
2473-2400 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2020.2994513, IEEE
Transactions on Green Communications and Networking

1

Energy Harvesting Aided by Random Motion; A

Stochastic Geometry Based Approach
S. Kusaladharma and C. Tellambura, Fellow, IEEE

Department of Electrical and Computer Engineering

University of Alberta, Edmonton, Alberta T6G 2V4, Canada

Email: kusaladh@ualberta.ca and chintha@ece.ualberta.ca

Abstract—RF energy harvesting is a promising solution to
increase the battery life and energy efficiency of device-to-device
(D2D) and sensor devices. To this end, this paper analyzes the
energy harvesting performance of a mobile D2D device exclu-
sively powered by energy harvesting from underlying cellular
base stations. A homogeneous Poisson point process is used to
model base stations while a modified random waypoint model is
used for the D2D motion. We derive the probability of a D2D
device being within a harvesting region surrounding base stations
after multiple transitions, and the steady state probability of
being fully charged using a Markov chain based approach. It is
shown that the number of transitions required to be within a
harvesting region is increases significantly when the harvesting
threshold power level goes beyond −55 dB.

Index Terms—Energy harvesting, Random motion, Stochastic
geometry

I. INTRODUCTION

Radio frequency (RF) energy harvesting for low powered

wireless devices is an attractive concept to improve their per-

formance and to reduce the carbon footprint [1], [2]. RF energy

harvesting is suitable over other renewable sources such as

solar or wind energy because it is less affected by atmospheric

and geographical conditions [3]. While RF energy harvesting

can be based on either dedicated transmitters or ambient RF

sources, the second option is preferable for applications such

as sensor networks due to cost savings and the self sustaining

nature [3], [4]. Significant work has been accomplished in

the development of receiver technology; prototypes have been

tested which can can harvest up to 100µW at ambient energy

densities of 40µWcm−2 [3].

The significant challenge of RF energy harvesting from

ambient sources such as cellular networks is its inherent

uncertainty [5]. For example, the distances from the ambient

base stations play a key role in the power intensity at a

receiver. However, modern wireless networks are increasingly

stochastic in nature [6], and channel uncertainties complicate

things. But, if the energy harvesting devices are mobile1, this

ability can be used to improve the harvesting performance.

To this end, this letter investigates the feasibility of energy

harvesting for motion enabled devices.

Energy harvesting performance of sensor and device-to-

device (D2D) nodes have been popular topics of past research.

For example, [4] proposes a novel network model which uses

stochastic geometry to analyze energy harvesting devices co-

existing with a primary network, while [5] extends this model

by incorporating path loss inversion based power control and

incomplete power depletions. Meanwhile references [6], [7]

1Devices can either be user held or mounted on autonomous robots or
vehicles.

develop energy harvesting protocols when D2D devices har-

vest energy from a multi channel cellular network. Moreover,

[8] characterizes network performance when relay devices

harvest energy, and analytically model the harvested energy

incorporating temporal correlations using Markov chains. An

energy field model is introduced in [9] to analyze the cov-

erage probability of a network powered by ambient energy

harvesting. The authors of [10] incorporate user mobility in

characterizing the energy harvesting performance, and show

that mobility can indeed be beneficial.

Even though there is a wealth of research on energy

harvesting, to the best of our knowledge only [10] has at-

tempted to improve the energy harvesting performance via

the device’s mobility. However, the authors only assume a

single transmitting base station which acts as a dedicated

power source. So, how would motion affect the harvesting

performance from multiple ambient RF sources which are

randomly located? Furthermore, how do temporal correlations

affect the harvesting performance? These are critical questions

that we seek answers within this letter.

To this end, we consider a random set of cellular base

stations in R2 modelled stochastically as a Poisson point

process (PPP). These base stations transmit their signals which

are subject to fading and log-distance path loss. The energy

harvesting devices can harvest energy as long as they are

within specific harvesting zones around the base stations where

the received ambient RF power is greater than the threshold

power level required for their conversion circuits to operate.

Whenever a device is outside the harvesting region, it conducts

a random motion till it’s within the harvesting region. Using

tools from stochastic geometry, we derive the probability of

a device being within a harvesting region. Furthermore, using

a Markov chain based approach, we derive the steady state

transmission probability after considering temporal effects.

