

Superimposed Pilot Based Joint CFO and Channel Estimation for CP-OFDM Modulated Two-Way Relay Networks

Gongpu Wang[†], Feifei Gao[‡], and Chintha Tellambura[†]

[†]University of Alberta, Edmonton, Canada, [‡]Jacobs University, Bremen, Germany Email: gongpu@ece.ualberta.ca

Globecom 2010

Outline

Introduction

- Problem Formulation
- Proposed Solution
- Simulation Results
- Conclusion

- ntroduction
- Problem Formulation Proposed Solution Simulation Results Conclusion

Introduction

- Two-way transmission was firstly exploited by Shannon [Shannon, 1961].
- Two-way relay networks (TWRN) now has drawn much attention due to its improved spectral efficiency over one-way relay networks (OWRN).
- The overall communication rate between two source terminals in TWRN is approximately twice that achieved in OWRN [Rankov, 2006].

Figure 1: System configuration for two-way relay network.

ntroduction

Problem Formulation Proposed Solution Simulation Results Conclusion

Introduction

- Most existing works in TWRN assumed perfect synchronization and channel state information (CSI).
- Channel estimation problems in amplify-and-forward (AF) TWRN are different from those in traditional communication systems.
- Flat-fading [Gao, 2009, TCOM] and frequency-selective [Gao, 2009, TSP] channel estimation and training design for AF TWRN.
- Joint frequency offset (CFO) and channel estimation: modeling [Wang, 2009, Globecom]; CP-OFDM [Wang, 2010, ICC]; ZP-OFDM [Wang, 2010, WCNC].

Introduction

Problem Formulation

Proposed Solution Simulation Results Conclusion

Problem Formulation

However, only the convoluted channel parameters a and b, and the mixed CFO value v can be found in the previous works.

$$w = f_r - f_1, \quad \mathbf{a} = (\mathbf{\Omega}^{(L+1)}[-w]\mathbf{h}_1) \otimes \mathbf{h}_1,$$
$$v = f_2 - f_1, \quad \mathbf{b} = (\mathbf{\Omega}^{(L+1)}[v - w]\mathbf{h}_1) \otimes \mathbf{h}_2.$$

- The individual frequency and channel parameters remain unknown to the source nodes.
- How to estimate individual frequency f_r, f_1, f_2 and channel parameters h_1 and h_2 ?

Proposed Solution

Introduction Problem Formulation Proposed Solution Simulation Results

Conclusion

Problem: How to obtain h_1 , h_2 and $w = f_r - f_1$?

Our solution: superimposed pilots + iterative algorithms.

Figure 2: Two-way relay network with superimposed pilots at the relay node.

Superimposed Pilot Aided Estimation

- For CP-OFDM, the ternimal node \mathbb{T}_1 will receive
 - $\mathbf{y} = \alpha \mathbf{H}_{cp}^{(N)}[\mathbf{a}]\mathbf{s}_1 + \alpha \mathbf{\Gamma}_L^{(N)}[v] \mathbf{H}_{cp}^{(N)}[\mathbf{b}]\mathbf{s}_2 + \mathbf{\Gamma}_L^{(N)}[w] \mathbf{H}_{cp}^{(N)}[\mathbf{h}_1] \mathbf{p}_0 + \mathbf{n}_e$ $= \alpha \mathbf{S}_1 \mathbf{a} + \alpha \mathbf{\Gamma}_L^{(N)}[v] \mathbf{S}_2 \mathbf{b} + \mathbf{\Gamma}_L^{(N)}[w] \mathbf{P} \mathbf{h}_1 + \mathbf{n}_e.$ (1)

where S_j is the $N \times (2L+1)$ circulant matrix with the first column s_i , and P is the $N \times (L+1)$ circulant matrix with the first column p_0 .

