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Abstract—Signal detection in colored noise with an unknown
covariance matrix has a myriad of applications in diverse
scientific/engineering fields. The test statistic is the largest gen-
eralized eigenvalue (l.g.e.) of the whitened sample covariance
matrix, which is constructed via m-dimensional p signal-plus-
noise samples and m-dimensional n noise-only samples. A finite
dimensional characterization of this statistic under the alternative
hypothesis has hitherto been an open problem. We answer this
problem by deriving cumulative distribution function (c.d.f.) of
this l.g.e. via the powerful orthogonal polynomial approach, ex-
ploiting the deformed Jacobi unitary ensemble (JUE). Two special
cases and an asymptotic version of the c.d.f. are also derived.
With this new c.d.f., we comprehensively analyze the receiver
operating characteristics (ROC) of the detector. Importantly,
when the noise-only covariance matrix is nearly rank deficient
(i.e., m = n), we show that (a) when m and p increase such that
m/p is fixed, at each fixed signal-to-noise ratio (SNR), there exists
an optimal ROC profile. We also establish a tight approximation
of it; and (b) asymptotically, reliable signal detection is always
possible if SNR scales with m.

Index Terms—Colored noise, eigenvalue, F -matrix, Hypergeo-
metric function of two matrix arguments, Jacobi unitary ensem-
ble, orthogonal polynomials, receiver operating characteristics
(ROC), Wishart matrix

I. INTRODUCTION

Eigenvalue based detection of a signal embedded in noise is
a fundamental problem with a myriad of applications in diverse
fields including signal processing, wireless communications,
cognitive radio, bioinformatics and many more [1]–[9]. Thus,
sample eigenvalue (of the sample covariance matrix) based

Manuscript received February 05, 2019; revised March 26, 2020; accepted
April 28, 2020. Date of publication xxx, 2020; date of current version xxx,
2020. The work of Saman Atapattu was supported in part by the Australian
Research Council (ARC) through the Discovery Early Career Researcher
Award (DECRA) under Grant DE160100020. This work was presented in
part at the IEEE Global Communications Conference (GLOBECOM), Hawaii,
USA, Dec. 2019.

L. D. Chamain is with the Department of Electrical and Computer Engi-
neering, 2064 Kemper Hall, University of California Davis, 1 Shields Avenue,
Davis, CA 95616 (e-mail: hdchamain@ucdavis.edu).

P. Dharmawansa is with the Department of Electronic and Telecommu-
nication Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
(e-mail: prathapa@uom.lk).

S. Atapattu is with the Department of Electrical and Electronic Engi-
neering, University of Melbourne, Parkville, VIC 3010, Australia (e-mail:
saman.atapattu@unimelb.edu.au).

C. Tellambura is with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 2R3, Canada (e-mail:
ct4@ualberta.ca).

Communicated by Prof. Radu Balan, Associate Editor for Detection and
Estimation.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

detection has gained prominence recently ( [10], [11] and ref-
erences therein). In this context, the largest sample eigenvalue
based detection, also known as Roy’s largest root test [12], has
been popular among detection theorists. Under the common
Gaussian setting with white noise, this amounts to the use of
the largest eigenvalue of a Wishart matrix having a so-called
spiked covariance [13]–[18].

However, colored noise (or correlated noise) occurs in
multitudes of applications [9], [19]–[23]. In this case, we
can utilize the maximum eigenvalue of the matrix formed by
whitening the signal-plus-noise sample covariance matrix with
the noise-only sample covariance matrix. For this estimator,
Nadakuditi and Silverstein [5] proposed a framework to use
the generalized eigenvalues of the whitened signal-plus-noise
sample covariance matrix for detection. The assumption of
having the noise only sample covariance matrix is realistic in
many practical situations as detailed in [5]. The fundamental
high dimensional limits of the generalized sample eigenvalue
based detection in colored noise have been thoroughly investi-
gated in [5]. However, to our best knowledge, a tractable finite
dimensional analysis is not available in the literature. Thus, in
this paper, we characterize the statistics of Roy’s largest root
in the finite dimensional colored noise setting. Moreover, we
investigate certain limiting behaviors of Roy’s largest root to
deepen our understanding of the classical detection problem in
colored noise. These limiting expressions are derived based on
their finite dimensional counterparts, whereas in the literature,
it is customary to use entirely different tools for finite and
asymptotic analyses.

The Roy’s largest root of the generalized eigenvalue de-
tection problem in the Gaussian setting amounts to finite
dimensional characterization of the largest eigenvalue of the
deformed Jacobi ensemble. Various asymptotic expressions
(high dimensional and high signal-to-noise ratio) in this re-
spect have been derived in [24]–[27] for the deformed Jacobi
ensemble. Recently, [28], [29] have presented some finite
dimensional expressions for the edges of the deformed Jacobi
ensemble (i.e., maximum and minimum eigenvalues) in terms
of hypergeometric functions of a single matrix argument. Since
these functions do not assume simple forms in general, the re-
sultant expressions for the edges are of little use in engineering
applications. On the other hand finite dimensional expressions
with different degrees of complexity are available for the
Jacobi ensemble (without deformation) [30]–[33]. Although
finite dimensional, some of these expressions are not amenable
to further manipulations. Therefore, in this paper, we present
a simple and tractable closed-form solution to the cumulative
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distribution function (c.d.f.) of the maximum eigenvalue of the
deformed Jacobi ensemble. This expression further facilitates
the analysis of the receiver operating characteristics (ROC) of
Roy’s largest root test. All these results are made possible due
to a novel alternative joint eigenvalue density function that we
have derived based on the contour integral approach due to
[34]–[38].

The key results developed in this paper enable us to un-
derstand the joint effect of the system dimensionality (m),
the number of signal-plus-noise samples (p) and noise-only
samples (n), and the signal-to-noise ratio (γ) on the ROC.
For instance, the relative disparity between m and n improves
the ROC profile for fixed values of the other parameters.
However, the general finite dimensional ROC expressions turns
out to give little analytical insights. Therefore, to obtain more
insights, we have particularly focused on the case for which
the system dimensionality equals the number of the noise-only
samples (i.e., m = n). Since this equality is the minimum
requirement for the validity of the whitening operation, from
the ROC perspective, it corresponds to the worst possible
case when then other parameters being fixed. It turns out
that, in this scenario, when p increases for fixed m,n and
γ, the ROC profile improves. In this respect, the ROC profile
converges to a limiting profile as p → ∞. In contrast, when
we increase p and m simultaneously such that m/p is a
constant (≤ 1) for fixed γ, we can observe an optimal ROC
profile for some special values of p and m. However, as
p,m, n → ∞ such that m/p approaches a constant (≤ 1)
(the high dimensional limit) and m/n = 1 for fixed γ, the
maximum eigenvalue tend to lose its detection power. This
phenomenon amounts to stating that the maximum eigenvalue
has no power below the phase transition. This has been
observed in random matrix theory literature [5], [27], [39]–
[41]. Be that as it may, the most interesting result emerged
from our analysis is that, when γ scales with m under the latter
assumptions, the ROC attains a finite limit. In other words,
the maximum eigenvalue still retains its detection power in
the high dimension when γ scales with m as m → ∞. For
instance, under Rayleigh fading, as m → ∞, γ scales with
m (due to the strong law of large numbers). Therefore, the
above insight can be of paramount importance in designing
future wireless communication systems (5G and beyond).

The remainder of this paper is organized as follows. In
Section II, we formulate the classical detection problem in
unknown colored noise. A new c.d.f. expression for the
maximum eigenvalue (i.e., Roy’s largest root) of the deformed
Jacobi unitary ensemble is derived in Section III. It also
gives certain particularizations of the general c.d.f. expression.
Subsequently, Section IV investigates the ROC characteristics
of Roy’s largest root test in the light of the c.d.f. derived
in Section III. Moreover, the interplay between the system
dimensionality, the number of signal-plus-noise samples, and
the noise-only samples has been analytically characterized in
Section IV. Finally, conclusions are drawn in Section V.

Notation: The superscript (·)† indicates the Hermitian trans-
pose, det(·) denotes the determinant of a square matrix, tr(·)
represents the trace of a square matrix, and etr(·) stands for
exp (tr(·)). The n × n identity matrix is represented by In

and the Euclidean norm of a vector w is denoted by ||w||.
A diagonal matrix with the diagonal entries a1, a2, . . . , an is
denoted by diag(a1, a2, . . . , an). We denote the m×m unitary
group by U(m). Finally, we use the following notation to
compactly represent the determinant of an n×n block matrix:

det [ai bi,j ]i=1,2,...,n
j=2,3,...,n

=

∣∣∣∣∣∣∣∣∣
a1 b1,2 b1,3 . . . b1,n
a2 b2,2 b2,3 . . . b2,n
...

...
...

. . .
...

an bn,2 bn,3 . . . bn,n

∣∣∣∣∣∣∣∣∣ .
II. PROBLEM FORMULATION

Consider the following generic signal detection problem in
colored Gaussian noise

x =
√
ρhs+ n

where x,h ∈ Cm are m-dimensional complex vectors, ρ > 0
is a signal power measure, s ∼ CN (0, 1) is a complex
Gaussian transmit symbol and n ∼ CNm(0,Σ) is a random
complex Gaussian noise vector with covariance matrix Σ,
which may or may not be known at the detector. The classical
signal detection problem amounts to the following hypothesis
testing problem:

H0 : ρ = 0 Signal is absent
H1 : ρ > 0 Signal is present.

Noting that the covariance matrix of x can be written as

S = ρhh† + Σ,

the above hypothesis testing problem assumes the following
equivalent form

H0 : R = Σ Signal is absent
H1 : S = ρhh† + Σ Signal is present.

If the signal-plus-noise covariance matrix S and the noise
covariance matrix Σ were known, we may compute the matrix

Ψ = R−1S = ρΣ−1hh† + I.

Denote the eigenvalues of Ψ by λ1 ≤ λ2 ≤ . . . ≤ λm.
These eigenvalues are in fact the generalized eigenvalues of the
matrix pair (S,R). Since the rank of hh† is one, m−1 eigen-
values are all equal to one (i.e., λ1 = λ2 = . . . = λm−1 = 1)
while the remaining maximum eigenvalue of Ψ (i.e., λm) is
strictly greater than one. Thus, the maximum eigenvalue of Ψ
could be used to detect the presence of a signal [5].

