

Channel inversion in MIMO systems over Rician fading

Damith Senaratne, Chintha Tellambura

University of Alberta, Canada {damith, chintha}@ece.ualberta.ca

Himal A. Suraweera National University of Singapore elesaha@nus.edu.sg

Globecom 2010

Overview

- Extends [Senaratne2009] on Rayleigh fading

- Scope:

- MIMO, eigenmode transmission
- Ricean fading
- channel inversion (CI) power allocation scheme

allocated power
$$\longrightarrow p_i \propto \frac{1}{|\alpha_i|^2} \longleftarrow \alpha_i$$
 - channel coefficient

Overview

- Extends [Senaratne2009] on Rayleigh fading

- Scope:

- MIMO, eigenmode transmission
- Ricean fading
- channel inversion (CI) power allocation scheme

allocated power
$$\longrightarrow p_i \propto \frac{1}{|\alpha_i|^2} \longleftarrow \alpha_i$$
 - channel coefficient

- Why CI?

- CI (at tx.) \approx ZF (at tx.) + instantaneous total power constraint
 - e.g. multi-user MIMO downlink
- eigenmodes/ VCs with identical rx. SNR
 - multi-user fairness
 - optimal if same coding & modulation schemes
- non-iterative
- unlike water-filling

Overview...

- Rank 2 channel matrix: *H* (restricted)
- User $1 \rightarrow$ User 2 (or User $2 \rightarrow$ User 1) communication
- *H* assumed to be $2 \times n$, $n \ge 2$

- MIMO channel:
-
$$H = aH_{sp} + bH_{sc}$$
, where $a^2 + b^2 = 1$
- $K = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, where $a^2 + b^2 = 1$
- $k = aH_{sp} + bH_{sc}$, w

W and Ω

Overview...

- Let

$$- \{\lambda_1, \lambda_2\} = eig(W) \qquad \longleftarrow \qquad unordered \ eigenvalues$$
$$- (\omega_1, \omega_2 | \omega_1 > \omega_2) = eig(\Omega) \qquad \longleftarrow \qquad ordered \ eigenvalues,$$
$$let \ \boldsymbol{\omega} = [\omega_1, \omega_2]$$

- SNR under eigenmode transmission: $\{\lambda_1, \lambda_2\}$

- SNR under eigenmode transmission + channel inversion $\propto \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \Lambda$ (say)

- note:
$$\lambda_1 p_1 = \lambda_2 p_2$$
, $p_1 + p_2 = const$

- Our approach:

- characterization of Λ (i.e. PDF)

- exact error and outage performance
- high SNR regime

Analysis

- Joint PDF of λ_1 , λ_2 [Smith2004]

$$f_{\lambda_{1},\lambda_{2}}(\lambda_{1},\lambda_{2}) = \frac{exp[-(\omega_{1}+\omega_{2})]}{2} \frac{(\lambda_{1}-\lambda_{2})(\lambda_{1}\lambda_{2})^{\frac{n-2}{2}}}{(\omega_{1}-\omega_{2})(\omega_{1}\omega_{2})^{\frac{n-2}{2}}} exp[-(\lambda_{1}+\lambda_{2})] \\ \left(I_{n-2}(2\sqrt{\omega_{1}\lambda_{1}})I_{n-2}(2\sqrt{\omega_{2}\lambda_{2}}) - I_{n-2}(2\sqrt{\omega_{1}\lambda_{1}})I_{n-2}(2\sqrt{\omega_{2}\lambda_{2}})\right)$$

 $I_n(.)$ - Bessel I fⁿ

- PDF of Λ derived using

$$f_{\Lambda}(x) = \int_0^\infty \frac{(t+x)^2}{t^2} f_{\lambda_1,\lambda_2}\left(t+x,\frac{x(t+x)}{t}\right) dt$$

and infinite series expansion of $I_n(.)$

- case: $\omega_1 \ge \omega_2 > 0$ - case: $\omega_1 > 0, \omega_2 = 0$ - case: $\omega_1 > 0, \omega_2 = 0$ - case: $\omega_1 = \omega_2 = 0$ - case: $\omega_$

