

Joint CFO and Channel Estimation for ZP-OFDM Modulated Two-Way Relay Networks

Gongpu Wang[†], Feifei Gao[‡], Yik-Chung Wu^{*}, and Chintha Tellambura[†]

[†]University of Alberta, Edmonton, Canada,
[‡]Jacobs University, Bremen, Germany
*The University of Hong Kong, Hong Kong

Email: gongpu@ece.ualberta.ca

WCNC'10

- Dutline
- Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

Outline

Introduction

- Previous Results
- Problem Formulation
- Proposed Solution
- Performance Analysis
- Simulation Results
- Conclusion

Introduction

Outline

Introductior

Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion Two-way relay networks (TWRN) can enhance the overall communication rate [Boris Rankov, 2006], [J.Ponniah, 2008].

Figure 1: System configuration for two-way relay network.

Outline Introduc

Previous Results

Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

Previous Results

- Most existing works in TWRN assumed perfect synchronization and channel state information (CSI).
- Channel estimation problems in amplify-and-forward (AF) TWRN are different from those in traditional communication systems.
- Flat-fading and frequency-selective channel estimation and training design for AF TWRN has been done in [Feifei Gao, 2009].
- Our paper will focus on joint frequency offset (CFO) and channel estimation for AF-based OFDM-Modulated TWRN.

Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis

Outline

Simulation Results Conclusion

Joint CFO and Channel Estimation Problems in TWRN

- With CFOs, the orthogonality between subcarriers will be destroyed in TWRN.
- Even with completed estimation, data detection is not simple as circular convolution no longer exists.
- How to estimate the mixed CFOs and channels and how to faciliate data detection?
- We introduce some redundancy and modify the OFDM TWRN system to facilitate both the joint estimation and detection.

Outline

Introduction

Previous Results

Problem Formulation

Proposed Solution

Performance Analysis Simulation Results Conclusion

Signals at Relay

■ The relay \mathbb{R} will down-convert the passband signal by $e^{-\jmath 2\pi f_r t}$ and obtain

$$\mathbf{r}_{zp} = \sum_{i=1}^{2} \mathbf{\Gamma}^{(N+L)} [f_i - f_r] \mathbf{H}_{zp}^{(N)} [\mathbf{h}_i] \mathbf{s}_i + \mathbf{n}_r, \qquad (1)$$

where $\Gamma^{(K)}[f] = \text{diag}\{1, e^{j2\pi fT_s}, \dots, e^{j2\pi f(K-1)T_s}\}$ and

Next, \mathbb{R} adds *L* zeros to the end of **r** and scales it by the factor of α_{zp} to keep the average power constraint.

Signals at Terminal \mathbb{T}_1

Outline Introduction Previous Results

Problem Formulation

Proposed Solution

Performance Analysis Simulation Results Conclusion $\mathbb{T}_{1} \text{ will down-convert the passband signal by } e^{-j2\pi f_{1}t} \text{ and get}$ $\mathbf{y}_{zp} = \alpha_{zp} \mathbf{\Gamma}^{(N+2L)} [f_{r} - f_{1}] \mathbf{H}_{zp}^{(N+L)} [\mathbf{h}_{1}] \mathbf{r}_{zp} + \mathbf{n}_{1}$ $= \alpha_{zp} \mathbf{\Gamma}^{(N+2L)} [f_{r} - f_{1}] \mathbf{H}_{zp}^{(N+L)} [\mathbf{h}_{1}]$ $\times \left(\sum_{j=1}^{2} \mathbf{\Gamma}^{(N+L)} [f_{i} - f_{r}] \mathbf{H}_{zp}^{(N)} [\mathbf{h}_{i}] \mathbf{s}_{i} \right)$ $+ \alpha_{zp} \mathbf{\Gamma}^{(N+2L)} [f_{r} - f_{1}] \mathbf{H}_{zp}^{(N+L)} [\mathbf{h}_{1}] \mathbf{n}_{r} + \mathbf{n}_{1}$ (2)

 \mathbf{n}_{e}

Next, using the following equalities

$$\mathbf{H}_{zp}^{(K)}\left[\mathbf{x}\right]\mathbf{\Gamma}^{(K)}[f] = \mathbf{\Gamma}^{(K+P)}[f]\mathbf{H}_{zp}^{(K)}\left[\mathbf{\Gamma}^{(K)}[-f]\mathbf{x}\right], \quad (\mathbf{3})$$

and

$$\mathbf{\Gamma}^{(K+P)}[f]\mathbf{H}_{zp}^{(K)}[\mathbf{x}] = \mathbf{H}_{zp}^{(K)}\left[\mathbf{\Gamma}^{(P+1)}[f]\mathbf{x}\right]\mathbf{\Gamma}^{(K)}[f].$$
(4)

Outline Introduction Previous Results

Problem Formulation

Performance Analysis

Simulation Results Conclusion

Signals at Terminal \mathbb{T}_1

y $_{zp}$ can be rewritten as

$$\mathbf{y}_{zp} = \alpha_{zp} \mathbf{H}_{zp}^{(N+L)} [\mathbf{\Gamma}^{(L+1)} [f_r - f_1] \mathbf{h}_1] \mathbf{H}_{zp}^{(N)} [\mathbf{h}_1] \mathbf{s}_1 + \mathbf{n}_e + \alpha_{zp} \mathbf{\Gamma}^{(N+2L)} [f_2 - f_1] \mathbf{H}_{zp}^{(N+L)} [\mathbf{\Gamma}^{(L+1)} [f_r - f_2] \mathbf{h}_1] \times \mathbf{H}_{zp}^{(N)} [\mathbf{h}_2$$
(5)