In most practical settings, R and S matrices are unknown.
To circumvent this difficulty, we may replace R and S by their
sample estimates. To this end, we assume the availability of
p > 1 i.i.d. signal-plus-noise samples {x1,x2, . . . ,xp}, and n
i.i.d. noise-only samples {n1,n2, . . . ,nn}. Thus, the sample
estimates of R and S become

R̂ =
1

n

n∑
`=1

n`n
†
`, (1)

Ŝ =
1

p

p∑
k=1

xkx
†
k (2)
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where we assume that n, p ≥ m (this ensures that both R̂
and Ŝ are positive definite with probability 1 [41], [42]).
Consequently, following [5], we form the matrix

Ψ̂ = R̂−1Ŝ (3)

and focus on its maximum eigenvalue as the test statistic1. As
such, we have

nR̂ ∼ CWm (n,Σ)

pŜ ∼ CWm

(
p,Σ + ρhh†

)
.

Noting that the eigenvalues of Ψ̂ do not change under the
simultaneous transformations R̂ 7→ Σ−1/2R̂Σ−1/2, and Ŝ 7→
Σ−1/2ŜΣ−1/2, without loss of generality we assume that Σ =
σ2Im. Therefore, in what follows we focus on the maximum
eigenvalue of Ψ̂, where

nR̂ ∼ CWm (n, Im) (4)

pŜ ∼ CWm

(
p, Im + γuu†

)
(5)

with γ = ρ||h||2/σ2 and u = h/||h|| being a unit vector.
Let us denote the maximum eigenvalue of Ψ̂ as λ̂max(γ).

Now, in order to assess the performance of the maximum-
eigen based detector, we need to evaluate the detection2 and
false alarm probabilities. They may be expressed as

PD(γ, µ) = Pr
(
λ̂max(γ) > µth|H1

)
(6)

and

PF (γ, µ) = Pr
(
λ̂max(γ) > µth|H0

)
(7)

where µth is the threshold. The (PD, PF ) pair characterizes
the detector and is called the ROC profile.

Our main challenge is to characterize the maximum eigen-
value of Ψ̂ under the alternative H1. This particular matrix is
also referred to as the multivariate F matrix in the statistics
literature [42]. It is also related to the so called Jacobi ensem-
ble in random matrix theory [43], [44]. The joint eigenvalue
distribution of the F (also Jacobi ensemble) matrix has been
well documented in the literature [42], [43], [45]. The extreme
eigenvalues of F under the null has been characterized in [30]–
[32] in terms of hypergeometric function of one matrix argu-
ment. To gain more insights into the behavior of the extreme
eigenvalues, focus has been shifted to various asymptotic
domains (high dimensionality or high SNR). In this respect,
various asymptotic expressions for the extreme eigenvalues,
under the null, have been established in [24], [25], [46]–[50].
Recently, capitalizing on new contour integral representations
of hypergeometric functions of matrix arguments by [34]–
[37], [51], several new asymptotic results (including phase
transition phenomena) for the maximum eigenvalue, under
the alternative, have been established [26]. Also, the authors
in [5], [27], [40] have employed the Stiltjes transform tech-
nique to relax the Gaussian assumption, thereby establishing
the universality nature of the above results. Despite those
asymptotic results, a finite-dimensional characterization of the

1This test statistic is a consequence of Roy’s union intersection principle
[12].

2This is also known as the power of the test.

maximum eigenvalue under the alternative hypothesis has been
an open problem. Therefore, in this paper, we attack this
problem by exploiting orthogonal polynomial techniques due
to Mehta [43] to obtain a closed-form solution. In particular,
we derive an expression which contains a determinant whose
dimension depends through the relative difference between
m and n. Consequently, this property is used to establish
an interesting asymptotic result on the maximum eigenvalue
under the alternative hypothesis.

III. C.D.F. OF THE MAXIMUM EIGENVALUE

Before proceeding further, we present some fundamental
results pertaining to the joint eigenvalue distribution of an F -
matrix and Jacobi polynomials.

A. Preliminaries

Definition 1: Let W1 ∼ Wm (p,Σ) and W2 ∼
Wm (n, Im) be two independent Wishart matrices with p, n ≥
m. Then the joint eigenvalue density of the ordered eigenval-
ues, λ1 ≤ λ2 ≤ . . . ≤ λm, of W1W

−1
2 is given by [45]

f(λ1, λ2, · · · , λm) =
K1(m,n, p)

detp (Σ)

m∏
j=1

λp−mj ∆2
m(λ)

× 1F̃0

(
p+ n;−Σ−1,Λ

)
(8)

where 1F̃0 (·; ·, ·) is the generalized complex hypergeo-
metric function of two matrix arguments, ∆m(λ) =∏

1≤i<j≤m (λj − λi) is the Vandermonde determinant, Λ =
diag (λm, . . . , λ1), and

K1(m,n, p) =
πm(m−1)Γ̃m(n+ p)

Γ̃m(m)Γ̃m(n)Γ̃m(p)

with the complex multivariate gamma function is written in
terms of the classical gamma function Γ(·) as

Γ̃m(n) = π
1
2m(m−1)

m∏
j=1

Γ (n− j + 1) .

Definition 2: Jacobi polynomials can be defined, for a, b >
−1, as follows [52, eq. 5.112]

P (a,b)
n (x) =

n∑
k=0

(
n+ a

n− k

)(
n+ k + a+ b

k

)(
x− 1

2

)k
(9)

where
(
n
k

)
= n!

(n−k)!k! with n ≥ k ≥ 0.
We may alternatively express the Jacobi polynomial as [52]

P (a,b)
n (x)=

(
n+ a

a

)
2F1

(
−n, n+ a+ b+ 1; 1 + a;

1− x
2

)
(10)

where 2F1(·; ·; ·) is the Gauss hypergeometric function. Fol-
lowing (10), the successive derivatives of the Jacobi polyno-
mial can be written as

dk

dxk
P (a,b)
n (x) = 2−k(n+ a+ b+ 1)kP

(a+k,b+k)
n−k (x) (11)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 07,2020 at 19:19:30 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.2998287, IEEE
Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXXX 2020 4

where (a)k = a(a+ 1) . . . (a+ k − 1) with (a)0 = 1 denotes
the Pochhammer symbol. It is noteworthy that, for a negative
integer −n with n ∈ Z+, we have [52]

(−n)k =

{
(−1)kn!
(n−k)! if 0 ≤ k ≤ n

0 if k > n.

B. Finite Dimensional Analysis of the C.D.F.

Armed with these preliminary definitions, now we focus
on deriving the new c.d.f. for the maximum eigenvalue of
W1W

−1
2 when the covaraince matrix Σ takes the so called

rank-1 spiked form. That is, the covariance matrix can be
decomposed as

Σ = Im + ηvv† = Vdiag (1 + η, 1, 1, . . . , 1) V† (12)

where V = (v v2 . . .vm) ∈ Cm×m is a unitary matrix
and η ≥ 0. Before developing our method, it is impor-
tant to highlight the difficulty of a direct solution via (8).
Following Khatri [53], the hypergeometric function of two
matrix arguments given in the join density (8) can be written
as a ratio between the determinants of two m × m square
matrices. Since the eigenvalues of the matrix Σ−1 are such that
1/(1 + η) has algebraic multiplicity one and 1 has algebraic
multiplicity m − 1, the resultant ratio takes an indeterminate
form. Therefore, one has to repeatedly apply L’Hospital’s rule
to obtain a deterministic expression. However, the resulting
expression is not amenable to apply Mehta’s [43] orthogonal
polynomial technique. Therefore, to apply it, we first derive an
alternative joint eigenvalue density expression. This alternative
derivation technique has also been used earlier in [34] to derive
a single contour integral representation for the joint eigenvalue
density when the matrices are real3. The following corollary
gives the alternative joint density expression.

Corollary 3: Let W1 ∼ Wm(p, Im + ηvv†) and W2 ∼
Wm(n, Im) be independent Wishart matrices with m ≤ p, n
and η ≥ 0. Then the joint density of the ordered eigenvalues
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm <∞ of W1W

−1
2 is given by

f(λ1, λ2, . . . , λm) = fuc(λ1, λ2, . . . , λm)fcor(λ1, λ2, . . . , λm)
(13)

where

fuc(λ1, λ2, . . . , λm) = K1(m,n, p)
m∏
j=1

λp−mj

(1 + λj)p+n
∆2
m(λ),

(14)

fcor(λ1, λ2, . . . , λm)

=
K2(m,n, p)

ηm−1(1 + η)p+1−m

m∏
j=1

(1 + λj)

×
m∑
k=1

(1 + λk)p+n−1

m∏
j=1
j 6=k

(λk − λj)
(

1 +
λk
η + 1

)p+n+1−m ,

3However, when the matrices are real, the hypergeometric function of two
matrix arguments does not admit such a determinant representation.

and
K2(m,n, p) =

(m− 1)! (p+ n−m)!

(p+ n− 1)!
.

Proof: See Appendix A.
Remark 4: It is worth noting that the function

fuc(λ1, λ2, · · · , λm) denotes the joint density of the
ordered eigenvalues of W1W

−1
2 corresponding to the

case W1 ∼ Wm(p, Im) and W2 ∼ Wm(n, Im).
To facilitates further analysis, noting that the continuous

mapping h : x 7→ x
x+1 , x ≥ 0 is strictly increasing (i.e., order

preserving), we use the variable transformations

xj =
λj

1 + λj
, j = 1, 2, · · · ,m, (15)

with the associated Jacobian
∣∣∣ ∂(x1,x2,...,xm)
∂(λ1,λ2,...,λm)

∣∣∣ =
∏m
j=1(1 −

xj)
2, in (13) to obtain the joint density of 0 ≤ x1 ≤ x2 ≤

· · · ≤ xm < 1 as

g(x1, x2, . . . , xm)

=
f
(

x1

1−x1
, x2

1−x2
, . . . , xm

1−xm

)
∣∣∣ ∂(x1,x2,...,xm)
∂(λ1,λ2,...,λm)

∣∣∣
=

K3(m,n, p)

ηm−1(1 + η)p+1−m∆2
m(x)

m∏
j=1

xp−mj (1− xj)n−m

×
m∑
k=1

1
m∏
j=1
j 6=k

(xk − xj)
(

1− η

η + 1
xk

)p+n+1−m (16)

where K3(m,n, p) = K1(m,n, p)K2(m,n, p).
The joint eigenvalue density (16) in turn facilitates the use

of Mehta’s orthogonal polynomial approach in our subsequent
c.d.f. analysis.

