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Abstract—We study the effect of outdated channel state infor-
mation (CSI) and co-channel interference (CCI) on the perfor-
mance of relay selection (RS) network-coded cooperative (NCC)
multiple-input multiple-output (MIMO) systems. Specifically, we
consider a RS MIMO-NCC system where N single-antenna
sources communicate with one multiple-antenna destination us-
ing M decode-and-forward (DF) multiple-antenna relays. The
destination selects K best relays according to the quality of
relay-destination channels. The selected relays apply network
coding (NC) on the received sources’ symbols using network code
coefficients based on maximum distance separable (MDS) codes.
The exact closed-form outage probability (OP) of the system
is derived. The asymptotic high signal-to-noise ratio (SNR) OP
is also obtained, through which the diversity order and the
coding gain are found. Numerical results are further presented
to illustrate the adverse effect of outdated CSI and CCI on the
system performance and to validate the accuracy of our analysis.

Keywords—Network-coded cooperation, outdated CSI, co-
channel interference, outage probability, diversity order.

I. INTRODUCTION

A. Background and Related Works

Cooperative communication (CC) is a well established

technique to combat the multi-path induced fading inherent

to the wireless channel [1]. CC systems, however, suffer

from spectral inefficiency, since each relay requires multiple

resource blocks when transmitting different sources’ packets.

Network-coded cooperation (NCC), a new family of CC, has

been proposed to reduce the number of relay transmissions

in multi-source cooperative networks [2]. Unlike conventional

CC where the relays simply decode and forward sources’

packets one by one, in NCC, each relay performs network

coding (NC) [3] on the decoded data packets received from

multiple sources and then forwards the coded version to the

destination. Thus, the number of orthogonal resource blocks

for the relaying does not increase with the number of sources;

thereby NCC improves the energy efficiency and increases

the system throughput. Relay selection (RS) based NCC can

further improve the spectral efficiency of CC systems [4]–[8].

B. Contributions of This Paper

The main contributions of this paper compared to current

NCC literature are threefold. First, many prior works on NCC

build upon the assumption that the direct links between the

sources and the destination are available [4]–[8]. This might

not be a realistic assumption, in particular, when the sources

are far from the destination and the direct links experience

heavy path-loss and shadowing. This paper studies the outage

performance and the diversity order of RS NCC in the ab-

sence of direct source-destination links. Second, so far, only

one paper investigated the impact of outdated channel state

information (CSI) on the performance of single-antenna RS

NCC [7]. But this work has not been extended to RS multiple-

input multiple-output (MIMO) NCC. Third, the performance

of NCC subjected to co-channel interference (CCI) is not

available. However, because of the aggressive frequency reuse,

CCI is an important constraint for fifth generation (5G) and

future wireless networks. Therefore, it is of both theoretical

and practical interest to study the impact of outdated CSI and

CCI on the performance of RS MIMO-NCC. The objective of

this work is to remedy this gap.

In particular, we consider a dual-hop cooperative network

that consists of N > 1 single-antenna sources, M ≥ 1
decode-and-forward (DF) multiple-antenna relays and a single

multiple-antenna destination. The destination selects K best

relays that maximize the signal-to-noise ratio (SNR) of relay-

destination channels. The selected relays apply NC on the

received sources’ symbols using network code coefficients

based on maximum distance separable (MDS) codes. In our

system setup, the relays use one transmit antenna to forward

encoded signals to the destination. On the other hand, both the

destination and relays employ selection combining (SC) for

signal reception. For this system, we derive the exact outage

probability (OP) in closed-form. To obtain further insights into

the system-design parameters, the asymptotic high-SNR OP

is also derived, through which the diversity order and the

coding gain are quantified. Valuable insights and guidelines

are provided to help the design of practical RS MIMO-NCC.

The rest of this paper is as follows: Section II explains the

system and channel models. The exact OP and asymptotic

analyses are presented in Section III. Numerical results are

given in Section IV. Finally, we conclude in Section V.