- We further note that $\mathbf{H}_{zp}^{(N+L)}[\mathbf{x}_1]\mathbf{H}_{zp}^{(N)}[\mathbf{x}_2] = \mathbf{H}_{zp}^{(N)}[\mathbf{x}_1 \otimes \mathbf{x}_2]$ where \otimes denotes the linear convolution.
- Hence \mathbf{y}_{zp} is finally written as

$$\mathbf{y}_{zp} = \alpha_{zp} \mathbf{H}_{zp}^{(N)} \left[\underbrace{\left(\mathbf{\Gamma}^{(L+1)} [f_r - f_1] \mathbf{h}_1 \right) \otimes \mathbf{h}_1}_{\mathbf{a}_{zp}} \mathbf{s}_1 + \mathbf{n}_e \right] + \alpha_{zp} \mathbf{\Gamma}^{(N+2L)} \left[\underbrace{f_2 - f_1}_{v} \right] \mathbf{H}_{zp}^{(N)} \left[\underbrace{\left(\mathbf{\Gamma}^{(L+1)} [f_r - f_2] \mathbf{h}_1 \right) \otimes \mathbf{h}_2}_{\mathbf{b}_{zp}} \right] \mathbf{s}_2, \quad (6)$$

where \mathbf{a}_{zp} , \mathbf{b}_{zp} are the $(2L+1) \times 1$ equivalent channel vectors and v is the equivalent CFO.

Outline Introduction Previous Results

Problem Formulation

Proposed Solution

Performance Analysis Simulation Results Conclusion

Joint CFO and Channel Estimation

We then obtain

$$\mathbf{y} = \mathbf{S}_1 \mathbf{a} + \mathbf{\Gamma} \mathbf{S}_2 \mathbf{b} + \mathbf{n}_e. \tag{7}$$

- Since S_1 is a tall matrix, it is possible to find a matrix J such that $J^H S_1 = 0$.
- Left-multiplying y by J^H gives

$$\mathbf{J}^{H}\mathbf{y} = \mathbf{0} + \underbrace{\mathbf{J}^{H}\mathbf{\Gamma}\mathbf{S}_{2}}_{\mathbf{G}}\mathbf{b} + \underbrace{\mathbf{J}^{H}\mathbf{n}_{e}}_{\mathbf{n}}.$$
 (8)

Joint CFO estimation and channel estimation

$$\hat{v} = \arg \max_{v} \mathbf{y}^{H} \mathbf{J} \mathbf{G} (\mathbf{G}^{H} \mathbf{G})^{-1} \mathbf{G}^{H} \mathbf{J}^{H} \mathbf{y},$$
 (9)

$$\hat{\mathbf{b}} = (\mathbf{G}^H \mathbf{G})^{-1} \mathbf{G}^H \mathbf{J}^H \mathbf{y}, \tag{10}$$

$$\hat{\mathbf{a}} = (\mathbf{S}_1^H \mathbf{S}_1)^{-1} \mathbf{S}_1^H (\mathbf{y} - \hat{\mathbf{\Gamma}} \mathbf{S}_2 \hat{\mathbf{b}}).$$
 (11)

Outline Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

Performance Analysis

At high SNR, the perturbation of the estimated CFO can be approximated by

$$\Delta v \triangleq \hat{v}_0 - v_0 \approx -\frac{\dot{g}(v_0)}{\mathsf{E}\{\ddot{g}(v_0)\}},\tag{12}$$

where $g(v) = \mathbf{y}^H \mathbf{J} \mathbf{G} (\mathbf{G}^H \mathbf{G})^{-1} \mathbf{G}^H \mathbf{J}^H \mathbf{y}$.

The NLS estimation of CFO is unbiased and its MSE is

$$\mathsf{E}\{\Delta v^2\} = \frac{\sigma_{ne}^2}{2\mathbf{b}^H \dot{\mathbf{G}}^H [\mathbf{I} - \mathbf{G}(\mathbf{G}^H \mathbf{G})^{-1} \mathbf{G}^H] \dot{\mathbf{G}} \mathbf{b}}.$$
 (13)

The channel estimation $\hat{\mathbf{b}}$ is unbiased and its MSE is $MSE\{\mathbf{b}\} = (\mathbf{G}^{H}\mathbf{G})^{-1}\mathbf{G}^{H}\dot{\mathbf{G}}\mathbf{b}\mathbf{b}^{H}\dot{\mathbf{G}}^{H}\mathbf{G}(\mathbf{G}^{H}\mathbf{G})^{-1}\mathbf{E}\{\Delta v^{2}\}$ $+ \sigma_{ne}^{2}(\mathbf{G}^{H}\mathbf{G})^{-1}.$ (14)

Simulation Results

Outline Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results

Conclusion

Figure 2: Numerical and Theoretical MSEs of CFO versus SNR

Simulation Results

Outline

Introduction Previous Results Problem Formulation Proposed Solution

Performance Analysis

imulation Re

Conclusion

Figure 3: Numerical and Theoretical MSEs of Channel Estimation versus SNR

Conclusion

Outline Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

- 1. Adapt ZP-based OFDM transmission scheme.
- 2. Suggest joint estimation method of CFO and channels.
- 3. Performance analysis: prove unbiasedness and give closed-form MSE expression.

Conclusion

Outline Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

- 1. Adapt ZP-based OFDM transmission scheme.
- 2. Suggest joint estimation method of CFO and channels.
- 3. Performance analysis: prove unbiasedness and give closed-form MSE expression.

Problem: How to obtain individual frequency and channel parameters? (Globecom 2010)

Outline Introduction Previous Results Problem Formulation Proposed Solution Performance Analysis Simulation Results Conclusion

Questions and discussion?

Email: gongpu@ece.ualberta.ca