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Abstract—Performance analysis of energy beamforming with
a multiple-antenna access point (AP) and a single-antenna user
over line-of-sight (LOS) channels is not readily available. In this
paper, we thus consider Rician channels between the AP and
the user and derive the distribution of the received signal-to-
noise ratio (SNR) via the distribution of the product of two
independent non-central Chi-square variables. We also derive
exact expressions for outage probability (OP), ergodic capacity
(EC), throughput optimal energy harvesting time and bit error
rates (BERs). Several approximate or asymptotic expressions are
also derived. Finally, simulation results are presented to verify
our analytical results.

Index Terms—Line-of-sight, multiple-antenna power transmit-
ter, energy harvesting, outage probability, ergodic capacity, bit
error rate.

I. INTRODUCTION

A. Background and motivation

Energy harvesting is an effective means to prolong the life

time of wireless devices and perhaps even to enable their

battery-free operations. Although scavenging energy from so-

lar power, wind and other sources is feasible, their unreliability

is problematic for the provision of quality of service parame-

ters. Thus, wireless power transfer with dedicated power trans-

mitters is an option [1]. Thus, theoretical analysis of energy

harvesting (EH) links over fading channels is necessary to gain

insights and to quantify exact performance. Most published

analyses however focus on Rayleigh and Nakagami-m fad-

ing models, which however assume rich-scattering multipath

channels without a dominant line-of-sight (LOS) component.

On the other hand, the microwave power transfer distance is

about 3–15 meters for typical mobile devices, sensors, and

tablets [1].

In such short communication links, however, a LOS com-

ponent can be dominant. Although the Rician fading model

is then most appropriate, EH studies for it are limited. For

instance, the impact of Rician fading on the performance of

dual-hop energy harvesting amplify and forward (AF) relay

systems [2].

Alternatively, a hybrid access point (AP) can transmit

energy in the downlink and receive data in the uplink (Fig.

1). The single-antenna user harvests energy from the trans-

missions of the AP and communicates with the AP in the

uplink. This mode has been called the harvest-then-transmit

protocol [3] and has led to the concept of the wireless-powered

communication network (WPCN) [4]. The applications of this

model include wireless sensor networks and RF identification

networks [4]. A WPCN with a multi-antenna two-way AF

relay and the harvest-then-transmit protocol has also been

investigated [5]. In order to understand the performance of

EH WPCNs over LOS links, this system could be analyzed in

detail.

Thus, an analysis of outage probability (OP), ergodic capac-

ity (EC) and bit error rate (BER) of this system is useful. For

instance, [4] has derived the average throughput of this system

and the optimal energy harvesting time for delay-limited and

delay-tolerant transmissions over Rayleigh fading channels.

Reference [6] has derived OP, EC and BER of WPCN over

generalized κ− µ fading channels.

B. Problem statement and contributions

However, this system has previously been analyzed under

the assumption of non-LOS channels only (see [4], [7] for

example). As mentioned before, in typical EH scenarios, this

assumption may not hold, and the presence LOS components

should be considered. Thus, we aim to characterize the per-

formance of the WCPN under LOS channels. Therefore, this

paper generalizes the work of [4] to the LOS case and differs

from [4], [7] by treating the symbol error rate (SER) of several

modulations in detail.

Due to the presence of the LOS channels, the received

signal-to-noise ratio (SNR) at the AP is the product of two

independent non-central Chi-square variables. The distribution

of this product is complicated and is available only as an

infinite series [8]. By using this classical result, we exactly

analyze the OP, EC and BER of this network. However, the

resulting exact expressions are complicated, infinite series.

Therefore, we also develop more insightful asymptotic or

approximate expressions. Finally, we consider both delay-

limited and delay-tolerant modes.

The main contributions are summarized below. For a spe-

cific energy harvesting fraction of time, we derive

1) Exact expressions for OP and EC, which characterize

delay-limited and delay-tolerant modes.

2) BER for binary phase shift keying (BPSK), binary

differential phase shift keying (BDPSK).

3) Throughput-optimal energy harvesting time at high SNR

for delay-tolerant transmission.

4) Asymptotic or approximate analyses to gain insights of

the delay-tolerant mode, BPSK and BDPSK.



To the best of our knowledge, this is first paper that derives

both exact and asymptotic/approximate performance analysis

of the considered system.