II. SYSTEM AND CHANNEL MODELS

Let us consider a dual-hop multi-source multi-relay cooper-

ative network where N single-antenna sources S = {Sn}Nn=1

communicate with the destination D, equipped with Nd ≥ 1
antennas, with the help of M DF relays R = {Rm}Mm=1.

This setup may apply to the uplink cellular system where

a group of single-antenna mobile users communicate with a

multiple-antenna base station using multiple-antenna relays.

Each relay has Nr ≥ 1 receive antennas and uses only one

antenna for transmission. We assume the direct links from the

sources to the destination are not reliable and the sources’

packets are transmitted only through the relays. This can

happen due to propagation impairments such as shadowing and

path-loss. The channels are assumed to follow a flat Rayleigh

fading model. Let hSnRm
∈ C

Nr×1 and hRmD ∈ C
Nd×1,



respectively, denote the single-input multiple-output (SIMO)

channel vectors for the source-relay and relay-destination

links whose elements are modeled as ∼ CN (0, 1). The j-th

and the ℓ-th elements of hSnRm
and hRmD are denoted by

h
(j,1)
SnRm

and h
(ℓ,1)
RmD. Further, the channels include independent

additive white Gaussian noise (AWGN) terms with mean

zero and variance one. We assume that the number of CCI

signals impairing the relays and the destination are I1 and I2,

respectively, and that the received interference signals at the

relays and destination have identical average energy.

The transmission of the sources and the relays occurs in

non-overlapping time-slots and a complete round of coopera-

tion takes place in two phases.

A. First Phase: Source-Relay Transmission

In the first phase, the sources transmit their messages to

the relays in N orthogonal time-slots. The relays employ SC

to exploit receiver diversity. In particular, the best receiver

antenna providing the maximum SNR between source Sn and

relay Rm is selected for data reception. At the same time,

relay Rm receives I1 CCI signals. The instantaneous signal-

to-interference plus noise ratio (SINR) for Sn → Rm (∀n,m)

link can then be written as

γnm =
γ∗
nm

1 + γI1
. (1)

In (1) γI1 =
∑I1

i=1 µ1|gm,i|2 where µ1 is the interference

transmit SNR and gm,i is the channel coefficient of the ith

interference at Rm. Also, γ∗
nm = γ̄|h∗

nm|2 where γ̄ is the

transmit SNR and |h∗
nm| is given by

|h∗
nm| = max

16j6Nr

{|h(j,1)
SnRm

|}. (2)

At the end of the first phase, the relays which successfully

decode all N sources’ packets, send a flag packet to the

destination, indicating that they are ready for cooperation. Let

A denote the set of decodable relays with the cardinality of l.
Mathematically speaking, this can be written as

A , {Rm ∈ R : γnm > γth, ∀n}, (3)

where γth is the predefined SINR threshold.

It is clear that the number of relays in A, l, is upper bounded

by the total number of available relays M , i.e., l ≤ M . Note

that A is a random set and l is thus a random variable.

B. Second Phase: Relay-Destination Transmission

The second phase lasts for K time-slots. At the beginning

of each time-slot a relay in A which maximizes the SNR of

relay-destination channels is selected for transmission. This

procedure continues until K relays transmit. In particular, the

selected relay Rm∗ linearly combines the received sources’

packets using a non-binary q-ary Galois field NC based on

MDS codes [2]. The resulting network-coded packet is then

forwarded to the destination by a single antenna at Rm∗ . At the

same time, the received signal at the destination is impaired

by I2 CCI signals. Since the destination employs SC, the SNR

of relay-destination channel at selection instant t is given by

γ̂m∗ = γ̄|ĥm∗ | = γ̄ max
Rm∈A

{

max
16ℓ6Nd

{|h(ℓ,1)
RmD|}

}

, (4)

which may differ from the actual SNR γm∗ = γ̄|hm∗ |2 during

transmission time t + τ due to feedback delay. ĥm∗ and

hm∗ are joint complex Gaussian distributions with correlation

coefficients 0 6 ρ 6 1. When ρ = 1, then the channels

are perfectly correlated and RS is based on the perfect CSI.

