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Abstract— Ambient backscatter devices (tags and readers)
use existing radio frequency (RF) signals to transmit data.
Most prior works consider single-antenna tags, but this paper
investigates the case of multiple-antenna tags, which are capa-
ble of simultaneous energy harvesting and data transmission.
However, the multi-antenna channel between the tag and the
reader, and the unpredictable nature of RF signals due to
uncontrollable RF sources (e.g., location and transmit power),
make signal detection highly challenging. Thus, the detection
process becomes a hypothesis testing problem with unknown
parameters. Consequently, we design a blind detector based
on the generalized likelihood ratio test (GLRT) without using
channel state information (CSI), signal power and noise vari-
ance. The decision threshold and detection probability of it are
also analyzed in detail. Furthermore, to maximize its detection
performance, we develop the optimal backscatter antenna selec-
tion scheme. Interestingly, we show that the detector performs
best when only two backscatter antennas are selected. Finally,
extensive simulation results validate the analysis and illustrate
the effectiveness of the proposed detector.

Index Terms— Ambient backscatter, generalized likelihood
ratio test, multiple antennas, probability of detection.

I. INTRODUCTION

AMBIENT backscatter has recently emerged as a
novel communication paradigm for the Internet-of-

Things (IoT), which enables mutual communication among
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battery-free devices via backscattering radio frequency (RF)
signals [1], [2]. Ambient RF signals are transmitted by existing
RF sources, such as television (TV) towers, frequency mod-
ulation (FM) radio stations, cellular base stations, and Wi-Fi
access points. Unlike conventional backscatter [3], ambient
backscatter eliminates the need for dedicated infrastructure
elements such as radio frequency identification (RFID) read-
ers, dedicated power transmit blocks and others. Moreover,
the sole reliance on existing ambient RF signals improves
the utilization of the wireless spectrum, which is scarce and
expensive.

First proposed in [2], the ambient scatter device harvests
energy from TV signals and then transmits its own signals by
switching its antenna impedance, which results in reflecting or
non-reflecting states. In the non-reflecting state, representing
bit ‘0’, the RF signals are absorbed. In contrast, in the reflect-
ing state, representing bit ‘1’, the RF signals are backscattered.
Reference [4] demonstrates that RF-powered devices can be
connected to Internet by backscattering Wi-Fi signals. To
achieve higher data transmission rate and sufficient communi-
cation range, full-duplex backscatter communications has been
proposed in [5], while a novel multi-antenna cancellation and
coding mechanism is developed in [6]. Passive Wi-Fi is intro-
duced in [7] to directly generate Wi-Fi transmissions through
backscatter communication that consumes much lower power
than existing Wi-Fi devices. Other than TV and Wi-Fi signals,
FM radio signals can also be used as an RF source to achieve
backscatter communication in outdoor environments [8].

Moreover, fundamental theoretical results for ambient
backscatter communication systems include channel esti-
mation [9], signal detection [10]–[15], coding [16]–[18],
collision avoidance [19]–[22], transmission and energy
harvesting [23]–[26], multicast transmission [27]–[29], and
performance analysis in terms of bit error rate (BER) and
channel capacity [30]–[32]. Specifically, the problem of
ambient-backscatter channel estimation when both reader and
tag are single-antenna entities is studied in [9]. A new coding
scheme has been designed in [18] by using manchester coding
to reduce the communication delay. However, the design of
space-time coding [33], [35] for ambient backscatter commu-
nication systems remains an open problem. Ambient backscat-
ter systems with multiple tags and the corresponding tag
selection strategies are also investigated [19]. To overcome
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Fig. 1. The multi-antenna-tag ambient backscatter system. K ∈ [2, 4].

the collisions caused by the multiple concurrent transmissions
from multiple tags, a collision avoidance method is pro-
posed in [21], based on antenna directionality and successive
interference cancellation. Reference [20] introduces a new
technique for energy beamforming in multi-tag backscatter
communication systems. Furthermore, the integration of wire-
less power transfer (WPT) with low-power backscatter com-
munications has been studied extensively for single-antenna
tags. For example, [25] proposes a network architecture for
WPT backscatter communications and analyzes the network
coverage and capacity. A two-hop backscatter relay scheme
and the joint optimization of wireless power transfer and relay
strategy have been developed in [26].

Several signal detection schemes have also been investi-
gated. In [10], a differential encoding scheme eliminates the
requirement of channel estimation and enables the decoding
of the tag information via signal power difference. The non-
coherent signal detector for ambient backscatter [11] avoids
channel state information (CSI) and training symbols, while
the semi-coherent detector of [12] obtains channel-related
parameters from unknown data symbols and a few pilot
symbols. Finally, signal detection for ambient backscatter
communication systems with multiple-antenna readers has
been studied in [13] and [14].

A. Motivation

In the aforementioned works, the key assumption is that
the tag has only a single antenna and that it is shared
among the transmit, receive and energy harvesting functions
of the tag. Thus, these operations are sequential. For example,
the harvester collects energy from the ambient RF signals,
which is then used to power the microcontroller and perform
the backscatter communication. Consequently, during energy
harvesting, the transmitter is silent and cannot deliver tag
information. Similarly, when the tag is transmitting infor-
mation, energy harvesting is not possible. To overcome this
fundamental limitation, we propose the use of a tag with mul-
tiple antennas. The tag antennas (Fig. 1) are divided into two
sets: one for energy harvesting and the other for backscatter
modulation. Consequently, energy harvesting and backscatter

communication can occur simultaneously. It is worth not-
ing that multi-antenna tags add the benefits of extending
coverage [34] and increasing communication reliability [35],
compared to conventional backscatter communication systems
with single-antenna tags.

However, since the use of multiple antennas between the tag
and the reader increases the required overhead to estimate the
channel parameters, and thus, it becomes a major challenge
(see [43]–[45] and references therein). This is because the tag
may only transmit a limited number of symbols to estimate
the channel parameters, due to the strict energy constraints. In
order to address this challenge, a modified energy detector has
been introduced in [15], which can recover the signal from the
multi-antenna tag without the knowledge of CSI between the
tag and the reader. However, it still requires the knowledge
of the RF signal power, noise variance, and CSI between
the RF source and the reader. In practice, the parameters
of ambient RF sources are not controllable (e.g., transmit
power and location) and the ambient RF signals are random
and unpredictable, which further complicate the detection
of the backscattered information from the received signals.
Consequently, a blind detector is needed in order to detect the
information sent by the tag.

B. Contributions

In this paper, we address the problem of blind detection
of ambient backscatter signals from a multi-antenna tag via
the generalized likelihood ratio test (GLRT). Note that the
hypothesis testing problem with unknown parameters is typ-
ically handled via GLRT or Bayesian approaches [46]. The
main difference between them is how the unknown parameters
get treated. The Bayesian approach requires their prior dis-
tribution; whereas GLRT requires their maximum likelihood
estimates (MLEs).

The main contribution of this paper can be summarized as
follows:

• We present two backscatter schemes at the tag, namely,
a general backscatter scheme (GBS) and a specially
designed backscatter scheme (SDBS). The GBS uses an
arbitrary number of signals per antenna, while the SDBS
uses a quantized number of signals per antenna.

• For the SDBS, we design a GLRT based detector, which
forms the decision statistic from the eigenvalues of the
covariance matrix of the received signals at the reader.

• We derive an approximate decision threshold and the
detection probability of the GLRT based detector with
the SDBS.

