performs much worse than single or
double variation is surprising considering the residual error of FPN calibration is much
better for triple variation. Investigation of the colour chart data reveals that, as with the
white paper data, triple variation models FPN better than single or double variation.
However, the dependence in (7.4) of the digital response y on the photocurrent I proves
unsuitable for estimating colour. A comparison of ideal colours with estimated colours
suggests a model, given in (7.28), using the function in (7.29).

y=a+bln(c+ f(I)) +¢ (7.28)
fI) = (a+1)° (7.29)

Assuming « and 3 in (7.29) are constant from pixel to pixel, replacing the theo-
retical model of (7.4) with the empirical model of (7.28) does not change the results
of FPN calibration. The unknowns I;; in Section 7.3.1 are replaced by the unknowns
f (i) with no change to offset, gain and bias estimates. However, colour calibration
in Section 7.3.2 must estimate « and 3 by including them in the conjugate gradients
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optimisation. As they modify the partial derivatives of the SSE in (7.20), these param-
eters affect the estimation of other parameters. Furthermore, the degrees of freedom in
(7.23) and (7.27) must account for estimation of « and S3.

Repeating colour calibration with the empirical model results in a residual error
equal to 6.1, 3.9 and 2.7LSB for single, double and triple variation. Figure 7.1 plots
the residual error, marked by dots, versus illuminance. Colour calibration with the
empirical model improves over the theoretical model substantially for triple variation
but negligibly for single and double variation. The latter may be unable to discriminate
I'in (7.4) from f(I) in (7.28) due to a higher residual error of FPN calibration.

The empirical triple variation model shows a residual error of colour calibration that
is nearly flat across 3.5 decades of dynamic range (each point in Figure 7.1 comprises
1.5 decades). However, for single and double variation, the residual error increases
with decreasing illuminance with the theoretical or empirical model. This dependence
suggests that bias variation, not considered by single and double variation, degrades
colour calibration mainly in dim lighting. For triple variation, the slight increase in
error with increasing illuminance may be because the neutral density filters, used in
taking the dimmer four images, had neither flat nor equal spectral responses and thus
modified the colour of transmitted light in addition to the intensity.

7.5.2 Rendition

After FPN and colour calibration, images taken by the Fuga 15RGB may be rendered
into a standard colour space such as CIE Lab or IEC sRGB, following Section 7.4 for
the theoretical model. For the empirical model, the rendering must include an inver-
sion of (7.29). Using the empirical model, the perceptual error of colour calibration,
formulated in (7.27), between the ideal and rendered images of the Macbeth chart was
133, 58 and 20 (CIE Lab units) for single, double and triple variation respectively.
Figure 7.2 plots the perceptual error versus illuminance. The figure shows how close
the colours of the ideal chart match those of the rendered chart, imaged under varying
illuminance, from the perspective of a standard observer (as defined by the CIE).

To put the performance of colour rendition with the Fuga 15RGB in perspective, the
perceptual error between an image of the ideal Macbeth chart and images of the chart
rendered by conventional digital cameras were calculated from an article by McNamee
in Digital Photographer [62]. The published images were scanned with an HP Scanjet
5300C and converted from sRGB to Lab space. Table 7.6 lists the perceptual error
between pixels of the ideal chart and corresponding pixels of each camera’s image.

Comparing Figure 7.2 to Table 7.6 for single and double variation, colour rendition
is generally better with conventional cameras than with the Fuga 15RGB. For triple
variation, colour rendition of the Fuga 15RGB is comparable to conventional cameras
except in dim lighting. Excluding the dimmest image, taken with 5lux of illuminance,
the perceptual error is 12 with the Fuga 15RGB for triple variation. This result is
comparable to the overall perceptual error in Table 7.6, which equals 15. As the Mac-
beth chart spans 1.5 decades of reflectance and the Fuga 15RGB images, excluding the
dimmest, span 1.5 decades of illuminance, colour rendition of the logarithmic sensor,
tested over three decades of dynamic range, competes with colour rendition of conven-
tional cameras, tested over 1.5 decades (McNamee used only one illuminance [62]).
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Figure 7.2: The perceptual error 6, versus incident illuminance z; of rendering a
Macbeth chart for the single, double and triple variation (empirical) models.

Note that the perceptual error of colour calibration in Figure 7.2 increases with
decreasing illuminance even for triple variation, which has a residual error of colour
calibration in Figure 7.1 that decreases with decreasing illuminance. In dim lighting,
the bias ¢ dominates the logarithm in (7.28), with « in (7.29), making the photocurrent
I difficult to estimate. In other words, the magnitude of the photodiode leakage current
reduces the sensitivity of a pixel to a small photocurrent so that the stochastic error e
in (7.28) has a greater effect on the response than the stimulus. Decreasing the leakage
current, increasing the photocurrent or reducing the stochastic error should lessen this
degradation. Decreasing the leakage current would, in theory, also reduce bias variation
and improve the performance of double variation relative to triple variation.

Figure 7.3 shows the five Fuga 15RGB images of the Macbeth chart, which were
taken with varying illuminance. These images have been rendered into SRGB space for
the single, double and triple variation models. The figure also shows an image of the
chart with ideal values for the colour patches. Two mechanisms lead to a deviation of
the rendered images from the ideal. The first is a residual pixel-to-pixel variation that
causes uniform surfaces to appear noisy, especially visible at dimmer illuminances in
the single and double variation results of the montage. The second is a colour deviation
that causes patches to look different from the ideal, discernible in the triple variation
result where some patches have too much or too little brightness, even if the observer’s
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Figure 7.3: Fuga 15RGB images of a Macbeth chart, taken with an incident illuminance
of 450, 100, 42, 11 and 4.6lux (top to bottom) and rendered into IEC sSRGB space,
for the single, double and triple variation empirical models (from left). The far-right
images overlay ideal colours of the chart patches on the average triple variation result.
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Table 7.6: The perceptual error 6 g of conventional digital cameras between ideal and
actual images of a Macbeth chart, taken at one illuminance only.

Digital camera Perceptual error
Kodak DCS 265 13

Nikon Coolpix 950 12
Olympus Camedia C-2000 Zoom 16
Canon Powershot Pro 70 17

Ricoh RDC 4200 13

Agfa ePhoto CL 50 15

Fuji MX 2700 15

In CIE Lab

eye could filter out the residual variation.

One reason for a colour deviation may be that the mechanism relating responses
to stimuli is not fully understood in the Fuga 15RGB, evident by the use of an em-
pirical model. Another reason is that, in dim lighting, the dominance of the leakage
current over the photocurrent leads to a biased estimate of the stimulus. Indeed, colour
matching is better at higher illuminances, as shown in Figures 7.2 and 7.3. The fluores-
cent illuminant may be another reason as McCamy et al recommended CIE Standard
Iluminant C for use with the Macbeth chart [61]. Fluorescent illuminants have spec-
tral irradiance functions with sharp peaks at certain wavelengths that frustrate colour
rendition [59]. Furthermore, the neutral density filters were not perfectly neutral.

