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Abstract— The successive-cancellation list (SCL) and
successive-cancellation flip (SCF) decoding can be used to
improve the performance of polar codes, especially for short to
moderate length codes. However, their serial decoding nature
results in significant decoding latencies. Implementing some
operations in parallel can reduce their decoding latencies.
This paper presents fast implementations of the SCL and SCF
decoders. In particular, we propose fast parallel list decoders
for five newly identified types of nodes in the decoding tree of
a polar code, which significantly improves the decoding latency.
We also present novel fast SCF decoders that decode some
special nodes in the decoding tree of a polar code without
serially computing bit log-likelihood ratios. Using our proposed
fast parallel SCF decoders, we observed an improvement up to
81% with respect to the original SCF decoder. This significant
reduction in the decoding latency is observed without sacrificing
the bit-error-rate performance of the code.

Index Terms— Polar codes, successive-cancellation decoder, list
decoder, flip decoder, fast decoding, decoding latency.

I. INTRODUCTION

POLAR codes, discovered by Arıkan, will be used in the
next generation mobile communication standards [1].

This new class of error correcting codes has an explicit
construction and can achieve the symmetric capacity of mem-
oryless channels under successive-cancellation (SC) decoding
as the code length goes to infinity [2]. However, the error
correction performance of polar codes for short to moder-
ate block lengths with the SC decoder is inferior to that
of the other state-of-the-art error correcting codes, such as
low-density parity-check (LDPC) and turbo codes. This is
due to the significant performance gap between the SC and
the maximum-likelihood (ML) decoders [3]. Unfortunately,
ML decoding is beset with high computational complexity,
even for moderate-length polar codes. Thus, the successive-
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cancellation list (SCL) decoder and successive-cancellation
flip (SCF) decoder aim to achieve low complexity.

Among the existing low-complexity polar decoders, the SCL
decoder achieves near ML performance even with moderate
list sizes [3]. Aiding it with a cyclic-redundancy check (CRC)
further improves the bit-error-rate (BER) performance beyond
that of LDPC and turbo codes [3].

The SCL decoder, similar to the original SC decoder,
operates serially as it estimates one bit at a time. However,
unlike the latter which keeps only a single decoding path,
the SCL decoder maintains a list of L most probable paths
while decoding each bit [3].

The serial decoding nature of the SC and SCL decoders
produce high decoding latencies. To shorten them, multiple
schemes have been developed [4]–[13]. The main underlying
idea behind these schemes is to parallelize some operations to
increase the decoder throughput. In particular, these schemes
recognize certain patterns in the codeword and implement their
fast parallel decoders. For example, [4] identifies and proposes
low-complexity parallel decoders for rate-0 and rate-1 nodes
for the SC decoder. Similarly, [5] proposes fast decoders for
single-parity-check (SPC) and repetition (REP) nodes in the
decoding tree of a polar code. Recently, [6] presented fast low-
complexity decoders of five nodes (type-I, type-II, type-III,
type-IV, and type-V nodes) to further increase the decoding
speed of the SC decoder.

Fast SCL decoders follow a similar strategy to reduce
decoding latency. However, unlike fast SC decoders that output
only the most-probable output sequence, fast SCL decoders
maintain and output a list of the most probable paths. In par-
ticular, to improve the decoding speed of the SCL decoder,
[10]–[12] propose list decoders for rate-0, rate-1, REP and
SPC nodes.

Although the SCL decoder achieves near-ML performance,
compared to the SC decoder, it has higher computational and
memory complexities that grow linearly with the list size.
More specifically, for a code of size N the memory and
computational complexities of the SC decoder are O (N) and
O (N logN), respectively, whereas, for a list of size L, they
increase to O (LN) and O (LN logN), respectively, in the
SCL decoder. Further, fast implementations based on hard-
ware unrolling result in a quadratic increase in the hardware
area [14]. These shortcomings make the fast implementation
of SCL decoder challenging. As such, a different approach was
introduced in [15] to improve the performance of SC decoder:
SC flip (SCF) decoding.
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The SCF decoder, unlike the SCL decoder that parallelizes
multiple SC decoders, relies on multiple sequential applica-
tions of the SC decoder. In particular, the SCF decoder allows
up to a given number of decoding trials. The first trial is
essentially the same as SC decoding, but it also forms a list
of Tmax bit-flip positions. The bit-flip positions correspond
to the information bits with the smallest absolute values of
the decision log-likelihood ratios (LLRs). If the CRC is not
satisfied in the initial SC decoding, then one bit is flipped
in the next trial, and the standard SC decoder is used to
decode the subsequent positions. A new decoding trial is
launched unless the CRC is satisfied or the maximum number
of trials is reached. The aforementioned procedure of the
SCF decoding has O (N) memory complexity, and its average
computational complexity is O (N logN) at high signal-to-
noise ratios (SNR) [15].

Similar to the SC and SCL decoders, the decoding latency
of the SCF decoder can be improved by implementing fast
decoders of different nodes. In particular, a fast parallel
decoder of a node, in addition to outputting the codeword,
should also compute and update the list of most probable bit-
flip positions. Recently, [16] introduced fast SC flip decoders
for the REP, rate-1, SPC, and type-I nodes. However, some
decision metrics used in these decoders to compute the most-
probable bit-flip positions, result in a BER performance loss
compared to the original SCF decoder [15].

In this paper, we first present fast list decoders for five
recently-identified nodes [6] in the decoder tree of a polar
code. Implementing them along with the existing list decoders
of special nodes can increase the decoder throughput signifi-
cantly without sacrificing the BER performance. Furthermore,
we present a fast SCF decoder. While [16] uses some decision
metrics without providing the justification, we follow the
approach used in [12] and [13] to generate the most likely
codewords and propose new procedure to compute and update
the list of most-probable bit-flip positions. We investigate
rate-1, SPC and type-I nodes with our proposed procedure.
Moreover, in order to further reduce the decoding latency,
we adapt the existing fast SC decoders of type-II, type-III,
type-IV and type-V nodes [6]. Our proposed decoder has a
smaller latency and better BER performance compared to the
existing fast SCF decoder.

The remainder of this paper is organized as follows:
Section II provides background information on polar code
construction and SC-based decoding algorithms. The fast
SCL decoder of five recently-identified nodes is proposed in
Section III. We next propose fast SCF decoders in Section IV.
In Section V the decoding latency of proposed decoders are
compared with those of the existing ones. Simulation results
are presented in Section VI. Finally, we conclude the paper
in Section VII.