Remark 5: Alternatively, (16) represents the joint density
of the ordered eigenvalues of deformed Jacobi ensemble,
W1(W2 + W1)−1 with W1 ∼ Wm(p, Im + ηvv†) and
W2 ∼ Wm(n, Im).

We now consider the main contribution of this paper,
namely, the derivation of the c.d.f. of the maximum eigenvalue.
By the definition, the c.d.f. of xmax (i.e., xm) can be written
as,

Fxmax(t) = Pr(xmax ≤ t)

=

∫
0≤x1≤x2≤···≤xm≤t

g(x1, x2, . . . , xm)dx (17)

where, for notational concision, we have used dx =
dx1dx2 . . . dxm. By evaluating the above Selberg-type inte-
gral, the c.d.f. of xmax can be found and hence the c.d.f. of
λmax, which is given by the the following theorem.

Theorem 6: Let W1 ∼ Wm(p, Im + ηvv†) and W2 ∼
Wm(n, Im) be independent with m ≤ p, n and η ≥ 0. Then
the c.d.f. of the maximum eigenvalue λmax of W1W

−1
2 is

given by

F
(α)
λmax

(t; η) =
K(m, p, α)

(p− 1)! (1 + η)p

(
t

1 + t

)m(α+β+m)

× det [Φi(t, η) Ψi,j(t)]i=1,2,...,α+1
j=2,3,...,α+1

(18)
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where

Ψi,j(t) = (m+ i+ β − 1)j−2P
(j−2,β+j−2)
m+i−j

(
2

t
+ 1

)
,

Φi(t, η)

= Qi(m,n, p)
α−i+1∑
k=0

(p+ i− 1)k(α− i+ 2)!

k! (p+m+ 2i− 2)k(α− i− k + 1)!

× (ηt)
k+i−1

((1 + η)(1 + t))
p+k

(1 + η + t)
p+k+i−1

,

Qi(m,n, p) =
(n+ p+ i− 2)! (p+ i− 2)!

(p+m+ 2i− 3)!
,

and

K(m, p, α) =
α−1∏
j=0

(p+m+ j − 1)!

(p+m+ 2j)!

with α = n−m and β = p−m.
Proof: See Appendix B.

Remark 7: Alternatively, Φi(t, η) can be expressed in terms
of Gauss hypergeometric function as follows

Φi(t, η)

= Qi(m,n, p)
(

ηt

(1 + η)(1 + t)

)i−1

× 2F1

(
β +m+ i− 1, n+ p+ i− 1;β + 2m+ 2i− 2;

ηt

(1 + η)(1 + t)

)
.

(19)

The new exact c.d.f. expression for the maximum eigenvalue
of W1W

−1
2 , which contains the determinant of a square

matrix whose dimension depends on the difference α = n−m,
is highly desirable when the difference between m and n is
small irrespective of their individual magnitudes. For instance,
when n = m (i.e., α = 0) the determinant vanishes and we
obtain a scalar result. This concise result is one of the many
advantages of using the orthogonal polynomial approach. This
key representation also facilitates the derivation of the limiting
distribution of the maximum eigenvalue (when m,n → ∞
such that m− n is fixed).

For some special values of α and η, the c.d.f. expression
(18) admits the following simple forms.

Corollary 8: The exact c.d.f. of the maximum eigenvalue
of W1W

−1
2 when η = 0 is given by

F
(α)
λmax

(t; 0) = K(m, p, α)
(n+ p− 1)!

(m+ p− 1)!

(
t

1 + t

)m(α+β+m)

× det [Ψi+1,j+1(t)]i,j=1,2,...,α . (20)

Proof: Following (19), it is easy to see that, when η = 0, all
the elements in the first column of the determinant in (18)
become zero except the first entry which is (p− 1)! (n+ p−
1)! /(m+ p− 1)!. Therefore, we expand the determinant with
its first column and shift the indices i and j to conclude the
proof.

Alternative expressions for c.d.f and p.d.f. of xmax (xmax =
λmax/(1 + λmax)) in the same scenario (η = 0) are given in
[30] and [31], respectively. However, these results are funda-
mentally structurally different from our expression (20), since
they contain complex hypergeometric functions of one matrix
argument. In particular, the matrix argument in [30] assumes
the form tIm, whereas the matrix argument in [31] takes
the form tIα−1. Further simplification of these expressions
requires the repeated application of L’Hospital’s rule followed
by the evaluation of the resultant determinants, a cumbersome
process. In contrast, the c.d.f. expression (20) does not suffer
from these drawbacks.

Corollary 9: The exact c.d.f. of the maximum eigenvalue
of W1W

−1
2 when α = 0 is given by ( t ≥ 0)

(21)F
(0)
λmax

(t; η) =

(
t

1 + t

)mp
(

1 +
η

1 + t

)p .
Proof: When α = 0, the determinant in (18) reduces to a single
term given by

Φ1(t, η) = (p− 1)! 2F1

(
p, n+ p;n+ p;

ηt

(1 + η)(1 + t)

)
.

Noting that 2F1(a, b; b; z) = 1F0(a; z) = (1−z)−a with some
algebraic manipulations concludes the proof.

In the sequel, this remarkably simple result (21) is used to
establish an important high dimensional limit for the maximum
eigenvalue. Also, we have, for η2 > η1 > 0,

F (0)(t; η2) < F (0)(t; η1) < F (0)(t; 0).

Having established the finite dimensional c.d.f. results, we
now focus on the asymptotic characterization of the maximum
eigenvalue.

C. Asymptotic Analysis of the C.D.F.

Here we characterize the asymptotic behavior of the max-
imum eigenvalue of W1W

−1
2 by deriving various limiting

c.d.f. expressions for (18). In particular, we focus on suitably
centered and scaled maximum eigenvalue in the following two
important scenarios:

1) As m,n, p→∞ such that α, β, and η are fixed,
2) As m,n, p, η → ∞ such that m

n → 1, m
p → c ∈ (0, 1],

and η
m → θ ≥ 0.

Asymptotic behavior of the Jacobi ensemble has been
thoroughly studied in the literature (see [44], [46], [47],
[48]–[50] and references therein). For instance, Johnstone
[46] has shown that, for a large class of Jacobi ensembles,
properly centered and scaled maximum eigenvalue (the high
dimensional limit) admits a Tracy-Widom type limiting distri-
bution. Recently, Ioana [31] has derived a new limiting p.d.f.
expression for the maximum and minimum eigenvalues of the
Jacobi ensemble for certain new asymptotic regimes. Despite
the differences in the asymptotic regimes of their choice, one
common features of all the above mentioned investigations is
that W1 and W2 are white Wishart matrices. In contrast, more
recently, high dimensional limit of the maximum eigenvalue
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(including the so called universality) has been established
when W2 has certain spiked covariance structures (akin to
the structure given in (12)) [5], [26], [27] [39], [40]. Most
importantly those authors have observed a so called phase
transition (also known as BBP phase transition) phenomena
associated with the maximum eigenvalue. In a nutshell, phase
transition means, in the high dimensional limit, when η is
below a certain critical threshold, the maximum eigenvalue
does not separate from the rest of the eigenvalues4, whereas
when η is above the threshold, it separates from the rest of
the eigenvalues5. Despite all these efforts, the behavior of the
maximum eigenvalue in the above two asymptotic regimes
have not been addressed in the literature. Therefore, in what
follows we give limiting c.d.f. expressions pertaining to the
above two scenarios.

Theorem 10: As m, p and n tend to ∞ such that α =
m − n, β = p −m, and η are fixed, the centered and scaled
maximum eigenvalue (1+λmax)/m2 converges in distribution
to a random variable X with the c.d.f. F (α)

X (x). In particular,
we have

lim
m→∞

F
(α)
1+λmax
m2

(x) = F
(α)
X (x)

= exp

(
− 1

x

)
det

[
Ij−i

(
2√
x

)]
i,j=1,···,α

(22)

where Ik(z) is the k-th order modified Bessel function of the
first kind.
Proof: See Appendix D.

It is interesting to see that the limiting c.d.f. is independent
of η. Due to this independence, (22) should be the limiting
c.d.f. for η = 0 as well. However, an alternative expression for
the limiting p.d.f. of xmax when η = 0 has been given in [31].
That particular expression contains a hypergeometric function
of one matrix argument, and therefore does not admit a simple
form. In contrast, the limiting c.d.f. (22) is simple from the
representation as well as numerical evaluation perspectives.
Since (22) has the same form under both hypotheses, the
maximum eigenvalue based test does not have power in this
particular regime.

The following theorem characterizes the maximum eigen-
value in one of the most important high dimensional settings
outlined in the above second scenario.

Theorem 11: As m, p, n, and η tend to ∞ such that
m/n → 1, m/p → c ∈ (0, 1], and η/m → θ ≥ 0, the
centered and scaled maximum eigenvalue (1 + λmax)/m2

converges in distribution to a random variable X with the
c.d.f. F (0)

X (x; c, θ). In particular, we have

lim
m→∞

F
(0)
1+λmax
m2

(x; θm) = F
(0)
X (x; c, θ) = exp

(
−1 + θ

cx

)
.

4To be precise, it converges almost surely to the upper support of the
limiting spectral density [5], [26], [40].

5It converges almost surely to a location above the upper support of the
limiting spectral density [5], [26], [40].

Proof: Following (21), we take α = 0 and p = m/c to yield

F
(0)
λmax

(x; η) =

(
x

1 + x

)m2/c

(
1 +

η

1 + x

)m/c ,
from which we obtain, noting that η = θm,

lim
m→∞

F
(0)
1+λmax
m2

(x; θm) = F
(0)
X (x; c, θ)

= lim
m→∞

(
1− 1

xm2

)m2/c

(
1 +

θ

xm

)m/c . (23)

The final result now follows by evaluating the limits as m→
∞.

