Generalized Singular Value Decomposition for Coordinated Beamforming in MIMO systems

Damith Senaratne and Chintha Tellambura
\{damith, chintha\}@ece.ualberta.ca
University of Alberta, Canada

Globecom 2010

Multiple Input Multiple Output (MIMO) Channel

System Model: $\underset{\text { channel matrix }}{\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{n}} \quad \boldsymbol{H}=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23}\end{array}\right]_{2 \times 3}$

Beamforming (+ Spatial Multiplexing)

Two-User MIMO Channel

- Single Source, Two Destinations

$$
\begin{aligned}
& \boldsymbol{y}_{1}=\boldsymbol{H}_{1} \boldsymbol{x}+\boldsymbol{n}_{1} \\
& \boldsymbol{y}_{2}=\boldsymbol{H}_{2} \boldsymbol{x}+\boldsymbol{n}_{2}
\end{aligned}
$$

Coordinated Beamforming

$$
\begin{aligned}
& \boldsymbol{y}_{1}=\boldsymbol{r}_{1} \boldsymbol{H}_{1} \boldsymbol{w} \boldsymbol{x}+\boldsymbol{n}_{1} \\
& \boldsymbol{y}_{2}=\boldsymbol{r}_{2} \boldsymbol{H}_{2} \boldsymbol{w} \boldsymbol{x}+\boldsymbol{n}_{2}
\end{aligned}
$$

VC1, VC3 : point-to-point : private VCs
VC2 : point-to-2 point : common VC

$$
\begin{aligned}
& \boldsymbol{r}_{1} \boldsymbol{H}_{1} \boldsymbol{w}=\left[\begin{array}{ccc}
\boldsymbol{\lambda}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\mu}_{1} & \mathbf{0}
\end{array}\right]_{2 \times 3} \\
& \boldsymbol{r}_{2} \boldsymbol{H}_{2} \boldsymbol{w}=\left[\begin{array}{ccc}
\mathbf{0} & \boldsymbol{\mu}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{\lambda}_{2}
\end{array}\right]_{2 \times 3} \\
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\text { vc1 } & \text { vc2 } & \text { vc3 }
\end{array}
\end{aligned}
$$

Coordinated Beamforming

GSVD-based Beamforming

- non-iterative
- coordinated b/f scheme
- for 2 users
- possibility hinted in [Khisti2007]

$$
\begin{array}{rl}
\boldsymbol{r}_{1} \boldsymbol{H}_{1} \boldsymbol{w}= & {\left[\begin{array}{ccc}
\boldsymbol{\lambda}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\mu}_{1} & \mathbf{0}
\end{array}\right]_{2 \times 3}} \\
\boldsymbol{r}_{2} \boldsymbol{H}_{2} \boldsymbol{w}= & {\left[\begin{array}{ccc}
\mathbf{0} & \boldsymbol{\mu}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \boldsymbol{\lambda}_{2}
\end{array}\right]_{2 \times 3}} \\
& \begin{array}{c}
\uparrow \\
\mathrm{V} 1
\end{array} \\
\mathrm{VC} & \mathrm{vc} \\
\mathrm{VC} 3
\end{array}
$$

Generalized Singular Value Decomposition (GSVD)

- joint matrix decomposition technique
- Definition 1: Van Loan form [Loan1976]

Consider two matrices, $\boldsymbol{H} \in \mathcal{C}^{m \times n}$ with $m \geq n$, and, $\boldsymbol{G} \in \mathcal{C}^{p \times n}$ having the same number \boldsymbol{n} of columns. Let , $q=\min (p, n)$. \boldsymbol{H} and \boldsymbol{G} can be jointly decomposed as

$$
\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{Q} \text { and } \boldsymbol{G}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{Q}
$$

where
(i) $\boldsymbol{U} \in \mathcal{C}^{m \times m}, \boldsymbol{V} \in \mathcal{C}^{p \times p}$ are unitary,
(ii) $\boldsymbol{Q} \in \mathcal{C}^{n \times n}$ is non-singular,
(iii) $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right) \in \mathcal{C}^{m \times n}, \sigma_{i} \geq 0$, and
(iv) $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{q}\right) \in \mathcal{C}^{p \times n}, \lambda_{i} \geq 0$.

- use for b/f:

$$
\mathbf{w}=\underset{\substack{\text { normalization coefficient }}}{\propto \boldsymbol{Q}^{-1}, \boldsymbol{r}_{1}=\boldsymbol{U}^{H}, \boldsymbol{r}_{2}=\boldsymbol{V}^{H} \quad\left(\boldsymbol{r}_{1} \boldsymbol{H} \boldsymbol{w}=\alpha \boldsymbol{\Sigma}, \text { and } \boldsymbol{r}_{2} \boldsymbol{G} \boldsymbol{w}=\alpha \boldsymbol{\Lambda}\right)}
$$

- Definition 2: Paige \& Saunders form [Paige1981]

