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Abstract—This paper addresses a classical problem in random
matrix theory–finding the distribution of the maximum eigen-
value of the correlated Wishart unitary ensemble. In particular,
we derive a new exact expression for the cumulative distribution
function (c.d.f.) of the maximum eigenvalue of a 2×2 correlated
non-central Wishart matrix with rank-1 mean. By using this new
result, we derive the exact outage probability of 2× 2 multiple-
input multiple-output maximum-ratio-combining (MIMO-MRC)
in Rician fading with transmit correlation and a strong line-of-
sight (LoS) component (rank-1 channel mean). We also show
that the outage performance is affected by the relative alignment
of the eigen-spaces of the mean and correlation matrices. In
general, when the LoS path aligns with the least eigenvector of
the correlation matrix, in the high transmit signal-to-noise ratio
(SNR) regime, the outage gradually improves with the increasing
correlation. Moreover, we show that as K (Rician factor) grows
large, the outage event can be approximately characterized by
the c.d.f. of a certain Gaussian random variable.

Index Terms—Maximum eigenvalue, MIMO-MRC, Non-
central Wishart matrix, Outage probability, Rician fading

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems are critical

for 3G (third generation) and current 4G (fourth generation)

wireless networks [2]. Traditional MIMO [3], [4] and virtual

MIMO (e.g., cooperative relay networks [5]) are also a key en-

abler for 5G (fifth generation) and beyond wireless networks to

accommodate the ever-increasing data demand. For example,

in cell-free massive MIMO, where a large number of access

points are distributed over a wide area, users and access point

may have only one or two antennas [6]. Moreover, the simplest

2 × 2 MIMO channel becomes the most common channel

and hence is of paramount importance for small-cell wireless

networks [7]. For such small-size MIMO channels, accurate

channel state information (CSI) estimation is fully viable,

which enables the use of MIMO maximum-ratio-combining

(MRC) receivers.

The performance of MIMO-MRC has been extensively

analyzed for an arbitrary number of transmit and receive

antennas for different channel models ( [8]–[12] and refer-

ences therein). However, exact analytical characterization of

the MIMO-MRC over the correlated Rician channel remains

elusive. This challenge arises because the 2×2 correlated non-

central Wishart matrix does not admit analytically tractable

joint eigenvalue density [13]. While general MIMO systems
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are considered in the literature, only few studies have focused

on small-scale practical MIMO architectures [14]–[17]. For

instance, [14] derives the channel capacity of 2 × 2 or 2 × 3
MIMO channel for Nakagami-m fading. In [15], the statistical

properties of the Gram matrix W = HH†, where H is a

2 × 2 complex central Gaussian matrix whose elements have

arbitrary variances, have been investigated, resulting in exact

distributions of W and its eigenvalues. In [16], the exact and

asymptotic largest eigenvalue distributions of W are derived

when H is a complex Gaussian matrix with unequal variances

in the real and imaginary parts of its entries, or equivalently

H belongs to the non-circularly-symmetric Gaussian subclass.

These results have been then leveraged to analyze the out-

age performance of multi-antenna systems with MRC over

Nakagami-q (Hoyt) fading.

To the best of our knowledge, no exact performance
analysis is available for the important case of 2 × 2 MIMO

correlated Rician fading channel with rank-1 channel mean,

i.e., a strong line-of-sight (LoS) path exists between transmitter

and receiver [18], [19]. To develop exact analytical results,

we must first characterize the distribution of the maximum

eigenvalue of the correlated non-central Wishart matrix. How-

ever, this distribution has remained an open problem in both

wireless and even wider statistics literature. The main technical

challenge is that the joint eigenvalue density of the correlated

non-central Wishart matrix has no tractable representation. For

instance, the invariant polynomial representation given in [13]

cannot be integrated to obtain the marginal densities of the

problem at hand. To circumvent this difficulty, here we follow

an alternative approach [20], where the matrix variate density

is directly integrated instead of the joint eigenvalue density, in

order to find the maximum-eigenvalue distribution.

Specifically, we first derive an exact c.d.f. of the maximum

eigenvalue of a 2×2 complex correlated none-central Wishart

matrix with rank-1 mean, which is the key contribution of this

paper. Some recent results on the maximum eigenvalue are

symbolic, and not amenable to further processing, e.g., [12],

[20]. We thus believe this to be the first tractable exact result

on the maximum eigenvalue of such matrices. Subsequently,

we also provide an exact expression for the outage probability.