This remarkably simple limiting c.d.f. sheds some new light
on the behavior of the maximum eigenvalue in this particular
asymptotic domain. Following [5], [54], we can easily show
that, for m/n → 1 and m/p → c ∈ (0, 1], the upper support
of the limiting spectral density diverges to infinity6 for fixed η.
Therefore, under this scaling, the operational regime is below
the phase transition, where the maximum eigenvalue has no
detection power [5], [26]. In contrast, when η also scales with
m, it turns out that (see next section), the maximum eigenvalue
has detection power as shown in Theorem 11. The reason
is that all the earlier results treated η as a constant when
dealing with the high dimensional limits. This new simple
result shows that, when n, p and η scale with m, an interesting
new phenomenon occurs.

The above facts are clearly depicted in Figs. 1, 2 and 3
where we have used c = 0.4 and m = 200 for simulation pur-
poses. In particular, Fig. 1 compares simulation and theoretical
results for no signal case (i.e., η = 0) with a weak signal case
(i.e., η = 5 << m). As can be seen from the graphs, in the
high dimensional setting, the centered and scaled λmax has the
same limiting distribution (i.e., fX(x) = exp(−1/cx)/cx2)
under the both settings. This stems form the fact that the
above both settings result in θ = 0. In contrast, as can be
seen from Figs. 2 and 3, the centered and scaled λmax can be
used to detect a strong signal in the high dimensional setting.
Figure 2 compares the simulation results with the analytical
limiting p.d.f. expression based on Theorem 11 for different
θ values. Clearly, the strong signal bearing case can easily be
identified from the no signal case in the asymptotic domain.
The behavior of the limiting p.d.f. for various values of θ is
depicted in Fig. 3. The dependency of the peak of the p.d.f.
(i.e., 4ce−2/(1 + θ)) on θ is clearly visible from the figure.

Having armed with the finite and asymptotic characteristics
of the maximum eigenvalue of W1W

−1
2 , we next focus on

the ROC curve of the maximum eigenvalue based detector.

IV. ROC OF THE MAXIMUM EIGENVALUE OF Ψ̂

We now investigate the behavior of detection and false
alarm probabilities of the maximum eigenvalue based test. To

6Following [54], [55] we can show that the exact limiting spectral density
takes the form

√
x−a

πx(x+c)
, where a = (1− c)2/4 ≤ x <∞.
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(a) η = 0 (i.e., no signal case)
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(b) η = 5 (i.e., weak signal case)

Fig. 1: Comparison of simulation and theoretical limiting p.d.f. expressions in the no signal case and weak signal case. The
results are shown for m = 200 and c = 0.4.
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Fig. 2: Comparison of the theoretical and simulation p.d.f.s of
the centered and scaled λmax for m/n→ 1, m/p→ 0.4, and
various values of η/m→ θ with m = 200.

this end, noting that the eigenvalues of Ψ̂ and W1W
−1
2 are

related by λ̂j = (n/p)λj , for j = 1, 2, . . . ,m, we represent
the c.d.f. of the maximum eigenvalue corresponding to Ψ̂ as
F

(α)
λmax

(κx; γ), where κ = p/n. For convenient presentation,
we treat the finite dimensional and asymptotic behaviors of
the ROC in two separate sub sections.

A. Finite Dimensional Analysis

We first consider the case where matrix dimensions (m,n,
and p) are finite. Now following Theorem 6 and Corollary
8 along with with (6), (7), the detection and false alarm

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

Fig. 3: Behavior of the centered and scaled λmax for m/n→
1, m/p→ 0.4, and various values of η/m→ θ with m = 200.

probabilities can be written, respectively, as

PD(γ, µth) = 1− F (α)
λmax

(κµth; γ) (24)

PF (µth) = 1− F (α)
λmax

(κµth; 0). (25)

In general, deriving a functional relationship between PD
and PF by eliminating the parametric dependency on µth
is challenging. However, when α admits zero, an explicit
relationship between them is specified in Corollary 12.

Corollary 12: For notational brevity, we suppress the pa-
rameters γ and µth and represent the detection and false alarm
probabilities, simply as PD and PF . Then, when α = 0, PD
and PF are functionally related as

PD = 1− 1− PF(
1 + γ − γ [1− PF ]

1/mp
)p . (26)
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Fig. 4: Probability of detection, PD, as a function of γ and PF for (m,n, p) = (5, 8, 10).

From (26), having considered PD as a function of γ, we can
easily see that, for γ1 > γ2 and fixed m, p, and n,

PD(γ2) > PD(γ1).

This confirms the common observation that the SNR is posi-
tively correlated with the detection probability for a fixed value
of PF .

The ROC curves corresponding to different parameter set-
tings are shown in Figs. 4 and 5. Figure 4a depicts the power
profile as a function of SNR for different PF values. As
can be seen, for a fixed PF , the power increase with the
SNR, which is consistent with our intuition. The ROC of the
maximum eigenvalue based detector is shown in Fig. 4b for
several SNR (γ) values, which clearly shows that ROC profile
improves with the increasing SNR. Since the next important
parameter determining the ROC profile is the dimensionality
of the covariance matrices, we investigate its effect on the
ROC profile. To this end, Fig. 5a shows the effect of m/n
for m/p = 1. As can be seen, the disparity between m
and n improves the ROC profile. The reason behind this
observation is that the quality of the sample covariance matrix
is improved when the length of the data record (n) increases in
comparison with the dimensionality of the receiver (m). Since
the minimum requirement for R̂ to be invertible is m = n,
we can observe the worst ROC performance corresponds to
m/n = 1. Therefore, the effect of m/p on the ROC for
m/n = 1 is shown in Fig. 5b. As can be seen, for constant
p, increasing m degrades the ROC profile. Since we have a
closed-form ROC equation for m/n = 1, we conduct a deeper
investigation on the joint effect of m and p on the ROC.

The joint effect of m and p is characterized in two scenarios.

In particular, we consider i) varying p for fixed m and ii) m
and p both vary such that m/p = ν, where ν > 0 is a constant.
Since p and m take only integer values, an exact analysis
seems an arduous task. To circumvent this difficulty and in
view of performing an approximate analysis, we let p and m
be continuous variables. We can thus write the derivative of
PD with respect to p as

1

(1− PD)

dPD
dp

= ln
(

1 + γ − γ(1− PF )1/mp
)

+ γ
(1− PF )1/mp ln(1− PF )1/mp

1 + γ − γ(1− PF )1/mp
,

from which we obtain using the inequality ln z ≥ 1 − 1/z,
dPD
dp > 0. This in turn reveals that PD increases with p for

all γ and PF , which is consistent with our intuition. The next
immediate question of whether PD is bounded as p → ∞ is
answered in the sequel.

We now focus on the second scenario. As such, noting that
m/p = ν, we can write derivative of PD as a function of p to
yield

1

(1− PD)

dPD
dp

= ln
(

1 + γ − γ(1− PF )1/νp2
)

+ 2γ
(1− PF )1/νp2 ln (1− PF )

1/νp2(
1 + γ − γ(1− PF )1/νp2

) .

A careful inspection of the right hand expression reveals that
it has only one stationary point. However, the direct evaluation
of the stationary point based on the above expression does not
yield any closed-form solution. Therefore, to gain insights into
the p value which maximizes/minimizes PD, in what follows,
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Fig. 5: PD vs PF for different (m,n, p) configurations with γ = 5 dB.

we derive a tight bound for the stationary point. To this end,
first we concentrate on the p values for which dPD

dp < 0 for
all γ and PF . As such, we use the inequalities [56]

ln(1 + z) <
z(z + 2)

2(z + 1)
, z > 0,

and z ln z < z(z − 1), z > 0 to obtain

ln
(

1 + γ − γ(1− PF )1/νp2
)

+ 2γ
(1− PF )1/νp2 ln (1− PF )

1/νp2(
1 + γ − γ(1− PF )1/νp2

)
<

γ(1− (1− PF )1/νp2)

2
(
1 + γ − γ(1− PF )1/νp2

)
×
(

(γ + 2)− (γ + 4)(1− PF )1/νp2
)
.

Therefore, dPD
dp < 0 is strict in the regime where

p >

√√√√− ln(1− PF )

−ν ln
(
γ+2
γ+4

) . (27)

Again, using the inequalities [56], ln(1 + z) > 2z/(2 +

z), z > 0 and ln z > (1− z)/
√
z, 0 < z < 1, we have

ln
(

1 + γ − γ(1− PF )1/νp2
)

+ 2γ
(1− PF )1/νp2 ln (1− PF )

1/νp2(
1 + γ − γ(1− PF )1/νp2

)
> 2γ(1− (1− PF )1/νp2

(
1

2 + γ − γ (1− PF )
1/νp2

− (1− PF )
1/2νp2

1 + γ − γ(1− PF )1/νp2

)
.

This in turn gives that dPD
dp > 0 for

p <

√√√√ − ln(1− PF )

−2ν ln
(
γ+1
γ+2

) . (28)

Thus, we conclude that PD attains its maximum at p = p∗,
where √√√√ − ln(1− PF )

−2ν ln
(
γ+1
γ+2

) < p∗ <

√√√√− ln(1− PF )

−ν ln
(
γ+2
γ+4

) . (29)

Having obtained the upper and lower bounds on p∗, a good
approximation of p∗ can be written as7

p∗ ≈ 1

2

√√√√− ln(1− PF )

−ν ln
(
γ+2
γ+4

) +

√√√√ − ln(1− PF )

−2ν ln
(
γ+1
γ+2

)
 . (30)

7In general any convex combination of the upper and lower bounds can be
a candidate for the p∗.
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Fig. 6: PD vs PF for the optimal p and approximated p.

To further highlight the accuracy of the proposed approxima-
tion, in Fig. 6 we compare the optimal ROC profiles evaluated
based on (30) and by numerically optimizing (26). As can
be seen from the figure, the disparity between the proposed
approximation and the exact optimal solution is insignificant.
Therefore, when m = n, under the second scenario, we can
choose p as per (30) for fixed PF , γ, and ν in view of
maximizing the detection probability.