7.6 Conclusion

Logarithmic CMOS image sensors have a capability to capture scenes bearing a high
dynamic range of illuminance and reflectance in a manner that roughly approximates
human perception [25]. Permitting high frame rates, they are an attractive technology
for motion tracking in outdoor environments [33, 26]. However, research on colour
logarithmic sensors has been limited by a lack of theory and results on modelling,
calibration and rendition of sensor responses in terms of a standard colour space. This
chapter begins to address these problems.

A model for the response of a colour logarithmic sensor to spectral irradiance was
constructed by combining the colour model of conventional linear sensors [12] with
the monochromatic model of logarithmic sensors. Thus, the digital response y of a
logarithmic pixel to a colour stimulus x, given in CIE XYZ space [59], is modelled by
y =a+ bln(c + dy e x) + ¢ where a, b, ¢, dj, and ¢ are called the offset, gain, bias,
mask and error respectively, with & identifying if the pixel is selective to the red, green
or blue regions of the spectrum.

Pixel-to-pixel variation of the offset, gain, bias or a combination thereof leads to
fixed pattern noise (FPN), which distorts an image in a repeatable and predictable way,
most visible with uniform surfaces. Calibration of the image sensor involves estimation
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of the model parameters. Spatially varying parameters are estimated by partitioning
pixels by colour sensitivity and applying the method of monochromatic FPN calibration
to each partition. The mask and other spatially constant parameters that remain from
FPN calibration are estimated using images of a reference colour chart. Calibrated
models may be used to render an image taken with the sensor into CIE XYZ space and
then into other useful spaces, such as CIE Lab and IEC sRGB [59, 60].

Using neutral density filters to simulate varying illuminance, experiments were per-
formed with a Fuga 15RGB sensor. A pixel-to-pixel variation of offset, gain and bias
modelled FPN well, with a residual error of 0.6LSB for FPN calibration of white paper.
Colour calibration of a Macbeth chart [61] showed that the theoretical model did not
match the sensor response. An empirical model y = a + bIn(c + (a + dj, e x)°) + €
worked well, with a residual error of 2.7LSB for colour calibration. The perceptual er-
ror with this model was 12, in Lab space, over three decades of dynamic range, compa-
rable to conventional digital cameras over 1.5 decades. The perceptual error increased
quickly below five lux of illuminance, possibly because leakage currents reduced the
sensitivity of pixels.

Instead of focusing on analogue or digital methods to compensate for offset varia-
tion, research in logarithmic sensors should aim to minimise bias variation so that offset
variation or offset and gain variation suffices to model FPN, and to minimise bias mag-
nitude, so that colour rendition in dim lighting improves. As the mask depends on
spectral responses of photodiodes and overlaid filters and does not seem to vary across
pixels, it may be estimated once for a process, a common practice with conventional
linear cameras [12], rather than for every sensor. The same may be possible with other
spatially constant parameters.



Chapter 8

Conclusion

8.1 Summary

The CCD image sensor, a dominant technology for about three decades, faces tough
competition from the CMOS image sensor, a more recent technology. Since their fabri-
cation process is incompatible with conventional electronics, CCD sensors require ex-
ternal circuits to provide bias voltages, clock signals, control logic, analogue-to-digital
conversion and signal processing. CMQOS technology, however, permits the integration
of these circuits on the same die as the sensor to reduce the cost, power consumption,
size and weight of the final camera. Fundamentally, CMOS pixels scale well with
shrinking process geometries because more electronics can be placed in each pixel to
improve the output without affecting sensitivity or resolution. While CCD sensors still
dominate the market because of sensitivity, the performance edge of CCD over CMOS
is disappearing with shrinking pixel size and increasing video demands. For these
and other reasons, such as a higher quantum efficiency, less smear and blooming, bet-
ter yields and price pressure from more competition, the electronics industry expects
CMOS gradually to replace CCD image sensors.

This thesis concerns a subset of CMOS sensor technology, namely logarithmic im-
agers. A linear pixel (CCD or CMOS) integrates the charge produced by photon ab-
sorption over a finite period of time to produce a voltage directly proportional to the
light intensity. A logarithmic pixel converts incident photons continuously into a volt-
age that is proportional, over more than five decades of illuminance, to the logarithm
of the light intensity. Logarithmic pixels may be randomly accessed in space and time,
since CMOS sensors operate like memory arrays and logarithmic responses are avail-
able at any moment, a feature useful in industrial and consumer applications for which
frame size and speed may be traded against each other. Studies with pulsed lasers
have shown a pixel bandwidth of 100 kHz, at normal light levels, that increases with
illumination—the speed of the readout circuit often limits the frame rate. As logarith-
mic pixels are simple, consisting of three transistors and a diode, sensors have been
made with 2048 x 2048 pixels and acceptable yields.

Light reflected by scenes spans many decades of illuminance, from 10~?lux at
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night to 1-103lux in indoor lighting and up to 10°lux in bright sunlight. Direct viewing
and specularities of bright sources, such as oncoming headlights or the sun, may lead
to higher intensities. At any one time, however, the human eye cannot perceive more
than five decades. Human perception roughly approximates Weber’s law, which says
that the threshold to sense a difference between the illuminance of a fixation point and
its surroundings is a fraction, about 1-10%, of the surrounding illuminance. When
illuminances are encoded by a logarithmic sensor, such a law makes the threshold
for sensitivity constant, ideal for quantisation. With a logarithmic sensor, ten bits of
quantisation are sufficient to sense illuminance over five decades with 1% accuracy.
A linear sensor requires 23 bits to accomplish the same task, which would be costly
for still cameras and extremely difficult at video rates. A linear sensor with fewer bits
of quantisation could adapt over a high dynamic range by aperture or integration-time
control. However, saturated patches would appear in images of scenes that span a
high dynamic range. Many non-logarithmic methods have been proposed to extend the
dynamic range of image sensors but most result in decreased resolution, sensitivity or
frame rate.

Despite nearly a decade of research and development, logarithmic cameras remain
of interest mainly to a niche market and largely for the purpose of further research and
development. Widespread acceptance is hindered by the substantial fixed pattern noise
(FPN) present in images taken by these sensors. Work reported in the literature fo-
cuses on analogue and digital techniques to compensate for threshold voltage variation,
which is perceived to be the major problem with logarithmic imagers. There is another
problem even for an ideal logarithmic imager that is free of FPN. As conventional digi-
tal cameras involve well understood mechanisms of colour sensation, acceptable colour
rendition is achieved by well defined signal processing. However, this theory has been
developed for linear sensors and concerns have been raised in the literature as to the
colour rendition capabilities of logarithmic image sensors.