Notation: For random variable (rv) X , fX(·) and FX(·)
denote the probability density function (PDF) and cumulative

distribution function (CDF). A circularly symmetric complex

Gaussian rv with mean µ and variance σ2 is CN (µ, σ2).
The gamma function Γ(a) is given in [9, Eq. (8.310.1)];

Kν(·) is the ν-th order modified Bessel function of the second

kind [9, Eq. (8.432)]; Gmn
pq

(

z | a1···ap

b1···bq

)

denotes the Meijer G-

function [9, Eq. (9.301)]. A non-central Chi-square RV with n
degrees of freedom and non-centrality parameter δ is denoted

by χ2
n(δ). The central case occurs when δ = 0.

II. SYSTEM MODEL

Fig. 1. System Model

Consider the multiple-antenna WPCN with downlink energy

transfer and uplink data transmission (Fig. 1). Both the hybrid

AP and single-antenna user use half-duplex wireless. The AP

is equipped with n ≥ 1 antennas and uses maximum ratio

combiner (MRC) reception for uplink signals. It also performs

maximal ratio transmission (MRT) energy beamforming in

the downlink, which powers the user. Following [4], [7], we

assume the availability of perfect channel state information

(CSI) at the AP. The energy transfer channels is denoted as

h = [h1, . . . , hk, . . . , hn]
T ∈ C

n×1 and the data transfer

channel is denoted as g = [g1, . . . .gk, . . . , gn]
T ∈ C

n×1.

The channel coefficients hk and gk (k = 1, . . . , n) are

independent and identically distributed (i.i.d.) circularly sym-

metric complex Gaussian rvs with hk ∼ CN (µk,1, σ
2
1) and

gk ∼ CN (µk,2, σ
2
2). Thus, we can write ‖h‖2 = 1

2σ1
2X1

and ‖g‖2 = 1
2σ2

2X2 where Xi (i = 1, 2) are χ2
2n(λi) with

non-centrality parameter λi =
2
σ2
i

n
∑

k=1

|µk,i|2. The PDF of Xi,

i = 1, 2, is the non-central Chi-square PDF [8, Eq. (1)].

For a transmission block time T , the user harvests energy for

duration τT , and it transmits information for (1− τ)T where

τ ∈ [0, 1]. Thus, the total harvested energy at the user is Eh =
ητP‖h‖2 where η is the energy conversion efficiency and P
is the transmit power of the AP. Without loss of generality,

we assume T = 1. Since in the uplink, the received signal at

the AP is yA =
√

Eh/(1− τ)gs+ n, where s is the energy-

normalized information symbol and n is the additive white

Gaussian noise (AWGN) term. The SNR at the AP can be

expressed as

γA =
τηPσ2

1σ
2
2

4 (1− τ)N0
‖h‖2 ‖g‖2 =

τ

1− τ
γX1X2, (1)

where γ =
ηPσ2

1σ
2
2

4N0
and N0 is the noise variance. The exact

PDF of the product Y = X1X1 is highly complicated. How-
ever, it can be derived via the Mellin transform techniques,
and the details can be found in [8, Eq. (11)]. We will indeed
exploit this classical result. Since γA is simply the product of
constant τ

1−τ
γ and Y, the PDF of γA can be given as

fγA
(y) =

∞
∑

m=0

m
∑

j=0

ψ(m, j) (1− τ)

e
1
2
(λ1+λ2)τγ

(

y (1− τ)

τγ

)α(m)

·K2j−m

(

√

y (1− τ)

τγ

)

,

(2)

where Kn(x) is modified Bessel function of second kind

of order n, α (m) = n + m
2 − 1 and symbol ψ(m, j) =

λ
j
1λ

m−j
2 21−2n−2m

j!(m−j)!Γ(n+j)Γ(m−j+n) . The special case λ1 = λ2 = 0 is

studied in [4].

A. The Patnaik approximation

The PDF of the product of two non-central Chi-square

variables (2) is complicated because it is an infinite series

of modified Bessel functions. Also, the averaging of error-

rate expressions over Kn(x) Bessel functions is challenging.

Although (2) leads to exact results, due to these reasons,

numerical issues can arise. Consequently, simpler approxima-

tions are desirable. Patnaik [10] suggested approximating a

non-central Chi-square rv by a scaled central Chi-square rv.

Following this idea, we take two independent rvs, say, Zi ∼
χ2
vi
(0), for i = 1, 2. We next approximate the two non-central

rvs as Xi ≈ ciZi where ci and vi are to be determined by

matching the first two moments of Xi to those of ciZi. Thus,

this moment matching yields ci =
2n+2λi

2n+λi
and vi =

(2n+λi)
2

2n+2λi
.