- **\blacksquare h**₁, **h**₂, *v* and *w* to be estimated.
- Iteration to further refine our estimates

 $[v^{(1)}, w^{(1)}] = \arg\min_{v, w} (\mathbf{y} - \alpha \mathbf{S}_1 \mathbf{a}^{(0)} - \alpha \boldsymbol{\Gamma}[v] \mathbf{S}_2 \mathbf{b}^{(0)} - \boldsymbol{\Gamma}[w] \mathbf{P} \mathbf{h}_1^{(0)})^H$ $\times \mathbf{R}^{-1} (\mathbf{y} - \alpha \mathbf{S}_1 \mathbf{a}^{(0)} - \alpha \boldsymbol{\Gamma}[v] \mathbf{S}_2 \mathbf{b}^{(0)} - \boldsymbol{\Gamma}[w] \mathbf{P} \mathbf{h}_1^{(0)}),$

where ${f R}$ is the covariance matrix of ${f n}_e.$

Introduction Problem Formulation Proposed Solution

Simulation Results Conclusion

Minimum Pilot Length

- Define $\mathcal{K}_1, \mathcal{K}_2$, and \mathcal{K}_r as the frequency domain pilot index sets from $\mathbb{T}_1, \mathbb{T}_2$, and \mathbb{R} , with cardinality K_1, K_2 , and K_r respectively.
- We require $K_1 \ge L+1$, $K_2 \ge L+1$, $K_r \ge L+1$ and $\mathcal{K}_1 \bigcup \mathcal{K}_2 \bigcup \mathcal{K}_r = \{1, \dots, N\}.$
- Since S_j and P are columnwise circulant matrices, they can be represented as

$$\mathbf{S}_{j} = \mathbf{F}^{H} \operatorname{diag}\{\tilde{\mathbf{s}}_{j}\} \mathbf{F}_{[:,1:2L+1]} = \mathbf{F}_{[:,\mathcal{K}_{j}]}^{H} \operatorname{diag}\{\breve{\mathbf{s}}_{j}\} \mathbf{F}_{[\mathcal{K}_{j},1:2L+1]}$$
(2)

$$\mathbf{P} = \mathbf{F}^{H} \operatorname{diag}\{\tilde{\mathbf{p}}_{0}\} \mathbf{F}_{[:,1:L+1]} = \mathbf{F}_{[:,\mathcal{K}_{r}]}^{H} \operatorname{diag}\{\breve{\mathbf{p}}_{0}\} \mathbf{F}_{[\mathcal{K}_{r},1:L+1]}.$$
 (3)

Minimum Pilot Length (continued)

■ Define $\bar{\mathcal{K}}_1$ as the complement set of \mathcal{K}_1 . Multiplying both sides with $\mathbf{F}_{[\bar{\mathcal{K}}_1,:]}$ yields

$$\mathbf{F}_{[\bar{\mathcal{K}}_{1},:]}\mathbf{y} = \underbrace{\begin{bmatrix} \alpha \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{\Gamma}[v] \mathbf{F}_{[:,\mathcal{K}_{2}]}^{H} \mathsf{diag}\{\breve{\mathbf{s}}_{2}\} & \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{\Gamma}[w] \mathbf{P} \end{bmatrix}}_{\mathbf{C}_{1}} \underbrace{\begin{bmatrix} \breve{\mathbf{b}} \\ \mathbf{h}_{1} \end{bmatrix}}_{\mathbf{d}_{1}} \\ + \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{n}_{e}, \tag{4}$$

where $\breve{\mathbf{b}} = \mathbf{F}_{[\mathcal{K}_2,1:2L+1]}\mathbf{b}$ is the DFT response of \mathbf{b} on the subcarrier set \mathcal{K}_2 and \mathbf{C}_1 is an $(N - K_1) \times (K_2 + L + 1)$ matrix.