• We propose an optimal backscatter antenna selection
scheme to maximize the detection probability.

C. Structure

The paper is organized as follows. Section II presents
the GBS of the multiple-antenna tag and the theoretical
model for ambient backscatter communications with such tags.
Section III proposes the GLRT based detectors with GBS and
SDBS, respectively, while a modified energy detector is also
given for comparison purposes. Section IV investigates the
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optimal backscatter antenna selection scheme, that maximizes
the detection probability. Finally, simulation results are pro-
vided in Section V and conclusions are drawn in Section VI.

D. Notations

Scalars, vectors, and matrices are denoted by lowercase,
boldface lowercase, and boldface uppercase letters, respec-
tively. The Euclidean norm, statistical expectation, transpose,
and the Hermitian transpose are represented by ‖ · ‖2, E(·),
(·)T , and (·)H , respectively. The matrix IN represents the
N × N identity matrix. We denote the ith element of the
vector y as [y]i and the (i, j)th element of the matrix Y as
[Y]i,j . The set of real-valued M × N matrices is denoted
by R

M×N and R
M×1 = R

M . The cardinality of the set
A is |A| and the ith element of the set is A(i). We use
N (μ, σ2) or CN (μ, σ2), χ2

d and χ′2
d(τ) to indicate the real or

complex Gaussian distribution with mean μ and variance σ2,
the central chi-squared distribution with degrees of freedom d,
and the non-central chi-squared distribution with the degrees
of freedom d and the noncentrality parameter τ , respectively.

II. SYSTEM MODEL

We consider an ambient system composed of an RF source,
a single-antenna reader and a multi-antenna tag (Fig. 1). We
assume that the tag is equipped with K (K ≥ 2) antennas.
These K antennas are divided into two sets: one set with M
(1 < M ≤ K) antennas is for backscattering, and the other
set with K − M antennas is for wireless energy harvesting.
Thus, these two tasks occur simultaneously and independently.
In other words, the RF signals received by energy-harvesting
antennas are reserved purely for powering the circuit, while
the RF signals received by the active backscatter antennas are
entirely devoted to backscattering. We denote the whole can-
didate antenna set as A = {1, 2, . . . , K} and the backscatter
antenna set as S = {κ1, κ2, . . . , κM}, where S ⊆ A.

Let h denote the channel between the RF source and the
reader. Let the channels from the antenna κm ∈ S of the
tag to the RF source and the reader be fκm and gκm , where
1 ≤ m ≤ M . Let the RF source transmit complex Gaussian
random signal x(n) with transmitted power Ps. The signal
received at the antenna κm ∈ S is given by [10]

rm(n) = fκmx(n). (1)

This antenna then backscatters the signal rm(n) and transmits
its own binary signal B. Specifically, B = 0 indicates that
the tag changes its impedance so that solely a relatively very
small amount of the RF signal is reflected, and B = 1 implies
that the tag switches the impedance so as to backscatter some
of the RF signal. Consequently, the backscattered signal by
the antenna κm ∈ S is

rm
b (n) = αBrm(n), (2)

where α ∈ [0, 1] represents the attenuation inside the tag,
which is achieved by adjusting the load impedance at the port
of the antenna, and also depends on the structure mode of the
antenna [36], [37]. It determines the amount of the incident RF

Fig. 2. GBS of the tag in one time slot: (a) N RF signals received by the
tag, (b) backscattered signals by M backscatter antennas.

signals to be backscattered [38]. Finally, the received signal at
the reader can be expressed as

y(n) = hx(n) + gκmrm
b (n) + ω(n)

=

{
hx(n) + ω(n), B = 0,
(h + αfκmgκm)x(n) + ω(n), B = 1,

(3)

where ω(n) ∼ CN (0, σ2
0) is additive white Gaussian

noise (AWGN) at the reader.
Because the data rate of the tag is much lower than that of

the RF source, i.e., the tag signal B remains unchanged during
N consecutive x(n) in one time slot, we divide the N RF
signals in one time slot into M sets, where the mth set contains

an arbitrary number of signals Nm such that
M∑

m=1
Nm = N .

As Fig. 2 shows, the mth set is given by

xm = [xm(1), xm(2), . . . , xm(Nm)]T , (4)

where 1 ≤ m ≤ M .
When the tag receives the mth RF signal set, the mth

backscatter antenna κm is active and reflects these RF signals;
in other words, only one antenna is selected at one time for
backscattering due to limited power. While the other K − 1
antennas are all connected to the energy harvester, and collect
energy from both the RF signals and the backscattered signals
of the antenna κm ∈ S.1

According the references [40], [41], the energy harvesting
efficiency depends on the value of load impedance in the
matching network, which is connected to the multiple antennas
to transfer maximum power from the antennas to the rectifier.
As well, the rectifier is equipped with multiple diodes, which
leads to nonlinear RF-to-DC conversion. Clearly, the energy
harvester is then a nonlinear device.2 The energy captured
by both the K − M antennas dedicated to wireless energy
harvesting and the M −1 silent backscatter antennas provides
the power required for the backscatter communication with the
antenna κm ∈ S.

1The amount of harvested energy is typically on the order of micro-watts
when the battery-free tags locate close to the RF source, such as TV tower
with transmit power 106 W [42]. Thus, the harvested energy is sufficient for
powering the analog components of the ambient backscatter devices, which
consume 0.79 μW to 2 mW [2], [38].

2Since the energy harvester and the transmitter operate independently and
simultaneously, the energy harvesting model has no effect on the backscattered
signal (2) by the backscatter antennas, and the received signal at the reader (3).
We only focus on the detector design in our work.
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By defining the combined channel that corresponds to the
mth backscatter as

μκm = h + αfκmgκm , (5)

we further assume that all channels remain static for at least
one time slot. The received signals at the reader from the
antenna κm ∈ S can be written as

ym =

{
hxm + ωm, B = 0,

μκmxm + ωm, B = 1,
(6)

where ym = [ym(1), ym(2), . . . , ym(Nm)]T and ωm =
[ωm(1), ωm(2), . . . , ωm(Nm)]T .

In one time slot, the signal detection problem is the follow-
ing binary hypothesis testing{

H0 : y = hx + ω, B = 0,

H1 : y = Fx + ω, B = 1,
(7)

where y = [yT
1 ,yT

2 , · · · ,yT
M ]T , ω = [ωT

1 , ωT
2 , · · · , ωT

M ]T and

F = diag[μκ1 , . . . , μκ1︸ ︷︷ ︸
N1

, μκ2 , . . . , μκ2︸ ︷︷ ︸
N2

, . . . , μκM , . . . , μκM︸ ︷︷ ︸
NM

].

(8)

The key issue of the ambient backscatter communications is
for the reader to recover the tag signal B.

III. DETECTION ALGORITHM

As mentioned before, due to the limited power availability
at the tag and few training symbols available from the tag,
it is difficult for the reader to estimate the multiple channel
parameters h and μκm . Moreover, the RF signal power Ps

and the noise variance σ2
0 are unknown at the reader, due

to the uncontrollable nature of RF sources. Consequently,
it is extremely important for the reader to be able to test
the hypothesis (7) and to detect the tag signal without any
knowledge these parameters. To this end, we develop a blind
detector based on GLRT, which is a general approach for
the hypothesis testing problem with unknown parameters. The
fundamental principle of GLRT is to replace the unknown
parameters with their MLEs and then compute the ratio of
the probability density functions (PDFs) under H0 and H1 as
the GLRT statistic.