Consider two matrices, $\boldsymbol{H} \in \mathcal{C}^{m \times n}$ and $\boldsymbol{G} \in \mathcal{C}^{p \times n}$ having the same number n of columns. Let $\boldsymbol{C}^{\boldsymbol{H}}=\left[\begin{array}{ll}\boldsymbol{H}^{\boldsymbol{H}} & \boldsymbol{G}^{\boldsymbol{H}}\end{array}\right] \in \mathcal{C}^{n \times(m+p)}, \mathrm{t}=\operatorname{rank}(\boldsymbol{C}), \mathrm{r}=\mathrm{t}-\operatorname{rank}(\boldsymbol{G})$, and $\mathrm{s}=\operatorname{rank}(\boldsymbol{H})+\operatorname{rank}(\boldsymbol{G})-\mathrm{t}$.
\boldsymbol{H} and \boldsymbol{G} can be jointly decomposed as

$$
\begin{aligned}
& H=U\left[\begin{array}{ll}
\boldsymbol{\Sigma} & 0_{1}
\end{array}\right] Q=U \Sigma \widehat{\boldsymbol{Q}}, \\
& G=V\left[\begin{array}{ll}
\Lambda & 0_{2}
\end{array}\right] Q=V \Lambda \widehat{\mathbf{Q}},
\end{aligned}
$$

where $\widehat{\boldsymbol{Q}}=\{\boldsymbol{Q}\}_{R(t)}$ and
(i) $\boldsymbol{U} \in \mathcal{C}^{m \times m}, \boldsymbol{V} \in \mathcal{C}^{p \times p}$ are unitary,
(ii) $\boldsymbol{Q} \in \mathcal{C}^{n \times n}$ is non-singular,
(iii) $\mathbf{0}_{\mathbf{1}} \in \mathcal{C}^{m \times(n-t)}, \mathbf{0}_{\mathbf{2}} \in \mathcal{C}^{p \times(n-t)}$ are zero matrices
(iv) $\boldsymbol{\Sigma} \in \mathcal{C}^{m \times t}, \boldsymbol{\Lambda} \in \mathcal{C}^{p \times t}$ having structures

$$
\boldsymbol{\Sigma}=\left[\begin{array}{lll}
\boldsymbol{I}_{\boldsymbol{H}} & & \\
& \widetilde{\mathbf{\Sigma}} & \\
& & \mathbf{0}_{\boldsymbol{H}}
\end{array}\right] \text {, and } \boldsymbol{\Lambda}=\left[\begin{array}{lll}
\mathbf{0}_{\boldsymbol{G}} & & \\
& \widetilde{\boldsymbol{\Lambda}} & \\
& & \boldsymbol{I}_{\boldsymbol{G}}
\end{array}\right] .
$$

$\boldsymbol{I}_{\boldsymbol{H}} \in \mathcal{C}^{r \times r}, \boldsymbol{I}_{\boldsymbol{G}} \in \mathcal{C}^{(t-r-s) \times(t-r-s)}$ are unitary. $\mathbf{0}_{\boldsymbol{H}} \in \mathcal{C}^{(m-r-s) \times(t-r-s)}, \mathbf{0}_{\boldsymbol{G}} \in$ $\mathcal{C}^{(p-t+r) \times r}$ are zero matrices possibly having no rows or no columns.

$$
\widetilde{\boldsymbol{\Sigma}}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{s}\right), \widetilde{\boldsymbol{\Lambda}}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{s}\right) \in \mathcal{C}^{s \times s}
$$

$1 \neq 1 / / 2010$ such that $1 \geq \sigma_{1} \geq \cdots \geq \sigma_{s} \geq 0$ and $\sigma_{i}{ }^{2}+\lambda_{i}{ }^{2}=1$.

GSVD-based Beamforming

-b/f matrices using GSVD of channel matrices

- number of 'common' vs. 'private' VCs (assuming: no rank deficiency)

Applications

- MIMO subsystems
- single-source transmitting private/ common messages to 2 destinations
- each destination possibly requiring to process some of the messages
e.g.
- relay networks (AF, DF, CF)
- broadcasting
- physical layer multicasting
- two-way-relay networks

Example (AF Relaying)

Why?

SVD-based b / f is also possible if effective channel is point-to-point

$$
\begin{aligned}
& \text { TS1: } \boldsymbol{y}_{1}=\boldsymbol{H}_{1} \boldsymbol{w} \boldsymbol{x}+\boldsymbol{n}_{1}, \boldsymbol{y}_{2}=\boldsymbol{H}_{2} \boldsymbol{w} \boldsymbol{x}+\boldsymbol{n}_{2} \\
& \text { TS2: } \boldsymbol{y}_{3}=\boldsymbol{H}_{3} \boldsymbol{F} \boldsymbol{y}_{1}+\boldsymbol{n}_{3}
\end{aligned}
$$