On the other hand, when ρ = 0, the channels are perfectly

uncorrelated and RS is equivalent to random selection of relays

from decoding set A.

The SINR of Rm∗ → D link can be expressed as

γm =
γm∗

1 + γI2
, (5)

where γI2 =
∑I2

i=1 µ2|gi|2, µ2 is the interference transmit

SNR, and gi is the channel coefficient of the ith CCI at D.

III. PERFORMANCE ANALYSIS

A. CDF of Intermediate Links

To evaluate overall RS MIMO-NCC outage, we must com-

pute the cumulative distribution function (CDF) of the SINR

in the first hop (S → R links) and in the second hop (R → D
links).

Lemma 1. The CDF of γnm (1) and γm (5) are, respectively,

given by

Fγnm
(γ) =

Nr
∑

k=0

(

Nr

k

)

(−1)k

µI1
1

(

γ̄µ1

γ̄ + γkµ1

)I1

e−
kγ
γ̄ , (6)

Fγm
(γ) = 1−

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

1 + k
(

γ̄
(

1 + (1− ρ)k
)

(1 + k)µ2γ + γ̄
(

1 + (1− ρ)k
)

)I2

e−
(1+k)γ

(1+(1−ρ)k)γ̄ . (7)

Proof. We first proceed to determine the CDF of (1). The CDF

of γ∗
nm in (1) is given by Fγ∗

nm
(γ) = (1− e−

γ
γ̄ )Nr . Applying

binomial expansion, we have

Fγ∗

nm
(γ) =

Nr
∑

k=0

(

Nr

k

)

(−1)ke−
kγ
γ̄ . (8)

On the other hand, the probability density function (PDF) of

γI1 in (1) is given by

fγI1
(y) =

yI1−1

Γ(I1)µ
I1
1

e−
y
µ1 , (9)

where Γ(·) is the Gamma function.

The CDF of γnm can then be obtained as

Fγnm
(γ) =

∫ ∞

0

Fγ∗

nm

(

(1 + y)γ
)

fγI1
(y)dy. (10)

Inserting (8) and (9) into (10), we have

Fγnm
(γ) =

Nr
∑

k=0

(

Nr

k

)

(−1)k

Γ(I1)µ
I1
1

e−
γk
γ̄

∫ ∞

0

e
−
(

γk
γ̄

+ 1
µ1

)

y
yI1−1dy.

(11)

Using
∫∞

0
yυ−1e−ϕydy = ϕ−υΓ(υ) [9], Fγnm

(γ) can be

derived as (6).



Furthermore, the PDF of γm∗ in (5) can be obtained by

taking the average of the conditional PDF fγm∗ |γ̂m∗
(γ|γ̂) over

the PDF of γ̂m∗ . This can be written as

fγm∗
(γ) =

∫ ∞

0

fγm∗ |γ̂m∗
(γ|γ̂)fγ̂m∗

(γ̂)dγ̂. (12)

The conditional PDF is given by [10]

fγm∗ |γ̂m∗
(γ|γ̂) = 1

(1− ρ)γ̄
e−

ργ̂+γ

(1−ρ)γ̄ I0
(

2
√
ργγ̂

(1− ρ)γ̄

)

, (13)

where I0(·) is the zeroth-order modified Bessel function of

the first kind. Furthermore, the CDF of γ̂m∗ is given by

Fγ̂m∗
(γ̂) = (1 − e−

γ̂
γ̄ )lNd . Thus, the PDF of γ̂m∗ can be

written as

fγ̂m∗
(γ̂) =

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

γ̄
e−

(1+k)γ̂
γ̄ . (14)

Substituting (13) and (14) into (12), we have

fγm∗
(γ) =

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

(1− ρ)γ̄2
e−

γ

(1−ρ)γ̄

×
∫ ∞

0

e−υγ̂I0(2
√

ϕγ̂)dγ̂, (15)

where υ = 1+(1−ρ)k
(1−ρ)γ̄ and ϕ = ργ

(1−ρ)2γ̄2 . Finally, solving the

integral by using
∫∞

0
e−υxI0(2√ϕx)dx = 1

υ
e

ϕ
υ [9], fγm∗

(γ)
can be derived as

fγm∗
(γ) =

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

(1 + (1− ρ)k)γ̄
e−

(1+k)γ
(1+(1−ρ)k)γ̄ . (16)