Work reported in this thesis sought the causes of problems with image quality in
logarithmic CMOS image sensors and possible solutions, which entailed the modelling
and calibration of responses in terms of stimuli. Theoretical work considered the ma-
nipulation of image collections, both analytically and numerically, and the physics of
integrated circuit devices. Simulation work considered the behaviour of logarithmic
pixels, for a popular 0.35um 3.3V process, under controlled and well-defined condi-
tions. Experimental work considered the behaviour of the Fuga 15RGB, a commer-
cially successful logarithmic imager built in a 0.7um 5V process, under laboratory
conditions. The rest of this section summarises the main results of this thesis. Sec-
tion 8.2 considers future work in the field.

8.1.1 Multilinear algebra

If images are considered to be matrices of data then a collection of images may be rep-
resented most naturally by a generalisation of the scalar, vector and matrix progression,
which is the array. As linear algebra deals with elementary mathematical operations
on matrices, so multilinear algebra deals with elementary mathematical operations on
arrays. An array of order IV is defined to be a functional mapping from a vector of
N positive integers, each ranging from one to a specified dimension, to a space of
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homogenous elements. The elements may themselves be scalars, vectors or matrices.

Differing approaches exist in the literature in terms of the definition of arrays and
the formulation of their algebra. The approach taken here follows from tensor calculus
but without the customary connection to differential geometry. Multilinear algebra, as
defined in this thesis, includes the usual tensor operations of contraction and both inner
and outer products but introduces attraction and inter products, which enable elemen-
twise operations. Inner and inter products are shown to be equivalent mathematically,
but not computationally, to outer products followed by contraction and attraction re-
spectively. Whereas tensor calculus restricts contraction and inner products, multilin-
ear algebra does not since inter products enable previously impossible associations so
that any product of multiple arrays may be rewritten as a sequence of binary products.
Application of these ideas to classical linear algebra demonstrates that several elemen-
tary array operations, in terms of scalars, vectors and matrices, may not be expressed
without new operators, which are therefore introduced.

Any binary product of arrays of arbitrary order is shown to be equivalent to a se-
quence of matrix multiplications. Consequentially, array multiplication may be effi-
ciently implemented in MATLAB by automatic transformation of the problem, compu-
tation of the solution, and transformation of the result. Furthermore, solving multilinear
algebraic equations often involves finding the inverse of an array to produce a partic-
ular identity upon multiplication. Unlike with matrices, an array may have more than
one inverse depending on the required identity. However, if the inverse for a particular
identity exists then it is unique and may be found by transforming the problem to a se-
quence of matrix inversions, computing the solutions and transforming the results back,
all of which may be efficiently automated in a MATLAB implementation. Descriptions
of tensor calculus found in the literature do not formalise inversion.

Several applications of multilinear algebra were discussed as they prove relevant to
the efficient calibration of image sensors. The concept of stochastic arrays, which are
random samples of a (potentially infinite) population of arrays, leads to a consideration
of statistical variance. The outer, inter and inner variance are defined by applying the
usual expectation operator to outer, inter and inner products of a stochastic array, less
its mean, with itself. In general, computing the outer variance takes O(N2) time and
space whereas computing the inter and inner variances takes O(NV) time and space
for a stochastic array with NV elements. For problems where N is large, the outer
variance should be avoided for complexity and the inner variance should be avoided as
it gives very little information. The inter variance, however, gives much information in
potentially linear time and space.

The concept of sparse arrays highlighted the savings in processor time and memory
space that would be obtained by exploiting the property that some arrays contain a mi-
nority of nonzero elements. A simple implementation was described, which stores the
sparse array as a native sparse vector in MATLAB and transforms access requests auto-
matically and appropriately. The concept of cell arrays considers a functional mapping
from a vector of IV positive integers, each ranging from one to a specified dimension,
to a space of heterogenous elements. These arrays may be used to formulate and solve
systems of equations efficiently although further work on the algebra is required to
develop a MATLAB implementation that automates the necessary tasks.
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8.1.2 Constrained regression

Consider a sensor in which the output is modelled by a linear function, with unknown
coefficients, of the input and a stochastic error. The sensor may be calibrated by esti-
mating the model parameters from observations of the input and corresponding output.
If the stochastic error is statistically independent from sample to sample and belongs to
a zero-mean Gaussian distribution then maximum likelihood estimation simplifies to
the least squares method of multilinear regression. Given an array of N such sensors,
where each sensor may provide a different output for the same input, this approach may
be applied independently to calibrate each sensor, which takes O (V) time and space if
N is much larger than the number of observations and parameters per sensor.

An array of NV sensors could simply be modelled as N independent sensors. How-
ever, the possibility of relationships between parameters from one sensor to another
should be considered for the dual purpose of better understanding and better esti-
mation. Limiting the scope of such relationships to linear equations, the estimation
problem becomes one of multilinear regression with linear constraints. Furthermore,
the residual error between actual and estimated responses and the uncertainty in es-
timated parameters are required to assess the calibrated model. Whereas the concept
of constrained regression appears in the literature, this thesis applies it to the analysis
of sensor arrays, seeking to optimise performance in terms of the processor time and
memory space required for computation. Without optimisation, the numerical process-
ing of image collections, in the modelling and calibration of logarithmic sensors, would
be impractical.

Two classes of parameter constraints are considered. In the generic problem, pa-
rameters across the sensor array may be related by arbitrary linear constraints. In the
raster problem, the sensor array is assumed to have a planar structure and each param-
eter may either vary from sensor to sensor, column to column or not at all. The raster
problem is a special case of the generic problem where the constraints are described by
a class of sparse arrays.

There are two approaches to constrained regression. The first expresses the con-
straints explicitly with a Lagrangian. The second expresses the constraints implicitly
by equating the parameter space, with a transformation, to a subspace of fewer param-
eters. Using multilinear algebra, both formulations are investigated to derive a solution
to the generic problem. In the worst case, both require O(NN'3) time and O(IN?) space.
However, when constraints are described by sparse arrays typical of the raster problem,
the performance of the implicit formulation improves to O(N2) time and space. Using
Cholesky factorisation to avoid computing full inverse matrices of sparse positive def-
inite matrices, the implicit formulation improves to O(N) time and space, assuming
an efficient sparse array implementation. However, an implementation of sparse arrays
in MATLAB proved to be inefficient because of internal details of the MATLAB sparse
vector and matrix routines. Therefore, an O(N') method involving no sparse arrays was
derived to solve the raster problem alone.