It is readily found that the received signal in the mth set
ym(n) has the following distributions{

H0 : ym(n) ∼ CN (
0, |h|2Ps + σ2

0

)
, B = 0,

H1 : ym(n) ∼ CN (
0, |μκm |2Ps + σ2

0

)
, B = 1,

(9)

where m = 1, 2, . . . , M and n = 1, 2, . . . , Nm. Then the
received signals y (7) in one time slot have the distributions{

H0 : y ∼ CN (0,C0) , B = 0,

H1 : y ∼ CN (0,C1) , B = 1,
(10)

where the covariance matrices under H0 and H1 can be
expressed as

Ci = E
{
(y − E{y})(y − E{y})H

}
=

{
(|h|2Ps + σ2

0)IN , i = 0,

FFHPs + σ2
0IN , i = 1.

(11)

Accordingly, the unknown parameter sets under H0 and H1

are given by

Θ0 = {Ps, σ
2
0 , h}, Θ1 = {Ps, σ

2
0 , μκ1 , μκ2 , . . . , μκM }. (12)

By using GLRT, we obtain the MLEs of the unknown para-
meters under H0 and H1 as

Θ̂0 = arg max
Θ0

p(y; Θ0,H0), Θ̂1 = argmax
Θ1

p(y; Θ1,H1),

(13)

where the PDF of the received signals y under H0 and under
H1 can be expressed as

p(y; Θ0,H0) =
1

πN det(C0)
exp

(−yHC−1
0 y

)
=

1
πN (|h|2Ps + σ2

0)N
exp

(
− yHy
|h|2Ps + σ2

0

)
,

(14)

and

p(y; Θ1,H1) =
1

πN det(C1)
exp

(−yHC−1
1 y

)
=

1

πN
(∏M

m=1(|μκm |2Ps + σ2
0)Nm

)
× exp

(
−

M∑
m=1

yH
mym

|μκm |2Ps + σ2
0

)
, (15)

respectively. After replacing (12) with (13) and calculating the
ratio of the PDFs under under H0 and H1, the general form
of the GLRT statistic can be written as

TGLRT =
p(y; Θ̂1,H1)

p(y; Θ̂0,H0)
. (16)

However, obtaining the MLEs of the parameters Ps, σ2
0 ,

h and μκm separately is difficult since they interact. To
address this challenge, we next redefine the unknown para-
meter sets (12) as

Θ0 = C0, Θ1 = C1, (17)

and directly derive the MLEs of C0 and C1 [47].

A. GLRT Based Detector Design With GBS

Since the unknown covariance matrix C0 only depends
on the parameter |h|2Ps + σ2

0 , we first derive the MLE of
the parameter |h|2Ps + σ2

0 to construct the MLE of C0. For
simplification, we define

ε = |h|2Ps + σ2
0 . (18)

From (14), the log-likelihood function (LLF) under H0 is
given by

ln p(y;C0,H0) = −N ln π − ln (det(C0)) − yHC−1
0 y

= −N ln π − N ln ε − yHy
ε

. (19)

By setting the first derivative of the LLF (19) with respect to
ε equal to zero, i.e.,

∂ ln p(y;C0,H0)
∂ε

= −N
1
ε

+
yHy
ε2

= 0, (20)
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the MLE ε̂ is obtained as yT y
N , and the MLE of C0 is

Ĉ0 = ε̂IN =
yHy
N

IN . (21)

Next, to derive the MLE of the covariance matrix C1,
we define A = C−1

1 . From (15), the LLF under H1 can be
written as

ln p(y;C1,H1)
= −N ln π − ln (det(C1)) − yHC−1

1 y (22)

= −N ln π + ln (det(A)) − yHAy︸ ︷︷ ︸
ln p(y;A,H1)

. (23)

Taking advantage of the fact that ∂ ln(det(A))
∂A = A−1, we have

∂2 ln p(y;A,H1)
∂A2

=
∂2 ln (det(A))

∂A2
= −A−2. (24)

Since A is positive semi-definite, the LLF (23) is a concave
function of A. The MLE of A can be obtained by setting the
first derivative of the LLF (23) to the all-zero matrix, i.e.,

∂ ln p(y;A,H1)
∂A

= A−1 − yyT = 0. (25)

Thus the MLE of A is
(
yyH

)−1
and the MLE of C1 is

Ĉ1 = Â−1 = yyH . (26)

The GLRT statistic (16) for the scheme in Fig. 2 is further
obtained as

T g
GLRT =

p(y; Ĉ1,H1)

p(y; Ĉ0,H0)
. (27)

Unfortunately, the above GLRT statistic (27) fails to detect the
tag signal, as will be shown in the following theorem.

Theorem 1: The GLRT statistic (27) when the GBS
in Fig. 2 is used is not valid for the detection of the tag signal.

Proof: Substituting (21) and (26) into (19) and (22),
respectively, we finally derive the log-GLRT statistic as

Tg = ln T g
GLRT

= ln p(y; Ĉ1,H1) − ln p(y; Ĉ0,H0)

= ln
(
det(Ĉ0)

)
+ yHĈ−1

0 y − ln
(
det(Ĉ1)

)
− yHĈ−1

1 y

= N ln
(

yHy
N

)
+ yH

(
yHy
N

IN

)−1

y

− ln
(
det(Ĉ1)

)
− yH(yyH )−1y

= N ln
(

yHy
N

)
+ N − ln

(
det(Ĉ1)

)
−tr

[
(yyH )(yyH)−1

]
= N ln

(
tr(Ĉ1)

N

)
− ln

(
det(Ĉ1)

)
, (28)

where tr
[
(yyH)(yyH )−1

]
= tr(IN ) = N .

According to (26), the rank of the matrix Ĉ1 is equal to one,
which indicates the determinant of the matrix Ĉ1 is equal to
zero and the log-GLRT statistic (28) is not valid. As a result,
the GLRT-based algorithm proposed in [47] can not be directly
applied to our ambient backscatter communication systems.

Fig. 3. SDBS of the tag in one time slot: (b) a quantized number of RF
signals per backscatter antenna, (c) the division of the mth received signal
set at the reader.

Remark 1: An alternative estimation of covariance matrix
C1 (11) is to estimate the diagonal elements of C1 separately
and then assemble a new diagonal matrix. However, to derive
the required values, the tag needs to insert at least 1 bit
identifier before the backscattered signals of each antenna,
which costs extra energy and reduces the data rate of the
tag. In addition, estimating the entire matrix C1 as (26),
which contains all uncertain diagonal values, may reduce the
computational complexity.

B. GLRT Based Detector Design With SDBS

We have shown that GLRT fails when using GBS in Fig. 2.
To overcome this drawback, we present a new backscatter
scheme for the tag in Fig. 3, where the number of sequential
backscattered signals in each set Nm is a multiple of Nd

(Nd > 1), i.e., Nm = lmNd. We further assume that lm and
the common divisor Nd are positive integers, which satisfy the

conditions Nd

M∑
m=1

lm = N and
M∑

m=1
lm = L.