From (16), the CDF of γm∗ can be obtained as

Fγm∗
(γ) = 1−

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

1 + k
e−

(1+k)γ
(1+(1−ρ)k)γ̄ . (17)

Therefore, Fγm
(γ) can be formulated as

Fγm
(γ) = 1− lNd

Γ(I2)µ
I2
2

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)k

1 + k

× e−
(1+k)γ

(1+(1−ρ)k)γ̄

∫ ∞

0

yI2−1e
−

((1+k)µ2γ+γ̄(1+(1−ρ)k))y

γ̄(1+(1−ρ)k)µ2 dy. (18)

Solving the integral in (18), one can obtain (7). This completes

the proof.

B. Overall Outage Probability

The probability that l relays succeed to recover all sources’

messages can be written as

Pr{|A| = l} =

(

M

l

)

P
l
s(1− Ps)

M−l, (19)

where Ps =
(

1− Fγnm
(γth)

)N
.

Also, the probability that ζ relays (out of K selected relays)

are not in outage given that |A| = l is computed as

Pr{|E| = ζ|l} =

(

K

ζ

)

(

Fγm
(γth)

)K−ζ(

1− Fγm
(γth)

)ζ
.

(20)

In NCC, the destination solves the linear equations transmit-

ted by the selected K relays to recover the original N sources’

packets. Thus, at least N successful transmissions are required.

Since direct source-destination links are not available, the

number of selected relays K must be at least equal to the

number of sources N i.e., N 6 K. An outage occurs if fewer

than N network-coded packets are received by the destination.

The overall OP can then be obtained using the law of total

probability and is given by (21).

Pout =

M
∑

l=0

N−1
∑

ζ=0

Pr{|E| = ζ|l}Pr{|A| = l}. (21)

C. Asymptotic Analysis

Although the OP expression in (21) is exact, direct insights

into the effect of the feedback delays and CCI on the system

performance are desirable. In this subsection, we thus derive

the asymptotic outage expression.

Theorem 1. The asymptotic high-SNR OP for perfect CSI (ρ =
1) is given by

P∞
out

γ̄→∞≈ (C1.γ̄)−Gd1 , (22)

where diversity order Gd1
and the coding gain C1 are, respec-

tively, given by

Gd1
= Mmin{Nr, (K −N + 1)Nd}, (23)

C1 =































̟
(1)
1

−
1

MNr

γth
K −N + 1 >

Nr

Nd

̟
(2)
1

−
1

M(K−N+1)Nd

γth
K −N + 1 <

Nr

Nd

̟
(3)
1

−
1

MNr

γth
K −N + 1 =

Nr

Nd

(24)

in which ̟
(1)
1 = (NH1(Nr))

M , ̟
(2)
1 =

(

K
N−1

)

(H2(MNd))
K−N+1, ̟

(3)
1 = (NH1(Nr))

M +
∑M

l=1

(

M
l

)

(NH1(Nr))
M−l

(

K
N−1

)

(H2(lNd))
K−N+1, and

Hi(a) =

a
∑

k=0

(

a
k

)

µk
i Γ(Ii + k)

Γ(Ii)
. (25)

Further, for outdated CSI (ρ 6= 1), P∞
out can be derived as

P∞
out

γ̄→∞≈ (C2.γ̄)−Gd2 , (26)

where

Gd2
= min{MNr,K −N + 1}, (27)

C2 =























̟
(1)
2

−
1

MNr

γth
K −N + 1 > MNr

̟
(2)
2

−
1

K−N+1

γth
K −N + 1 < MNr

(

̟
(1)
2 +̟

(2)
2

)

−
1

K−N+1

γth
K −N + 1 = MNr

(28)

with ̟
(1)
2 = (NH1(Nr))

M , ̟
(2)
2 =

(

K
N−1

)

T K−N+1, and

T =

MNd−1
∑

k=0

MNd (Γ(I2) + µ2Γ(I2 + 1))
(

MNd−1
k

)

(−1)k
(

1 + (1− ρ)k
)

Γ(I2)
.