These methods were tested on an artificial raster problem, where the output of each
sensor is a linear function of a single input, with an offset and gain parameter per
sensor, and Gaussian noise. Three scenarios were considered, where the gain varied
from sensor to sensor, column to column or not at all. Parameters were estimated
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for each scenario, using artificially generated data, assuming each possible scenario.
When the hypothesis was more specific than the scenario, hence over-constrained, the
residual error was higher than that of the correct model. When the hypothesis was more
general than the scenario, hence under-constrained, the parameter uncertainties were
higher than those of the correct model. Thus, the correct model may be identified and
calibrated to minimise the residual error first and the parameter uncertainties second.
The time and space requirements of the various formulations agreed with the pre-
dictions, for various sizes of the artificial raster problem, with the raster formulation
giving the best performance, even when internal details of sparse vectors and matrices
in MATLAB are discounted. Methods to find a solution using only classical linear al-
gebra were found to take at least O(N?) time and space, which may be traced to a lack
of the attraction and inter product operations that are available in multilinear algebra.

8.1.3 Fixed pattern noise

A detailed model was derived to describe the operation of a logarithmic image sensor,
from the incidence of light on a pixel to the digital response of the sensor when that
pixel is addressed. This derivation contains numerous physical parameters but may
be abstracted by the model y = a + bln(c + x) + ¢, where z and y are the incident
illuminance and corresponding response and a, b, ¢ and € are named the offset, gain,
bias and error respectively. The offset consists of threshold voltages and current gain
ratios of various transistors in the signal path. The gain consists of subthreshold slope
parameters of the load transistor in the pixel. The bias consists of photodiode leakage
currents and optical gain parameters. The error consists of quantisation and temporal
noise as well as uncertainty in the underlying device models, i.e. higher order effects.
A variation of the offset, gain, bias or a combination thereof from pixel to pixel
causes a nonuniform image of a uniform surface, which is FPN. Although it is most
noticeable in images of uniform surfaces, FPN is always present. Knowing precisely
which parameters are varying from pixel to pixel improves understanding of the sensor
array and permits better calibration with lower residual error and parameter uncertainty.
Four models of parameter variation were considered. Nil variation assumes the ideal
case where no parameters vary. In single variation, the assumption generally found in
the literature, only the offset varies from pixel to pixel. In double variation, the offset
and gain vary, and in triple variation, all three parameters vary. These models may be
calibrated using images of a uniform surface taken with different illuminances.
Initially, it appears that calibrating the response y of all pixels in terms of the illu-
minance x requires measurement of the latter. This measurement may be avoided by
making x a parameter, which introduces a small degree of redundancy so not all param-
eters may be estimated for each type of variation. However, the component that varies
from pixel to pixel, which is responsible for FPN, may be estimated. Furthermore,
nonlinear optimisation of the bias ¢ may be avoided, when it does not vary, by calibrat-
ing the response of a pixel in terms of the average response of all pixels to the same
illuminance. The parameter values, residual error and parameter uncertainties may be
estimated for nil, single and double variation using the raster method. For triple vari-
ation, multilinear regression reduces the number of unknowns by two thirds, with the
rest estimated by nonlinear optimisation. The residual error of triple variation may be
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calculated as before and, by ignoring the stochasity of the nonlinear part, parameter
uncertainties may also be calculated. For all types of variation, methods are derived to
correct FPN in subsequent images using the calibrated models.

Calibration was demonstrated using simulated and experimental data. For the sim-
ulated data, which covered six decades of photocurrent, the residual error was 20, .44,
.29 and .28mV for nil, single, double and triple variation respectively. In addition to
the residual errors, the parameter uncertainties were comparable for double and triple
variation. Because uncertainties were underestimated with triple variation, since the
stochasticity of the nonlinear part was ignored, double variation proved to be the best
model of FPN. The simulation did not consider the variation of photodiode leakage
current or aperture effects, which explains the resulting absence of bias variation.

For the experimental data, which covered two decades of illuminance, the residual
error was 20, 5.2, 2.3 and .68LSB for nil, single, double and triple variation respec-
tively. Therefore, triple variation proved to be the best model of FPN. With the experi-
mental data, a plot of the residual error versus illuminance was relatively flat for triple
variation but was highly dependent on illuminance for single and double variation (with
the simulation data, the plot was flat for double and triple variation but was curved for
single variation). A good model would have a residual error relatively independent of
illuminance, which suggests that FPN would not increase dramatically when the model
is extrapolated to illuminances outside of the calibration range.

Lastly, FPN correction was demonstrated over almost three and a half decades of
dynamic range using images taken by the Fuga 15RGB. Triple variation gave the best
results, especially in dim lighting, followed by double variation. Single variation gave
good results only in bright lighting, for a small range of illuminance, when the effect
of bias and gain variation may be ignored. Nil variation always gave poor results.

8.1.4 Transent response

In addition to the steady state model summarised above, this thesis modelled the tran-
sient response of logarithmic CMOS image sensors. The transient response of the pixel
circuit is ignored as continuous pixel operation permits high bandwidths that typically
exceed the rate of pixel access. For example, a 30Hz frame rate satisfies the motion sen-
sitivity of human perception. Greater demands are placed on the readout circuit, which
may be divided into two stages. For each column, in parallel over all columns, the first
stage drives the column bus for the pixel in a selected row. The second stage drives
the output bus for the buffer in a selected column. Rows and columns are scanned in
raster fashion. The first and second stages switch at frequencies of about 100kHz and
100MHz respectively, for megapixel sensors operating at video rates. Typically, the
stages are source follower circuits, where the first tends to be NMOS and the second
PMOS. The transient response of the first stage is derived and an analogous response
may be derived for the second stage.

Since the column bus of the first stage is connected to the source terminals of many
switches, the source-bulk junction capacitances of these transistors form the principal
load. Relating the column bus voltage to the pixel drive voltage with a differential
equation, the transient response may be derived from when the switch of the selected
pixel is turned on given the initial voltage of the column bus. The response is similar to
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the step response of a first order low pass filter and a time constant may be calculated. If
sufficient time is not given for the response to settle before digitisation then the steady
state will not be reached and the transient response will define the digital response. This
condition is likely to occur in the first few rows of an image as the column buses of the
parallel first stages may have discharged or been precharged at the start of reading a
frame. This condition is most likely to occur in the first several columns of an image as
the output bus of the second stage may have discharged or been precharged at the start
of reading each row in a frame.