II. BACKGROUND

A binary polar code, P (N, k), of length N = 2n,
where n is a positive integer, and rate k/N maps the
input vector u = {u0, u1, · · · , uN−1} to the output vector

Fig. 1. Binary-tree representation of a polar code P (16, 10).

x = {x0, x1, · · · , xN−1} such that1

x = uF⊗n, (1)

where F⊗n is the nth tensor power of F defined as

F⊗n =
[
F⊗(n−1) O
F⊗(n−1) F⊗(n−1)

]
, (2)

with F⊗0 = 1.
The matrix F⊗n synthesizes N polarized channels from

N independent copies of a given channel. Amongst the N
synthesized channels, the k most reliable ones are used to carry
the information. We denote the index set of k information bits
by I. Furthermore, F is used to denote the index set of N−k
least reliable synthesized channels. Then, for every i ∈ F we
set uis to 0 and refer them as frozen bits.

After receiving the encoded vector x from the channel, the
receiver provides the LLR vector of the received bits, denoted
by ych = {y0, y1, · · · , yN−1}, to the polar-code decoder. After
receiving the LLRs, a polar-code decoder estimates the input
and output vectors. We use û and x̂ to denote the estimated
input and output vectors, respectively.

A. SC, SCL and SCF Decoding

The SC, SCL and SCF decoding can be understood using
a binary-tree representation of the polar code. Fig. 1 depicts a
P (16, 10) code in its binary-tree representation, where black
and white leaf nodes are the information and frozen bits,
respectively.

In Fig. 1, t denotes the level in the decoding tree and
0 ≤ ψ < 2n−t is the count from left to right at level t.
R = 2t is used to denote the length of a node rooted at level t.
Observe that each node in the code tree of a polar code has
a bijective relationship with (ψ, t) pair. For example, the root
node corresponds to (0, n), whereas the ith leaf node can be
represented as (i, 0). Further, with the exception of leaf nodes,
each node (φ, t) has two children: the left child (2φ, t − 1)
and the right child (2φ+ 1, t− 1).

1) SC Decoding: The SC decoding can be viewed as
information exchange between nodes in the decoding tree.
In particular, each node (φ, t) receives a soft information
vector, yφ,t. The root node receives channel LLRs; i.e., y0,n =
ych, whereas other nodes receive yφ,t from their parents. The
node (φ, t) then computes hard bit estimates xφ,t from yφ,t,

1For the sake of exposition, we consider only non-permuted polar codes as
similar conclusions can be drawn for permuted-polar codes.
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and send these estimates to its parent. In particular, with the
exception of the leaf nodes, each node upon receiving yφ,t

generates LLR vectors for its children as

y2φ,t−1
k = 2 arctanh

(
tanh(

yφ,tk
2

) tanh(
yφ,tk+2t−1

2
)
)

(3)

y2φ+1,t−1
k = yφ,tk+2t−1 + (1 − 2x2φ,t−1

k )yφ,tk , (4)

where 0 ≤ k < 2t−1 is used to denote the kth entry of a
vector. On the other hand, xφ,t is computed as

xφ,ti =

{
x2φ,t−1
i ⊕ x2φ+1,t−1

i , if i < 2t−1;
x2φ+1,t−1
i−2t−1 , otherwise,

(5)

where ⊕ denotes binary XOR operation, and 0 ≤ i < 2t.
The decoding process starts from the root node, i.e., by

setting y0,n = ych. Each node, upon receiving its LLR vector,
computes and passes LLR vectors to its children until the leaf
nodes receive their LLR values. At the ith leaf node, i.e. node
(i, 0), the ith input bit ui is estimated as

ûi = xi,0 =

{
0, if i ∈ F ;
H(yi,0), otherwise,

(6)

where H(y) makes a hard decision on each element of y as

H(yi) =

{
0, when yi ≥ 0;
1, otherwise.

(7)

The leaf nodes then sends xi,0 to their parents. Each node
(φ, t) upon receiving x2φ,t−1 and x2φ+1,t−1 from its children,
computes xφ,t using (5). Finally, the hard decision estimate of
x is computed as x̂ = x0,t. The decoding process is completed
when x̂ = x0,n is computed at the root node.

2) SCL Decoding: The SCL decoder [3] operates in a sim-
ilar fashion to the SC decoder. Instead of outputting only one
codeword estimate, the SCL decoder maintains a list of L can-
didate codewords with their corresponding path metrics (PM)
while decoding each bit. In particular, the PM associated with
the lth candidate codeword, PMl

i, after estimating the ith bit
is computed as [17]

PMl
i =

i−1∑
k=0

ln
(
1 + e−(1−2ûkl

)ykl,0
)
, (8)

where ûkl
is the estimate of the (k + 1)-th bit, and ykl,0 is

the LLR received by the (k + 1)-th leaf node in the path l.
If the (i + 1)-th bit is a frozen bit then ûil = 0 for

each list, and the PMs are updated accordingly. But if the
(i+ 1)-th bit is an information bit, then each path generates
two paths corresponding to ûil = 0 and ûil = 1. The PMs
are updated accordingly, and a total of 2L paths are generated.
Amongst them, only those L paths are maintained that have
the lowest PMs.

3) SCF Decoding: The SCF decoding can be viewed as
multiple SC decoding operating in a sequential manner. In the
initial phase, the codeword is decoded through the standard
SC decoding. In addition to the decoding, the SC decoder
identifies Tmax bit-flip positions. The bit-level LLRs, |yi,0|, cor-
responding to the bit-flip positions have the smallest absolute
values.

Let t = {t0, t1, . . . , tTmax−1} denote the set of bit-flip posi-
tions, where t ⊂ I and |yti,0| ≤ |ytj,0| for 0 ≤ i ≤ j < Tmax.
After the initial decoding, if the estimated codeword satisfies
the CRC, the decoding process stops. Otherwise, another SC
decoding trial is carried out. However, in this trial ût0 is
flipped and the subsequent bits are decoded with the standard
SC decoder. The decoder outputs the estimated codeword if
it satisfies the CRC. Otherwise, a new SC decoding trial is
launched. But this time ût1 is flipped instead. Again the CRC
is checked, and new trial is carried out if it is not satisfied. This
process continues until the CRC of the estimated codeword is
satisfied or the maximum number of trials Tmax +1 is reached.

B. Fast Decoding

The sequential nature of the decoding and the tree traversal
from top to bottom and left to right results in a high decoding
latency. The decoding speed can be improved by implementing
decoders that do not traverse the decoder tree and output
multiple bits in parallel. Based on this idea, researchers
have proposed fast parallel decoders for different nodes that
improve the decoding speed significantly [4]–[6]. For example,
a rate-0 node (shown by unfilled circles in Fig. 1) can be
decoded without computing the LLR values of its children by
noting that all the leaf nodes of a rate-0 node correspond to
frozen bits. Therefore, xφ,tk = 0. Likewise, fast decoders for
rate-1, REP, SPC, type-I, type-II, type-III, type-IV, and type-V
nodes improve the SC decoder throughput [4]–[6].