(29)



Proof. In high SNR regime i.e., γ̄ → ∞, we have

F∞
γ∗

nm
(γth) = (γth/γ̄)

Nr . Then by substituting this expression

and (9) into (10), we have

F∞
γnm

(γth) =

∫ ∞

0

γNr

th (1 + y)NryI1−1

γ̄NrΓ(I1)µ
I1
1

e
−y
µ1 dy. (30)

Finally, by performing binomial expansion and solving the

integral, we obtain

F∞
γnm

(γth) =

Nr
∑

k=0

(

Nr

k

)

µk
1Γ(I1 + k)

Γ(I1)

(

γth
γ̄

)Nr

. (31)

Similarly, the asymptotic expression for Fγm
(γth) when ρ = 1

can be derived as

F∞
γm

(γth) =

lNd
∑

k=0

(

lNd

k

)

µk
2Γ(I2 + k)

Γ(I2)

(

γth
γ̄

)lNd

. (32)

on the other hand, when ρ 6= 1, F∞
γm∗

(γth) can be well

approximated as

F∞
γm∗

(γth) =

lNd−1
∑

k=0

(

lNd−1
k

)

(−1)klNd

1 + (1− ρ)k

(

γth
γ̄

)

. (33)

Using (33), we obtain

F∞
γm

(γth) = lNd (Γ(I2) + µ2Γ(I2 + 1))

×
lNd−1
∑

k=0

(

lNd−1
k

)

(−1)k
(

1 + (1− ρ)k
)

Γ(I2)

(

γth
γ̄

)

. (34)

Plugging these expressions in (21) and considering the domi-

nant terms, one can obtain (22) and (26).

D. Remarks and Guidelines

The following remarks can be drawn from (23) and (24):

Remark 1. The maximum achievable diversity is given by

(23). It is either equal to MNr or M(K − N + 1)Nd. If

K − N + 1 > Nr/Nd, then the diversity is determined

by Gd1
= MNr which is a function of M and Nr and

is independent of other system parameters N , K, Nd. This

implies that adding more antennas at the destination Nd, and

selecting more relays K not only do not change the diversity

but also increase the complexity and decrease the system

throughput. On the other hand, if K − N + 1 < Nr/Nd,

then the diversity is given by Gd1
= M(K−N+1)Nd which

is a function of all system parameters except the number of

antennas at relays Nr. Interesting but counter intuitively, here

increasing the number of sources N decreases the diversity.

Remark 2. The optimal number of selected relays that max-

imizes the achievable diversity is a function of Nr, Nd, and

N and is equal to (35). It can be seen that Kopt1 is inversely

proportional to Nd. Therefore, by adding more antennas at

the destination (i.e., increasing the complexity), the number

of relays to be selected for achieving the maximum diversity

can be decreased (i.e., reducing the relay transmissions). This

clearly shows a trade-off between the system complexity and

system throughput.

Kopt1 =

⌈

Nr

Nd

+N − 1

⌉

. (35)

Remark 3. In our proposed system model, the relay uses only

one transmit antenna for data transmission. Transmit antenna

selection (TAS), which maximizes the relay-destination SNR,

can also be employed at the relays. If TAS is used, then the

diversity in (23) changes to

GTAS
d = min{MNr,M(K −N + 1)NrNd} = MNr. (36)

Thus, TAS improves the diversity only when K − N + 1 <
Nr/Nd. However, when K − N + 1 > Nr/Nd, the system

with TAS provides coding gain without diversity advantages.

Remark 4. Although CCI does not impact diversity order (for

fixed interference powers), it degrades the coding gain. When

K −N + 1 > Nr/Nd, the system parameters of the first hop

(i.e., Nr, I1, µ1) impact the coding gain. When K−N +1 <
Nr/Nd, the coding gain is determined by Nd, I2 and µ2. For

K−N+1 = Nr/Nd, the coding gain is affected by the system

parameters associated with both hops.