Premature digitisation will cause a repeatable and predictable nonuniformity in im-
ages of uniform surfaces, which is FPN, even if there is no device parameter variation.
This nonuniformity will in general be a convolution of the signal, where the premature
response of a pixel in the first few rows or several columns will depend on the prema-
ture responses of previously read pixels, as they determine the initial condition of the
buses. However, much of this nonuniformity may be expressed as an offset and gain
variation of the first and second stage response to illuminance. Therefore, a good part
of FPN due to the transient response of an image sensor may be calibrated and cor-
rected with previously described methods for the steady state. Estimated parameters
will vary mostly in the first few rows and several columns of the sensor array and will
then settle into the variation caused by steady state nonuniformity alone, which should
not correlate with row or column number.

These predictions were verified by simulation and experiment. Simulation results
for the first stage, which did not include steady state variation, agreed closely with
theoretical results. Estimated offset and gain parameters had a variation in the first few
rows that eventually settles to constant values. A similar variation may be shown in the
first several columns for the second stage. The experimental results showed a settling
of pixel responses over the first few rows and several columns of images of a uniform
surface, taken with varying illuminance. Such images were taken for three different
frame rates and were calibrated using the triple variation model. Plots of the average
offset, gain and bias of each row or column showed a substantial variation in the first
few rows and several columns of the sensor array and the shape of each plot changes
with increasing frame rate.

Calibrating the experimental data, over two decades of illuminance, to a model in
which the gain may vary from column to column but not within a column, although the
offset and bias may vary from pixel to pixel, gives a residual error comparable to that of
unconstrained triple variation. However, parameter uncertainties are much lower with
the constrained model, which means it is a better description of reality. These results
suggest that gain variation in the Fuga 15RGB is a columnwise effect that is caused
predominantly by transient effects. A variation of the subthreshold slope parameters
that define the steady state gain is insignificant over two decades of dynamic range.

Experimental results did not correspond fully to simulation results because, firstly,
the experiment includes steady state variation, especially of the bias. Secondly, while
the first stage of the Fuga 15RGB is an NMOS source follower, details of the second
stage were not available. Thirdly, the position of the switch transistor in the readout
circuit of the Fuga 15RGB is different from that of typical readout circuits. Whereas
the atypical position is somewhat better for the steady state response, it is much worse
for the transient response as it increases the settling time substantially and makes the
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load impedence depend on illuminance. In consequence, FPN introduced by premature
digitisation cannot be modelled by an offset and gain variation over a high dynamic
range. Testing the Fuga 15RGB over a high dynamic range shows a breakdown of the
triple variation model due to a complex response in the first several columns of the
image sensor (as well as the first few rows).

The best way to correct transient-induced FPN is to avoid circuit designs with poor
or complex transient responses, to permit enough time for the readout circuit to settle,
especially at the start of reading each frame and of reading each row in a frame, and to
fix the timing of the readout circuit so it may not be changed after calibration. Indeed,
as logarithmic sensors operate continuously and involve no exposure control by inte-
gration time, there is no reason to provide more time for settling than the worst case
settling time and, as shown, good reason not to provide less time.

8.1.5 Temperature dependence

As threshold voltages, current gains, subthreshold parameters and leakage currents all
depend on temperature, the response y of a logarithmic pixel and hence FPN depends
on temperature 7" as well as illuminance z. Although there are numerous physical
parameters that describe the temperature and illuminance dependence, they may be
abstracted by the model y = ay + axT + asTInT + by T In(cie”/T> + z) + €, where
a, by and ¢, are offset, gain and bias parameters, T'a is a process constant and e is
the stochastic error. A pixel-to-pixel or column-to-column variation of any parameter
other than a; will cause temperature-dependent FPN.

Since calibration of bias variation over multiple temperatures and illuminances re-
quires substantial nonlinear optimisation, only models where the bias is constant spa-
tially are considered. The most obvious method of calibration estimates parameters
to fit responses y to measured temperatures 7' and illuminances x, for images of a
uniform surface taken at multiple temperatures and illuminances. However, these mea-
surements and nonlinear optimisation may be avoided by making 7" and = parameters.
Such an approach introduces a small degree of redundancy into the model so that not
all parameters may be estimated from the data. Nonetheless, the parameters that vary
from pixel to pixel or column to column, which are responsible for FPN, may be es-
timated with the raster method, when images of the dark response, where z = 0, are
available at the same temperatures of the light response, where x > 0.

There are two approaches to calibration using dark and light responses. In the offset
cancellation method, the dark response is subtracted from the light response to elim-
inate all offset parameters. The offset-free response of each pixel is then calibrated
against the average such response of all pixels. Such a calibration involves the esti-
mation of only gain parameters. In the temperature proxy method, the 7'In 7" term in
models of the dark and light response and a 7'2 term in the model of the dark response
are linearised. When these linearisations are reasonable, the average dark response is
a linear function of temperature and the light response of each pixel may be written
as a linear function of the average dark and light responses of all pixels. Calibration
involves the estimation of three parameters per pixel. Cases where parameters of the
offset cancellation or temperature proxy methods are constrained to vary from column
to column or not at all were also considered.
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The offset cancellation and temperature proxy methods were tested on simulation
and experimental data. The simulation covered 60°C of temperature and six decades
of photocurrent but did not include bias variation. The experiment covered 30°C of
temperature and two decades of illuminance and included bias variation. Calibration of
simulation data with the unconstrained offset cancellation method gave a residual error
of .42mV, which corresponds to 2.5% contrast sensitivity. For the temperature proxy
method, calibration of the average dark response to a linear model of temperature gave
a residual error of .14mV and proved to be more robust than a model that included
TInT and T? terms. Calibrating light responses for the unconstrained temperature
proxy method gave a residual error of .29mV, which corresponds to a 1.7% contrast
sensitivity. Constraining parameters of either the offset cancellation or temperature
proxy method gives worse results. Whereas the residual error versus temperature and
illuminance is flat for both the offset cancellation and temperature proxy methods, the
latter gives a better result as it involves the calibration of a single noisy signal rather
than the difference of two noisy signals.

Calibration of the experimental data with the unconstrained offset cancellation
method gave a residual error of 4.2L.SB. This figure corresponds to a 25% contrast
sensitivity, much worse than human perception, and the residual error depends strongly
on illuminance although weakly on temperature. The failure of the method is attributed
to bias variation, which is not cancelled but exacerbated by a subtraction of dark from
light responses. For the temperature proxy method, the average dark response may be
represented by a linear model of temperature with .34LSB residual error. Linearisa-
tion proves to be robust as calibration of models that include T'1n T and/or T2 terms
are hardly better in terms of residual error but substantially worse in terms of parame-
ter uncertainties. Calibration of the light response with the unconstrained temperature
proxy method gives a residual error of 2.0LSB, which corresponds to a 12% contrast
sensitivity. The residual error is relatively independent of temperature but depends on
illuminance with a w-shaped curve. As shown previously with double variation, this
shape is a consequence of underlying bias variation. The temperature proxy method
performs better than the offset cancellation method because the former calibrates a sin-
gle noisy signal whereas the latter calibrates the difference of two noisy signals and
because the former has more parameters per pixel to accommodate the underlying bias
variation. Constraining any parameter of either the offset cancellation or temperature
proxy method gives worse results.