The decoders proposed in [4]–[6] only output a single
codeword. The SCL decoder, on the other hand, maintains
a list of L codewords for each bit. As such, the SC decoders
of the above mentioned nodes require modifications to be
used for the SCL decoder. Among the aforementioned nodes,
the SCL decoders for only rate-0, rate-1, REP and SPC nodes
have been proposed in [10]–[12]. To the best of authors’
knowledge, the SCL decoders for the remaining five nodes are
not available in the literature. Hence, we present list decoders
for the remaining nodes to improve the decoding speed of the
existing fast SCL decoder.

Since the SCF decoder uses the SC decoding in each trial,
implementing fast SC decoders will improve the decoding
latency of the SCF decoder. However, the SCF decoder must
maintain a list of the most probable bit-flip positions also and
should be able to flip the bits at these positions. Therefore,
the existing fast SC decoders cannot be used directly to
increase the decoding speed.

Observe that the existing decision metric used to determine
the list of the most probable bit-flip positions is based on the
bit-level LLR. But computing the bit-level LLRs through the
tree traversal would result in a very high decoding latency.
Therefore, we propose a decision metric that reflects the
effect of the bit flip on the log likelihood of the estimated
codeword. The proposed decision metric can be computed
without traversing the code tree and hence, facilitates fast SCF
decoding.

Fast SCF decoders for REP, rate-1, SPC, and type-I special
nodes have been proposed in [16], but some of them incur
BER performance loss.
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In this paper, we first propose modifications of these
decoders and present the fast SCF decoders for the remaining
special nodes. Our proposed fast SCF decoders not only
result in reduced decoding latency but also improve BER
performance of the existing fast SCF decoder [16].

To better understand the proposed fast SC decoders, we find
the following notations quite useful: For a node (ψ, t),
we define Ãψ,t = {i : i ∈ {{R}}, and 2tψ + i ∈ I}, and
Ãcψ,t = {i : i ∈ {{R}}, and 2tψ + i ∈ F}. Here R = 2t and
{{R}} denotes the set {0, 1, · · · , R − 1}. With this notation,
rate-0 and rate-1 nodes correspond to Ãψ,t = {} and Ãψ,t =
{{R}}, respectively. REP and SPC nodes are recognized when
Ãψ,t = {R − 1} and Ãcψ,t = {0}, respectively. Furthermore,
type-I node corresponds, to Ãψ,t = {R − 2, R − 1}; type-II
node, to Ãψ,t = {R − 3, R − 2, R − 1}; type-III node, to
Ãcψ,t = {0, 1}; type-IV node, to Ãcψ,t = {0, 1, 2}; and type-V
node, to Ãψ,t = {R− 5, R− 3, R− 2, R− 1}.

III. PROPOSED FAST LIST DECODERS

Before presenting the list decoders for the five nodes,
we first examine the contribution of a node (φ, t) to the PM
of a codeword. Observe that the leaf nodes corresponding to
the node (φ, t) are the nodes (2tφ+ k, 0), where 0 ≤ k < 2t.
Consequently, using (8), the contribution of the node (φ, t) to
the PM, denoted by PMφ,t, is given by

PMφ,t =
2t(φ+1)−1∑
k=2tφ

ln
(
1 + e−(1−2ûk)yk,0

)
. (9)

Our proposed decoders, similar to the list decoders of the
rate-0, rate-1, REP and SPC nodes [11], compute PMφ,t

without traversing the whole subtree corresponding to a node.
To this end, for the PM computation we use an important result
introduced in [11, Th. 1], which specifically proves that2

PMφ,t =
2t−1∑
k=0

ln
(
1 + e−(1−2xφ,t

k )yφ,t
k

)
. (10)

Another result, that will be used extensively in our proposed
decoders to simplify the calculations is the following identity.

ln
(
1 + ea

)− ln
(
1 + e−a

)
= a. (11)

In the following, we present fast decoders for the type-I,
type-II, type-III, type-IV and type-V nodes. For better read-
ability, we use R = 2t and drop the indexes φ and t from the
notations. Further, we add l, where 0 ≤ l < L, in the notations
to indicate that the calculations pertain to the path l.

A. Type-I Node

For a type-I node, xl = {xR-2 ,xR-1 , · · · ,xR-2 ,xR-1} [6].
As such, xl equals only one of the four codewords: C00 =
{0, 0, · · · , 0, 0}, C01 = {0, 1, · · · , 0, 1}, C10 = {1, 0,
· · · , 1, 0}, and C11 = {1, 1, · · · , 1, 1}.

In the proposed decoder, we compute the PM contribution of
the type-I node corresponding to each codeword for each list.

2Although [11] presented the equivalence of PMs for a rate-1 node, the same
result is valid for any node and can be proved using a similar approach.

In particular, the PMs corresponding to the four codewords
for the list l, 0 ≤ l < L, are

PMl
00 = PMl+

R/2−1∑
k=0

ln
(
1+e−yl

2k
)
+ln

(
1+e−yl

2k+1
)
, (12)

PMl
01 = PMl+

R/2−1∑
k=0

ln
(
1+e−yl

2k
)
+ln

(
1+e+yl

2k+1
)
, (13)

PMl
10 = PMl+

R/2−1∑
k=0

ln
(
1+e+yl

2k
)
+ln

(
1+e−yl

2k+1
)
, (14)

PMl
11 = PMl+

R/2−1∑
k=0

ln
(
1+e+yl

2k
)
+ln

(
1+e+yl

2k+1
)
. (15)

Using (11), the calculations can be simplified as

PMl
00 = PMl +

R−1∑
k=0

ln
(
1 + e−yl

k
)
, (16)

PMl
01 = PMl

00 + ς1, (17)

PMl
10 = PMl

00 + ς0, (18)

PMl
11 = PMl

00 + ς0 + ς1, (19)

where ςi =
∑R/2−1

k=0 yl2k+i for i = 0, 1.
As a result of these calculations, a total of 4L path metrics

are computed. Amongst them, only the smallest L ones are
retained, and the corresponding codewords are assigned to xl.