II. SYSTEM MODEL

A. Spatial Model

We consider a system where energy harvesting nodes are

co-located with an overlaying cellular network spanning R
2

(Fig. 1). The cellular network is composed of base stations and

user devices which are located randomly. While the locations

of base stations are traditionally pre-planned, the advent of

small cells, femto access points, and heterogeneous networks

have made modern wireless networks inherently random. On

the other hand, the locations of cellular users and energy

harvesting devices are always random. As such, mathematical

approaches such as stochastic geometry must be used to
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Fig. 1: System model. The shaded regions surrounding the

cellular base stations represent the harvesting zones. The

energy harvesting node initially located at a0 conducts a

motion; first to a1 and subsequently to a2. As a2 is within the

harvesting zone, it concludes its motion there. Only a single

energy harvesting node is represented for clarity.

model such networks. Therefore, we will model the cellular

base stations using homogeneous PPPs [11]. The PPP can

accurately model even pre-planned wireless networks while

allowing tractable analysis, which has made it popular among

researchers. In a homogeneous PPP with node density per unit

area λ, the probability of having k nodes within a given area

A (Pr[N(A) = k]) is given by [11]

Pr[N(A) = k] =
(λA)k

k!
e−λA. (1)

As such, let the PPP of cellular base stations be Φcb with

a density of λcb. It should noted that because homogeneous

PPPs are used, λcb is constant over all R2. Similarly, let the

cellular receivers form a PPP of Φcu with density λcu. The

energy harvesting nodes also form their own PPP Φeh with

density λeh.

In the cellular system, the users connect with their closest

base station. Thus, the base stations form Voronoi cells.

We assume without the loss of generality that all cellular

base stations transmit whenever there is a cellular receiver

within its cell. In other words, the cellular users are always

active. If activity factors were considered, they can be easily

incorporated by thinning the PPP of cellular users as necessary.

For example, for a user activity factor of κ, the active cellular

users form a homogeneous PPP with density κλcu.

B. Signal Model

In this work, we will consider the downlink channel, and we

assume full frequency reuse. Furthermore, each base station

is assumed to serve only a single user. However, multiple

user devices being served by a base station can be easily

incorporated [6]. Each cellular base station transmits at power

P . While power control procedures are the norm in modern

networks [12], we leave it open as a future work.

The signals are subject to Rayleigh fading and log-distance

path loss. With Rayleigh fading, the channel power gain is

denoted by |h|2, f|h|2(x) = e−x, 0 ≤ x ≤ ∞. The fading is

assumed to be independent between different pairs of users.

With log distance path loss, the received power PR at a

distance r from the transmitter is given by PR = Pr−α, where

P is the transmit power and α is the path loss exponent.

C. Energy Harvesting and Network Operation

The downlink transmission phase of the cellular network

is divided into time slots of duration T . It should be noted

that these time slots can refer to frames or super frames

without the loss of generality for the purposes of this letter.

We further assume that all cellular base stations are fully

synchronized, and that the energy harvesting nodes also get

synchronized with the cellular network for the purposes of

energy harvesting.

The energy harvesting nodes are solely powered through

ambient RF energy from the cellular base stations. However,

due to practical requirements of the energy harvesting cir-

cuitry, the ambient received power has to be greater than

a certain threshold to harvest energy. Let this level be Pγ .

If Dt is any energy harvesting node located at x, and the

location of a cellular base station is yj where yj ∈ Φcb, the

distance between Dt and the j-th cellular base station rj is

written as rj = ||x− yj ||. Energy harvesting is possible from

the j-th cellular base station whenever the average received

power is greater than the energy harvesting threshold. This

criterion can be formally expressed as Pr−α
j > Pγ . It should

be noted that small scale fading has been omitted from the

criterion because it averages to 1 within a specific time slot.

Thus, for the purposes of this letter, the channel coherence

time is significantly lower than T . For Dt to harvest sufficient

energy from the j-th cellular base station, it should be within

a distance of rj =
(

P
Pγ

)
1

α

from it. Generalizing this concept,

for Dt to harvest energy from any cellular base station, it has to

be within a harvesting region H where H =
⋃

j∈Φcb
b(yj , rj).

