

BEM-Based Estimation for Time-Varying Channels and Training Design in Two-Way Relay Networks

Gongpu Wang[†], Feifei Gao[‡], and Chintha Tellambura[†]

[†]University of Alberta, Edmonton, Canada, [‡]Jacobs University, Bremen, Germany Email: gongpu@ece.ualberta.ca

Globecom 2010

Outline

Introduction

- Problem Formulation
- Proposed Solution
- Simulation Results
- Conclusion

- Introduction
- Problem Formulation Proposed Solution Simulation Results Conclusion

Introduction

- Two-way transmission was firstly exploited by Shannon [Shannon, 1961].
- Two-way relay networks (TWRN) now has drawn much attention due to its improved spectral efficiency over one-way relay networks (OWRN).
- The overall communication rate between two source terminals in TWRN is approximately twice that achieved in OWRN [Rankov, 2006].

Introduction

Problem Formulation

Proposed Solution Simulation Results Conclusion

Problem Formulation

- For TWRNs, the relay and the two sources can be mobile, and the relative motion between any two nodes doubles the Doppler spread.
- This fact places additional demands on the estimation of time-varying channels.
- How to estimate time-varying channels f[n] and g[n]? How to design training sequences ?

Figure 2: System model for TWRN with time varying channel.

BEM + TLS + Optimal Training Sequence

 \blacksquare The BEM of f[n] and g[n] can be expressed as

$$f[n] = \sum_{q=0}^{Q} f_q e^{jw_q n}, \quad 0 \le n \le N - 1$$
(1)
$$g[n] = \sum_{q=0}^{Q} g_q e^{jw_q n}, \quad 0 \le n \le N - 1.$$
(2)

• The received signal at \mathbb{T}_1 can be written as

$$y[n+M+\Delta] = \alpha \Big(\sum_{q=0}^{Q} f_q e^{jw_q(n+M+\Delta)}\Big) \Big(\sum_{q=0}^{Q} f_q e^{jw_q n}\Big) s_1[n]$$

+ $\alpha \Big(\sum_{q=0}^{Q} f_q e^{jw_q(n+M+\Delta)}\Big) \Big(\sum_{q=0}^{Q} g_q e^{jw_q n}\Big) s_2[n]$
+ $\alpha f[n+M+\Delta] w_r[n] + w_1[n+M+\Delta].$ (3)

BEM

■ Define A as a $M \times (Q+1)^2$ Vandermonde matrix with the (i(Q+1)+k)th column

$$\mathbf{A}[:, i(Q+1) + k] = e^{jw_i(M+\Delta)} \begin{bmatrix} 1 \\ e^{j(w_i+w_k)} \\ \vdots \\ e^{j(M-1)(w_i+w_k)} \end{bmatrix}, \quad (4)$$
$$i, k = 0, \dots, Q,$$

Then we can obtain

$$\mathbf{y} = \alpha \mathbf{S}_1 \mathbf{A} \mathbf{h}_1 + \alpha \mathbf{S}_2 \mathbf{A} \mathbf{h}_2 + \underbrace{\alpha \mathbf{f} \odot \mathbf{w}_r + \mathbf{w}_1}_{\mathbf{w}}, \tag{5}$$

where \odot denotes the Hadamard product, \mathbf{h}_1 is the $(Q+1)^2 \times 1$ vector with the (i(Q+1)+k)th entry $f_i f_k$, \mathbf{h}_2 is the $(Q+1)^2 \times 1$ vector with the (i(Q+1)+k)th entry $f_i g_k$, and \mathbf{w} denotes the equivalent combined noise.

BEM (continued)

Introduction Problem Formulation Proposed Solution Simulation Results

Conclusion

- Lemma: Matrix A defined in (4) has rank 2Q + 1.
- Combining those linearly dependent columns in A, we can rewrite (5) as

$$\mathbf{y} = \alpha \mathbf{S}_1 \mathbf{A}_0 \mathbf{x}_1 + \alpha \mathbf{S}_2 \mathbf{A}_0 \mathbf{x}_2 + \mathbf{w}, \tag{6}$$

where \mathbf{x}_i is a $(2Q+1) \times 1$ vector with entries

$$\mathbf{x}_1(m) = \sum_{i+k=m} e^{jw_i(M+\Delta)} f_i f_k, \quad m = 0, \dots, 2Q$$
(7)
$$\mathbf{x}_2(m) = \sum_{i+k=m} e^{jw_i(M+\Delta)} f_i g_k,$$
(8)