Two-dimensional seach estimator:

$$\{\hat{v}, \hat{w}\} = \arg\max_{v, w} \mathbf{y}^{H} \mathbf{F}_{[\bar{\mathcal{K}}_{1}, :]}^{H} \mathbf{C}_{1} (\mathbf{C}_{1}^{H} \mathbf{C}_{1})^{-1} \mathbf{C}_{1}^{H} \mathbf{F}_{[\bar{\mathcal{K}}_{1}, :]} \mathbf{y}.$$
 (5)

$$\hat{\mathbf{d}}_1 = (\mathbf{C}_1^H \mathbf{C}_1)^{-1} \mathbf{C}_1^H \mathbf{F}_{[\bar{\mathcal{K}}_1,:]} \mathbf{y}.$$
 (6)

Minimum Pilot Length (continued)

Note that

$$\breve{\mathbf{b}} = \mathbf{F}_{[\mathcal{K}_2, 1:2L+1]} \mathbf{H}_{zp}^{(L+1)} [\mathbf{\Omega}^{(L+1)} [v - w] \mathbf{h}_1] \mathbf{h}_2.$$
(7)

Then, \mathbf{h}_2 can be estimated as $\hat{\mathbf{h}}_2 = (\mathbf{F}_{[\mathcal{K}_2,1:2L+1]} \mathbf{H}_{zp}^{(L+1)} [\mathbf{\Omega}^{(L+1)} [v-w] \mathbf{h}_1])^{\dagger} \breve{\mathbf{b}}.$ (8)

- Iteration can be applied to further improve the estimation performance.
- The minimum number of N is 3L + 5, when sets are disjoint and $K_1 = K_2 = L + 1$, $K_r = L + 3$.

Conclusion

A Special Case

- In practical applications, the relay terminal is often a simple device while the two source terminals may employ high-precision synchronization circuits.
- Thus, it is reasonable to expect the CFO between the two source terminals to be negligible.
- Then we can obtain

$$\mathbf{F}_{[\bar{\mathcal{K}}_{1},:]}\mathbf{y} = \underbrace{\alpha \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{\Gamma}[v] \mathbf{F}_{[:,\mathcal{K}_{2}]}^{H}}_{\approx \mathbf{0}} \operatorname{diag}\{\breve{\mathbf{s}}_{2}\} \mathbf{F}_{[\mathcal{K}_{i},1:2L+1]}\mathbf{b} + \underbrace{\mathbf{G}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{\Gamma}[w] \mathbf{P}}_{\approx \mathbf{0}} \mathbf{h}_{1} + \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{n}_{e}, \qquad (9)$$

■ CFO w can be estimated as

$$\hat{w} = \arg\max_{w} \mathbf{y}^{H} \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]}^{H} \mathbf{C}_{2} (\mathbf{C}_{2}^{H} \mathbf{C}_{2})^{-1} \mathbf{C}_{2}^{H} \mathbf{F}_{[\bar{\mathcal{K}}_{1},:]} \mathbf{y}, \qquad (10)$$

Conclusion

Simulation Results: Minimum Pilot Length Case

Figure 3: CFO estimation MSE versus SNR: N = 14

Conclusion

Simulation Results: Minimum Pilot Length Case

Figure 4: Channel estimation MSE versus SNR: N = 14

Conclusion

Simulation Results: A Special Case

Figure 5: CFO estimation MSE versus SNR: N = 9

Conclusion

Simulation Results: A Special Case

Figure 6: Channel estimation MSE versus SNR: N = 9

Conclusion

- Estimate individual channel parameters by introducing superimposed pilots at the relay node and using iterative algorithms.
- Less training is needed.
- Special case: small v.

Conclusion

Table 1: Comparison between adapted CP-OFDM and superimposed pilot aided CP-OFDM.

	Minimum Pilot Length	Estimated Parameters
adapted CP-OFDM	4L+3	a , b and v
superimposed pilot	3L+5	\mathbf{h}_1 , \mathbf{h}_2 , \mathbf{a} , \mathbf{b} , v and w

Questions and discussion?

Email: gongpu@ece.ualberta.ca