B. Type-II Node

For a type-II node, xl = {xR-4 ,xR-3 ,xR-2 ,xR-1 , · · · ,xR-4 ,
xR-3 ,xR-2 ,xR-1}, where xR-4 = xR-3 ⊕ xR-2 ⊕ xR-1 [6].
Hence, xl can only be one of the eight codewords: C000 =
{0, 0, 0, 0 · · · , 0, 0, 0, 0}, C001 = {1, 0, 0, 1, · · · , 1, 0, 0, 1},
C010 = {1, 0, 1, 0, · · · , 1, 0, 1, 0}, C011 = {0, 0, 1, 1, · · · ,
0, 0, 1, 1}, C100 = {1, 1, 0, 0, · · · , 1, 1, 0, 0}, C101 = {0, 1,
0, 1, · · · , 0, 1, 0, 1}, C110 = {0, 1, 1, 0 · · · , 0, 1, 1, 0}, and
C111 = {1, 1, 1, 1 · · · , 1, 1, 1, 1}.

Following the approach used in the type-I list decoder,
we compute

PMl
000 = PMl +

R−1∑
k=0

ln
(
1 + e−yl

k

)
, (20)

PMl
001 = PMl

000 + η0 + η3, (21)

PMl
010 = PMl

000 + η0 + η2, (22)

PMl
011 = PMl

000 + η2 + η3, (23)

PMl
100 = PMl

000 + η0 + η1, (24)

PMl
101 = PMl

000 + η1 + η3, (25)

PMl
110 = PMl

000 + η1 + η2, (26)

PMl
111 = PMl

000 + η0 + η1 + η2 + η3. (27)

where ηi =
∑R/4−1

k=0 yl4k+i for 0 ≤ i < 4.
Afterwards, L PMs are retained amongst the 8L computed

PMs, and the corresponding codewords are assigned to xl.
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C. Type-III Node

A type-III node corresponds to Âc = {0, 1}; i.e., there are
only two frozen bits in the node [6]. Therefore, xl can be one
of the 2R−2 = 22t−2 valid type-III node codewords. Since
the size of a type-III node can be large, it is impractical to
compute a total of 2R−2L path metrics and choose the best L
ones amongst them. Hence, we follow the approach used in
[10] and [12] of generating candidate codewords.

For each path l, we first find the ML codeword and compute
its corresponding PM. Since the even-indexed and odd-indexed
bits of a type-III codeword constitute two separate SPC
codes [6], we compute the ML codeword by using Wagner
decoding [18]. In particular, we set xlk = H(ylk), where H(y)
is defined in (7), and 0 ≤ k < R. We then find the location of
the least-reliable even-indexed and odd-indexed LLR values as

(el, ol) = ( argmin
0≤k<R/2

|yl2k|, argmin
0≤k<R/2

|yl2k+1|) (28)

and compute the parities of both SPC codes as

(γle, γ
l
o) =

(
R/2−1⊕
k=0

xl2k,
R/2−1⊕
k=0

xl2k+1

)
. (29)

Further, we set xl2el
= xl2el

⊕γle and xl2ol+1 = xl2ol+1 ⊕γlo to
satisfy the even-parity constraint. Lastly, we compute the PM
corresponding to the ML codeword as

PMl
ML = Δl + γle|yl2el

| + γlo|yl2ol+1|, (30)

where Δl = PMl +
∑R−1
k=0 ln

(
1 + e−|yl

k|
)
.

We then define modified LLRs, αli’s, as αl2k = |yl2k| +
(1− 2γle)|yl2el

|, and αl2k+1 = |yl2k+1|+ (1− 2γlo)|yl2ol+1| for
0 ≤ k < R/2. Next, we sort the modified LLRs (excluding
αl2el

and αl2ol+1) in an ascending order and denote the sorted
indexes by (i)l, where 0 ≤ i < R−2. Mathematically, αl(k)l

≤
αl(k+1)l

for 0 ≤ k < R− 3.

After computing the sorted indexes for each path, we start
generating candidate codewords by flipping bits of the ML
codeword. In particular, starting from k = 0, we generate two
codewords corresponding to the bit (k)l being 0 or 1. In order
to satisfy the even parity condition, the bits with indexes 2el

and 2ol+1 are modified accordingly. The PMs corresponding
to the generated codewords are calculated as

PMl
(k)l

=

{
PMl

(k−1)l
, if xl(k)l

=H(yl(k)l
);

PMl
(k−1)l

+|yl(k)l
|+β(k)l

, otherwise,

(31)

where PMl
(−1)l

= PMl
ML, β(k)l

= (1− 2γle,k−1)|yl2el
| if (k)l

is even, and β(k)l
= (1− 2γlo,k−1)|yl2ol+1| otherwise. The bit

γle,k equals γle,k−1 when (k)l is odd. When (k)l is even then

γle,k =

{
γle,k−1, if xl(k)l

=H(yl(k)l
);

1 − γle,k−1, otherwise.
(32)

Likewise, γlo,k = γlo,k−1 when (k)l is even. When (k)l is odd,
γlo,k is updated as

γlo,k =

{
γlo,k−1, if xl(k)l

=H(yl(k)l
);

1 − γlo,k−1, otherwise.
(33)

Here, γle,−1 = γle, and γlo,−1 = γlo.

As a result of the aforementioned operations, a total of 2L
PMs are computed for each k. Amongst them, only the lowest
L ones are retained. We continue this process of creating
2L codewords from the existing L ones and retaining only
L best ones in a successive manner as k varies from 0 to
min{L − 2, R − 3}. After that, we return the L surviving
paths and their PMs. We do not consider all the codewords;
i.e., we do not vary k from 0 to R − 3 when L < R − 1,
because Theorem 1 asserts that the extra codewords created
after k = L− 2 are not included in the surviving paths.

Theorem 1: In the proposed list decoder of the type-III
node, the codewords that have xl(k)l

�= H(yl(k)l
) for k ≥ L−1

are not amongst the surviving codewords.
Proof: We prove this theorem by contradiction. Suppose

the codeword with xl(L−1)l
�= H(yl(L−1)l

) is among the
surviving codewords. Consequently, the PM corresponding
to such a codeword is one of the smallest L ones. Note
that the minimum possible value of the corresponding PM is
PMl

ML+αl(L−1)l
, which represents the case that all the bits of

the generated codeword and the ML codewords are the same
except the bit (L− 1)l and the corresponding parity bit.

Now consider the codewords corresponding to xl(k)l
=

H(yl(k)l
) and xl(k)l

= 1 − H(yl(k)l
) for 0 ≤ k < L − 1.

Amongst them, we consider the following L codewords. One
of them is the ML codeword with the path metric of PMl

ML.
The other L − 1 codewords are the ones that differ from
the ML codeword only in two locations: the (k)l bit and
the corresponding (even/odd) parity bit. The path metric of
such codewords are PMl

ML + αl(k)l
for 0 ≤ k < L − 1.