Additionally, we also characterize the effect of the Rician

factor K on the outage probability for different signal-to-noise

ratio (SNR) regimes and establish stochastic convergence limit

of outage probability for large K values.

The following notation is used throughout this paper. The

superscript (·)† indicates the Hermitian-transpose, and (·)T
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stands for the matrix transpose. We use det(·) to represent

the determinant of a square matrix, tr(·) to represent trace,

and etr(·) stands for exp (tr(·)). Positive definiteness of a

square matrix A is represented by A � 0, and A � B
denotes A − B � 0. The square root of a positive definite

matrix G is denoted by G
1
2 and diag{s1, s2} denotes a 2× 2

diagonal matrix with the real diagonal entries s1 and s2.

We use λmax(A) to denote the maximum eigenvalue of a

square matrix A. The real and imaginary parts, modulus and

conjugate of a complex number z are denoted, respectively,

by �(z), �(z), |z| and z∗. The Euclidean norm of a vector w
is denotes by ||w||. �x� denotes the floor function, defined

as �x� = max {m ∈ Z|m ≤ x}. Finally, the union of two

measurable sets R1 and R2 is denoted by R1 ∪R2.

II. CDF OF THE MAXIMUM EIGENVALUE

This section derives the new expression for the distribution

of the maximum eigenvalue of a 2 × 2 correlated complex

non-central Wishart matrix with rank-1 mean matrix. Before

proceeding with the derivations, we present some fundamental

statistical characteristics of the complex correlated non-central

Wishart matrix.

Definition 1. Let X be an n × m (n ≥ m) complex
Gaussian random matrix distributed as CN n,m (Υ, In ⊗Ψ),
where Ψ ∈ C

m×m � 0 and Υ ∈ C
n×m. Then W = X†X

has a complex non-central Wishart distribution Wm (n,Ψ,Θ)
with the density function [21]

f (W) =
etr (−Θ) detn−m (W)

Γ̃m(n) detn(Ψ)

etr
(−Ψ−1W

)
0F̃1

(
n;ΘΨ−1W

)
(1)

where Θ = Ψ−1Υ†Υ is the non-centrality parameter,
0F̃1(·; ·) denotes Bessel type complex hypergeometric function
of matrix argument and the complex multivariate gamma
function is defined as Γ̃m(n)

Δ
= π

m(m−1)
2

∏m
j=1 Γ(n − j + 1)

with Γ(·) being the gamma function.

Next we define the joint eigenvalue distribution of W which

consists of invariant polynomials due to Davis [22], [23].

Corollary 1. The joint density of ordered eigenvalues λ1 >
λ2 > ...... > λm > 0, of the complex non-central Wishart
matrix W is given by [13, Eq. 5.4]

g (Λ) =
πm(m−1)etr (−Θ)

Γ̃m(n)Γ̃m(m)detn(Ψ)

m∏
k=1

λn−m
k

∏
k<l

(λk − λl)
2

×
∞∑

k,t=0

∑
κ,τ ;φ∈κ.τ

Cκ,τ
φ

(−Ψ−1,ΘΨ−1
)
Cκ,τ

φ (Λ,Λ)

k!t![n]τCφ (Im)

(2)

where Λ is the diagonal matrix having eigenvalues of W
along the main diagonal, Cκ,τ

φ (·, ·) denotes an invariant

polynomial with two matrix arguments [22], [23] and the

complex hypergeometric coefficient [n]τ is defined as [n]τ =∏m
j=1 (n− j + 1)τj in which τ = (τ1, τ2, ...., τm) is a parti-

tion of the integer t into m parts such that
∑m

j=1 τj = t and

τ1 ≥ τ2 ≥ .....τm ≥ 0. Also, (a)k is the Pochhammer symbol

given by (a)k = Γ(a+k)
Γ(a) with (a)0 = 1.

A. Cumulative Distribution Function of the Maximum Eigen-
value

Here, to derive the c.d.f. of the maximum eigenvalue, the

most straightforward method is to find the probability that

the interval [x,∞) is free from the eigenvalues [24]–[27].