For the subsequent developments, the following general

result proves to be useful.

Proposition 1. The moment generation function (MGF) of the

product of two independent Zi ∼ χ2
vi
(0), i = 1, 2 is given as

MZ1Z2
(t) =

1

2v2t
v2
2

Ψ

(

v2
2
,
v2 − v1

2
+ 1;

1

4t

)

, (3)

where Ψ(a, b; z) is the confluent hypergeometric function [9,

Eq. (9.211.4)].

Proof. We begin with the definition of the MGF and find

MZ1Z2 (t) = E

[

e
−tZ1Z2

]

(a)
=

1

2
v1
2

E

[

(

1

2
+ tZ2

)

−
v1
2

]

(b)
=

1

2
v2
2 Γ
(

v2
2

)

∫

∞

0

z
v2
2

−1

2 e−
z2
2

(1 + 2tz2)
v1
2

dz2

(c)
=

1

2v2t
v2
2 Γ
(

v2
2

)

∫

∞

0

u
v2
2

−1e−
1
4t

u

(1 + u)
v1
2

du,

(4)

where we first fix Z2 and take average over Z1 by using the

well-known MGF of a central Chi-square rv (Step (a)). By

taking the expectation over Z2, we find the integral expression

in Step (b). From the substitution u = 2tz2, we get step (c)

and finally (3) via [9, Eq. (9.211.4)]. �



III. PERFORMANCE ANALYSIS

A. Delay-Limited Transmission Mode

1) Exact Analysis: This mode is suitable for user appli-
cations that are delay sensitive. The received signal at the
AP thus needs to be decoded block by block. The average
throughput can be evaluated by obtain OP with a fixed trans-
mission rate R. OP is then given by the probability that the
instantaneous throughput, log2(1 + γA), falls below a certain
threshold γth

Pave = (1− Pout)R (1− τ)

= (1− FγA
(2γth − 1))R (1− τ) ,

(5)

where FγA
(y) is the CDF of γA and it can be derived as

FγA
(y)

(a)
=

∞
∑

m=0

m
∑

j=0

ψ(m, j) (1− τ)

e
1
2
(λ1+λ2)τγ

∫ y

0

[

(

t (1− τ)

τγ

)α(m)

·K2j−m

(

√

t (1− τ)

τγ

)]

dt

(b)
=

∞
∑

m=0

m
∑

j=0

ψ(m, j)G
2,1
1,3

(

y(1−τ)
4τγ

∣

∣

∣

∣

∣

−α (m)
2j−m

2
,− 2j−m

2
,−α (m)− 1

)

2e
1
2
(λ1+λ2)

(

τ
1−τ

γ
)α(m)+1

y−(α(m)+1)

,

(6)

where y = 2γth − 1. Line (a) follows from the definition of

CDF; Line (b) is derived directly from [9, Eq. (6.592.2)].

B. Delay-Tolerant Transmission Mode

1) Exact Throughput Analysis: In this mode, the AP has
sufficient buffering capacity and can tolerate the delay for
decoding the stored signals together. Therefore, the EC at the
AP is the appropriate measure of the throughput. Moreover,
since the SU uses τ fraction of time to harvest energy so
effective information transmission time fraction is (1− τ).
Thus, the throughput is given by

C = (1− τ)

∫

∞

0

log2 (1 + y) fγA
(y) dy

(a)
=

∞
∑

m=0

m
∑

j=0

(1− τ)22α(m)−1ψ(m, j)

2ln(2)e
1
2
(λ1+λ2) τ

1−τ
γ

∫

∞

0

[

G
1,2
2,2

(

y

∣

∣

∣

∣

1, 1

1, 0

)

· G
2,0
0,2

(

y (1− τ)

4τγ

∣

∣

∣

∣

∣

α (m)
2j−m

2
+ α (m),− 2j−m

2
+ α (m)

)]

dy

(b)
=

∞
∑

m=0

m
∑

j=0

(1− τ)22α(m)−1ψ(m, j)

ln(2)e
1
2
(λ1+λ2) τ

1−τ
γ

G
4,1
2,4

(

1− τ

4τγ

∣

∣

∣

∣

∣

−1, 0

−1,−1, 2j−m

2
+ α (m),− 2j−m

2
+ α (m)

)

.

(7)

To derive (7), we express ln (1 + x) and Kn (x) in terms of

Meijer G-functions by following [4, Eq. (12)], and then arrive

at the above expression of C.

2) Asymptotic Throughput Analysis: We analyze the be-

haviour of (7) as γ → ∞. This is described by the following

proposition.