A calibration of the offset cancellation and temperature proxy models at one tem-
perature was considered. However, performance degrades when calibrated models are
extrapolated to all temperatures except for the offset cancellation method and simulated
responses. Degradation occurs because of bias variation with experimental responses
and because certain constraints do not hold for the temperature proxy method with
either simulated or experimental responses. Experimental results are worse than simu-
lation results because of, apart from bias variation in the former, an invisible oscillation
in the illuminance of the experimental light source and a nonlinear modulation of re-
sponses due to the transient behaviour of the Fuga 15RGB. Measures were taken to
reduce both effects but they could not be perfectly eliminated.
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8.1.6 Colour rendition

FPN characterisation and correction is principally concerned with the nonuniformity
present in images and this distortion may be corrected by modelling and calibrating
pixel responses relative to other pixel responses with little concern for the absolute
stimuli. Colour rendition, however, requires not only FPN correction but the reproduc-
tion of colour stimuli. By combining colour theory of linear image sensors with FPN
theory of logarithmic image sensors, a model of colour logarithmic image sensors was
constructed and a process derived, as has been done with conventional digital cameras,
to calibrate the model and achieve good colour rendition. In this manner, the response
y of a colour logarithmic pixel to a stimulus x, which is a vector in the standard CIE
XYZ colour space, is modelled by y = a+bIn(c+d ex) +¢, where a, b, ¢, d and € are
the offset, gain, bias, mask and error respectively. The mask is a vector of coefficients
describing the colour filter placed over the pixel in question. For simplicity, transient
and temperature effects are ignored.

As before, a variation of device parameters from pixel to pixel (or column to col-
umn) leads to FPN. Three types are considered—single, double and triple variation—
which are the models most likely to be used depending on the circuit design and desired
complexity of FPN correction. By partitioning pixels in the sensor array according to
the type of overlaid colour filter (red, green or blue), FPN calibration of a colour sensor
reduces to FPN calibration of three monochromatic sensors, and methods previously
summarised may be used to estimate the spatially varying parameters from images of
a uniform surface. However, a second calibration is required to estimate the spatially
constant parameters that remain unknown but which are necessary to describe digital
responses in terms of colour stimuli. This calibration requires nonlinear optimisation.
Parameters are estimated using segmented images of a colour chart having patches of
known colour, with some unknowns reduced by analytical manipulation. Once the
colour calibration is completed, the estimated parameters may be used to correct FPN
and render arbitrary images into a standard colour space.

These methods were tested on experimental data collected with the Fuga 15RGB.
A comparison of residual errors showed that triple variation outperformed single and
double variation for calibrating FPN, as before, with an error of 0.6L.SB over two
decades of illuminance. The residual error of colour calibration, however, was 6.1, 3.9
and 9.4LSB respectively for single, double and triple variation. The larger error with
triple variation is because the given model of pixel response is unsuitable for describing
absolute dependence on stimuli rather than the relative dependence on stimuli from
pixel to pixel, which compensates for incompleteness of the underlying device models,
that is sufficient for FPN calibration. As triple variation calibrates FPN caused by bias
variation, the limitation is more apparent with it than with single or double variation.
Empirical analysis led to the model y = a + bln(c + (a + d e x)?) + €. Using this
empirical model instead of the theoretical model does not affect the results of FPN
calibration but affects those of colour calibration, where the residual error of single,
double and triple variation changes to 6.1, 3.9 and 2.7LSB respectively.

The calibrated empirical model was subsequently used to render images of a stan-
dard colour chart into the CIE Lab space. Euclidean distances in this space correspond
to perceptual differences and the perceptual error of the single, double and triple varia-
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tion models, over a dynamic range spanning 3.5 decades of illuminance and reflectance,
was 133, 58 and 20 respectively. The triple variation empirical model gave the best ren-
dition, especially in dim lighting. The images were also rendered into the IEC SRGB
format for display purposes, which validated the perceptual error comparison. Perfor-
mance deteriorates with the logarithmic sensor in dim lighting for all models because
the bias, irrespective of variation, limits sensitivity. Excluding the dimmest image,
which reduced the dynamic range to three decades, the perceptual error improved to 12
for triple variation. Computing the perceptual error between ideal and actual images
of the same chart, taken from Digital Photographer, for several conventional digital
cameras leads to an overall perceptual error of 15 over 1.5 decades of dynamic range.
Thus, using the triple variation empirical model, the colour rendition of a logarithmic
image sensor competes with that of linear image sensors.

8.2 Futurework

Developers of digital cameras have sought to render images with a maximum of per-
ceptual accuracy and a minimum of effort. By deriving a model of the logarithmic
CMOS image sensor, supported by semiconductor theory, and deriving a method of
calibration, validated with simulation and experiment, the work reported in this thesis
has shown how these digital cameras fall short of rendering an image with a maximum
of perceptual accuracy. Although this work has successfully derived digital methods
to improve the image quality, these methods do not always involve a minimum of ef-
fort, especially when a maximum of perceptual accuracy is required. However, an
understanding of the main results of this thesis will help developers to design, model
and calibrate a better logarithmic CMOS image sensor—one which comes closer to
matching the performance of the human eye.

8.2.1 Pixd circuit

The bias in the logarithmic response of a pixel, which is due to the photodiode leak-
age current and optical vignetting, is a major cause of problems. The presence of bias
variation, as opposed to only offset variation or offset and gain variation, means that
nonlinear optimisation is required for effective FPN calibration and correction. With-
out bias variation, FPN calibration and correction over a wide range of temperature
and illuminance would be vastly simplified using the offset cancellation method with
extrapolation or vastly improved using the temperature proxy method without extrapo-
lation. In addition, the method of colour calibration, although still requiring nonlinear
optimisation, would be simpler. Apart from the problem of bias variation, there is the
problem of bias magnitude. The relative magnitude of leakage current to photocurrent,
even with no leakage current variation, means that the sensitivity of logarithmic pixels
diminishes at low illuminances, leading to poor colour rendition in dim lighting. Prob-
lems with bias variation and magnitude may be addressed to some degree by optical
considerations. Better lens and aperture designs or smaller sensor dimensions would
reduce the bias variation caused by vignetting. Similarly, optical designs with lower
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Figure 8.1: A double current mirror pixel, where T0 & T0' and T1 & T1’ are sub-
threshold NMOS and PMOS mirrors while T2 & T3 belong to the first stage readout.
Negative feedback keeps the reverse bias voltage of the photodiode close to zero.

minimum f-stop numbers and the deposition of microlenses on logarithmic sensors will
boost the photocurrent relative to the leakage current.