The detection of a very weak signal embedded in noise
is particularly challenging. In this respect, it is of paramount
importance to understand the behavior of PD as a function
of SNR in the low SNR regime. To this end, we need to
analytically characterize PD around γ = 0, which is the focus
of Corollary 13.

Corollary 13: As γ → 0, for a fixed value of PF , PD(γ)
admits the following form

PD(γ) =
PF + pRε(1− PF )γ + o(γ) if n > m

PF + p
[
1− (1− PF )

1/mp
]

× (1− PF ) γ + o(γ) if n = m
(31)

where

Rε(z)

= z −
(
p+ n

p+m

)
G(z)

1 +G(z)
z +K(m, p, α)

(p+ n)!

(p+m+ 1)!

×
(

G(z)

1 +G(z)

)m(m+α+β+m)+1

det [hi,j (G(z))]

(32)

with

hi,j(z) =

{
Ψ1,j+1(z) i = 1; j = 1, 2, . . . , α
Ψi+1,j+1(z) i = 2, 3, . . . , α; j = 1, 2, . . . , α

and G(z) being the inverse function of F (α)
λmax

(z; 0).
The proof simply follows by obtaining the Taylor expansion
of the PD(γ) in the vicinity of γ = 0.

Let us now examine the factors affecting weak signal
detection with the proposed scheme. Since the ROC curve
for the case n > m is too complicated, we confine ourselves
to the scenario m = n. Moreover, as we have already
seen, this scenario may result in the worst possible ROC and
hence serves as a benchmark. Therefore, any improvement in
this case will further enhance other ROC curves uniformly.
Clearly, for very low SNR values, the most critical factor
which determines the power is the coefficient of γ given
by p

[
1− (1− PF )

1/mp
]

(1− PF ). Since this coefficient de-
pends on two parameters m and p for fixed PF , we investi-
gate the power profile when these parameters are related as
follows: i) fixed m, p varies, ii) m and p both vary such that
m/p = k ∈ (0, 1], and iii) m and p both vary such that p−m is
a constant. It is easy to show that under the above both options
(ii) and (iii), the coefficient degrades when we increase both p
and m. In contrast, when m is fixed, the coefficient gradually
improves when we increase p. To show this, we rewrite the
above coefficient, omitting the factor (1− PF ), as a function
of p to yield

a(p) = p
[
1− (1− PF )

1/mp
]
.

Now we treat p as a continuous variable and differentiate a(p)
over p to yield

d

dp
a(p) = (1− PF )

1/mp
ln (1− PF )

1/mp

+ 1− (1− PF )
1/mp

.

Noting the inequality, ln z ≥ 1−1/z, we can easily show that
d
dpa(p) ≥ 0 for all p,m. This in turn establishes that a(p)
is a non decreasing function of p. The next natural question
is whether there exist an upper bound for a(p) as p grows
large. A simple limiting argument involving L’Hôpital’s rule
will then give

lim
p→∞

a(p) = − 1

m
ln (1− PF ) . (33)

Therefore, we can conclude that a power enhancement is
expected in the low SNR regime if we increase p for fixed m
and PF . In particular, in the low SNR regime (i.e., as γ → 0),
we have

PF < PD(γ) < PF −
(1− PF )

m
ln (1− PF ) γ + o(γ). (34)

To further asses the quality of the derived first order ap-
proximations, here we numerically evaluate the relative error
between the exact PD(γ) and the corresponding first order
expansions given in (31). To be precise, we define the relative
error as

RE =
PD(γ)− P f.o.

D (γ)

PD(γ)
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Fig. 7: Relative error vs PF for small values of γ.

where P f.o.
D (γ) stands for the first order expansions give in

(31). Figure 7a depicts the behavior of the relative error as
a function of PF for a set of small values of γ. The other
parameters have been chosen as m = n = 10 and p = 15.
Fig. 7a shows that the diminishing γ improves the relative
error, which is anticipated. Fig. 7b shows the relative error
versus PF curve for a set of small values of γ when m =
n = 10 and p = 20. Although we can observe the general
trend of improving relative error with the diminishing γ, for
a given γ, the relative error is maximized at a certain value
of PF . However, the analytical determination of this value
seems an arduous task. The relative error improvement in the
case of increasing p is depicted in Fig. 8. It is interesting to
observe that the relative error does not deviate much from the
corresponding asymptotic limit even for finite small values of
p when γ is moderately low.

Having completed the finite-dimensional analysis, we now
examine the ROC behavior in the asymptotic regime.

B. Asymptotic Analysis

Here we analyze the ROC profile in three important asymp-
totic regimes. In particular, we consider the following three
regimes

1) As m,n, p→∞ such that α, β and γ are fixed,
2) As p→∞ such that m = n, and γ are fixed,
3) As m,n, p, γ → ∞ such that m

n → 1, m
p → c ∈ (0, 1],

and γ
m → θ ≥ 0.

Following Theorem 10, we can easily see that the maxi-
mum eigenvalue has no detection power in the first regime.
Therefore, we now turn our attention to the second and
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Fig. 8: Relative error vs PF for different values of p with
m = n = 10 and γ = −3 dB.

third regimes. The asymptotic ROC pertaining to the second
scenario can be obtained with the help of Corollary 12 as

PAsyp
D (γ) = lim

p→∞
PD(γ) = 1− (1− PF )

1+ γ
m . (35)

It is noteworthy that this convergence is uniform in γ. Asymp-
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β = p−m = 2, and γ = 5 dB are fixed.

totic ROC corresponding to the third regime, is given by the
following corollary

Corollary 14: As m,n, p, γ →∞ such that m
n → 1, mp →

c ∈ (0, 1], and γ
m → θ ≥ 0, the ROC admits the following

asymptotic limit

PAsy
D (θ) = 1− (1− PF )

1+θ
. (36)

Since the above asymptotic ROC profile is independent of c,
this expression should be valid for c = 0 as well. Therefore, we
can extend the domain of c such that c ∈ [0, 1]. Clearly, when
θ = 0 (γ does not scale with m), the maximum eigenvalue has
no detection power in the high dimension. This is consistent
with what has been reported in [39] on the power of the
maximum eigenvalue below the phase transition. In contrast,
when γ scales with m, in the high dimension, the maximum
eigenvalue still retains its detection power. This valuable
insight is of paramount importance in detecting signals over
fading channels. For instance, for Rayleigh fading, which is
the most commonly used statistical model in the literature,
h takes the form h ∼ CNm (0, Im). Now, by invoking the
strong law of large numbers, we obtain

lim
m→∞

||h||2

m
→ 1, almost surely. (37)

This in turn shows that γ ∝ m as m → ∞ for Rayleigh
fading channels. This is a clear testament to the utility of our
new asymptotic ROC profile given in Corollary 14 in wireless
applications.

The above dynamics are depicted in Figs. 9, 10, and 11. In
particular, Fig. 9 compares the analytical ROC profiles with
the numerical results for an increasing sequence of m values
when α = 1, β = 2, and γ = 5 dB are fixed. As can be seen
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Fig. 10: Comparison of asymptotic and finite dimensional
ROC profiles corresponding to Case 2 for different values of
γ with m = n = 10 and p = 25.

from the figure, when m increases the ROC profiles approach
arbitrary closer to PD = PF curve, thereby demonstrating the
loss of the power of the test. This observation is consistent with
what we have analytically shown related to the regime where
α and β are fixed with γ = 5 dB. The effect of increasing p on
the ROC profile is depicted in Fig. 10. The analytical curves
are based on (35) and a close matching between the analytical
and simulation results can be seen from the figure. This in turn
shows us that that the analytical asymptotic result (as p→∞)
derived in (35) serves as a good approximation to finite
values of p as well. Finally, Fig. 11 compares the analytical
asymptotic result for the third region where m,n, p, γ → ∞
such that m

n → 1, m
p → c ∈ (0, 1], and γ

m → θ ≥ 0 with
the simulation results. Again, closely matching two results
reveal that our asymptotic analytical expression serves as a
good approximation to the finite dimensional case as well.
These results clearly indicate that, when γ scales with m, the
maximum eigenvalue retains its detection power, whereas it
looses the detection power when γ does not scale with m.

V. CONCLUSION

This paper investigates the signal detection problem in
colored noise with unknown covariance matrix. The presence
of a signal is detected by using the maximum generalized
eigenvalue of the whitened sample covariance matrix. Equiva-
lently, we need to determine the distribution of the maximum
eigenvalue of the deformed JUE. To this end, we exploited the
powerful orthogonal polynomial approach to develop a new
c.d.f. expression for the maximum eigenvalue of the deformed
JUE. Subsequently, we used it to determine the ROC of the
detector. It turns out that, for a fixed SNR, when m (i.e.,
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Fig. 11: Comparison of asymptotic and finite dimensional
ROC profiles corresponding to Case 3 for different values of
θ with m = n = 25 and c = 1.

the dimensionality of the detector), n (i.e., the number of
noise-only samples), and p (i.e., the number of signal-plus-
noise samples) increase over finite values such that m = n
and m/p is constant, we obtain an optimal ROC profile
corresponding to specific m,n, and p values. In contrast, in the
above setting, when m, p, and n increase asymptotically, the
maximum eigenvalue gradually loses its detection power. This
is not surprising, since under the above asymptotic setting, the
detector operates below the so called phase transition where
the maximum eigenvalue has no detection power. However,
when the SNR scales with m, in the same asymptotic regime,
the maximum eigenvalue retains its detection power. This fact
is of paramount importance in detecting a signal in colored
noise over fading channels (Rayleigh fading) where the SNR
scales with the dimensionality of the system. Clearly, m = n
is the minimum requirement for the noise-only covariance
matrix to be full rank (or nearly rank deficient). Therefore,
some of the key results developed in this paper related to the
setting m = n shed some light into the regime where noise-
only covariance matrix is nearly rank deficient. However, the
analysis pertaining to the regime where the latter matrix is
fully rank deficient remains an important open problem.

APPENDIX A
PROOF OF THE JOINT DENSITY OF THE EIGENVALUES

Following James [45], we can write the joint density of the
eigenvalues of W1W

−1
2 as

f(λ1, λ2, . . . , λm) =
K1(m,n, p)

(1 + η)p

m∏
j=1

λp−mj ∆2
m(λ)

×
∫
U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU.