As such, we may write, Fλmax
(x) =

∫
D g (Λ) dλ1 . . . dλm,

where D = {0 < λm < . . . < λ1 < x}. This direct method,

however, is cumbersome because of the invariant polynomials

in eq (2). Despite their theoretical significance and frequent

appearance in multivariate distribution theory, the invariant

polynomials do not seem to admit simple forms in terms of

the eigenvalues of its argument matrices even for the 2 × 2
case [22], [23]. To circumvent this difficulty, we will adopt an

alternative approach based on integrating directly over matrix

variate distribution, instead of the joint eigenvalue distribution

[13], [20], [22], [28]–[30]. More precisely, we write the c.d.f.

of the maximum eigenvalue as

Fλmax
(x) = Pr (W ≺ xIm) (3)

which facilitates the use of the probability density function of

W instead of its eigenvalue distribution. Now we apply the

change of variable W = xZ, where Z is Hermitian positive

definite with dW = xm2

dZ, in (3) to yield

Fλmax
(x) =

xmnetr (−Θ)

Γ̃m(n)detn(Ψ)

∫
0≺Z≺ Im

detn−m(Z)

etr
(−xΨ−1Z

)
0F̃1

(
n;xΘΨ−1Z

)
dZ.

(4)

As shown in [13] and [20], this integral does not admit simple

form for arbitrary values of m and n even for rank one mean

matrix. However, as we now show, it can be solved in terms

of simple functions for the important configuration of m =
n = 2.1

In the case of m = n = 2, (4) simplifies to

Fλmax
(x) =

x4 exp (−η)

πdet2(Ψ)

∫
0≺Z≺ I2

etr
(−xΨ−1Z

)
0F̃1

(
2;xΘΨ−1Z

)
dZ

(5)

where η = tr (Θ). Observing the fact that the matrix Ψ is

Hermitian positive definite having the eigen-decomposition

Ψ = UΩU†, where U ∈ C
2×2 is unitary and Ω =

diag{ω1, ω2} with ω1 ≥ ω2 > 0, we can rewrite (5) with

the help of the transformation Y = U†ZU as

Fλmax
(x) =

x4

π
etr (−η) (σ1σ2)

2

∫
0≺Y≺ I2

etr (−xΣY)

0F̃1

(
2;xΣU†Υ†ΥUΣY

)
dY

(6)

where Σ = Ω−1 = diag{σ1, σ2} and 0 < σ1 ≤ σ2. Observing

the fact that ΣU†Υ†ΥUΣ is Hermitian non-negative definite

with rank one, it can be expressed via its eigen-decompsotion

1Although our general approach is valid even for n > 2, here we focus on
n = 2 in view of obtaining a relatively not so complicated answer.
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Ik(x) =
� k

2 �∑
p=0

k−2p∑
j=0

a1(k, p, j)

(xσ2)
j+p+2

(j + p+ 1)!

[
1F1 (1; ck,p,j + 3;xσ1)

(ck,p,j + 2)
−

j+p+1∑
i=0

(ck,p,j + 1)!

(ck,p,j + i+ 2)!
(xσ2)

i

×1F1 (i+ 1; ck,p,j + i+ 3;x(σ1 − σ2))] ,

Jk(x) =

� k
2 �∑

p=0

k−2p∑
j=0

[
a2(k, p, j) exp(−xσ2)1F1 (p+ 2; ck,p,j + 3;xσ1) 1F1 (p+ 2; j + p+ 3;xσ2)

+

p+1∑
l=0

j+l∑
q=0

a3(k, p, j, l, q)

(xσ2)
j+l+1−q 1F1 (p+ q + 2; ck,p,j + q + 3;x(σ1 − σ2))−

p+1∑
l=0

a4(k, p, j, l)

(xσ2)
j+l+1 1F1 (p+ 2; ck,p,j + 3;xσ1)

]

as ΣU†Υ†ΥUΣ = μαα† where α = (α11 α12)
T with

α11, α12 ∈ C, μ > 0 and α†α = 1. This in turn gives the

relation μ = tr
(
ΘΨ−1

)
. Therefore, we can rewrite (6) as

Fλmax
(x) =

x4

π
etr (−η) (σ1σ2)

2∫
0≺Y≺ I2

etr (−xΣY) 0F̃1

(
2;xμαα†Y

)
dY.