As Fig. 3 shows, the RF signals in the mth set (4) and the
received signals at the reader in the mth set (6) can be further
expressed as xm = [xm(1), xm(2), . . . , xm(lmNd)]T and

ym = [ym(1), ym(2), . . . , ym(lmNd)]T , (29)

respectively, where 1 ≤ m ≤ M . Then we reclassify the mth
received signal set ym (29) into Nd groups and each group is
given by

yn
m = [ym (lm(n − 1) + 1) , . . . , ym(lmn)]T , (30)

where 1 ≤ n ≤ Nd. Therefore, there exist MNd groups. Nd

can be roughly thought of as the sample size in the process of
the estimation of correlation matrices. Using the MNd groups,
we reconstruct the received signals y into Nd observation sets
as

ỹn = [(yn
1 )T , (yn

2 )T , . . . , (yn
M )T ]T

= [y1 (l1(n − 1) + 1) , . . . , y1(l1n), y2 (l2(n − 1) + 1) ,

. . . , y2(l2n), . . . , yM (lM (n − 1) + 1) ,. . . , yM (lMn)]T .

(31)

Similarly to (11), the covariance matrix of nth observation
set under H1 can be computed as

Cn
1 = E

{
(ỹn − E{ỹn})(ỹn − E{ỹn})H

}
= diag{σ2

1 , . . . , σ2
1︸ ︷︷ ︸

l1

, σ2
2 , . . . , σ

2
2︸ ︷︷ ︸

l2

, . . . , σ2
M , . . . , σ2

M︸ ︷︷ ︸
lM

}, (32)
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where

σ2
m = |μκm |2Ps + σ2

0 . (33)

By defining C̃1 = Cn
1 , it can be readily checked that the

covariance matrices of the Nd observation sets under H1 are
identical, i.e., C1

1 = C2
1 = . . . = CNd

1 = C̃1.
Accordingly, the LLF under H1 (22) can be rewritten as

ln p(y;C1,H1)
= −N ln π

−Nd ln

(
M∏

m=1

(|μκm |2Ps + σ2
0)lm

)
−

M∑
m=1

yH
mym

|μκm |2Ps + σ2
0

= −N ln π − Nd ln
(
det(C̃1)

)
−

Nd∑
n=1

ỹH
n C̃−1

1 ỹn. (34)

Instead of computing the MLE of C1 as (26), we obtain
the MLE of C̃1 utilizing the Nd observation sets. Similar to
the calculation of the MLE of C1, we denote C̃−1

1 as Ã and
rewrite the LLF under H1 (34) as

ln p(y;C1,H1)

= −N ln π + Nd ln
(
det(Ã)

)
−

Nd∑
n=1

ỹH
n Ãỹn︸ ︷︷ ︸

ln p(y;Ã,H1)

. (35)

Noting that Ã is positive semi-definite and ∂2 ln p(y;Ã,H1)

∂Ã2 =
−Ã−2, thus the LLF (35) is a concave function. By setting the
first derivative of the LLF (35) to the all-zero matrix, the MLE

of Ã is derived as
(

1
Nd

∑Nd

n=1 ỹnỹH
n

)−1

and the MLE of C̃1

is given by

̂̃C1 =
1

Nd

Nd∑
n=1

ỹnỹH
n . (36)

Clearly, larger values of Nd lead us to better estimates.
Unlike the estimated matrix Ĉ1 (26) with rank one in

subsection III-A, which leads to an invalid GLRT statistic (28),

the estimated matrix ̂̃C1 is of full rank, which facilitates the
derivation of an efficient GLRT statistic as

T s
GLRT =

p(y; ̂̃C1,H1)

p(y; Ĉ0,H0)
. (37)

Theorem 2: Let λ̃1, λ̃2, . . . , λ̃L denote the eigenvalues

of ̂̃C1. The decision statistic (37) of the GLRT based detector
using SDBS in Fig. 3 can be expressed as

Ts1 =
1
L

∑L
l=1 λ̃l(∏L

l=1 λ̃l

) 1
L

. (38)

Proof: The log-GLRT statistic can be written as

Ts = ln T s
GLRT = ln p(y; ̂̃C1,H1) − ln p(y; Ĉ0,H0) (39)

= −Nd ln
(
det( ̂̃C1)

)
−

Nd∑
n=1

ỹH
n

̂̃C−1

1 ỹn

+ ln
(
det(Ĉ0)

)
+ yHĈ−1

0 y. (40)

Substituting (21) and (36) into (19) and (34), respectively,
the log-GLRT statistic can be further derived as

Ts = −Nd ln
(
det( ̂̃C1)

)
− Nd

Nd∑
n=1

ỹH
n

(
Nd∑
n=1

ỹnỹH
n

)−1

ỹn

+N ln
(

yHy
N

)
+ yH

(
yyH

N

)−1

y

= −Nd ln
(
det( ̂̃C1)

)
−Ndtr

⎡⎣(
Nd∑
n=1

ỹnỹH
n

)(
Nd∑
n=1

ỹnỹH
n

)−1
⎤⎦

+N ln
(

yHy
N

)
+ N

= −Nd ln
(
det( ̂̃C1)

)
+ N ln

(
Ndtr(

̂̃C1)
N

)
, (41)

where Ndtr
[(∑Nd

n=1 ỹnỹH
n

) (∑Nd

n=1 ỹnỹH
n

)−1
]

=

Ndtr(IL) = N and yHy = Ndtr(
̂̃C1).

Utilizing the eigenvalues of the estimated covariance

matrix ̂̃C1, we have

det( ̂̃C1) =
L∏

l=1

λ̃l, tr{ ̂̃C1} =
L∑

l=1

λ̃l. (42)

The log-GLRT statistic (41) can be rewritten as

Ts = −Nd ln

(
L∏

l=1

λ̃l

)
+ N ln

(
Nd

∑L
l=1 λ̃l

N

)

= −N ln

(
L∏

l=1

λ̃l

) 1
L

+ N ln

(∑L
l=1 λ̃l

L

)
. (43)

The decision statistic (38) is obtained by defining Ts1

as exp
(

Ts

N

)
.

It is observed that the distribution of the decision statistic
Ts1 (or the log-GLRT statistic Ts) is necessary for determining
the decision threshold and constructing the decision rule to
judge if the tag signal is bit ‘0’ or bit ‘1’.

Theorem 3: The asymptotic distribution of the log-GLRT
statistic Ts (39) is

2Ts ∼
{

χ2
L2 , under H0,

χ′2
L2(τ), under H1,

(44)

where τ is the noncentrality parameter of the non-central chi-
squared distribution χ′2

L2(τ) and can be expressed as

τ =
N

ε2L2

M∑
m=1

lmδ2
m. (45)

Proof: See Appendix A.
Next, based on the distribution of the log-GLRT statistic Ts,

we will obtain the decision threshold γ, determine the decision
rule and further derive the performance measure in terms of
detection probability.
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Theorem 4: The decision rule of GLRT with SDBS
in Fig. 3 can be described by

Ts1

H1

≷
H0

γ, (46)

where the threshold γ is obtained from a given false alarm
probability PFA and is given by

γ = exp
[

1
2N

Q−1
χ2

L2
(PFA)

]
. (47)

Thus, the detection probability can be derived as

PD = Qt (a, b) , (48)

where a =
√

τ , b =
√

2N ln γ, t = L2

2 , and Qt(a, b)
represents the generalized Marcum-Q function [49].

Proof: From (44), the false alarm probability PFA is
computed by

PFA = Pr{Ts1 > γ;H0} = Pr{2Ts > 2N ln γ;H0}
=

∫ ∞

2N ln γ

p(2Ts;H0)d(2Ts) = Qχ2
L2

(2N ln γ), (49)

where Qχ2
L2

(·) denotes the tail probability of the chi-squared

distribution of degrees of freedom L2 [46]. Given a fixed false
alarm probability PFA, the threshold γ (47) can be obtained
after some straightforward computation.