GSVD-based b/f (in TS1)

$$
\begin{aligned}
& \text { GSVD }: \boldsymbol{H}_{1}=\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1} \boldsymbol{Q}, \boldsymbol{H}_{2}=\boldsymbol{U}_{2} \boldsymbol{\Sigma}_{2} \boldsymbol{Q} \\
& \text { SVD } \quad: \boldsymbol{H}_{3}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{R}^{H} \\
& \Rightarrow \boldsymbol{w}=\alpha\left\{\boldsymbol{Q}^{-1}\right\}_{C(n)}, \mathbf{F}=\boldsymbol{R} \boldsymbol{U}_{1}{ }^{H} \\
& \quad \boldsymbol{r}_{1}=\left\{\boldsymbol{U}_{2}{ }^{H}\right\}_{R(n)}, \boldsymbol{r}_{2}=\left\{\boldsymbol{V}^{H}\right\}_{R(n)} \\
& \quad \hat{\boldsymbol{y}}=\boldsymbol{r}_{1} \boldsymbol{y}_{2}+\boldsymbol{r}_{2} \boldsymbol{y}_{3},
\end{aligned}
$$

Assumption: Van Loan form of GSVD holds Note: an expression for α not known

SVD-based b/f (for comparison)

$$
\begin{aligned}
& \widehat{\boldsymbol{y}}=\boldsymbol{r}\left[\begin{array}{l}
\boldsymbol{y}_{3} \\
\boldsymbol{y}_{2}
\end{array}\right]=\boldsymbol{r}(\underbrace{\left.\left[\begin{array}{c}
\boldsymbol{H}_{3} \boldsymbol{F} \boldsymbol{H}_{1} \\
\boldsymbol{H}_{2}
\end{array}\right] \boldsymbol{w} \boldsymbol{x}+\left[\begin{array}{c}
\boldsymbol{H}_{3} \boldsymbol{F} \boldsymbol{n}_{1} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{l}
\boldsymbol{n}_{3} \\
\boldsymbol{n}_{2}
\end{array}\right]\right)}_{\widehat{\boldsymbol{H}}} \begin{array}{l}
\mathrm{SVD}: \widehat{\boldsymbol{H}}=\widehat{\boldsymbol{U}} \widehat{\boldsymbol{\Sigma}} \widehat{\boldsymbol{V}}^{H}, \\
\quad \boldsymbol{H}_{1}=\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1} \boldsymbol{V}_{1}{ }^{H}, \boldsymbol{H}_{3}=\boldsymbol{U}_{3} \boldsymbol{\Sigma}_{3} \boldsymbol{V}_{3}{ }^{H} \\
\Rightarrow \mathbf{w}=\{\widehat{\boldsymbol{V}}\}_{C(n)}, \boldsymbol{F}=\boldsymbol{V}_{3} \boldsymbol{U}_{1}{ }^{H}, \\
\quad \boldsymbol{r}=\left\{\widehat{\boldsymbol{U}}^{H}\right\}_{R(n)}=\boldsymbol{r}_{1}=\boldsymbol{r}_{2}
\end{array} .
\end{aligned}
$$

Note: spatial modes not easily resolved at $(\mathbb{R}$

- not usable with DF optimal \boldsymbol{F} not always known

Example (AF Relaying)...

Fig. 6. The average SER of GSVD-based beamforming vs. SVD-based beamforming, for MIMO AF relaying with $N_{s}=4, N_{r}=3, N_{d}=5$, for $n=3$ common channels.

References

- [Khisti2007] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, "On the Gaussian MIMO wiretap channel," in Proc. Information Theory, IEEE International Symposium on, Nice, France, Jun. 2007, pp. 2471-2475.
- [Loan1976] C. F. V. Loan, "Generalizing the singular value decomposition," SIAM Journal on Numerical Analysis, vol. 13, no. 1, pp. 76-83, Mar. 1976.
- [Paige1981] C. C. Paige and M. A. Saunders, "Towards a generalized singular value decomposition," SIAM Journal on Numerical Analysis, vol. 18, no. 3, pp. 398-405, Jun. 1981.

Conclusion

- the use of GSVD for coordinated b / f examined
- a generalization of ZF (for single-source, two-destinations)
- similarity with SVD-based b/f
- possible applications highlighted [see: paper]
- AF relaying example
- a comparison with SVD-based b/f
- SVD-based b/f possible only if the effective channel is point-to-point e.g. single-source, single-destination, AF relaying
- improvements
- robustness
- perfect CSI requirement
- matrix inversion ($\boldsymbol{Q}^{\mathbf{- 1}}$)
- extending random matrix theory for analysis

Conclusion

- the use of GSVD for coordinated b/f examined
- a generalization of ZF (for single-source, two-destinations)
- similarity with SVD-based b/f
- possible applications highlighted [see: paper]
- AF relaying example
- a comparison with SVD-based b/f
- SVD-based b/f possible only if the effective channel is point-to-point e.g. single-source, single-destination, AF relaying
- improvements
- robustness
- perfect CSI requirement
- matrix inversion ($\boldsymbol{Q}^{\mathbf{- 1}}$)
- extending random matrix theory for analysis

GSVD-based b/f : another 'tool' like SVD-based b/f