Using the fact that αli ≥ 0 and αl(k)l
≤ αl(L−1)l

, the PMs
of the considered L codewords is less than or equal to
PMl

ML + αL(L−1)l
. Consequently, the PM of the codeword

corresponding to xl(L−1)l
�= H(yl(L−1)l

) is not amongst the
best L ones. Therefore, we do not need to consider multiple
codewords corresponding to xl(L−1)l

being equal to 0 or 1.
Rather, we just set xl(L−1)l

= H(yl(L−1)l
).

Similar assertions can be made for xl(k)l
for k ≥ L.

D. Type-IV Node

The codeword in a type-IV node satisfies the following
relationship [6].

R/4−1∑
i=0

x4i =
R/4−1∑
i=0

x4i+1 =
R/4−1∑
i=0

x4i+2 =
R/4−1∑
i=0

x4i+3 = z,

(34)

where z can be 0 or 1.
In the proposed list decoder of a type-IV node, we first

compute the ML codewords for each list corresponding to z =
0 and z = 1 using Wagner decoder. In particular, we compute
the i∗0, i∗1, i∗2, and i∗3 as

i∗j = argmin
0≤k<R/4

|yl4k+j |, (35)

where j = 0, 1, 2, 3.
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Then we set xlk = H(ylk) and compute γlj as

γlj =
R/4−1⊕
k=0

xl4k+j , (36)

where j = 0, 1, 2, 3. Afterwards, we generate two ML
codewords corresponding to z = 0 and z = 1 by setting
xl4i∗j +j = xl4i∗j +j ⊕ γlj ⊕ z. Their corresponding PMs are

PMl
ML,z = Δl +

3∑
j=0

(γlj ⊕ z)|yl4i∗j +j |, (37)

where Δl = PMl +
∑R−1
k=0 ln

(
1 + e−|yl

k|
)
.

As a result, we compute 2L codewords and their cor-
responding PMs. Amongst them, we only retain those L
codewords that have the smallest PM values. Afterwards, using
z of the retained codewords, we update γlj as γlj = γlj ⊕ zl.

Similar to the type-III node decoder, we then define αi’s
as αl4k+j = |yl4k+j | + (1 − 2γlj)|yl4i∗j +j | for 0 ≤ k < R/4,

and 0 ≤ j ≤ 3. Next, excluding αl4i∗j +j , we sort αli’s in an
ascending order and denote the sorted indexes by (i)l, where
0 ≤ i < R − 4. Thus, αl(k)l

≤ αl(k+1)l
for 0 ≤ k < R− 5.

Starting from k = 0, we then compute different codewords
and their corresponding PMs by considering x(k)l

= 0 and
x(k)l

= 1 and setting appropriate values to the xl4i∗j +j , where

j = [[(k)l]]2 is the remainder after division of (k)l by 22 = 4.
The PMs are computed as

PMl
(k)l

=

{
PMl

(k−1)l
, if xl(k)l

=H(yl(k)l
);

PMl
(k−1)l

+|yl(k)l
|+β(k)l

, otherwise,

(38)

where PMl
(−1)l

= PMl
ML,z and β(k)l

= (1−2γlj,k−1)|yl4i∗j +j |.
Here, γlj,k is computed recursively as

γlj,k =

{
γlj,k−1, if x(k)l

= H(y(k)l
);

1 − γlj,k−1, otherwise,
(39)

with γlj,−1 = γlj . Also, γli,k = γli,k−1 for 0 ≤ i < 4 and i �= j,
and γli,−1 = γli .

The aforementioned procedure results in a total of 2L
codewords for each k. We then save only those codewords
and their corresponding PMs that have the lowest PM values.
We continue this process till k reaches min{L − 2, R − 5}.
If L < R−3, we simply set xl(k)l

= H(yl(k)l
) for L−2 < k ≤

R− 5 as the codeword with xl(k)l
�= H(yl(k)l

) has a larger PM
and is not amongst the surviving codewords.3

E. Type-V Node

The list decoder for a type-V node is quite similar to that
of the type-I and type-II nodes. In particular,

xl = m
[
G0 · · · G0

]
, (40)

3The proof of this assertion is quite similar to that of Theorem 1. We skip
the proof due to the repetition of ideas.

where m is a binary row vector of length 4, and

G0 =

⎡
⎢⎢⎣
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1

⎤
⎥⎥⎦. (41)

Similar to the proposed decoders for type-I and type-II
nodes, we compute 16 PMs corresponding to different values
of m as

PMl
0000 = PMl +

R−1∑
k=0

ln
(
1 + e−yl

k
)
, (42)

PMl
0001 = PMl

0000 + σ1 + σ2 + σ4 + σ7, (43)

PMl
0010 = PMl

0000 + σ0 + σ2 + σ4 + σ6, (44)

PMl
0011 = PMl

0000 + σ0 + σ1 + σ6 + σ7, (45)

PMl
0100 = PMl

0000 + σ0 + σ1 + σ4 + σ5, (46)

PMl
0101 = PMl

0000 + σ0 + σ2 + σ5 + σ7, (47)

PMl
0110 = PMl

0000 + σ1 + σ2 + σ5 + σ6, (48)

PMl
0111 = PMl

0000 + σ4 + σ5 + σ6 + σ7, (49)

PMl
1000 = PMl

0000 + σ0 + σ1 + σ2 + σ3, (50)

PMl
1001 = PMl

0000 + σ0 + σ3 + σ4 + σ7, (51)

PMl
1010 = PMl

0000 + σ1 + σ3 + σ4 + σ6, (52)

PMl
1011 = PMl

0000 + σ2 + σ3 + σ6 + σ7, (53)

PMl
1100 = PMl

0000 + σ2 + σ3 + σ4 + σ5, (54)

PMl
1101 = PMl

0000 + σ1 + σ3 + σ5 + σ7, (55)

PMl
1110 = PMl

0000 + σ0 + σ3 + σ5 + σ6, (56)

PMl
1111 = PMl

0000 +
7∑
i=1

σi, (57)

where σi =
∑R/8−1
k=0 yl8k+i for 0 ≤ i < 8. Amongst the 16L

computed path metrics, only the smallest L ones are kept, and
their corresponding codewords are assigned to xl.

Remark 1: In the aforementioned list decoders, we did not
provide calculations for ûlk, where 2tφ ≤ k < 2t(φ + 1) for
a node (φ, t). For systematic polar codes, we do not compute
ûl as the information bits appear transparently in x [19]. For
non-systematic polar codes, we can use ûφ,t = xφ,tF⊗t to find
the information bits corresponding to the codeword xφ,t. Note
that the above operation, in contrast to the conventional list
decoding, involves only bit operations, which can be carried
out expeditiously with very few hardware resources.