The detection probability is calculated by

PD = Pr{Ts1 > γ;H1}
= Pr{2Ts > 2N ln γ;H1}

∫ ∞

2N ln γ

p(2Ts;H1)d(2Ts)

=
∫ ∞

2N ln γ

1
2

(
2Ts

τ

)L2−2
4

× exp
[
−2Ts + τ

2

]
IL2

2 −1
(
√

2Tsτ )d(2Ts), (50)

where IL2
2 −1

(·) is the modified Bessel function of order
L2

2 − 1. By defining x =
√

2Ts, a, b and t, the detection
probability (50) can be further expressed as

PD =
∫ ∞

b

x
(x

a

)t−1

exp
(
−x2 + a2

2

)
It−1(ax)dx, (51)

and finally reduced to (48).
Proposition 1: The proposed GLRT based detector fails

to find sufficient statistic when K ≥ M = 1. Therefore,
the GLRT based detector only works when at least two
antennas are selected, i.e., K ≥ M ≥ 2.

Proof: See Appendix B.

C. Modified Energy Detector When Ps, σ2
0 and h Are Known

For comparison, we present a modified energy detector here
under the condition that the reader knows the RF signal power
Ps, the noise variance σ2

0 , and the CSI between the RF source
and the reader h.

Classical energy detector (see [50] and references therein)
computes the average power of the received signals y and com-
pare it with a threshold so as to decode the tag signal B [2].
For example, if the average power is larger than the threshold,

we decide B = 1, on the contrary, we decide B = 0. However,
in our system, the multiple channel parameters μκm as well
as the size relationship among the channel parameters h and
μκm(1 ≤ m ≤ M), are uncertain. Hence, the size relationship
between the average power of the received signals in reflecting
state and non-reflecting state is not clear. Given the threshold,
it is obscure to judge B = 0 or B = 1 when the the average
power of the received signals is greater than the threshold.

To this end, we extend the classical energy detector to the
proposed multi-antenna case through computing the sample
variance of the received signals y as ‖y‖2

2
N and comparing it

with a known specified value |h|2Ps+σ2
0

2 . From (10), it can

be found that the ratio 2‖y‖2
2

N(|h|2Ps+σ2
0)

approximates to 1 under
H0, but may be either close to 0 or larger than 1 under H1.
Based on this observation, we define the decision statistic for
the modified energy detector as Te = 2‖y‖2

2
|h|2Ps+σ2

0
, which is

a chi-squared random variable with 2N degrees of freedom
when the tag signal is B = 0. Subsequently, we perform the
binary hypothesis test problem (7) utilizing the two-tail chi-
squared test [15], [51]{

decide H0, if γl ≤ Te ≤ γr,

decide H1, if Te < γl or Te > γr,
(52)

where the left threshold γl and the right threshold γr related
to the given false alarm probability PFA are given as

γl = Q−1
χ2

2N

(
1 − PFA

2

)
, γr = Q−1

χ2
2N

(
PFA

2

)
. (53)

IV. OPTIMAL BACKSCATTER ANTENNA SELECTION

To reduce the cost and the computational complex-
ity, battery-free tags are physically small and eliminate
power-hungry components, such as oscillators and filters,
which are commonly used to detect signals or estimate the
channels. For such battery-free devices, two to four separated
antennas are commercially feasible, according to [35]. Let
A = {1, 2, . . . , K} denote the whole antenna set and S =
{κ1, κ2, . . . , κM} denote the candidate backscatter antenna
set. We set the number of antennas as K ∈ [2, 4] and the
number of selected antennas as M ∈ [2, 4]. Without loss of
generality, we assume that the combined channel modulus that
correspond to A and S are ordered as

|μ1| ≥ |μ2| ≥ . . . ≥ |μK |, (54)

and

|μκ1 | ≥ |μκ2 | ≥ . . . ≥ |μκM |, (55)

respectively. It can be easily found from (33) and (55) that

σ2
1 > σ2

2 > . . . > σ2
M > 0. (56)

This section investigates how to select the optimal backscat-
ter antennas, i.e., Sopt, from the whole candidate antenna set A
so as to maximize the detection probability PD at the reader.
Note that the probability of detection is defined as the proba-
bility that the GLRT based detector decides H1 by using the
decision rule in (46) when the tag transmits ‘1’ bit. Thus, given
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the decision threshold γ (47), to maximize the probability of
deciding H1, i.e., the probability that the decision statistic Ts1

(38) is greater than the decision threshold γ, we maximize the
decision statistic Ts1.

Next, in order to help with the analysis of the optimal
backscatter antenna selection scheme, we transform the deci-
sion statistic Ts1 (38) composed of the eigenvalues of the

estimated covariance matrix ̂̃C1 (36) to that composed of the
diagonal elements of the covariance matrix C̃1 (32), which is
stated in the following theorem.

Theorem 5: As the number of RF signals N goes to infinity,
the decision statistic Ts1 (38) can be further expressed as

Ts1 =
1
L

∑M
m=1 lmσ2

m(∏M
m=1(σ2

m)lm

) 1
L

. (57)

Proof: The decision statistic Ts1 is the ratio of the
arithmetic mean to the geometric mean of the eigenvalues

{λ̃1, λ̃2, . . . , λ̃L}. As N → ∞, we have ̂̃C1 = C̃1, i.e.,

λ̃�m−1
i=0 lm+1 = λ̃�m−1

i=0 lm+2 = . . . = λ̃�m
i=0 lm = σ2

m, (58)

where l0 = 0. Hence, by replacing the eigenvalues with σ2
m,

where 1 ≤ m ≤ M , the decision statistic Ts1 (38) is simplified
to (57).

Since the number of candidate antennas is sets as K ∈ [2, 4]
in our work, all candidate antennas are regarded as backscatter
antenna when M = K = 4. Therefore, we will only consider
the case of M < K next and present the optimal backscatter
antenna selection scheme for the cases of M = 2 and M = 3,
respectively.

Proposition 2: In the case of M = 2, to maximize the
GLRT statistic, the antennas with the largest channel modulus
|μ1| and the smallest channel modulus |μK | should be selected,
i.e., the optimal antenna set is Sopt = {1, K}.

Proof: When M = 2, i.e., the candidate backscatter
antenna set is S = {κ1, κ2}, it can be easily found from (56)
that σ2

1 > σ2
2 . Suppose the log-GLRT statistic Ts1 (57) is a

function of σ2
1 . By taking derivative of Ts1 (57) with respect

to σ2
1 , we have

∂Ts1

∂σ2
1

=
l1
L

[
(σ2

1)l1(σ2
2)l2

]− 1
L

(
1 − l1σ

2
1 + l2σ

2
2

Lσ2
1

)
. (59)

Since l1σ
2
1 + l2σ

2
2 < Lσ2

1 , the above first derivative is greater
than zero and thus the statistic Ts1 is a monotonous increasing
function of σ2

1 . According to (33), the statistic Ts1 is also
strictly increasing with respect to |μκ1 |2.