Proposition 2. The asymptotic capacity of the delay tolerant

transmission mode is given by

C =
1− τ

ln 2

[

ln γ +D − ln

(

1− τ

τ

)]

, (8)

when γ → ∞, where D = ln c1 + ln c2 +ψ
(

v1

2

)

+ψ
(

v2

2

)

+
2 ln 2 and ψ is Euler psi function [9, Eq. (8.360)], and γ =
ηPσ2

1σ
2
2

4N0
.

Proof. Let C = (1− τ)C∗ where

C
∗ =E [log2 (1 + γA)]

≈
[

log2
τ

1− τ
γ + E log2 (X1) + E log2 (X2)

]

=

[

log2
τ

1− τ
γ + E log2 (c1Z1) + E log2 (c2Z2)

]

,

(9)

when γ → ∞. We find E [log(Z)] =
dE[Zt−1]

dt

∣

∣

∣

∣

t=1

. If Z ∼
χ2
v(0), we find that E

[

Zt−1
]

= 2t−1Γ(t+ v/2− 1)/Γ(v/2).
�

The asymptotic capacity expression (8) can be exploited

to obtain a closed-form expression for the optimal energy

harvesting-time fraction τ∗ at high SNR. The derivation is

similar to Appendix B [4] and is omitted. We find that

τ∗ ≈ 1

1 +W (γeD−1)
, (10)

where the Lambert function satisfies W (x) eW (x) = x, and

W (x) is monotonically increasing for x ≥ 0.

C. Average Bit Error Rate

This can be evaluated directly by averaging the conditional

bit error rate, Pe(y) [11], i.e., P̄BER =
∫

∞

0
Pe (y) fγA

(y) dy
where fγA

(y) is the PDF of γA.
1) Exact BER of BPSK: This modulation is robust against

noise and widely used in mobile standards. The conditional
BER of BPSK is given in [11, Eq. (8)]. By using that result,
we find that

P̄BER =

∞
∑

m=0

m
∑

j=0

aψ(m, j) (1− τ)

be
1
2
(λ1+λ2)τγ

√
π
22α(m)−1·

G
2,2
2,3

(

1− τ

4bτγ

∣

∣

∣

∣

∣

0,− 1
2

2j−m

2
+ α (m),− 2j−m

2
+ α (m),−1

)

,

(11)

where a = 1
2 and b = 1.

2) Approximate BER of BPSK:

P̄BER,app=E

[

aerfc
(

√

bγA

)]

(a)
= E

[

a

π

∫ π
2

−
π
2

exp

(

− bγA

sin2 θ

)

dθ

]

(b)
=
a

π

∫ 1

−1

E

[

exp
(

− bγA

t2

)]

√
1− t2

dt

(c)
=
a

π

∫ 1

−1

MZ1Z2

(

u
t2

)

√
1− t2

dt

(d)
=

a

w

w
∑

k=1

MZ1Z2

(

u

t2k

)

,

(12)



where (a) is a well-known expression of erfc (·); (b) is due

to the substitution sin θ = t; (c) is because of using the

Proposition 1., u = τ
1−τ

γc1c2; (d) follows from the Gauss-

Chebyshev quadrature rule [12, eq. (1)], tk = cos
(

(2k−1)π
2w

)

and w is the number of nodes used.

3) Exact BER of BDPSK: For this modulation, conditional

BER is given by Pe (y) = ae−by. In this case, the BER can

be derived via the MGF technique [13], [14]. Fortunately, the

MGF of γA can be derived via [11, eq. (4)]. Thus P̄BER can

be derived as

P̄BER =

∞
∑

m=0

m
∑

j=0

aψ(m, j) (1− τ)
α(m)+ 1

2

2e
1
2 (λ1+λ2) (τγ)

α(m)+ 1
2

∆e
1−τ
8(τγ)

·W
−α(m)− 1

2 ,
2j−m

2

(

1− τ

4τγ

)

,

(13)

where, ∆ = Γ
(

α (m) + j − m
2 + 1

)

Γ
(

α (m)− j + m
2 + 1

)

;

Wλ,µ (·) [9, Eq. (9.220)] is the Whittaker function. For

BDPSK, a = 1
2 and b = 1.