Remark 5. For single-antenna NCC i.e., when Nd = Nr =
1, the diversity in (23) is reduced to Gd1

= M . Thus, the

proposed RS strategy increases the diversity from M −N +1
(earlier reported in [2]) to M . Based on (35), the optimal

number of relays to be selected is Kopt1 = N .

On the other hand, from (27) and (28), we have the

following remarks:

Remark 6. Outdated CSI degrades diversity order from Gd1

(23) to Gd2
(27). Thus, if ρ is not equal to one, the diversity is

independent of number of antennas at the destination. Further,

if TAS is used at the relays, the diversity does not change and

is equal to (27), meaning that in the case of outdated CSI, TAS

does not provide any diversity advantages. Also, the optimal

number of selected relays that maximizes the diversity is

Kopt2 = MNr +N − 1. (37)

Remark 7. The coding gain is determined by the system

parameters in the first hop, second hop, and both hops when

K −N +1 > MNr, K −N +1 < MNr, and K −N +1 =
MNr, respectively.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present Monte-Carlo simulations to

validate the derived analytical expressions. Unless otherwise

stated, we assume N = 5, I1 = 2, I2 = 3, µ1 = 0 dB, µ2 = 0
dB and γth = 0 dB.

Fig. 1 depicts the outage (21) and asymptotic curves (22),

(26) for different values of ρ and K when M = 4, Nr = 3,

and Nd = 2. It can be readily checked that when ρ = 1
the optimal number of relays to be selected is Kopt1 = 6
(35). Therefore, as K increases from five to six the diversity

increases from Gd1
= M(K−N +1)Nd = 8 to its maximum

value Gd1
= MNr = 12. However, the diversity for K = 7 is

identical to that of Kopt1 = 6. This implies that selecting more

than Kopt1 relays does not increase the diversity, confirming

the statements in Remark 2. Also, the slope of the asymptotic

curves reveals that for ρ = 0.8 the diversity significantly

reduces to Gd2
= K −N + 1 (27) and is equal to one, two,

and three for K = 5, 6, and 7.
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Figure 1. OP versus γ̄ for different values of ρ and K when M = 4, Nr = 3,
and Nd = 2.
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Figure 2. OP versus γ̄ for different values of Nd and µ1 when M = 4,
K = 5, Nr = 3, and ρ = 1.

Fig. 2 illustrates the effect of CCI on the OP of RS MIMO-

NCC, assuming different values of Nd and µ1 when M = 4,

K = 5, Nr = 3, and ρ = 1. As can be seen, CCI degrades

the coding gain, rather than the diversity. Also, when Nd = 2
(which satisfies K −N + 1 < Nr/Nd), the value of µ1 does

not change the system performance as γ̄ → ∞ and the curve

corresponding to µ1 = 5 dB converges to that of µ1 = 0 dB,

confirming Remark 4.

Fig. 3 compares the outage performance of RS MIMO-NCC

with TAS and without TAS (SIMO) at the relays when M = 3,

K = 6, Nd = 2, Nr = 3, 5, and ρ = 1. It is observed that TAS

improves the diversity from Gd1
= M(K −N + 1)Nd = 12

(23) to GTAS
d = MNr = 15 (36) when Nr = 5 (K−N+1 <

Nr/Nd). When Nr = 3 (K − N + 1 > Nr/Nd), however,

TAS provides the diversity of nine which is identical to that
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Figure 3. Comparison between SIMO/SC and TAS/SC when M = 3, K = 6,
Nd = 2, Nr = 3, 5, and ρ = 1.

of without TAS. This confirms the statements in Remark 3.

V. CONCLUSIONS

We proposed a RS MIMO-NCC which provides most of

the MIMO benefits while employing only one transmit/receive

chain at the relays and destination. Our analysis revealed

that RS MIMO-NCC incurs substantial performance losses

with outdated CSI and CCI. These had not been analyzed

before. Several design guidelines for practical RS MIMO-NCC

systems were provided. A future research area is to study the

performance of MIMO-NCC with other antenna strategies.
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