Similarly, calculating the first derivative of the statistic Ts1

(57) with respect to σ2
2 gives

∂Ts1

∂σ2
2

=
l2
L

[
(σ2

1)l1(σ2
2)l2

]− 1
L

(
1 − l1σ

2
1 + l2σ

2
2

Lσ2
2

)
. (60)

Since l1σ
2
1 + l2σ

2
2 > Lσ2

2 , the first derivative (60) is smaller
than zero and thus the statistic Ts1 is a monotonous decreasing
function of σ2

2 , as well as |μκ2 |2.
Therefore, to maximize the statistic Ts1, we maximize

the variance |μκ1 |2 and minimize |μκ2 |2. According to (54),
the antennas with the largest channel modulus |μ1| and the

Algorithm 1 Optimal Backscatter Antenna Selection in the
Case of M = 3

Input: Candidate antenna set A = {1, 2, . . . , K}; corre-
sponding CSI μk, k = 1, 2, . . . , K; positive integers l1, l2, l3;

Output: The optimal selected antenna set Sopt =
{κ1, κ2, . . . , κM}
1: κ1 = 1; κM = K;
2: if l1 > l3 then κ2 = K − 1;
3: else if l1 < l3 then κ2 = 2;
4: else if |μκ1 |2 − |μ2|2 < |μK−1|2 − |μκM |2 then κ2 = 2;
5: else κ2 = K − 1;
6: end if
7: return Sopt = {κ1, κ2, κ3}

smallest channel modulus |μK | should be selected. Therefore,
the optimal antenna set is Sopt = {1, K}.

Proposition 3: In the case of M = 3, the optimal backscat-
ter antenna set that can maximize the detection probability
PD is given by Sopt = {1, κ2, K}, where κ2 = 2 or
κ2 = K − 1. Specifically, we summarize the optimal antenna
selection scheme in Algorithm 1.

Proof: See Appendix C.
Proposition 4: Among the two considered backscatter

antenna sets, i.e., M ∈ [2, 3], the set with the two antennas,
which corresponds to M = 2 and consists of the antennas with
the largest channel modulus and the smallest channel modulus,
can provide the maximum detection performance at the reader.

Proof: See Appendix D.
Remark 2: In order to obtain the size relationship of the

channel modulus (54), the tag first divides N RF signals
in one time slot into K sets. Then the kth (1 ≤ k ≤ K)
antenna reflects the RF signals in kth RF signal set, i.e., the
tag transmits ‘1’ bit as a pilot symbol. After signal reception
in one time slot, the reader obtains the size relationship of
the combined channel modulus rather than the exact value
of each combined channel by calculating the average energy
of the K received signal sets. By using the estimated channel
modulus, the reader determines the backscatter antennas via
Proposition 2 and Algorithm 1. Finally, the selection result is
transmitted to the tag.

Remark 3: We refer to a complex multiplier, adder (CMA)
and a comparator as the basic computational complexity
units (BCCU) at the reader. In order to derive the channel
modulus by computing the average energy, the reader needs
KN CMAs for the energy calculation. For the battery-free
tag, it requires an envelope detection and averaging analog
circuit, and a comparator to recover the information about the
backscatter antennas transmitted by the reader.

V. SIMULATION RESULTS

In this section, we examine the detection performance of the
proposed GLRT based detector. We assume the AWGN term of
CN (0, 1). The channel parameters h, fk and gk are generated
as independent and identically distributed CN (0, 1), equiva-
lently Rayleigh fading. We define the false alarm probability
PFA as 5%. Unless otherwise mentioned, we set α = 0.8,
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Fig. 4. PD versus SNR for different number of candidate antennas K and
different tag attenuation α.

Fig. 5. PD versus SNR for different number of backscatter antennas M .

lk = 1 (k = 1, . . . , M ), and use the optimal backscatter
antenna selection scheme (Section IV).

In Fig. 4, the detection probabilities of the proposed detector
are plotted against SNR for several values of the number
of candidate antennas K . The curves have been depicted
for two cases of α = 0.8 and α = 0.5. The numbers
of backscatter antennas and RF signals are M = 2 and
N = 400, respectively. Fig. 4 shows a clear improvement
of detection probability for more candidate antennas. The
reason is that multiple antennas at the tag provide the diversity
gain [34], which contributes to better detection performance.
Additionally, we see that lower tag attenuation degrades the
detection performance of the proposed detector. The reason is
that lower tag attenuation results in weaker backscatter signals.

An important question is the effect of the number of
backscatter antennas (M ) on the proposed detector (46). To
answer this question, Fig. 5 plots the detection probability
of (46) versus SNR for several values of M . The num-
bers of candidate antennas and RF signals are K = 4
and N = 400, respectively. Fig. 5 shows that the detector
performs best when selecting only two backscatter antennas
(M = 2), which corroborates Proposition 4. The reason is
because GLRT compares the PDF under H0 (14) and the
PDF under H1 (15), which is related with the covariance
matrices (11). The covariance matrix under H1 depends on the
channel modulus of the selected antennas. Choosing the two
antennas with the largest channel modulus and the smallest

Fig. 6. BER versus SNR for different common divisor in SDBS Nd.

Fig. 7. PD versus PFA for different common divisor in SDBS Nd.

channel modulus can maximize the difference between the
two PDFs. For comparison, the detection probability of the
modified energy detector (52) when M = 2 and that of
the Neyman-Pearson (NP) test [46] when K = 1 are also
plotted respectively. As expected, the modified energy detector
outperforms the GLRT detector (46) when SNR is below
−2 dB, since the former assumes perfect knowledge of the RF
signal power, the noise variance and the CSI between the RF
source and the reader. However, when SNR exceeds −2 dB,
the proposed GLRT based detector outperforms the modified
energy detector. We also observe that even the proposed GLRT
based detector (with M = 4) outperforms the NP test with
single-antenna tag when SNR exceeds −5 dB.

Fig. 6 indicates the bit error rate (BER) versus SNR for the
backscatter schemes given in Fig. 3. For simplicity, we choose
two optimal backscatter antennas and set the coefficient for the
first set l1 as 1. The common divisor Nd is set as 200, 50,
and 40, respectively. Other parameters are set the same as those
in Fig. 5. We observe that a larger value of Nd leads to a lower

BER. The reason is that the MLE of the covariance matrix ̂̃C1

(36) is more accurate when the value of Nd increases. This
is also clear from Fig. 7 where the detection performance in
terms of false alarm probability PFA has been depicted. As we
can see, the GLRT based detector achieves higher detection
probability for larger Nd. Moreover, it can be also seen from
Fig. 6 that the BER will approach an error floor when SNR
reaches infinity [11].
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Fig. 8. Comparison between the asymptotic detection probabilities and the
simulated results.

Fig. 9. PD versus SNR for different backscatter antenna sets.

The asymptotic detection probabilities and the simulated
results for different numbers of RF signals N are compared
in Fig. 8. Here, we set the number of the RF signals in
one time slot as 400, 2000, and 5000, respectively, since the
approximate distribution is obtained when N → ∞. Notable
trends in this figure can be explained via the central limit
theorem [52]. That is, when the value of N is extremely large,

the MLEs Ĉ0 and ̂̃C1 approximate the covariance matrices
C0 and C̃1, respectively. As a result, the detection probability
trends upward when the number of RF signals increases.