Further manipulation in this form is not desirable. However,

we expand the hypergeometric function with its equivalent

zonal series expansion to yield [21]

Fλmax
(x) =

x4

π
etr (−η) (σ1σ2)

2
∞∑
k=0

∑
κ

(xμ)k

[2]κk!∫
0≺Y≺ I2

etr (−xΣY)Cκ

(
αα†Y

)
dY

(7)

where Cκ(·) is the zonal polynomial in which κ = (κ1, κ2)
represents a partition of k into not more than two parts such

that κ1 ≥ κ2 ≥ 0 [21], [31]. Since the matrix αα†Y is

rank one, we have Cκ

(
αα†Y

)
= 0 for all partitions κ

having more than one non-zero parts [31]. Therefore, the zonal

polynomial degenerates to Cκ

(
αα†Y

)
=

(
α†Yα

)k
. Hence

we can simplify (7) to obtain

Fλmax
(x) =

x4

π
etr (−η) (σ1σ2)

2
∞∑
k=0

(xμ)k

(2)kk!
Qk(x) (8)

where

Qk(x) =

∫
0≺Y≺ I2

etr (−xΣY)
(
α†Yα

)k
dY. (9)

This integral does not seem to have a simple solution in

terms of simple functions according to the literature [13],

[21]. Therefore, in the sequel, we demonstrate how to evaluate

this integral in terms of hypergeometric functions which in

turn yield an exact expression for the c.d.f. of the maximum

eigenvalue.

The theorem below gives the c.d.f. of the maximum eigen-

value of a 2× 2 non-central Wishart matrix with two degrees

of freedom.

Theorem 1. Let X be a 2 × 2 complex square matrix
distributed as X ∼ CN 2,2 (Υ, I2 ⊗Ψ) with Υ ∈ C

2×2 is

rank one. Then the c.d.f. of the maximum eigenvalue λmax

of the semi-correlated non-central complex Wishart matrix
W = X†X is given by

Fλmax(x) = (σ1σ2)
2
x4 exp(−σ1x− η)

×
∞∑
k=0

(xμ)k

(k + 1)!
[Ik(x) + Jk(x)] (10)

where Ik(x) and Jk(x) are given on top of the page with

a1(k, p, j) =
|α11|2ck,p,j |α12|2(p+j)

j!p!(p+1)!(ck,p,j−p)!

a2(k, p, j) =
(p+1)|α11|2ck,p,j |α12|2(p+j)

(j+p+2)!(ck,p,j+2)!

a3(k, p, j, l, q) =
(−1)l(p+1)(j+l)!|α11|2ck,p,j |α12|2(p+j)

j! l!(p+1−l)!(ck,p,j+2)!

a4(k, p, j, l) =
(−1)l(j+l)!(p+q+1)!|α11|2ck,p,j |α12|2(p+j)

j!l!p!q!(p+1−l)!(ck,p,j+q+2)!

and ck,p,j = k − p− j. Also, 1F1(·; ·; ·) denotes the confluent
hypergeometric function of the first kind, Θ = Ψ−1Υ†Υ,
Ψ = UΩU†, μ = tr

(
ΘΨ−1

)
, η = tr (Θ), Σ = Ω−1 =

diag{σ1, σ2}, ΣU†Υ†ΥUΣ = μαα†, and α = (α11 α12)
T .

Proof. See Appendix A.

It is remarkable that the above c.d.f. expression depends on,

among other parameters, the components of the eigenvector

of the rank one matrix ΣU†Υ†ΥUΣ, in contrast to corre-

sponding expressions for correlated Rayleigh and uncorrelated

Rician matrices which do not depend on the eigenvectors

[26]. This represents the joint effect of correlation and mean.

As a simple sanity check of Theorem 1, Fig. 1 shows the

comparison of theoretical c.d.f. expression (10) and simulation

results for the following parameters:

Υ =

(
1.0000 + 0.0000i 0.3624− 0.9320i

0.8878− 0.4603i − 0.1073− 0.9942i

)

Ψ =

(
1.0000 + 0.0000i − 0.3731− 0.4902i
−0.3731 + 0.4902i 1.0000 + 0.0000i

)
. (11)

It is also noteworthy that the infinite series has been truncated

to a maximum of 15 terms; thereby demonstrating a fast

convergence rate for each case.
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Fig. 1: Outage probability vs normalized SNR threshold γth/γ̄
for correlated Rayleigh, uncorrelated/correlated Rician without

K normalization.

III. PERFORMANCE OF 2× 2 MIMO BEAMFORMING

To emphasize the utility of Theorem 1, here we focus on

the performance of 2 × 2 MIMO MRC over a correlated

Rician fading channel. In particular, we analyze an important

performance metric - outage probability.