In addition to optical methods, there may be electronic methods to reduce bias
variation and magnitude by considering the reverse bias leakage current of the pixel
photodiode. Advancements and tailoring of fabrication processes may offer some relief
but so may novel circuit designs. The reverse bias leakage current is a function of
reverse bias voltage, although the photocurrent is not. Therefore, keeping this voltage
as close to zero as possible would help. Figure 8.1 shows a pixel circuit that may
achieve this. It is composed of a double current mirror (DCM), where T0 and T0’ form
an NMOS current mirror, T1 and T1’ form a PMOS current mirror and transistors T2
and T3 belong to the first stage readout. Both current mirrors operate in weak inversion.
For the current in the left side of the circuit i, to equal the current in the right side i g,
as required approximately by the PMOS current mirror, the gate-source voltage of TO
must approximately equal the gate-source voltage of T0’. Thus, the source voltage of
TO, which is the reverse bias voltage of the photodiode, will be kept approximately
at zero by feedback. The current i g, therefore, will consist of photocurrent with a
minimal amount of leakage current. Note that the diode connected PMOS transistor,
i.e. T1, replaces the diode connected NMOS transistor in the conventional logarithmic
pixel circuit of Figure 4.1. As before, this transistor is designed to operate in weak
inversion over the expected range of photocurrent.

The pixel circuits in Figures 4.1 and 8.1 were simulated, as well as a pixel circuit
similar to Figure 4.1 but with a PMOS instead of an NMOS load. The simulation cov-
ered six decades of photocurrent for a 0.35um 3.3V AMS process, where the widths
and lengths of all transistors were set to 1um and 0.6.m respectively. Figure 8.2 plots
the pixel drive voltage, i.e. at the gate of T2, versus photocurrent. The figure shows
that the use of a PMOS instead of an NMOS load for logarithmic conversion results



CHAPTER 8. CONCLUSION 159

N
©

e
e}

N
\l

N
ol

[\
~
T
1

Pixel drive voltage (V)
N
D

2.3

-+ Conventional (NMQOS load) L
2.2| — - Conventional (PMOS load)
—— Double current mirror
2.1 ' '
107 107 10
Photocurrent (A)

¢ 10

Figure 8.2: Simulated pixel drive voltage V.22 with respect to photocurrent Ip for the
conventional pixel circuit of Figure 4.1, with an NMOS or PMOS load, and the DCM
pixel circuit of Figure 8.1 (with a PMOS load).

in a higher gain—a subthreshold slope of 82 instead of 65mV per decade. As may be
shown with simulation, the reason is because the PMOS load has source and bulk nodes
at the same potential (the bulk node is not shown in Figure 8.1) whereas the NMQOS
load does not (in the p-sub process). A higher gain in the pixel means a higher signal
relative to subsequent noise introduced by the readout and ADC circuit. Figure 8.2
also shows that the subthreshold slope decreases at low photocurrents, starting at about
100pA for the conventional pixels. This is more obvious in the figure with the PMOS
load as its response deviates from that of the DCM pixel. However, the response with
the NMOS load has the same shape. The subthreshold slope of the DCM pixel begins
to decrease at about 3pA, which means it has better sensitivity in dim lighting. Note
that the responses of the two pixels with PMOS loads exhibits a strong inversion effect
for photocurrents greater than 0.1uA, unlike that of the NMOS load. The reason is be-
cause of a lower mobility of holes compared to electrons, which means the on-current
of a PMOS transistor is lower than that of an equally sized NMOS transistor. Exten-
sion of the logarithmic range may be achieved using wider or shorter PMOS devices
but note that the DCM pixel makes up for the loss at low photocurrents.

Lastly, Figure 8.3 plots the reverse bias voltage of the photodiode for each of the
pixel simulations. As can be seen, only the DCM pixel has a reverse bias voltage close
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Figure 8.3: Simulated reverse bias voltage Vp of the photodiode with respect to pho-
tocurrent I p for the conventional pixel circuit of Figure 4.1, with an NMOS or PMOS
load, and the DCM pixel circuit of Figure 8.1 (with a PMOS load).

to zero over the wide photocurrent range (the conventional pixels do not even have con-
stant reverse bias voltages). The increase in reverse bias voltage at low photocurrents
may indicate that some current is always needed for correct operation of the feedback
mechanism. When the photocurrent is too low for the circuit in Figure 8.1 to work, the
reverse bias voltage is allowed to increase. However, the simulation may not be reli-
able for small currents. The effect of device parameter variation on the feedback needs
consideration but it may not be reliably assessed with a Monte Carlo simulation due to
the small currents involved and the lack of stochastic variation of leakage currents as
well as distance and layout considerations in the mismatch model. Transistors in the
current mirrors may be laid out next to each other with good alignment. Therefore,
the performance of the DCM pixel may best be judged with experiment. The obvious
disadvantage of the DCM pixel, as compared to the conventional NMOS pixel, is that
it requires three additional transistors and that two of them are PMOS, which requires
an n-well in each pixel. However, a layout with a fill factor of 28% is possible for a
10pum x 10um pixel in the AMS process, which is reasonable.
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8.2.2 Readout circuit

As shown in this thesis, the readout circuit may contribute significantly to FPN, es-
pecially with a poor choice of switch position and with premature digitisation. These
transient issues dominate the gain variation of the Fuga 15RGB. However, the tran-
sient response of the readout circuit is not the only contribution to gain variation, as
shown in Chapter 4 with the simulation results, where double variation proved to be
the best model of steady state variation. Once bias variation is sufficiently reduced,
a reduction of steady state gain variation would lead to further simplification of FPN
calibration and correction and colour calibration and rendition. In theory, if both bias
and gain variation were sufficiently minimised, no FPN calibration would be necessary
as offset variation would be adequately corrected by subtracting the dark response of a
pixel from the light response, which would also compensate for temperature and aging
effects. Steady state gain variation may be attributed to two sources: a variation of the
subthreshold slope of the pixel load, which was considered in Chapter 4, and a vari-
ation of the small signal gain of the readout stages, which was not considered in this
thesis. Preliminary simulations suggest the latter is more significant.