 \mathbf{A}_0 is an $M\times (2Q+1)$ Vandermonde matrix defined as

Total Least Square (TLS) Method

Equation (6) can be rewritten as

$$\mathbf{y} = \underbrace{\left[\alpha \mathbf{S}_1 \mathbf{A}_0, \alpha \mathbf{S}_2 \mathbf{A}_0\right]}_{\mathbf{C}} \underbrace{\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}}_{\mathbf{x}} + \mathbf{w}, \tag{9}$$

■ By assuming that y and C contain disturbance e and E, respectively, we obtain:

$$(\mathbf{C} + \mathbf{E})\mathbf{x} = \mathbf{y} + \mathbf{e}, \Leftrightarrow \underbrace{[-\mathbf{y}, \mathbf{C}]}_{\mathbf{J}} \mathbf{z} + \underbrace{[-\mathbf{e}, \mathbf{E}]}_{\mathbf{D}} \mathbf{z} = \mathbf{0}_{M \times 1},$$
 (10)

where $\mathbf{z} = [1, \mathbf{x}^T]^T$.

 \blacksquare The TLS finds $\mathbf{x}, \mathbf{E},$ and \mathbf{e} from the following optimization:

$$\min_{\mathbf{D},\mathbf{x}} ||\mathbf{D}\mathbf{z}||_F^2, \tag{11}$$

s.t.
$$(\mathbf{y} + \mathbf{e}) \in \mathsf{Range}(\mathbf{C} + \mathbf{E}),$$
 (12)

where $\|\cdot\|_F^2$ denotes the Frobenius norm of a matrix.

Total Least Square (TLS) Method

■ We solve the following optimization:

 $\min_{\mathbf{z}} ||\mathbf{J}\mathbf{z}||_F^2, \tag{13}$

9

The solution to (13) is easily proved to be eigenvector of J^HJ that corresponds to the smallest eigenvalue.

 \blacksquare The estimation of ${\bf x}$ can be expressed as

$$\hat{\mathbf{x}} = \frac{1}{\mathbf{V}(1, 4Q+3)} \begin{bmatrix} \mathbf{V}(2, 4Q+3) \\ \vdots \\ \mathbf{V}(4Q+3, 4Q+3) \end{bmatrix}, \quad (14)$$

where $V(m_1, m_2)$ is the (m_1, m_2) th entry of V.

$$\mathbf{J} = \mathbf{U} \begin{bmatrix} \sigma_1(\mathbf{J}) & & 0 \\ & \sigma_2(\mathbf{J}) & & \\ & & \ddots & \\ 0 & & & \sigma_{4Q+3}(\mathbf{J}) \end{bmatrix} \mathbf{V}^H, \quad (15)$$

Training Sequence Design

Consider the optimization problem

$$\arg\min_{\mathbf{s}_1,\mathbf{s}_2} \qquad \kappa \big(\mathbf{C}(\mathbf{s}_1,\mathbf{s}_2) \big) = \frac{\sigma_1(\mathbf{C})}{\sigma_{4Q+2}(\mathbf{C})}, \qquad (16)$$

where $\kappa(\cdot)$ denotes the condition number.

- **Type-1** Training: The training symbol from \mathbb{T}_1 and \mathbb{T}_2 appear alternatively with maximum power P_s and arbitrary phase.
- **Type-2 Training:** We choose $|s_1[n]| = P_s$ with arbitrary phase and set $s_2[n] = (-1)^n s_1[n]$.
- Theorem: Denote C from type-1 training as C₁, and that from type-2 training as C₂. The condition numbers of C₁ and C₂ are the same.

Conclusion

Simulation Results

Figure 3: Channel estimation MSE of ${\bf x}$

Conclusion

Simulation Results

Figure 4: Channel estimation MSE of ${\bf f}$ and ${\bf g}$

Conclusion

Simulation Results

Figure 5: Condition number of A_0

Conclusion

Conclusion

Our contribution:

- 1. Time-varying channel estimation in AF TWRN
- 2. BEM + TLS
- 3. Training sequence design.
- Problem: How to improve channel estimation performance ?

Conclusion

Our contribution:

- 1. Time-varying channel estimation in AF TWRN
- 2. BEM + TLS
- 3. Training sequence design.
- Problem: How to improve channel estimation performance ?
- ICC 2011