Here b(yj , rj) ∈ R
2 denotes a disc shaped area of radius

rj surrounding yj . Furthermore, whenever Dt is within the

harvesting region H, the harvested energy per time slot is

assumed to remain the same irrespective of the distance to the

cellular base station or whether there are two or more base

stations within
(

P
Pγ

)
1

α

from Dt.

In this letter, we assume that Dt needs to be within a

harvesting region for N time slots in order to fully charge its

batteries. Unless fully charged, no transmission occurs from

Dt. When fully charged, Dt conducts its transmission during

the next time slot whenever there is data to be transmitted.

We assume that a full depletion of power takes place after a

transmission, and that Dt will begin the energy harvesting

phase again. As our focus is on investigating the energy

harvesting success, we do not look into the dynamics of the

transmitted signal by Dt for brevity. Therefore, receiver or

sink node selection criteria or power control schemes by Dt

are not considered. However, incorporating these factors would

be interesting research challenges for the future.

The energy harvesting nodes are assumed to be mobile,

while the cellular base stations are stationary. However, in the

energy harvesting stages, Dt will be static as long as its within

a harvesting region. We will assume a modified version of the

random waypoint model [13], [14] to model movements. The

specific protocol is described below.
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Fig. 2: Markov chain model with 0 being the uncharged state

and N being the fully charged state.

• When Dt has depleted it’s power after a previous trans-

mission, it checks whether it’s location x is within the

harvesting region H.

• If x ∈ H, energy is harvested for N time slots. Dt

remains static till the harvesting procedure is complete.

• If x /∈ H, Dt travels for 1 time slot at any random

direction θ with velocity v. If x1 is the location of Dt

afterwards, it checks whether x1 ∈ H. If yes, energy is

harvested for N time slots. If not, Dt travels in the same

angle θ at velocity v for another time slot. This process

continues till Dt is within the harvesting region (Fig. 1).

• After the harvesting is complete, Dt can either remain

stationary or move about either randomly or depending

on its requirements till its transmission is complete.

III. STEADY STATE TRANSMISSION PROBABILITY

In this section we will derive the steady state transmission

probability of Dt. Let this probability be denoted as pst. pst
depends on the probability that Dt is fully charged (pc), and

the probability that Dt has data to transmit (ν). It should be

noted that ν depends on the specific traffic generation and

receiver association models which are out of the scope of this

paper. On the other hand, pc depends on temporal effects, and

a Markov chain based analysis is needed.

Fig. 2 represents the state transition diagram for the energy

harvesting process. The Markov chain has N + 1 levels as

we assume Dt needs N charging slots. The state 0 represents

the uncharged state while state N represents the fully charged

state. The probability of transitioning from state 0 to state 1 is

represented as q. q depends on the probability of being within

the harvesting region, and will be analyzed in the subsequent

section. As Dt remains static once within a harvesting region,

the probability of transitioning from state k to k + 1 where

1 ≤ k ≤ N − 1 after a subsequent time slot is 1. When Dt

is fully charged (i. e. in state N ) the transition probability is

ν. The overall procedure can be represented in matrix form as

follows where Q is the state transition matrix.

Q =













1− q q 0 0 . 0
0 0 1 0 . 0
0 0 0 1 . 0
. . . . . .
ν 0 0 . . 1− ν













.

The probability pc is the steady state probability of Dt being

within state N . If ω = [ω0 ω1 . . ωN ] is the vector of steady

state probabilities, we may write ω = Qω at steady state.

Thus, we can obtain

pc = ωN =
q

q + ν + (N − 1)qν
. (2)

IV. PROBABILITY OF BEING WITHIN THE HARVESTING

REGION

In this section, we derive the probability of Dt being within

the harvesting region H (q). Without the loss of generality, let

Dt be located initially at the origin. As mentioned in Section

II, Dt conducts a motion in each time slot till it comes within

a harvesting region. Therefore, the probability of Dt being

within H after each subsequent time slot needs to be taken into

account for the derivation of q. Thus, we can approximately

write

q =
1

W + 1
, (3)

where W is the average number of required transitions. W
can be written as

W =
∞
∑

t=0

tqt

t−1
∏

s=0

(1 − qs), (4)

where q∗(∗ ∈ {t, s}) is the probability that Dt is within H
before the t+1-th time slot, and t is the number of time slots

that Dt conducts a motion.