(38)

where α = p + n and dU is the invariant measure on the
unitary group U(m), normalized to make the total measure
unity. Let us now focus on simplifying the above matrix
integral. To this end, we use (12) to rewrite∫

U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU

=

∫
U(m)

1

detα[Im + UΛU† −VΛηV†UΛU†]
dU

=

∫
U(m)

1

detα[Im + Λ−U†VΛηV†UΛ]
dU (39)

where Λη = diag (η/(η + 1), 0, . . . , 0). Therefore, after some
algebra, we obtain∫

U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU

=
1

detα[Im + Λ]

∫
U(m)

1

detα[Im −HΛηH†Λ̄]
dH

where Λ̄ = Λ(Im + Λ)−1 = diag
(
λ̄m, . . . , λ̄1

)
=

diag
(

λm
1+λm

, . . . , λ1

1+λ1

)
and dH is the invariant measure on

the unitary group U(m), normalized to make the total measure
unity. Since Λη is rank one, we can further simplify the above
matrix integral to yield∫

U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU

=
1

detα[Im + Λ]

∫
U(m)

1(
1− tr

(
HΛηH†Λ̄

))α dH.

Now it is worth observing that

tr
(
HΛηH

†Λ̄
)

=
η

1 + η
h1Λ̄h†1 ≤

η

1 + η

λm
1 + λm

< 1.

This in turn enables us to utilize the relation
1

sα
=

1

Γ(α)

∫ ∞
0

yα−1 exp(−sy)dy, s > 0

to express the above matrix integral as∫
U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU

=
1

detα[Im + Λ]

1

Γ(α)

∫ ∞
0

yα−1 exp(−y)Φ(y)dy (40)

where

Φ(y) =

∫
U(m)

exp
{
ytr
(
HΛηH

†Λ̄
)}

dH

and we have taken the liberty of changing the order of
integration. Noting the fact that

exp
{
ytr
(
HΛηH

†Λ̄
)}

= 0F̃0(yHΛηH
†Λ̄),
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we may use the splitting formula [45, eq. 92] to yield

Φ(y) =

∫
U(m)

0F̃0(yHΛηH
†Λ̄)dH = 0F̃0

(
yΛη, Λ̄

)
.

Following [38], we can show that

0F̃0

(
yΛη, Λ̄

)
= Γ(m)

(
1 + η

η

)m−1

y1−m

×
m∑
k=1

exp
(
ηλ̄k
1+ηy

)
∏
j=1
j 6=k

(λ̄k − λ̄j)

from which we obtain upon substituting into (40) with some
algebra∫

U(m)

1

detα[Im + Σ−1
1 UΛU†]

dU =

Γ(α−m+ 1)Γ(m)

Γ(α)

(
1 + η

η

)m−1
1∏m

j=1(1 + λj)α

×
m∑
k=1

1∏
j=1
j 6=k

(λ̄k − λ̄j)
1(

1− ηλ̄k
1+η

)α−m+1 . (41)

Finally, using (41) in (38) with some algebraic manipulation
we obtain (13), which concludes the proof.

APPENDIX B
PROOF OF THE C.D.F. OF THE MAXIMUM EIGENVALUE

By exploiting the symmetry, the ordered region of integration
in (17) can be rearranged as an unordered region to yield

Pr(xmax ≤ t)

=
K(m,n, p)

m! ηm−1(1 + η)p+1−m (42)

×
m∑
k=1

∫
[0,t]m

∆2
m(x)

∏m
j=1 x

p−m
j (1− xj)n−m∏m

j=1
j 6=k

(xi − xj)
(

1− η
1+ηxk

)p+n+1−m dx

where [0, t]m = [0, t]× [0, t]× . . .× [0, t] with × denoting the
Cartesian product. Since each term in the above summation
contributes the same amount to the final solution, it can be
further simplified as

Pr(xmax ≤ t)

=
K

(m− 1)!

∫
[0,t]m

∆2
m(x)

∏m
j=1 x

β
j (1− xj)α∏m

j=2(x1 − xj)
(

1− η
1+ηx1

)γ dx

where

K =
K(m,n, p)

ηm−1(1 + η)p+1−m .

Here we have relabeled the variables as α = n − m, β =
p −m and γ = m + α + β + 1 for notational concision. To
facilitate further analysis, let us decompose the Vandermonde
determinant as

∆m(x) =
m∏
j=2

(x1 − xj)∆m−1(x)

and relabel the variables x1 = y and xj = zj−1, j =
2, 3, ...,m, to obtain

Pr(xmax ≤ t)

=
K

(m− 1)!

∫
[0,t]m

yβ(1− y)α(
1− η

1+ηy
)γ m−1∏

j=1

zβj (1− zj)α(y − zj)

×∆2
m−1(z) dz dy

(43)

where z ∈ Rm−1. Now we apply the variable transformations
y = tx and zj = tsj , j = 1, 2, ...,m−1, to make the region of
integration independent of t in (43). Consequently, after some
algebraic manipulations, we have

Pr(xmax ≤ t) =
K

(m− 1)!
tm(β+m−1)+1

×
∫ 1

0

xβ(1− tx)α(
1− ηt

1+ηx
)γQm−1(β, α, x, t)dx

(44)

where

Qm(β, α, x, t) =

∫
[0,1]m

m∏
j=1

sβj (1− tsj)α(x− sj)∆2
m(s)ds.

(45)
Following Appendix C, we can solve the above multidimen-
sional integral to yield

Qm(β, α, x, t)

= C̃(0,β,m)
tαm

2m(α+β+m+1)+α
2 (α+1)

∏α−1
j=1 j!

1

(1− xt)α

× det
[
P

(0,β)
m+i−1

(
h 1
x

)
(m+ i+ β)j−2

× P
(j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

(46)

where

C̃(0,β,m) = C(0,β,m)

×
α+1∏
j=1

2m+j−1 (m+ j − 1)! (m+ β + j − 1)!

(2m+ 2j + β − 2)!
,

C(0,β,m) = 2m(β+m)
m−1∏
j=0

(j)! (j + 1)! (β + j)!

(β +m+ j)!
,

and ht = 2
t − 1. Using (46) in (44) with some algebraic

manipulation we have

Pr(xmax ≤ t)

=
KC̃(0,β,m−1)t

m(α+β+m−1)+1

(m− 1)! 2(m−1)(α+β+m)+α
2 (α+1)

∏α−1
j=1 j!

×
∫ 1

0

xβ(
1− ηt

1+ηx
)γ

× det

[
P

(0,β)
m+i−2(2x− 1) Ψi,j

(
t

1− t

)]
i=1,2,...,α+1
j=2,3,...,α+1

dx.

(47)
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Having observed that only the first column of the determinant
in the integrand depends on x, we can rewrite the above
integral as

Pr(xmax ≤ t)

=
KC̃(0,β,m−1)t

m(α+β+m−1)+1

(m− 1)! 2(m−1)(α+β+m)+α
2 (α+1)

∏α−1
j=1 j!

× det

∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−2(2x− 1)dx

Ψi,j

(
t

1− t

)]
i=1,2,...,α+1
j=2,3,...,α+1

.

(48)

For clarity, let us focus on the integral in the above equation.
In this respect, we may use the relation (10) followed by the
variable transformation y = 1− x to arrive at∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−1(2x− 1)dx

=
1(

1− ηt
1+η

)γ ∫ 1

0

(1− y)
β(

1 + ηt
1+η(1−t)y

)γ
× 2F1(−m− i+ 2,m+ β + i− 1

; 1; y) dy,

which can be solved using [57, eq. 399.6] to obtain∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−1(2x− 1)dx

=
Γ(β + 1)

Γ(β +m+ i)Γ(3−m− i)

× 3F2

(
β + 1, γ, 1;β +m+ i, 3−m− i; ηt

1 + η

)
.

To facilitate further analysis, noting that ηt
1+η < 1, we may

replace the hypergeometric function with its equivalent infinite
series expansion to yield∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−1(2x− 1)dx

=
Γ(β + 1)

Γ(β +m+ i)Γ(3−m− i)

×
∞∑
k=0

(β + 1)k(γ)k(1)k
k! (β +m+ i)k(3−m− i)k

(
ηt

1 + η

)k
.

Since the Gamma function has poles at negative integer values
including zero, the above series is nonzero if the argument of
Γ (3−m− i+ k) = Γ(3−m− i) (3−m− i)k is a positive
integer. To this end, k should satisfy the inequality k ≥ m+
i − 2. Therefore, by relabeling summation index k as j =

k −m− i+ 2, we obtain∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−2(2x− 1)dx

=
Γ(β + 1)

Γ(β +m+ i)

∞∑
j=0

(β + 1)m+i+j−2(γ)m+i+j−2

j! (β +m+ i)m+i+j−2

× (1)m+i+j−2

(m+ i+ j − 2)!

(
ηt

1 + η

)m+i+j−2

.

The above infinite series can be rearranged by using the
addition formula (a)n+k = (a)n(a+n)k with some algebraic
manipulations to yield∫ 1

0

xβ(
1− ηt

1+ηx
)γ P (0,β)

m+i−2(2x− 1)dx

=
Γ(ai)Γ(bi)

Γ(γ)Γ(ci)

(
ηt

1 + η

)m+i−2

2F1

(
ai, bi; ci;

ηt

1 + η

)
,

(49)

where ai = β + m + i − 1, bi = γ + m + i − 2, and ci =
β + 2m + 2i− 2. Now we substitute (49) into (48) followed
by some algebraic manipulations to obtain the c.d.f. of xmax

as

Pr(xmax ≤ t)

=
tm(α+β+m)

(p− 1)! (1 + η)p

α−1∏
j=0

(p+m+ j − 1)!

(p+m+ 2j)!


× det

[
Γ(ai)Γ(bi)

Γ(ci)

(
ηt

1 + η

)i−1

2F1

(
ai, bi; ci;

ηt

1 + η

)
× Ψi,j

(
t

1− t

)]
i=1,2,...,α+1
j=2,3,...,α+1

.

(50)

Now (18) with Φ(t, η) given by (19) follows by transforming
the variable xmax to λmax using the functional relation λmax =
xmax/(1 − xmax). Finally, noting that ci − bi is a negative
integer, we may use the hypergeometric transformation [58,
eq. 15.3.4],

(51)2F1(a, b, c, z) = (1− z)−a 2F1

(
a, c− b, c, z

z − 1

)
,

to arrive at the finite series form of Φ(t, η), thereby concluding
the proof.