Optimisation of the readout stages will reduce their small signal gain variation.
Preliminary analysis indicates that the switch transistor plays a significant role in any
optimisation. When the width of the switch transistor is small (or the length is large),
its drain-source resistance in the on-state is high, which has a nonlinear effect on the
response as follows. For the first or second stage, the bus voltage of the source fol-
lower depends on the voltage across the switch but the voltage across the switch itself
depends on the bus voltage because the on-resistance of the switch is set by the gate-
source voltage of the transistor. Furthermore, the on-resistance and nonlinear response
will vary with the threshold voltage of the switch, causing a small signal gain variation.
Increasing the width of all switch transistors to achieve smaller on-resistances also in-
creases the source-bulk junction capacitances, which increases the settling time of the
readout stage. Therefore, optimisation must balance the desire to minimise gain varia-
tion with the desire to have small transistors and short settling times. Performance may
improve with shrinking feature sizes, as decreasing the length of the switch reduces the
on-resistance and transistor size without increasing the junction capacitance.

Another contribution to steady state gain variation is a column-to-column variation
of the current source that biases the source follower of the parallel first stage readouts.
The magnitude of the current is determined by the gate-source voltage and size of
transistor T4 in the circuit of Figure 4.1. A variation of the threshold voltage of T4
from column to column causes the current to vary, which in turn causes the small signal
gain to vary. Such variation may be minimised by designing the circuit to operate with
a large value of the gate-source voltage so that the degree of current variation relative
to threshold voltage variation is reduced.

Readout circuits that do not involve source followers may be considered to see if
they provide a faster response and/or a lower gain variation. One circuit that may have
a fast response and a near unity gain (the source follower gain is less than unity because
of the body effect) is the differential amplifier with feedback [13], given in Figure 8.4.
In this readout circuit, as drawn for the first stage, T2 and T3 are part of a pixel cir-
cuit as before. The remaining transistors are found at the end of each column. The
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Figure 8.4: The first stage readout implemented with a unity gain differential amplifier
instead of a source follower. Transistors T2 & T3 belong to the pixel circuit. The
remaining transistors, including the PMOS current mirror, belong to the column circuit.

differential amplifier is biased by the current source T4 and its output, i.e. the drain
of T2', is connected to one of its inputs, i.e. the gate of T2’, to achieve negative feed-
back. As the current in the left half of the circuit approximately equals the current in
the right half of the circuit, due to the PMOS current mirror, the gate-source voltage of
T2’ approximately equals the gate-source voltage of T2, assuming the on-resistance of
the switch T3 is negligible. Since the source voltages of T2 and T2’ are also approx-
imately equal, when there is a negligible voltage across T3, the gate voltage of T2’
follows the gate voltage of T2 with near unity gain. In practice, the circuit may exhibit
gain variation from pixel to pixel and column to column due to nonidealities of the
switch T3 and because, with many transistors, there are many device parameters that
may vary from column to column. However, the differential amplifier with feedback
may be ideal for the second stage readout as it may be optimised to achieve a better
transient response than the simple source follower with less concern for gain variation.
In the second stage, which must operate at a much faster rate than the first stage, there
is only one such amplifier driving the output bus and so all transistors, except for the
input and switch, are common to the response of all pixels.

A careful theoretical analysis supplemented by Monte Carlo, DC and transient sim-
ulations will illustrate how to design the readout circuit so as to minimise steady state
gain variation without spoiling the transient response. The best design will ultimately
need confirmation with experiment.
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8.2.3 Tonemapping

Once a high dynamic range image is captured, corrected for FPN and rendered into
a standard colour space, a problem remains in terms of display. Standard displays
are incapable of rendering more than two decades of illuminance [5]. A solution to
this problem does not necessarily require a high dynamic range display although the
development of such a display would enhance the sense of virtual reality. Rather, the
high dynamic range image must be mapped to the low dynamic range display with a
minimal loss of perceptual information in the process. This challenging task, called
tone mapping, involves making bright objects darker and dark objects brighter while
preserving the relative brightness of objects in the scene and the sensation of colour
(for colour images). There is a biological precedent for tone mapping as the optic
nerve does not carry as much dynamic range information as humans can perceive and
therefore the eye itself accomplishes some of the tasks described above by dilation and
constriction of the pupil, as the eye moves from fixation point to fixation point in a
scene, and by adaptation of the retinal cells. However, these nonlinear aspects of scene
perception are not understood as well as the linear aspects of light sensation.

Different approaches exist in the literature for tone mapping, such as homomor-
phic filtering, retinex filtering and histogram modification. Homomorphic and retinex
filtering perform a two dimensional convolution operation on images to imitate lateral
inhibition in the retina. While this operation may be useful for machine vision, it may
be argued that spatial filtering is uneccessary for images displayed to human observers
as such processing, which includes edge enhancement, would occur during observation
of the display. Therefore, any tone mapping must consider the subsequent processing
likely to occur with human perception. Only the processing that would fail to occur,
because of the limited dynamic range of the display, needs to be reproduced artificially.

Histogram based approaches show a lot of promise in the mapping of high dynamic
range images to low dynamic range displays. Figure 8.5 shows a high dynamic range
image, displayed with only two decades of illuminance, using four types of histogram
processing. The first mapping shows only the central two decade range of illuminances,
with saturated patches for other illuminances. The second mapping compresses the
high dynamic range to two decades with a gamma function so that the minimum and
maximum illuminances of the recorded image correspond to the minimum and maxi-
mum illuminances of the displayed image. This approach tends to obscure perceptible
detail when most illuminances cover a narrow range as it chooses a mapping based
on extreme illuminances. A third approach is histogram equalisation, which applies a
monotonic function to pixel responses so that the displayed image uses available illumi-
nances equally. The disadvantage of this approach is that it exaggerates contrast when
most illuminances cover a narrow range and it may increase the visibility of noise.

The best approach shown in Figure 8.5 is taken from Larson et al’s work on ren-
dering of computer generated images for the visualisation of architectural designs [5].
This application involves a simulation of the light field encountered at a viewpoint
in a virtual world, using ray tracing with models of illuminant sources and object re-
flectances. The light field is computed in a standard colour space and often contains a
high dynamic range of illuminances, which are impossible to display. In essence, this
is the same problem encountered when displaying an image taken with a high dynamic



CHAPTER 8. CONCLUSION 164

Figure 8.5: Tone mapping of a high dynamic range image using histogram clipping
(top left), gamma compression (top right), histogram equalisation (bottom left) and
Larson et al’s method (bottom right) [5].

range sensor that is calibrated to a standard colour space. Larson et al developed an
algorithm, based on human vision, to map such images to an image for a standard dis-
play, in a manner that simulates a direct observation of the scene. This algorithm is a
histogram method because the same monotonic function is applied to the response of
every pixel. In one sense, it is like histogram equalisation because it tries to equalise
the available display illuminances. However, the algorithm prevents the displayed con-
trast from exceeding the contrast in the original image. Future work will investigate
this and other approaches to map high dynamic range images, taken with logarithmic
CMOS image sensors, to low dynamic range displays.
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