The special probability q0 is the probability of Dt being

within H at the onset. Using the void probability of PPPs,

we can obtain q0 as the complement of having 0 cellular base

stations within b(0, rj). Thus, we have

q0 = 1− e
−πλcb

(

P
Pγ

) 2

α

. (5)

Now, in order to find qs for s > 0, we need the distribution

of the distances from Dt to the cellular base stations. If rk
is the distance from the origin (the initial location of Dt) to

the k-th nearest cellular base station (denoted as Ck), rk is

distributed as [12], [15]

frk(x) =
2(πλcb)

k

(k − 1)!
x2k−1e−πλcbx

2

, 0 < x < ∞. (6)

Because the cellular base stations are stationary, the distance

distributions will change whenever Dt moves at velocity v at

an angle θ. Let rk(s) be the distance from Dt to the cellular

base station which was initially the k-th closest 2 (Ck) after

moving for s time slots. Via the cosine rule, we can write

rk(s) =
√

r2k + (vsT )2 + 2vsT rk cos θ. (7)

Let ρk be the probability that Ck is within a distance of rj
from Dt after moving for s time slots. Thus, we obtain

ρk = Pr[rk(s) < rj ]

= Pr



rk <

√

(

P

Pγ

)
2

α

+ (vsT )2(cos2 θ − 1)− vsT cos θ





=Eθ

[

1−

k−1
∑

i=0

(λcbπU
2)i

i!
e−πλcbU

2

]

, (8)

2This base station may not necessarily be the k-th closest after Dt moves.
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Fig. 3: The average number of transitions (W ) vs. Pγ for

different v. λcb = 0.003.

where U =

√

(

P
Pγ

)
2

α

+ (vsT )2(cos2 θ − 1) − vsT cos θ.

Even if a single base station is within rj , Dt will be able

to harvest energy. Therefore, we can write qs as

qs = 1−

∞
∏

k=1

(1 − ρk). (9)

V. NUMERICAL RESULTS

This section presents numerical results for pc and the

average number of transitions (W ) under different system pa-

rameters. Simulation is conducted in MATLAB under P = 1,

T = 1, ν = 0.5, N = 5, and α = 3.

Fig. 3 plots the average number of transitions required to

harvest energy with respect to the energy harvesting threshold

Pγ . The average number of transitions increase steadily with

Pγ for all the velocities considered, and is extremely low when

Pγ < −55 dB. However, the higher the velocity, the lower the

number of transitions required. Given that Dt is outside the

harvesting zone H, there is a higher probability that Dt is still

outside H after a transition when v is low due to correlations.

The probability of Dt being at state N at steady state (pc)

is plotted in Fig. 4 with respect to the velocity (v). Increasing

the velocity slightly increases pc, but the rate of increase also

diminishes. The value at which the curves flatten out is the

value if Dt sees a new realization of Φcb after each transition.

Moreover, the effect of velocity is higher for lower base station

densities; the change in pc when λcb = 0.001 is minute. With

a high density of base stations, Dt has a higher chance of

arriving within H irrespective of the velocity.

VI. CONCLUSION

This paper investigated the energy harvesting performance

of a mobile D2D device powered by ambient RF signals

emitted by cellular base stations. A homogeneous Poisson

point process was used to model the cellular base stations,

and log-distance path loss was considered. Furthermore, the

motions of D2D devices followed a modified random waypoint

model. The D2D devices were assumed to transition to a new
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Fig. 4: pc vs. the velocity (v) for different λcb. Pγ = −50 dB.

location within discrete time slots until they came within a

harvesting zone, and each device needed N time slots within

a zone to be fully charged. Using a Markov chain based

approach, the steady-state probability of being fully charged

was derived. Through numerical results, it is concluded that

higher velocities and base station densities reduce temporal

correlations, thus reducing the required time slots for transi-

tions and increasing pc.
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