APPENDIX C
Let us change the region of integration in (45) from [0, 1]m

to [−1, 1]m by using the variable transformation sj =
1+zj

2 ,
j = 1, 2, ...,m, to yield

Qm(β, α, x, t) =
tαm

2m(m+β+α+1)
Rm(β, α, x, t) (52)

where

Rm(β, α, x, t) =

∫
[−1,1]m

m∏
j=1

(1 + zj)
β(ht − zj)α

(
h 1
x
− zj

)
×∆2

m(z) dz,
(53)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 07,2020 at 19:19:30 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.2998287, IEEE
Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, XXXXX 2020 16

with ht = 2
t − 1 and z ∈ Rm. Our strategy is to start with a

related integral given in [43, eqs. 22.4.2, 22.4.11] as

(54)

∫
[−1,1]m

m∏
j =1

(1 + zj)
β
α+1∏
i =1

(ri − zj)∆2
m(z) dz

= C(0,β,m)∆
−1
α+1(r) det [Cm+i−1(rj)]i,j=1,2,...,α+1

where

C(0,β,m) = 2m(β+m)
m−1∏
j=0

j! (j + 1)! (β + j)!

(β +m+ j)!

and Ck(x) are monic polynomials orthogonal with respect
to the weight (1 + x)β , over −1 ≤ x ≤ 1. Since Jacobi
polynomials are orthogonal with respect to the preceding
weight, we use Ck(x) = 2k (k+β)!(k)!

(2k+β)! P
(0,β)
k (x) in (54) to

obtain∫
[−1,1]m

m∏
j=1

(1 + zj)
β
α+1∏
i=1

(ri − zj)∆2
m(z) dz

=
C̃(0,β,m)

∆α+1(r)
det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

(55)

where

C̃(0,β,m) = C(0,β,m)

×
α+1∏
j=1

2m+j−1(m+ j − 1)! (m+ β + j − 1)!

(2m+ 2j + β − 2)!
.

In the above, ris are generally distinct parameters. Neverthe-
less, if we choose ri such that

ri =

{
h 1
x

if i = 1

ht if i = 2, 3, . . . , α+ 1,

then the left side of (55) coincides with the multidimensional
integral of our interest in (53). Under the above parameter se-
lection, however, the right side of (55) takes the indeterminate
form 0/0. Therefore, we have to evaluate following limit:

Rm(β, α, x, t)

= C̃(0,β,m) lim
r1→h 1

x
r2,r3,...,rα+1→ht

det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

∆α+1(r)
.

(56)

To this end, following Khatri [53], we write

lim
r1→h 1

x
r2,r3,...,rα+1→ht

det
[
P

(0,β)
m+i−1(rj)

]
i,j=1,2,...,α+1

∆α+1(r)

=

det
[
P

(0,β)
m+i−1(h 1

x
) dj−2

dhj−2
t

P
(0,β)
m+i−1(ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

det
[
hi−1

1
x

dj−2

dhj−2
t

hi−1
t

]
i=1,2,...,α+1
j=2,3,...,α+1

.

(57)

Now the determinant in the denominator of (57) simplifies to

det

[
hi−1

1
x

dj−2

dhj−2
t

hi−1
t

]
i=1,2,...,α+1
j=2,3,...,α+1

=
α−1∏
j=1

j! (ht − h 1
x

)α.

The numerator can be rewritten with the help of (11) as

det

[
P

(0,β)
m+i−1(h 1

x
)

dj−2

dhj−2
t

P
(0,β)
m+i−1(ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

= 2−
α
2 (α−1) det

[
P

(0,β)
m+i−1(h 1

x
) (m+ β + i)j−2

× P
(j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

.

Substituting the above two expression into (57) and then the
result into (56) gives

Rm(β, α, x, t)

= C̃(0,β,m)
tα

2
α
2 (α+1)

∏α−1
j=1 j! (1− xt)α

× det
[
P

(0,β)
m+i−1

(
h 1
x

)
(m+ i+ β)j−2

×P (j−2,β+j−2)
m+i−j+1 (ht)

]
i=1,2,...,α+1
j=2,3,...,α+1

.

APPENDIX D
PROOF OF THE MICROSCOPIC LIMIT OF THE C.D.F. OF THE

MAXIMUM EIGENVALUE

Let us rewrite (50), keeping in mind α = n−m , β = p−m,
and γ = m+ α+ β + 1, as

Pr(xmax ≤ t)

= tm(α+β+m)

α−1∏
j=0

(β + 2m+ j − 1)!

(β + 2m+ 2j)!


× det

[
Pi(m,α, β, η, t) (m+ i+ β − 1)j−2

× P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)]
i=1,2,...,α+1
j=2,3,...,α+1

(58)

where
Pi(m,α, β, η, t)

=
Γ(α+ β + 2m+ i− 1)Γ(β +m+ i− 1)

Γ(β + 2m+ 2i− 2)Γ(m+ β)(1 + η)m+β

(
ηt

1 + η

)i−1

× 2F1

(
β +m+ i− 1, α+ β + 2m+ i− 1;β + 2m+ 2i

− 2;
ηt

1 + η

)
.

Following (10), the Jacobi polynomial P (j−2,β+j−2)
m+i−j (2/t− 1)

can be written as

P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)
=

(j − 1)m+i−j

(m+ i− j)!

× 2F1

(
−(m+ i− j),m+ β + i+ j − 3; j − 1; 1− 1

t

)
,

(59)
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from which we obtain

P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)
=

(m+ i− 2)!

(m+ i− j)! (j − 2)!

m+i−j∑
kj=0

(−(m+ i− j))kj
kj ! (j − 1)kj

× (m+ β + i+ j − 3)kj

(
1− 1

t

)kj
.

To facilitate further analysis, we need to eliminate the de-
pendence of summation upper limit on i. To this end, we
decompose the two Pochhammer symbols in the numerator
of the above summation as

(−(m+ i− j))kj =
(−(m+ α− j + 1))kj (m+ i− j)!

(m+ α− j + 1)!

× (m+ i− j − kj + 1)α−i+1

and

(m+ β + i+ j − 3)kj

=
(m+ β + j − 2))kj (m+ β + j − 3)!

(m+ β + i+ j − 4)!

× (m+ β + j + kj − 2)i−1.

Therefore, we obtain

(m+ i+ β − 1)j−2P
(j−2,β+j−2)
m+i−j

(
2

t
− 1

)
=

(m+ i− 2)! (m+ β + j − 3)! (j − 2)! (m+ i− j)!
(m+ i+ β − 2)! (m+ i− j)! (j − 2)! (m+ α− j + 1)!

× Skj (t)Ui,j(m,α, β) (60)

where

Skj (t) =

m+α−j+1∑
kj=0

(−(m+ α− j + 1))kj
kj ! (j + kj − 2)!

× (m+ β + j − 2)kj

(
1− 1

t

)kj
and

Ui,j(m,α, β) = (m+ β + j + kj − 2)i−1

× (m+ i− j − kj + 1)α−i+1. (61)

Now we substitute (60) into (58) with some algebraic manip-
ulation to yield

Pr(xmax ≤ t)

=

α−1∏
j=0

Skj+2
(t)(β + 2m+ j − 1)! (m+ β + j − 1)!

(β + 2m+ 2j)! (m+ α− j − 1)!


× tm(α+β+m) det

[
Pi(m,α, β, η, t)

(m+ i− 2)!

(m+ β + i− 2)!

× Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1

,

from which we obtain after some rearrangements

Pr(xmax ≤ t)

= tm(α+β+m)

(
(m− 1)!

(m+ α+ β − 1)!

)

×

α−1∏
j=0

Skj+2
(t)(β + 2m+ j − 1)!

(β + 2m+ 2j)!


× det

[
(m+ β + i− 2)!

(m+ i− 2)!
Pi(m,α, β, η, t)

Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1

.

For convenience, let us rewrite the above equation as

Pr(xmax ≤ t)

= tm(α+β+m)

α−1∏
j=0

Skj+2
(t)(β + 2m+ j − 1)!

(β + 2m+ 2j)!


× det

[
Vi(m,α, β, η, t)

Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1

(62)

where

Vi(m,α, β, η, t)

=
(m+ β + i− 2)! (α+ β + 2m+ i− 2)!

(m+ i− 2)! (β + 2m+ 2i− 3)! (m+ β − 1)!

× (β +m+ i− 2)! (m− 1)!

(m+ α+ β − 1)! (1 + η)m+β

(
ηt

1 + η

)i−1

× 2F1

(
β +m+ i− 1, α+ β + 2m+ i− 1;β + 2m+ 2i

− 2;
ηt

1 + η

)
.

Further manipulation of Vi(m,α, β, η, t) in its current form
is an arduous task due to the presence of the hypergeometric
function. To this end, noting that (α+β+ 2m+ i−1)− (β+
2m+ 2i− 2) = −(α+ 1− i), which is a negative integer, we
use the hypergeometric transformation (51) to arrive at

Vi(m,α, β, η, t)

=
(m+ i− 1)β

(m− 1)β

(2m+ β + 2i− 2)α−i+1

(m+ β + i− 1)α−i+1

×
(

(ηt)i−1

(1 + η − ηt)m+β+i−1

)
×
α−i+1∑
`=0

(β +m+ i− 1)`(−(α− i+ 1))`
(β + 2m+ 2i− 2)``!

×
(

ηt

ηt− 1− η

)`
. (63)

A careful inspection of (62) reveals that the suitable scaling
as m → ∞ would be to consider the scaled t given by t =
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1− x

m2
. Consequently, we can write (62) as

Pr
(
xmax ≤ 1− x

m2

)
=
(

1− x

m2

)m(α+β+m)

×

α−1∏
j=0

Skj+2

(
1− x

m2

)
(β + 2m+ j − 1)!

(β + 2m+ 2j)!


× det

[
Vi
(
m,α, β, η, 1− x

m2

)
Ui,j(m,α, β)

]
i=1,...,α+1
j=2,...,α+1

.

