

Introduction

• The performance of cooperative relay networks can be improved by integrating multiple-input multipleoutput (MIMO) technology and transmit antenna selection (TAS) [1, 2].

• Although TAS is a suboptimal beamforming technique, it substantially reduces the complexity and the power requirements of the transmitter.

• TAS is more robust against channel estimation errors and time variations of the channels than other beamforming techniques, for example, transmit diversity.

• Motivation: The current TAS strategies for general MIMO relay networks [1, 2] lack a suitable performance analysis framework.

• **Objective:** Develop a performance analysis framework for TAS strategies for MIMO AF relaying.

System Model and Problem Formulation

• System model: Consider a dual-hop AF relay network with MIMO-enabled source (S), relay (R) and destination (*D*) having N_s , N_r and N_d antennas.

• The end-to-end SNR is given by

$$\gamma_{eq}^{(i,k)} = \gamma_{SD}^{(i)} + \frac{\gamma_{SR}^{(i)}\gamma_{RD}^{(k)}}{\gamma_{SR}^{(i)} + \gamma_{RD}^{(k)}}.$$

• Three TAS strategies are treated.

 $I = \operatorname{argmax}\left(\gamma_{SR}^{(i)}\right)$

 $1 \leq i \leq N_s$

 $\left(\gamma_{\rm eq}^{(i,k)}\right)$ 1. TAS_{opt} [1] : (I, K) =argmax $1 \le i \le N_s, 1 \le k \le N_r$ 2. $TAS_{sub-opt_1}$ [2] : $I = \operatorname{argmax}\left(\gamma_{SD}^{(i)}\right)$ and $K = \operatorname{argmax} \left(\gamma_{RD}^{(k)} \right).$ $1 \le k \le N_r$ $1 \leq i \leq N_s$ 3. TAS_{sub-opt₂} [2] :

and
$$K = \underset{1 \le k \le N_r}{\operatorname{argmax}} \left(\gamma_{RD}^{(k)} \right).$$

Transmit Antenna Selection Strategies for Cooperative MIMO AF Relay Networks

Gayan Amarasuriya, Chintha Tellambura and Masoud Ardakani

Department of Electrical and Computer Engineering University of Alberta, Edmonton, Alberta, Canada

• Remark I:		
When the direct channel is	s unav	ailable, TAS _{opt} simpli-
fies to $I = \underset{1 \le i \le N_s}{\operatorname{argmax}} \left(\gamma_{SR}^{(i)} \right)$	and	$K = \operatorname*{argmax}_{1 \le k \le N_r} \left(\gamma_{RD}^{(k)} \right).$

Performance Analysis

• The following performance metrics are derived in closed-form:

- . Tight upper bounds for the outage probability and the average SER of the TAS_{opt}.
- 2. Accurate approximations for the outage probability and the average SER of the $TAS_{sub-opt_1}$ and $TAS_{sub-opt_2}$.
- 3. The asymptotic outage probability and the average SER at high SNRs, diversity order and array gain.

•For example, the asymptotic average SER of the three strategies are given by

$$\bar{P}_e^{\infty} = \frac{\Omega \alpha 2^{G_d - 1} \Gamma \left(G_d + \frac{1}{2} \right)}{\sqrt{\pi} (\varphi \bar{\gamma})^{G_d}} + o \left(\bar{\gamma}^{-(G_d + 1)} \right)$$

The diversity orders are given by

$$G_{d}^{\text{TAS}_{\text{opt}}} = m_0 N_s N_d + N_r \min(m_1 N_s, m_2 N_d),$$

$$G_{d}^{\text{TAS}_{\text{sub-opt}_1}} = m_0 N_s N_d + N_r \min(m_1, m_2 N_d) \text{ and }$$

$$G_{d}^{\text{TAS}_{\text{sub-opt}_2}} = m_0 N_d + N_r \min(m_1 N_s, m_2 N_d).$$

Simulation Results

• The outage probability bounds of TAS_{opt}:

• **Remark II:** When the direct path is unavailable, the diversity order of TAS_{opt} is given by $G_d^{TAS_{opt}} =$ $N_r \min(m_1 N_s, m_2 N_d).$ • In order to obtain direct system-deign insights, the diversity orders of the three TAS strategies can be summarized as follows:

Impact of Feedback Delays

For all three TAS strategies, the diversity order is given by $\hat{G}_d = m_0 N_d + \min(m_1 N_r, m_2 N_d)$. • **Remark III:** When the direct path is unavailable, the diversity order of TAS_{opt} under outdated CSI is given by $\hat{G}_{\mathcal{A}}^{\mathrm{TAS}_{\mathrm{opt}}} = \min(m_1 N_r, m_2 N_d).$

• The average bit error rate of BPSK:

TAS Stratogy	Diversity Order			
IAS Strategy	$N_s = 1$	$N_d = 1$	$N_s = N_r = N_d = N_d$	
TAS _{opt}	$m(N_r+N_d)$	$m(N_s+N_r)$	$2mN^{2}$	
$TAS_{sub-opt_1}$	$m(N_r+N_d)$	$m(N_s+N_r)$	mN(N+1)	
TAS _{sub-opt₂}	$m(N_r+N_d)$	$m(N_r+1)$	mN(N+1)	

Channels are modeled as $\mathbf{H}_{l}(t)|_{l=0}^{2} = \rho_{l}\mathbf{H}_{l}(t-\tau_{l}) +$ $\mathbf{E}_{d,l}$, where ρ_l is the normalized correlation coefficients between $h_l^{i,j}(t)$ and $h_l^{i,j}(t - \tau_l)$. For Clarke's fading spectrum, $\rho_l = \mathcal{J}_0(2\pi f_l \tau_l)$, where f_l is the Doppler fading bandwidth. Further, $E_{d,l}$ is the error matrix, incurred by feedback delay, having mean zero and variance $(1 - \rho_1^2)$ Gaussian entries.

• For example, the asymptotic average SER of TAS_{opt} with feedback delays is given by

$$\bar{P}_e^{\infty} = \frac{\hat{\Omega}\alpha 2^{\hat{G}_d - 1}\Gamma\left(\hat{G}_d + \frac{1}{2}\right)}{\sqrt{\pi}(\varphi\bar{\gamma})^{\hat{G}_d}} + o\left(\bar{\gamma}^{-(\hat{G}_d + 1)}\right).$$

•Impact of feedback delays on outage probability:

Conclusion

- the optimal TAS.

References

UNIVERSITY OF ALBERTA

1. TAS_{opt} always performs better than $TAS_{sub-opt_1}$ and TAS_{sub-opt₂} for the given antenna set-ups at the expense of higher implementation complexity.

2. TAS_{sub-opt1} performs very close to TAS_{opt} in terms of outage when *D* is equipped with a single-antenna. $TAS_{sub-opt_1}$ is thus a better choice than TAS_{opt} for networks with $N_d = 1$.

3. The choice between $TAS_{sub-opt_1}$ and $TAS_{sub-opt_2}$ depends upon the availability of stronger $S \rightarrow D$ or $S \rightarrow R$ channels, and the suboptimal TAS strategies perform closely to the optimal TAS strategy, while retaining significant implementation simplicity than

4. Whenever *S* is equipped with a single-antenna, the performance of the three TAS strategies is identical. This insight thus shows that any of the three strategies can effectively be used for $S \rightarrow R \rightarrow D$ up-link, where *S* is usually a mobile device equipped with a single-antenna due to power and space constraints.

5. Similarly, $TAS_{sub-opt_1}$ can be used instead of TAS_{opt} for the $D \rightarrow R \rightarrow S$ down-link as both of them provide the same diversity order whenever $N_d = 1$.

[1] S. Peters and R. W. Heath, "Nonregenerative MIMO relaying with optimal transmit antenna selection," *IEEE Signal Process. Lett.*, vol. 15, pp. 421–424, 2008. [2] L. Cao, X. Zhang, Y. Wang, and D. Yang, "Transmit antenna selection strategy in amplify-and-forward MIMO relaying," in Wireless Communications and *Networking Conference, IEEE*, Budapest, Apr. 2009.