For the type-I, type-II and type-V nodes, we can further
reduce the hardware complexity and decoding latency by using
the special structure of xφ,t and the frozen-bit pattern. For
example, for a type-I node, û can be calculated as follows:
ûk = 0 for 2tφ ≤ k < 2t(φ + 1) − 2, û2t(φ+1)−2 = xφ,t2t−2 ⊕
xφ,t2t−1, and û2t(φ+1)−1 = xφ,t2t−1.

Remark 2: The computational and hardware complexity of
PM calculations can be reduced using [17]

ln(1 + ea) ≈
{
a, if a > 0;
0, otherwise.

(58)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:54:07 UTC from IEEE Xplore.  Restrictions apply. 



4568 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 7, JULY 2019

For example, using (58), we can compute PMl
00 for a type-I

node as

PMl
00 ≈ PMl +

∑
k:yl

k<0

|ylk|. (59)

IV. PROPOSED FAST FLIP DECODERS

SCF decoding is another polar code decoding scheme that
outperforms SC decoding. Similar to the SCL decoding,
the SCF decoder selects the most-probable codeword amongst
multiple codewords. However, unlike the SCL decoder,
the memory requirements of the SCF decoder do not scale
linearly with the number of codewords considered. Further-
more, the computational complexity of the SCF decoder is
similar to that of the SC decoder when the channel has high
reliability. As such, the SCF decoding has gained interest in
the research community recently [16], [20], [21].

The SCF decoder is basically a modified SC decoder that
runs up to a maximum of Tmax + 1 times one after the other.
In the first trial, in addition to performing the SC decoding,
the SCF decoder maintains a list of Tmax bit-flip positions.
If the initial SC decoding fails, then one bit (whose location
is in the maintained list) is flipped in the next trial, and
the standard SC decoder is used to decode the subsequent
positions. The decoding process terminates if the CRC is
satisfied, otherwise a new decoding trial is initiated until the
maximum number of trials is reached.

The sequential decoding nature of the SC decoder results in
high decoding latency of the SCF decoder. Furthermore, fast
SC decoders of [4]–[9] cannot be used directly to increase the
speed because the SCF decoder needs to maintain the list of
the least-reliable bit locations. Specifically, the conventional
SCF decoder [15] uses the bit-level LLR, |yi,0| to determine
the bit-flip locations. Whereas, the existing fast SC decoder
of a node (φ, t) does not compute the bit-level LLRs to
improve the throughput. Since computing the bit-level LLRs
will incur a high decoding latency, we propose a decision
metric to determine bit-flip locations that can be computed
without traversing the decoding tree. In the following, we first
introduce the decision metric, and then we describe the fast
SCF decoders for the special nodes based on the proposed
metric.

A. Proposed Decision Metric

Before we present our proposed decision metric, we first
analyze the decision metric used in the conventional SCF
decoder, i.e., |yi,0| [15]. To this end, we consider the path
metric of a codeword decoded by the conventional list decoder
for L = 1.

The conventional SCL decoder considers two possibilities
for the bit ui, i.e., 0 or 1, and selects the path with the least
PM. Using (8), it can be verified that the difference between
the PMs of the considered codewords is exactly |yi,0|. That
is, the decision metric used in the conventional SCF decoder
equals the difference between the PMs of the codewords that
share the same code bits except the code bits corresponding
to the node (i, 0).

We use the aforementioned observation to propose a deci-
sion metric for our fast SCF decoders. Since our decoders
decode the codewords corresponding to a node without tra-
versing it, we devise a decision metric that can be computed
without the traversal. In particular, we propose to use the
following decision metric:

λ = PMx − PMML. (60)

Here, PMx and PMML are the contributions of a codeword
x and the ML codeword to the PM, respectively. The ML
codeword is the codeword that is selected by the SCL decoders
for L = 1, i.e., it has the least associated PM. Observe that our
proposed metric λ coincides with |yi,0| for the nodes (i, 0),
which is used in the conventional SCF decoding [15].

It should be noted that [16] also proposed decision metrics
for some special nodes. Some of these metrics, however, result
in a performance degradation. Our proposed decoders, on the
other hand, are based on the contribution of the selected
codeword to the PM and, hence, show better BER performance
than the decoders of [16].

B. Proposed Fast Decoders

In the following, we first proposed SCF decoders of REP,
rate-1, SPC and type-I nodes. We also compare them with
the proposed SCF decoders in [16] highlighting the key
differences, which eventually result in the improvement of the
BER performance. Afterwards, we present fast SCF decoders
for the remaining nodes (type-II, type-III, type-IV, and type-V
nodes).

C. REP Node

A REP node contains only one information bit. Therefore,
there are two valid REP node codewords: an all-zeros and an
all-ones codewords. The PM contributions for these codewords
can be computed as

PM0 =
R−1∑
k=0

ln
(
1 + e−yk

)
, (61)

and

PM1 =
R−1∑
k=0

ln
(
1 + eyk

)
. (62)

When the ML codeword is an all-zeros codeword, PMML =
PM0, and λ = PM1 − PM0; otherwise λ = PM0 − PM1.
Equivalently, λ = |PM1 − PM0|, which can be simplified
using (11) as

λ =

∣∣∣∣∣
R−1∑
k=0

yk

∣∣∣∣∣. (63)

Note that [16] also used the same decision metric for a REP
node.

The decision metric in (63) is equivalent to that of the
conventional SCF decoder [15] computed for the only non
frozen bit in u supported by a REP node.

After the first trial, in case the bit-flip position belongs to a
REP node, all bits of the estimated ML codeword, xML, of the
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REP node are flipped. This process is equivalent to flipping
process in [15], i.e., flipping the only non frozen bit of the
REP node at u.

D. Rate-1 Node

The ML codeword of a rate-1 node is obtained as xML
k =

H(yk) for 0 ≤ k < R, and its corresponding PM is

PMML =
R−1∑
k=0

ln
(
1 + e−|yk|). (64)

The proposed SCF decoder for a rate-1 node follows the
approach used in its fast SCL decoder [12] to compute the
contributions of other codewords to the PM. In particular,
codewords are generated by flipping bits, individually and
simultaneously, relative to the ML codeword as is done in the
decoding of a type-III node. Specifically, the absolute values
of LLRs are sorted. We denote the sorted indexes by (i),
where 0 ≤ i < R. Next, PMs are computed in a successive
manner by path splitting for each index (i). Since, we are
generating Tmax numbers of the most likely codewords, as we
do in the SCL decoder with list size L [12, Th. 1], we only
consider path splitting for 0 ≤ i < min{Tmax, R − 1}. This
limits the number of search which is required to find bit-flip
positions. The contributions of the rate-1 node codewords can
be obtained as

PMx = PMML +
∑
j∈fx

|yj |. (65)

Here, fx is the set of those indexes of codeword x at which
the code bits differ that of the ML codeword. Consequently,
the decision metric can be computed as

λx =
∑
j∈fx

|yj|. (66)

Observe that [16] introduced λx = |y(i)| for 0 ≤ i ≤ R− 1
as the decision metric for a rate-1 node. This metric computes
the contribution of those codewords that differ from the ML
codeword only in one bit location. For example, the decision
metric used in [16] would compute λ2 = |y(2)|. On the other
hand, we compute λ2 = |y(2)| when |y(2)| < |y(0)| + |y(1)|,
and λ2 = |y(0)| + |y(1)| otherwise.