Consider the following 2× 2 MIMO Rician channel model

[11], [12]

H =

√
K

K + 1
H̄+

√
1

K + 1
HscT

1
2 (12)

where H̄ ∈ C
2×2 is the deterministic component, Hsc ∼

CN 2,2(02×2, I2 ⊗ I2) represents the Rayleigh random com-

ponent, and T ∈ C
2×2 � 0 is the transmit correlation

matrix with K being the Rician factor. Moreover, we adapt

the common normalization used in the literature to suit our

requirement as tr
(
H̄†H̄

)
= 4 and tr (T) = 2. It is notewor-

thy that in the presence of a strong LoS path between the

transmitter and receiver (i.e., Rician fading), the rank of the

matrix H̄ degenerates to one [11], [12]. Therefore, here we

focus on the rank-1 H̄ case only. Since H is a complex Gaus-

sian random matrix, following Definition 1, W = H†H is

correlated complex non-central Wishart distributed. Therefore,

the corresponding covariance and the non-centrality parameter

matrices can be written, respectively, as Ψ = ( 1
K+1 )T and

Θ = Ψ−1Υ†Υ = KT−1H̄†H̄.

Now consider a point-to-point MIMO link with two transmit

and two receive antennas. The received information vector r ∈
C

2×1 is given by

r =
√
PHws+ n

where the channel H ∈ C
2×2 is given by (12) with H̄ being

rank-1, P is the transmit power, w ∈ C
2×1 is the beamforming

vector with ||w||2 = 1, s ∈ C is the transmitted symbol with

E
{|s|2} = 1, and n ∈ C

2×1 is the additive white Gaussian

noise (AWGN) vector with zero mean and N0I2 covariance

matrix. We assume that both transmitter and the receiver have

perfect instantaneous CSI.

A MIMO-MRC receiver determines w such that the re-

ceived SNR, γ = γ̄w†H†Hw is maximized. Here γ̄ = P/N0

denotes the transmit SNR. It is well documented that the vector

w which maximizes γ is the leading eigenvector of H†H [8],

[32]. Therefore, the maximum received SNR is given by

γ = γ̄λmax (13)

where λmax is the leading eigenvalue of H†H. This clearly

demonstrates that the performance of MIMO-MRC is tightly

coupled with the statistics of λmax. We next focus on evalu-

ating the outage probability of this system.

A. Outage Probability

The outage probability characterizes the quality of service

(QoS) provided by the system, and is a more generic per-

formance measure of user experience. It is formally defined

as the probability of γ falls below a certain threshold value,

γth, which determines the minimum SNR level for satisfactory

reception. Following Theorem 1, the outage probability can be

written as

Pout

(
γth

γ̄

)
= Pr {γ < γth} = Fλmax

(
γth

γ̄

)
(14)

where Fλmax
(x) is given by (10) with the following re-

parameterization:

μ = K(K + 1)tr
(
T−1H̄†H̄T−1

)
, η = Ktr

(
T−1H̄†H̄

)
,

and α = (α11 α12)
T

denotes the leading eigenvector of the

rank-1 matrix Λ−1U†H̄†H̄UΛ−1. Here U and Λ are related

to T through the eigen-decomposition T = UΛU† and Σ =
diag(σ1, σ2) = (K + 1)Λ−1.

The accuracy of (14) is verified in Fig. 2, which plots the

outage probability versus the normalized SNR threshold γth/γ̄
for different Rician factors (different K values). For numerical

simulation purposes, we have used T = Ψ and H̄ = Υ
matrices given in (11). Note that for these analytical curves,

the infinite sum (10) has been truncated to a maximum of

15 terms, thereby demonstrating a fast convergence rate for

each case. The figure displays a close match between the

simulations and analytical results, which verifies the accuracy

of the analytical derivations. A counterintuitive trend is also

visible - namely the outage does not uniformly decreases

with the strength of the LoS component for all γ̄ values. In

particular, in the large γ̄ regime (i.e., low γth/γ̄ regime), outage

improves with the increasing strength of the LoS component.

In contrast, the opposite trend can be observed in the low γ̄
regime. Therefore, when the transmit SNR is high, the outage

is benefited by having a strong LoS component, whereas in

the low transmit SNR regime, a rich scattering environment

certainly helps improve the outage. Thus, from an outage point

of view and counterintuitively, it is not always beneficial to

have stronger LoS links.
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Fig. 2: Outage probability vs normalized SNR threshold γth/γ̄
for different K values.

B. The Effect of K

We now investigate the effect of Rician factor K on the

outage probability. In particular, we focus on the large K
regime. The following proposition characterizes the outage

probability as K → ∞:

Proposition 1. Let H̄†H̄ = 4vv†, where ||v|| = 1. Then we
have, as K → ∞√

K

8γ̄2 v†Tv
(γ − 4γ̄)

D−→ N (0, 1) (15)

where D−→ N (0, 1) denotes the convergence in distribution to
a standard normal random variable.