Analysis - PDF of Λ

case: $\omega_1 \ge \omega_2 > 0$

$$f_{\Lambda}(x) = \sum_{\substack{i=0\\i=2}}^{\infty} \sum_{\substack{j=0\\j=0}}^{i} \frac{\mathbb{g}_{j,(i-j)}(\omega_1, \omega_2)}{(j+n-2)! (i-j+n-2)! j! (i-j)!}$$

$$\sum_{\substack{i+2n-1\\i+2n-1\\p}}^{i+2n-1} \binom{i+2n-1}{p} \exp(-2x) x^{i+2n-2}$$

$$\binom{K_{n+j-p}(2x) - K_{n+j-p-1}(2x)}{(K_{n+j-p-1}(2x))}$$

where

$$g_{i,j}(\alpha,\beta) = \begin{cases} \frac{\exp(-(\alpha+\beta))}{(\alpha-\beta)} \left(\alpha^{i}\beta^{j} - \alpha^{j}\beta^{i}\right), & \alpha \neq \beta \\ (i-j)\alpha^{i+j-1}\exp(-2\alpha), & \alpha = \beta \end{cases}$$

Analysis - PDF of Λ

case: $\omega_1 \ge \omega_2 > 0$

1----

$$f_{\Lambda}(x) \cong \sum_{i=0}^{l_{max}} \sum_{j=0}^{i} \frac{\mathbb{g}_{j,(i-j)}(\omega_{1},\omega_{2})}{(j+n-2)!(i-j+n-2)!j!(i-j)!}$$

$$\sum_{\substack{i+2n-1\\p}}^{i+2n-1} \binom{i+2n-1}{p} \quad \text{for } \boldsymbol{\omega} = [1,4]$$

$$\underbrace{\begin{array}{c} \epsilon & x \text{ point of truncation } (I_{max}) \\ \hline for n = 2 & \text{for } n = 4 \\ 1 \times 10^{-5} & 0.1 & 20 & 9 \\ \hline 1.0 & 21 & 11 \\ \hline 1 \times 10^{-13} & 0.1 & 30 & 17 \\ \hline 1.0 & 31 & 19 \\ \hline 5.0 & 33 & 22 \\ \hline I_{max} = i \text{ beyond which } |\text{terms}| < \epsilon \times \exp(-(\omega_{1} + \omega_{2})) \end{array}}$$

12/6/2010

Analysis - PDF of Λ ...

case: $\omega_1 > 0$, $\omega_2 = 0$

$$f_{\Lambda}(x) = \sum_{i=0}^{\infty} \frac{\omega_1^{i-1} \exp(-\omega_1)}{(n-2)! (i+n-2)! i!} \sum_{p=0}^{i+2n-1} {i+2n-1 \choose p} \exp(-2x) x^{i+2n-2} \left(K_{n+i-p}(2x) - K_{n-p}(2x) - K_{n+i-p-1}(2x) + K_{n-p-1}(2x) \right)$$

case: $\omega_1 = \omega_2 = 0$

$$f_{\Lambda}(x) = \frac{1}{(n-2)! (n-1)!} \sum_{p=0}^{2n} {\binom{2n}{p}} \exp(-2x) x^{i+2n-1}$$
$$(K_{n+i-p}(2x) - 2K_{n-p}(2x) + K_{n-p-1}(2x))$$