In the decoding trials following the initial one, in case the
bit-flip positions belong to a rate-1 node, we flip the bits in
fx of the estimated ML codeword.

E. SPC Node

The ML codeword of an SPC node can be estimated using
Wagner decoding [18]. In particular, we set xk = H(yk) for
0 ≤ k < R. We then find the location of the least-reliable
LLR value and compute the parity as

p = argmin
0≤k<R

|yk|, (67)

and

γML =
R−1⊕
k=0

xk, (68)

respectively. Further, we set xp = xp⊕γML to satisfy the even-
parity constraint. The PM corresponding to the ML codeword
is given by

PMML = Δ + γML|yp|, (69)

where Δ =
∑R−1
k=0 ln

(
1 + e−|yk|).

In our proposed decoder, the absolute values of LLRs
(excluding yp) are sorted in an ascending order. We use (i),
where 0 ≤ i < R − 1 to denote the sorted indexes. Next,
we generate codewords by flipping bits relative to the ML
codeword such that the parity constraint is satisfied. This can
be done by ‘path splitting’ as described in [12] and in the
proposed SCL decoders for the Type-III and Type-IV nodes.

The contribution of the generated codewords to the PM can
be shown to be

PMx = Δ +
∑
j∈fx

|yj |. (70)

Here, fx is the set of indexes of the codeword x which differ
from H(y), where H(y) is defined in (7). Consequently, the
decision metrics for the node can be computed as

λx =
∑
j∈fx

|yj | − γML|yp|. (71)

Note that [16] introduced the following metric

λx = |y(i)| + (−1)γML |yp|, (72)

which corresponds to only double bit flips relative to the ML
codeword. Since (72) does not consider some valid codewords
that have more occurrence likelihood than the considered
codewords, it results in a BER performance loss compared to
the conventional SCF decoder. Our proposed decoders, on the
other hand, do not incur any BER performance loss compared
to the conventional SCF decoder, as also evident from the
simulation results presented in Section VI.

If a trial of the fast SCF decoder needs to flip bits in an
SPC node, the bits stored in fx are flipped relative to the hard-
decision bit estimates.

F. Type-I Node

A Type-I node contains two information bits, and its code-
word is x = {xR−2, xR−1, . . . , xR−2, xR−1}. Thus, the even
and odd indexed code bits constitute two repetition codes.

The proposed SCF decoder computes the PMs correspond-
ing to (xR−2, xR−1) = (0, 0), (0, 1), (1, 0), (1, 1) as men-
tioned in Section III-A and selects the one which has the
least PM as the ML codeword. Next, it computes the decision
metrics corresponding to other codewords using (60). It can be
verified that the decision metric corresponding to the codeword
that has all of its even-indexed bits flipped with respect to the
ML codeword is

λ0 = |ς0|. (73)

Likewise, the decision metric corresponding to the codeword
that differs the ML codeword at odd-indexed bits is

λ1 = |ς1|, (74)
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and the codeword that differs from the ML codeword at all
locations has the following decision metric:

λ2 = |ς0| + |ς1|. (75)

The conventional SCF decoder considers only two addi-
tional codewords: the codeword with the second last and
last bits in the u vector flipped relative to the decoded SC
codeword. These codewords correspond to the codewords with
decision metrics (74) and (75), respectively. The type-I node
decoder presented in [16] only computes the codewords with
decision metrics λ0 and λ1; i.e., it ignores a valid conventional
SCF codeword. Our proposed decoder, on the other hand,
computes the decision metric for both codewords. In addition,
it considers a valid type-I codeword that has both of its bits in
u flipped relative to that of the ML codeword (codeword with
decision metric (73)). This codeword has more likelihood (and
hence has less contribution to the PM) than the codeword that
has its last bit in u flipped.

G. Type-II Node

A type-II node contains three information bits and its code-
word is x = {xR-4 ,xR-3 ,xR-2 ,xR-1 , . . . , xR-4 ,xR-3 ,xR-2 ,xR-1},
where xR-4 = xR-3 ⊕xR-2 ⊕xR-1 [6]. Hence, (xR-3 ,xR-2 ,xR-1)
can only be one of the eight combinations: (000), (001), (010),
(011), (100), (101), (110), and (111).

The proposed decoders for the type-II node works similary
to that of a type-I node. In particular, we first compute 8 PM
values corresponding to the valid codewords of a type-II node.
Next, the ML codeword is found by selecting the code with
the least PM. Then, we compute the decision metrics for the
remaining codeword using (60).

The decision metric values of a type-II node can be
computed similar to an SPC node as in (71). In particular,
(xR-4 ,xR-3 ,xR-2 ,xR-1) form a (4, 3) SPC node with the cor-
responding LLR vector η = {η0, η1, η2, η3}. Let ηp denote
the minimum value of η, we can compute the decision metric
corresponding to a codeword x which disagrees with the hard
decision on η, H(η), at locations in fx as

λx =
∑
j∈fx

|ηj | − γML|ηp|. (76)

Remark 3: It should be noted that we do not need to
compute the decision metric values using the aforementioned
equations for type-I and type-II nodes. Rather, we compute the
PMs for all the codewords and based on (60), subtract the PM
of the ML codeword from that of the remaining codewords to
compute the decision metrics.

H. Type-III Node

The even and odd indexed bits of a type-III node codeword
constitute two separate SPC codes. Thus, it can be optimally
decoded using two Wagner decoders [6]. In particular, we set
xML
i = H (yi) for 0 ≤ i < R. Next, we find the locations of

the least reliable even-indexed and odd-indexed LLR values
as e = arg min

0≤i≤R/2−1

|y2i| and o = arg min
0≤i≤R/2−1

|y2i+1| for 0 ≤ i <

R/2 respectively. Then we check the parity condition for the
SPC codes as

(γe,γo) =

⎛
⎝R/2−1⊕

i=0

xML
2i ,

R/2−1⊕
i=0

xML
2i+1

⎞
⎠, (77)

and set xML
2e = xML

2e ⊕ γe and xML
2o+1 = xML

2o+1 ⊕ γo. The
contribution of the ML codeword to the PM is given by

PMML = Δ + γe|y2e| + γo|y2o+1|, (78)

where Δ =
∑R−1
k=0 ln

(
1 + e−|yk|).