Proof. Omitted due to space limitation, Please see [1].

An immediate consequence of Proposition 1 is

lim
K→∞

Pr

{√
K

8
(γ − 4γ̄) ≤ γth

}
= Φ

(
γth/γ̄√
v†Tv

)
(16)

where Φ(z) is the c.d.f of the standard normal random variable.

Clearly, once properly centered and scaled, the asymptotic

outage depends on the channel mean and correlation through

the positive definite quadratic form v†Tv. It is noteworthy that

this quadratic form depends on T but not its inverse. There-

fore, the asymptotic outage expression remains valid even

when T is rank deficient. Since we are interested in outage

probability, we may use (16) to approximately characterize it,

for sufficiently large K values, as

P Large K
out

(
γth

γ̄

)
≈ Φ

⎛
⎝ γth/γ̄ − 4√

8v†Tv/K

⎞
⎠ . (17)

It is interesting to observe that the parameter K is completely

decoupled from the other parameters in (17).
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Fig. 3: Formation of an outage barrier at γth/γ̄ = 4.

The effect of large K on the outage probability is depicted

in Fig. 3. As we already know, for K → ∞, the maximum

eigenvalue tends to concentrate around 4 (i.e, γ around 4γ̄).

Therefore, as the figure shows, the outage curves bend more

sharply at the critical point and ultimately converges to the

vertical barrier at normalized SNR of 4.

IV. CONCLUSION

This paper has focused on characterizing 2 × 2 MIMO-

MRC system over correlated Rician fading and a strong LoS

component (rank-1 mean) with respect to outage probability.

We first derive a new expression for the c.d.f. of the maximum

eigenvalue of a 2 × 2 correlated non-central Wishart matrix

with rank-1 non-centrality parameter. This expression, which

in turn facilitates the derivation of the outage, contains a fast

converging infinite series of functions. Our analysis demon-

strates that as the Rician factor grows large, the outage can be

approximately characterized by the c.d.f. of a certain Gaussian

random variable. Interestingly, our analysis shows that a strong

LoS path is not always beneficial from the outage perspective.

APPENDIX A

PROOF OF THEOREM 1

Here we provide an outline of the main proof due to space

limitations.

For clarity let us recall (9)

Qk(x) =

∫
0≺Y≺ I2

etr (−xΣY)
(
α†Yα

)k
dY. (18)

Clearly, this integral is performed over the space of Hermitian

positive definite matrices Y ∈ C
2×2 such that I2 − Y � 0.

This more complicated integral region in turn makes the above

matrix integral intractable with the available tabulated results

in the literature. Therefore, we now take a closer look at this
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particular integral region. To this end we first parameterize the

Hermitian positive definite matrix Y as

Y =

(
y11 y12
y∗12 y22

)
(19)

where y11, y22 > 0, y12 ∈ C and y11y22 − |y12|2 > 0. Since

we require I2 −Y � 0 to be satisfied, the above parameters

should also fulfill

(1− y11)(1− y22)− |y12|2 > 0, y11, y22 ∈ (0, 1). (20)

Now keeping in mind the representation y12 = �y12 + i�y12,

we can combine the above results to write the integration

region corresponding to 0 ≺ Y ≺ I2 as R = R1 ∪ R2

where

R1 = {(y11, y22,�y12,�y12) : y11 + y22 < 1,

|y12|2 < y11y22, y11, y22 ∈ (0, 1)
}

R2 = {(y11, y22,�y12,�y12) : y11 + y22 > 1,

|y12|2 < (1− y11)(1− y22), y11, y22 ∈ (0, 1)
}
.

Capitalizing on the above facts we can simplify the matrix

integral in (18) to yield the scalar form

Qk(x) = P1(k, x) + P2(k, x) (21)

where

P1(k, x) =

∫
R1

exp (−xσ1y11 − xσ2y22)

× (|α11|2y11 + |α12|2y22 + 2�[α∗
11α12y12]

)k
dY

P2(k, x) =

∫
R2

exp (−xσ1y11 − xσ2y22)

× (|α11|2y11 + |α12|2y22 + 2�[α∗
11α12y12]

)k
dY

and we have used the differential relation dY =
dy11dy22d�y12d�y12. To facilitate further analysis, we make

use of the polar transformation, d�y12 = r cosφ and d�y12 =
r sinφ with d�y12d�y12 = rdrdφ, and evaluate the resultant

four-dimensional integrals (i.e., with respect to y11, y22, r and

φ) to arrive at the final answer
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