(64)

Now taking the limits of the both sides of (64) as m → ∞
yields

lim
m→∞

Pr(xmax ≤ 1− x

m2
)

= exp(−x) lim
m→∞

α−1∏
j=0

(β + 2m+ j − 1)!

(β + 2m+ 2j)!
Skj+2

(
1− x

m2

)
× det

[
Vi
(
m,α, β, η, 1− x

m2

)
Ui,j(m,α, β)

]
i=1,2,...,α+1
j=2,3,...,α+1

 .

(65)

Towards taking the limit inside the determinant, let
us first consider the lim

m→∞
Vi
(
m,α, β, η, 1− x

m2

)
. To

this end, noting that lim
m→∞

(m+ i− 1)β
(m− 1)β

= 1 and

lim
m→∞

(2m+ β + 2i− 2)α−i+1

(m+ β + i− 1)α−i+1
= 2α−i+1, we may determine

the limit of (63) as

lim
m→∞

Vi
(
m,α, β, η, 1− x

m2

)
= 2α

α−i+1∑
`=0

(η
2

)`+i−1
(
α− i+ 1

`

)
= 2αTi(η)

where Ti(η) =
(
η
2

)i−1 (
1 + η

2

)α−i+1
.

Let us Now consider the other columns of the determinant
in (65). Following (61), we may rewrite U(m,α, β) as

Ui,j(m,α, β) = (m+ i− j − kj + 1)α−i+1

× (m+ β + j + kj − 2)i−1

=
α−i∏
`1=0

(cj − `1)
i−2∏
`2=0

(∆m − cj + `2)

where, cj = m + α − j − kj + 1 and ∆m = 2m + α +
β − 1. Consequently, the terms in determinant in (65) can be
rearranged as shown in (66) at the bottom. Towards making
the determinant independent of ∆m, we perform the following
row operations

Ri → Ri +Ri−1, i = 2, 3, ..., α+ 1

on each row, starting from the second row, to yield (67) at the
bottom. To facilitate further simplification, noting that the row
operation

R1 → R1+
α+1∑
i=2

(−1)i−1 (Ri × (∆m − (α− 1) + 2(i− 2)))

×

2α −
i−2∑
j=0

(
α

j

) ,

(66)2α

∣∣∣∣∣∣∣∣∣∣∣∣

T1(η)
∏α−1
`1=0 (c2 − `1) · · ·

∏α−1
`1=0 (cα+1 − `1)

T2(η)
∏α−2
`1=0 (c2 − `1)(∆m − c2) · · ·

∏α−2
`1=0 (cα+1 − `1)(∆m − cα+1)

...
...

. . .
...

Tα(η) c2
∏α−2
`2=0 (∆m − c2 + `2) · · · cα+1

∏α−2
`2=0 (∆m − cα+1 + `2)

Tα+1(η)
∏α−1
`2=0 (∆m − c2 + `2) · · ·

∏α−1
`2=0 (∆m − cα+1 + `2)

∣∣∣∣∣∣∣∣∣∣∣∣
.

2α
α−1∏
`=0

(∆m − (α− 1) + 2`)

∣∣∣∣∣∣∣∣∣∣∣∣

T1(η)
∏α−1
`1=0 (c2 − `1) · · ·

∏α−1
`1=0 (cα+1 − `1)

T2(η)+T1(η)
∆m−(α−1)

∏α−2
`1=0 (c2 − `1) · · ·

∏α−2
`1=0 (cα+1 − `1)

...
...

. . .
...

Tα(η)+Tα−1(η)
∆m+α−3 c2

∏α−3
`2=0 (∆m − c2 + `2) · · · cα+1

∏α−3
`2=0 (∆m − cα+1 + `2)

Tα+1(η)+Tα(η)
∆m+α−1

∏α−2
`2=0 (∆m − c2 + `2) · · ·

∏α−2
`2=0 (∆m − cα+1 + `2)

∣∣∣∣∣∣∣∣∣∣∣∣

=
α−1∏
`=0

(∆m − (α− 1) + 2`)

∣∣∣∣∣∣∣∣∣∣∣∣

2αT1(η) 2α
∏α−1
`1=0 (c2 − `1) · · · 2α

∏α−1
`1=0 (cα+1 − `1)

T2(η)+T1(η)
∆m−(α−1)

∏α−2
`1=0 (c2 − `1) · · ·

∏α−2
`1=0 (cα+1 − `1)

...
...

. . .
...

Tα(η)+Tα−1(η)
∆m+α−3 c2

∏α−3
`2=0 (∆m − c2 + `2) · · · cα+1

∏α−3
`2=0 (∆− cα+1 + `2)

Tα+1(η)+Tα(η)
∆m+α−1

∏α−2
`2=0 (∆m − c2 + `2) · · ·

∏α−2
`2=0 (∆m − cα+1 + `2)

∣∣∣∣∣∣∣∣∣∣∣∣
. (67)
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set the 1st element of the 1st column to 1 and in view of

lim
m→∞

Ti(η) + Ti−1(η)

∆m − (α− 1) + 2(i− 2)
= 0, i = 2, 3, . . . , α+ 1,

we again apply the row operation Ri → Ri + Ri−1, for i =
3, 4, ..., α+ 1, repeatedly to obtain

α−1∏
j=0

j∏
`j=0

(∆m − j + 2`j)

×

∣∣∣∣∣∣∣∣∣∣∣

1 ∗2 · · · ∗α+1

0
∏α−2
`1=0 (c2 − `1) · · ·

∏α−2
`1=0 (cα+1 − `1)

...
...

. . .
...

0 c2 · · · cα+1

0 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
.

Here the exact form of the ∗ marked entries are tacitly
avoided, since they do not contribute to the determinant
evaluation. As such, by expanding the determinant using the
first column, we obtain (68) as shown below. The below
determinant can be simplified using [59, Lemma A.1] to yield

α−1∏
j =0

j∏
`j =0

(∆m − j + 2`j)∆α(c̃)

where ∆α(c̃) =
∏

1≤j<i≤α (c̃i(ki+1)− c̃j(kj+1)) with c̃ =
{c̃1(k2), c̃2(k3), · · · , c̃α(kα+1)} and c̃j(kj+1) = j + kj+1.
Now we substitute the above result into (65) to obtain

lim
m→∞

Pr
(
xmax ≤ 1− x

m2

)
= exp(−x) lim

m→∞

α−1∏
j=0

Skj+2

(
1− x

m2

)

×

α−1∏
j=0

(β + 2m+ j − 1)!

(β + 2m+ 2j)!


×
α−1∏
j=0

j∏
`j=0

(∆m − j + 2`j)∆α(c̃)


= exp(−x) lim

m→∞

α−1∏
j=0

Skj+2

(
1− x

m2

)

×
α−1∏
j=0

j∏
`j=0

(2m+ β + α− j + 2l − 1)

2m+ β + 2j − l
∆α(c̃)


= exp(−x) lim

m→∞

α−1∏
j=0

Skj+2

(
1− x

m2

)
∆α(c̃)

 .

For notational convenience, the index j is shifted forward by
one unit to yield

lim
m→∞

Pr
(
xmax ≤ 1− x

m2

)
= exp(−x) lim

m→∞

 α∏
j=1

Skj
(

1− x

m2

)
∆α(c)

 (69)

where c = {c1(k1), c2(k1), · · · , cα(kα)} with cj(kj) = j+kj .
Having noted that ∆α(c) is independent of m and

lim
m→∞

(m+ α− j − kj + 1)kj
mkj

= 1,

lim
m→∞

(m+ β + j − 1)kj
mkj

= 1,

we evaluate the limit of Skj
(

1− x

m2

)
as

lim
m→∞

Skj
(

1− x

m2

)
= lim
m→∞

m+α−j∑
kj=0

(−1)kj
(−(m+ α− j))kj (m+ β + j − 1)kj

kj ! (j + kj − 1)!m2kj

× xkj(
1− x

m2

)kj
= lim
m→∞

m+α−j∑
kj=0

(m+ α− j − kj + 1)kj
mkj

(m+ β + j − 1)kj
mkj

× xkj

kj ! (kj + j − 1)!

1(
1− x

m2

)kj
=
∞∑
kj=0

xkj

kj ! (kj + j − 1)!
.

Therefore, (69) simplifies to

lim
m→∞

Pr
(
xmax ≤ 1− x

m2

)
= exp(−x)

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kα=0

α∏
j=1

xkj

kj ! (kj + j − 1)!
∆α(c),

from which we obtain using [60, Appendix B]

lim
m→∞

Pr
(
xmax ≤ 1− x

m2

)
= exp(−x) det

[
Ij−i(2

√
x)
]
i,j=1,2,···,α .

The above result implies that,

lim
m→∞

Pr(m2(1− xmax) ≤ x)

= 1− exp(−x) det
[
Ij−i(2

√
x)
]
i,j=1,2,···,α .

α−1∏
j=0

j∏
`j=0

(∆m − j + 2`j)

∣∣∣∣∣∣∣∣∣∣∣

∏α−2
`1=0 (c2 − `1)

∏α−2
`1=0 (c3 − `1) · · ·

∏α−2
`1=0 (cα+1 − `1)∏α−3

`1=0 (c2 − `1)
∏α−3
`1=0 (c3 − `1) · · ·

∏α−3
`1=0 (cα+1 − `1)

...
...

. . .
...

c2 c3 · · · cα+1

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
. (68)
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Finally, noting that

lim
m→∞

F
(α)
m2(1−xmax)(x) = lim

m→∞
Pr
(
m2(1− xmax) ≤ x

)
= lim
m→∞

F
(α)
m2

1+λmax

(x)

= F
(α)
1/X(x),

we may use the continuous mapping theorem [61] to obtain
(22), which concludes the proof.
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pp. 65–80, 1970.

[54] K. W. Wachter, “The strong limits of random matrix spectra for sample
matrices of independent elements,” Ann. Probab., vol. 6, no. 1, pp. 1–18,
Feb. 1978.

[55] J. Silverstein, “The limiting eigenvalue distribution of a multivariate F
matrix,” SIAM J. Math. Anal., vol. 16, no. 3, pp. 641–646, 1985.

[56] F. Topsøe, “Some bounds for the logarithmic function,” RGMIA Res.
Rep. Collection, vol. 7, no. 2, 2004, Art. ID. 6.
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