Finally, we investigate the optimal backscatter antenna
selection scheme proposed in Section IV. We assume that the
number of RF signals is N = 300 and the whole candidate
antenna set includes six antennas, i.e., K = 4, while the
corresponding channel modulus are |μ1| = 1, |μ2| = 0.9,
|μ3| = 0.3, and |μ4| = 0.2, respectively. We focus on the
detection probability for two cases, namely, M = 2 and
M = 3. When M = 2, three candidate backscatter antenna
sets are investigated: {1, 4}, {2, 3}, and {3, 4}. For the case of
M = 3, we also consider three candidate backscatter antenna
sets: {1, 3, 4}, {1, 2, 4}, and {1, 2, 3}. Fig. 9 shows that the
optimal backscatter antenna set for the case of M = 2 is
composed of the antennas with the largest channel modulus
and the smallest channel modulus, i.e., Sopt = {1, 4}, which
corroborates Proposition 2. Fig. 9 also shows that the optimal

backscatter antenna set for the case of M = 3 is Sopt =
{1, 3, 4}, which, in turn, verifies our Proposition 3.

VI. CONCLUSION

In this paper, we have investigated the signal detection
problem for ambient backscatter systems with multi-antenna
tags that could perform energy harvesting and backscat-
ter transmission simultaneously. More specifically, we have
introduced a GLRT based detector and utilized the eigen-
values of the covariance matrix of the received signals at
the reader to construct the decision statistic. The asymptotic
threshold and detection probability of the detector have also
been analyzed. Moreover, we have proposed a backscatter
antenna selection method to maximize the detection probabil-
ity. Finally, extensive simulations verified the effectiveness of
the proposed GLRT based detector. The presented simulation
results have verified that the selection of only two antennas
provides the largest detection probability. It is worth noting
that multi-antenna tags create a vast number of future research
directions, such as the implementation of the more sophisti-
cated coding schemes (e.g., space-time coding), the integration
with the fifth generation (5G) of wireless networks [54]–[56],
and the utilization of the artificial intelligence for backscatter
communications [57], [58].

APPENDIX A
PROOF OF THEOREM 3

Define the unknown parameter matrix as Φ ∈ R
L×L. The

detection problem (7) can be parameterized as{
H0 : Φ = Φ0, B = 0,
H1 : Φ = Φ1, B = 1,

(61)

where Φ0 = diag{ε, . . . , ε︸ ︷︷ ︸
L

} and Φ1 = C̃1. In total, there are

L2 unknown signal parameters, which agree with the number
of the elements in C̃1.

Define Φ0 and Φ1 as
[
(ρ0

1)T , (ρ0
2)T , . . . , (ρ0

L)T
]T

and[
(ρ1

1)
T , (ρ1

2)
T , . . . , (ρ1

L)T
]T

, respectively, where ρ0
l and ρ1

l

are the lth (1 ≤ l ≤ L) row of the unknown parameter matrices
Φ0 and Φ1

ρ0
l = [0, . . . , 0︸ ︷︷ ︸

l−1

, ε, 0, . . . , 0︸ ︷︷ ︸
L−l

], ρ1
l = [0, . . . , 0︸ ︷︷ ︸

l−1

, [C̃1]l,l, 0, . . . , 0︸ ︷︷ ︸
L−l

].

(62)

Let us vectorize the matrices Φ0 and Φ1 as φ0 =
[ρ0

1, ρ
0
2, . . . , ρ

0
L]T and φ1 = [ρ1

1, ρ
1
2, . . . , ρ

1
L]T , respectively.

Note that the PDFs of the received signals y under H0 and H1

are similar while the values of the unknown parameter vector
φ0 under H0 and that of the vector φ1 under H1 are different.
The unknown parameter vector is defined as φ ∈ R

L2×1.
The detection problem (61) can be further simplified as{

H0 : φ = φ0, B = 0,
H1 : φ �= φ0, B = 1.

(63)

The PDF of y is defined as p(y; φ). To decide to accept
the null hypothesis H0 or reject it in favor of alternative
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hypothesis H1, the test statistic of the hypothesis testing
problem (63) is given by [46]

TGLRT =
p(y; φ̂1)
p(y; φ0)

. (64)

As stated in Section III-B, our goal is to derive the asymp-
totic distribution of the GLRT statistic TGLRT to determine
the decision threshold and construct the decision rule. To this
end, we first notice the fact [48] that the estimation φ̂1 attains
the Cramer-Rao lower bound if
∂ ln p(y; φ)

∂φ

= I(φ)(φ̂1 − φ) (65)

=
[
∂ ln p(y; φ)

∂[φ]1
,
∂ ln p(y; φ)

∂[φ]2
, . . . ,

∂ ln p(y; φ)
∂[φ]L2

]T

, (66)

where I(φ) is the Fisher information matrix [46] and

∂ ln p(y; φ)
∂[φ]i

=
L2∑
j=1

[I(φ)]i,j([φ̂1]j − [φ]j). (67)

Replacing [I(φ)]i,j with its first-order Taylor expansion

[I(φ̂1)]i,j + ∂[I(φ)]i,j

∂φ

∣∣∣T
φ=�φ1

(φ − φ̂1), we rewrite (67) as

∂ ln p(y; φ)
∂[φ]i

=
L2∑
j=1

[I(φ̂1)]i,j([φ̂1]j − [φ]j)

+
L2∑
j=1

∂[I(φ)]i,j
∂φ

∣∣∣T
φ=�φ1

(φ − φ̂1)([φ̂1]j − [φ]j). (68)

When N → ∞, the second term in (68) can be neglected.
Substituting the simplified element (68) into (65), the equa-
tion (65) can be further written as

∂ ln p(y; φ)
∂φ

= I(φ̂1)(φ̂1 − φ)

=

⎡⎣ L2∑
j=1

[I(φ̂1)]1,j([φ̂1]j − [φ]j),

L2∑
j=1

[I(φ̂1)]2,j([φ̂1]j − [φ]j),

. . . ,
L2∑
j=1

[I(φ̂1)]L2,j([φ̂1]j − [φ]j)

⎤⎦T

. (69)

Next, integrating the first derivative ∂ ln p(y;φ)
∂φ over φ produces∫

∂ ln p(y; φ)
∂φ

dφ =
∫

I(φ̂1)(φ̂1 − φ)dφ

= −1
2
(φ̂1 − φ)T I(φ̂1)(φ̂1 − φ) + c,

(70)

where c is a constant and defined as ln p(y; φ̂1) in our work.
As a consequence, the asymptotic form of the PDF is obtained

Fig. 10. Asymptotic distribution of the GLRT statistic 2Ts when
SNR = −10 dB.

as

p(y; φ) = exp
[
−1

2
(φ̂1 − φ)T I(φ̂1)(φ̂1 − φ) + c

]
= p(y; φ̂1) exp

[
−1

2
(φ̂1 − φ)T I(φ̂1)(φ̂1 − φ)

]
.

(71)

Consequently, substituting φ0 into (71) and then substituting
p(y; φ0) into (64) yields the GLRT statistic as

TGLRT = exp
[
1
2
(φ̂1 − φ0)

T I(φ̂1)(φ̂1 − φ0)
]

. (72)

Define Ts = ln TGLRT = 1
2 (φ̂1 −φ0)

T I(φ̂1)(φ̂1 −φ0). As
N → ∞, we have [46]

2Ts =

{
(φ̂1 − φ0)

T I(φ0)(φ̂1 − φ0), under H0,

(φ̂1 − φ0)T I(φ1)(φ̂1 − φ0), under H1.
(73)

It can be readily checked that φ̂1 ∼ N (φ0, I
−1(φ0)) when

under H0, while φ̂1 ∼ N (φ1, I
−1(φ1)) when under H1. In

consequence,

φ̂1 − φ0 ∼
{
N (0, I−1(φ0)), under H0,

N (φ1 − φ0, I
−1(φ1)), under H1.