4) Approximate error analysis of BDPSK: Although (13)

can be computed precisely, it is an infinite series. A simpler

BER expression can be more useful sometimes. To that end,

we use the Patnaik approximation (Section II. A). Accordingly,

we get P̄BER,app = E

[

ae−b τ
1−τ

γX1X2

]

= E
[

ae−uZ1Z2
]

,

where u = b τ
1−τ

γc1c2. Thus, we find

P̄BER,app =
a

2v2u
v2
2

Ψ

(

v2
2
,
v2 − v1

2
+ 1;

1

4u

)

. (14)

The accuracy of this expression (14) will be verified next.

IV. NUMERICAL AND SIMULATION RESULTS

The analytical derivations are validated via Monte-Carlo

simulations. We set transmission unit block time T is 1 and

noise variance σ2
1 = σ2

2 = 1. The exact results given in infinite

series are evaluated as follows. We write Wm =
∑m

m=1Qi,

W0 = 0 and Wm = Wm−1 + Qm. When Qm

Wm
≤ 0.01, the

series computation stops.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Average Throughput of delay-limited mode versus K for τ = 0.4,
λ1 = λ2 = K, N = 4, and γth = 1 dBm.
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Fig. 3. Average Throughput of delay-tolerant mode versus P for η = 0.9,
τ = 0.4 and λ1 = λ2 = 2.
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Fig. 4. Average Throughput of delay-tolerant mode versus τ for η = 0.9,
P = 1 dBm and λ1 = λ2 = 1.5.

Fig. 2 shows the delay-limited average throughput curves

of the LOS network versus the Rician K factor with different

transmit powers at the AP and energy conversion efficiency at

the user. The analysis results tightly coincide with simulation

results, which verified the correctness of (5). Rician channel

K factor is the ratio between the power in the direct path and

the power in the other, scattered, paths. And K = 0 represents

Rayleigh fading, and K → ∞ is equivalent to no fading. The

delay-limited average throughput is improved with increasing

Rician K factor. Unsurprisingly, larger energy conversion

efficiency and transmit power improve performance. The user

is then able to harvest more energy during the downlink phase,

and thus has more power available during the in uplink phase.

Fig. 3 shows the average throughput of the delay-tolerant

mode versus the transmit power of the AP. Although the

asymptotic curves (8) diverge from the exact ones (7) when

transmit power is low, rapid convergence occurs with the

increase of transmit power. The throughput performance im-

proves with either increasing the transmit power or increasing

the number of antennas at the AP. Also, the simulation results
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Fig. 5. P̄BER of BDPSK versus P for n = 5, η = 0.9 and λ1 = λ2 = 2.
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Fig. 6. P̄BER of BPSK versus P for n = 5, τ = 0.4 and λ1 = λ2 = 1.

match exact ones tightly.

Fig. 4 plots the throughput versus energy harvesting time for

the delay-tolerant mode with different numbers of AP anten-

nas. The figure shows throughput-optimal energy harvesting

times for different antenna numbers, confirming the analytical

result (10). Since the user harvests energy for time fraction

τ and transmits information for (1− τ), optimal τ∗ balances

these two activities best. Convergence of asymptotic curves

(8) to the exact ones (7) occurs when the energy harvesting

time and the number of antennas at the AP increase.

The BERs of BDPSK and BPSK versus the transmit power

of the AP are plotted in Fig. 5 and Fig. 6, respectively. Note

that the trifecta of exact analysis, simulations and approxima-

tions coincide nicely. This close match validates the correct-

ness of (11) and (13) and confirms that the Patnaik central Chi-

squared approximation (Proposition. 1) works well. As well,

these two figures confirm the trend that the BER improves

with the increasing transmit power at the AP. Larger transmit

power at the AP means the user can receive signals with larger

SNR, which improves the quality of the communication link.

As expected, larger energy harvesting time improves the BER

since the user has larger power budget in the uplink. Moreover,

Fig. 6 shows that the BER of BPSK is improved as either the

number of antennas or energy harvesting efficiency increases.

V. CONCLUSION

A comprehensive performance analysis of energy beam-

forming in a WPCN over LOS channels has hitherto been

lacking. We remedy this gap by analyzing the WPCN (Fig.

1), which consists of a multiple-antenna AP and a single-

antenna, battery-less user device. It will harvest energy from

the downlink AP transmissions and the sends data to the

AP. We derived exact and approximate/asymptotic expressions

for OP, EC and BER. They were validated via Monte-Carlo

simulations.

Our main findings can be summarized as follows:

1) OP, EC and BER can be improved by increasing transmit

power P and the number of AP antennas.

2) When the channel K factor is large (strong LOS), the

system performance improves. Interestingly, the optimal

harvesting time fraction is insensitive to the K factor.
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