Applications

- Outage probability
$$F_{\Lambda}(x) = \int_{0}^{x} f_{\Lambda}(t) dt$$

$$\int_{0}^{x} t^{\mu} \exp(-2t) K_{\nu}(2t) dt = \frac{\sqrt{\pi}}{4^{\mu+1}} G_{2,3}^{2,1} \left(4x \Big|_{\mu+\nu+1,\mu-\nu+1,0}^{\mu+1.5} \right)$$

$$\mathcal{G}_{p,q}^{m,n}(.|...) - \text{Meijer G}$$

- Average symbol error rate
$$\mathcal{E}_{\Lambda}\left[\alpha Q\left(\sqrt{2\beta\Lambda}\right)\right] = \frac{\alpha}{2}\sqrt{\frac{\beta}{\pi}}\int_{0}^{\infty}\frac{\exp(-\beta t)}{\sqrt{t}}F_{\Lambda}(t)dt$$

$$\int_{0}^{\infty}t^{-0.5}\exp(-\beta t)\mathcal{G}_{2,3}^{2,1}\left(4t\Big|_{\mu,\nu,0}^{1,\rho}\right)dt = \beta^{-0.5}\mathcal{G}_{3,3}^{2,2}\left(\frac{4}{\beta}\Big|_{\mu,\nu,0}^{0.5,1,\rho}\right)$$

- Moment generating function

$$\mathcal{M}_{\Lambda}(s) = \mathcal{E}_{\Lambda}[exp(-s\Lambda)]$$

- High SNR behavior (e.g. diversity order = n 1 as in ZF)
 - note: $f_{\Lambda}(x)$ is a weighted sum of $\exp(-2x) x^{\mu} K_{\nu}(2x)$ terms

fn

Numerical Results

Fig. 3. The cdf, analytic (solid lines) vs. simulated (\blacksquare), of Λ in (3) over a $2 \times n$ MIMO system, in Rician fading modeled by a rank-2 non-centrality matrix having eigenvalues [4, 1]. The cdf for Rayleigh fading is shown in dotted lines.

12/6/2010

11

Numerical Results...

Fig. 4. The average SER for BPSK (i.e. $\alpha = 1, \beta = \frac{b^2}{2} \bar{\gamma}_0$), analytic vs. simulated (\blacksquare), for a 2×3 MIMO system, in Rician fading modeled by a rank-1 non-centrality matrix parameterized [17] by { $\theta_t = 20^\circ, \theta_r = 10^\circ, d = 1$ }. [Smith2004]

12

Numerical Results...

Fig. 5. The average SER for BPSK (i.e. $\alpha = 1, \beta = \frac{b^2}{2}\bar{\gamma}_0$), analytic (solid lines) vs. simulated (\blacksquare), for a $2 \times n$ MIMO system, in Rician fading modeled by a rank-2 non-centrality matrix having equal eigenvalues of 1, for $b = \sqrt{2}$. Asymptotic SER curves are shown in dotted lines.

12/6/2010

13

References

- **[Senaratne2009]** D. Senaratne and C. Tellambura, "Performance analysis of channel inversion over MIMO channels," in Proc. IEEE Global Communication Conference, Honolulu, HI, Dec. 2009.
- **[Smith2004]** P. J. Smith and L. M. Garth, "Exact capacity distribution for dual MIMO systems in Ricean fading," IEEE Commun. Lett., vol. 8, no. 1, pp. 18–20, Jan. 2004.

Conclusion

- Performance analysis of
 - MIMO eigenmode transmission
 - channel inversion power allocation
 - Ricean fading
- Exact outage, avg. symbol error rate, moment generating function results
- High SNR behavior
 - same diversity order as ZF
- Observations: SER improvement
 - marginal with Rice factor (K)
 - significant with # antennas (n)

Conclusion

- Performance analysis of
 - MIMO eigenmode transmission
 - channel inversion power allocation
 - Ricean fading
- Exact outage, avg. symbol error rate, moment generating function results
- High SNR behavior
 - same diversity order as ZF
- Observations: SER improvement
 - marginal with Rice factor (K)
 - significant with # antennas (n)

CI + eigenmode tx. - alternative to/ varient of ZF