(74)

Finally, from (73) and (74), we obtain the distribution of
the statistic 2Ts (73) as (44). In other words, under H0,
2Ts follows the chi-squared distribution with the degrees of
freedom L2, and under H1, it follows the non-central chi-
squared distribution with the degrees of freedom L2 and the
noncentrality parameter

τ = (φ1 − φ0)
T I(φ0) (φ1 − φ0) , (75)

It is clear that the unknown parameter vector φ0 is only related
with ε. In such a way, we replace I(φ0) with I(ε), which is
computed by

I(ε) = −E

(
∂2 ln p(y;C0,H0)

∂ε2

)
=

N

ε2
. (76)

Then the noncentrality parameter τ can be further derived as

τ = (φ1 − φ0)
T I(ε)

L2 (φ1 − φ0) = N
ε2L2

∑M
m=1 lmδ2

m, (77)

where δm = (|μκm |2 − |h|2)Ps.
Fig. 10 schematically presents the PDF curves of the

chi-squared distribution χ2
L2 , the noncentrality chi-squared

distribution χ′2
L2(τ), and the statistic 2Ts under H0 and H1,

respectively. Clearly, the PDF of the statistic 2Ts under H0

(H1) is close to the distribution χ2
L2 (χ′2

L2(τ)).
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APPENDIX B
PROOF OF PROPOSITION 1

In the case that only one selected antenna backscatters all
RF signals, i.e., M = 1, the hypothesis test (7) is simplified
as {

H0 : y = hx + ω, B = 0,

H1 : y = μκx + ω, B = 1,
(78)

where κ indicates that the κth (1 ≤ κ ≤ K) antenna
is selected. In that way, the received signals y follow the
distribution (10) under H1, i.e., y ∼ CN (0,C1), where the
covariance matrix C1 is reduced to (|μκ|2Ps + σ2

0)IN .
Let ζ = |μκ|2Ps + σ2

0 . The LLF (34) can be simplified as

ln p(y;C1,H1) = −N ln π − N ln ζ − yT y
ζ

. (79)

Similar to the derivation of the MLE of ε, we obtain the MLE
of ζ through taking derivative of the LLF (79). Thus, the MLE
ζ̂ is yT y

N , and the MLE Ĉ1 is ζ̂IN . As a result, the log-GLRT
statistic (39) is

Ts = ln p(y; Ĉ1,H1) − ln p(y; Ĉ0,H0)

= N ln (ε̂) + yT (ε̂IN )−1 y − N ln
(
ζ̂
)
− yT

(
ζ̂IN

)−1

y

= 0. (80)

In this case, GLRT fails to find an efficient statistic which
verifies our Proposition 1.

APPENDIX C
PROOF OF PROPOSITION 3

Define a positive integer k̃, which satisfies

k̃ = arg min
1≤k≤K

{|μk|
∣∣|μ1|2 − |μk|2 < |μk|2 − |μK |2}. (81)

The whole candidate antenna set A can be divided into two
sets

A1 = {1, 2, . . . , k̃}, A2 = {k̃ + 1, k̃ + 2, . . . , K}. (82)

When M = 3, i.e., the candidate backscatter antenna set
is S = {κ1, κ2, κ3}, we first notice that σ2

1 > σ2
2 > σ2

3 .
We assume that

s1 = l2σ
2
2 + l3σ

2
3 , s2 = l1σ

2
1 + l2σ

2
2 ,

p1 = (σ2
2)l2(σ2

3)l3 , p2 = (σ2
1)

l1(σ2
2)l2 . (83)

Similarly to (59) and (60), we calculate the derivative of the
statistic Ts1 (57) with respect to σ2

1 and σ2
3 , respectively, which

are given by

∂Ts1

∂σ2
1

=
l1
L

[
(σ2

1)l1p1

]− 1
L

(
1 − l1σ

2
1 + s1

Lσ2
1

)
,

∂Ts1

∂σ2
3

=
l3
L

[
p2(σ2

3)l3
]− 1

L

(
1 − s2 + l3σ

2
3

Lσ2
3

)
. (84)

Since l1σ
2
1 + s1 < Lσ2

1 and s2 + l3σ
2
3 > Lσ2

3 , the statistic
Ts1 is a monotonous increasing function of σ2

1 (or |μκ1 |2),
while a monotonous decreasing function of σ2

3 (or |μκ3 |2). To
maximize the detection probability, we first set |μκ1 | = |μ1|

and |μκ3 | = |μK |. Then, by taking derivative of Ts1 with
respect to σ2

2 , we have

∂Ts1

∂σ2
2

=
l2
L

[
3∏

m=1

(σ2
m)lm

]− 1
L

(
1 −

∑3
m=1 lmσ2

m

Lσ2
2

)
. (85)

It can be readily checked from (33) that

3∑
m=1

lmσ2
m − Lσ2

2

= l1(|μ1|2 − |μκ2 |2)Ps + l3(|μK |2 − |μκ2 |2)Ps. (86)

There exist three cases:
• l1 < l3: in this case, we choose the antenna κ2 from

A1. Then the item (86) is smaller than zero and the
first derivative (85) is greater than zero. As a result,
the statistic Ts1 is strictly increasing with respect to
|μκ2 |2, and we set κ2 = 2.

• l1 > l3: in this case, we choose the antenna κ2 from
A2. Accordingly, the item (86) is greater than zero and
the first derivative (85) is smaller than zero. Therefore,
the statistic Ts1 is strictly decreasing with respect to
|μκ2 |2, and we set κ2 = K − 1.

• l1 = l3: in this case, the item (86) is smaller than zero
(i.e., the statistic Ts1 is a monotonous increasing function
of |μκ2 |2) when κ2 ∈ A1, while is greater than zero (i.e.,
the statistic Ts1 is a monotonous decreasing function of
|μκ2 |2) when κ2 ∈ A2. As a result, we set κ2 = 2 if
κ2 ∈ A1, and set κ2 = K − 1 if κ2 ∈ A2.

APPENDIX D
PROOF OF PROPOSITION 4

When selecting three backscatter antennas, i.e., M = 3,
we denote the candidate backscatter antenna set as S =
{κ1, κ2, κ3}. For simplification, we set l1 = l2 = l3. It has
been proved in Appendix C that the backscatter antennas κ1

and κ3 should be the antennas with the largest channel modu-
lus and the smallest channel modulus, respectively, i.e., κ1 = 1
and κ3 = K . The left problem is to determine which antenna
is the optimal backscatter antenna κ2. There exist two possible
choices: κ2 ∈ A1 or κ2 ∈ A2, where A1 and A2 have been
defined in (82).

In the case of κ2 ∈ A1, it can be readily checked from
Appendix C that the statistic Ts1 is monotonously increasing
with respect to |μκ2 |2. Therefore, the maximum detection
probability is achieved if the channel modulus of the κ2th
antenna is equal to the largest channel modulus |μ1|, i.e.,
κ2 = 1. Similarly, if we choose κ2 from A2, the statistic
Ts1 is monotonously decreasing with respect to |μκ2 |2. Thus,
the detection probability is maximized when the channel
modulus of the κ2th antenna is equal to the smallest channel
modulus |μK |, i.e., κ2 = K .

In conclusion, we obtain the largest detection probability
if the optimal backscatter antenna set is Sopt = {1, 1, K}
or Sopt = {1, K, K}, which indicates that the detection
performance of selecting only two antennas (M = 2) is better
than that of selecting three antennas (M = 3).
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