Next, we generate different codewords by flipping bits
relative to the ML codeword and compute their corresponding
contribution to the PM as discussed in Section III-C. It can be
shown that the contribution of a type-III codeword to the PM
is given by

PMx = Δ +
∑
j∈fx

|yj |.

Here, fx is the set of bit indexes of the codeword x that differ
from H(y). Consequently, the decision metrics for the type-III
node are

λx =
∑
j∈fx

|yj | − γe|y2e| − γo|y2o+1|. (79)

I. Remaining Nodes

The fast SCF decoders for the remaining two special nodes
can be similarly implemented. For the type-V node, the pro-
posed decoder first generates 16 type-V codewords and com-
putes their corresponding PMs. Next, it selects the codeword
with the least PM as the ML codeword and computes the
decision metrics for the remaining codewords using (60).

For the type-IV node, the proposed decoder works
similarly to that of the proposed Type-III node. That is, it first
computes the ML codeword and the corresponding PM. Next,
it generates other codewords and their corresponding PMs (or
equivalently the decision metrics) by flipping the bits relative
to the ML codeword as detailed in Section III-D.

V. DECODING LATENCY

We now compare the decoding latencies of the proposed
fast decoders with that of the existing ones. In particular,
we compute the required number of time steps to decode
different nodes with the existing decoders and our proposed
ones, under the following assumptions. First, we assume there
is no resource limitation so that all the parallelizable instruc-
tions are performed in one clock cycle [11], [12]. Second,
addition/subtraction of real numbers and check-node operation
consume one time step. Third, hard decision on LLRs and
bit operations are carried out instantaneously [4], [6], [11],
[12], [17]. Fourth, Wagner decoding can be performed in a
single time step. Last, the decoder duplicates all L paths, sorts
the corresponding 2L PMs and selects the smallest L ones
during a single clock cycle [11], [12].
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TABLE I

REQUIRED NUMBER OF TIME STEPS TO DECODE DIFFERENT NODES OF SIZE R

A. Fast SCL Decoder

In this section, we compare the decoding latency of our
proposed fast SCL decoders with that of the existing ones [12]
(referred to as FSCL decoders hereafter). Note that [12]
presented fast decoders for only rate-0, REP, SPC and rate-1
nodes, and the remaining special nodes are decoded using
these nodes. In the following, we first present the decoding
latency of the rate-0, REP, SPC, and rate-1 node as these
calculations will be used in computing the decoding latencies
of the FSCL decoders for the remaining nodes.

The FSCL decoder takes 1 time step to decode a rate-0 node
as computation of the PM for active paths consume a single
time step. The FSCL decoder for a REP node duplicates each
path and computes their corresponding PMs in a single time
step. In the next time step, it sorts the PMs and selects the
best L paths. As such, the decoding latency of the FSCL
REP node decoder is 2 time steps. The rate-1 node FSCL
decoder computes the PM of the ML codeword in 1 time step
and needs min{L − 1, R} time steps to do the path and PM
updates of the remaining codewords. As such, it consumes
1 + min{L − 1, R} time steps to decode a rate-1 node.
Similarly, the FSCL decoder for an SPC node takes 1 time
step to find the ML codeword and its corresponding PM and
min{L− 1, R− 1} time steps for the path and PM updates of
the remaining codewords. Thus, the decoding latency of the
FSCL SPC-node decoder is 1+min{L−1, R−1} time steps.

For type-I, type-II and type-V nodes, our proposed decoders
consume one time step to compute the PMs corresponding to
all codewords. Following the first and last assumptions in the
beginning of this section, our decoders require 2, 3 and 4 time
steps to sort 4L, 8L and 16L PMs, respectively. As such,
the decoding latencies of the type-I, type-II and type-V
decoders are 3, 4 and 5 time steps, respectively.

On the other hand, if the FSCL decoders are used to
decode type-I, type-II and type-V nodes then the decoding
tree of these nodes correspond to the decoding tree of Fig. 2a.

Fig. 2. Decoding trees of the proposed nodes in [6] correspond to either
decoding tree (a) or decoding tree (b).

In particular, the left child of each node is a rate-0 node,
whereas the node B is a rate-1 node of size 2 for the type-I
node, an SPC node of size 4 for the type-II and a REP-SPC
node of size 8 for the type-V node [6].

In general, the LLR computation for each child takes one
time step. However, when the left children are rate-0 nodes,
the LLRs of both children can be calculated simultaneously
in one time step. That results in a decoding latency of
log2(R/RB) time steps to traverse to the node B, where RB
is the size of node B. Using aforementioned decoding delay
expressions, node B can be decoded in min {L− 1, 2} + 1,
min {L, 4}, and min {L, 4} + 4 time steps for type-I, type-II
and type-V nodes, respectively. Using these calculations,
the decoding latencies of these nodes can be computed and
are given in Table I.

The proposed decoder of a type-III node first computes
the ML codeword and its corresponding PM in one time
step. Afterwards, it generates 2L codewords and select the
best L ones for min{L − 1, R − 2} bits, which results in a
decoding delay of 1+min{L−1, R−2} time steps. Likewise,
the decoding latency of the proposed type-IV decoder can be
shown to be 1 + min{L− 1, R− 4} time steps.

With the FSCL decoders, the decoding tree of a
type-III or type-IV node corresponds to the decoding tree of
Fig. 2b. In particular, the right child of each node is a rate-1
node. The node B is a rate-0 node of size 2, and a REP
node of size 4 for type-III and type-IV nodes, respectively.
The decoding delays of 2 log2(R/RB)−1 and 2 log2(R/RB)
time steps are required to traverse to the level of node B in
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type-III and type-IV node, respectively. Using the decoding
delay expression of rate-0, REP and rate-1 nodes, the decoding
latency of the fast SCL decoder can be computed and are given
in Table I.

Observe that the decoding latencies of the proposed fast
SCL decoders are less than that of the FSCL decoders. The
latency improvement is more pronounced for type-III and
type-IV nodes. For example, the proposed decoder will require
4 time steps to decode a type-III node, whereas the FSCL
decoder will consume a total of 22 time steps to decode the
node when L = 4 and R = 2t = 25.

Note that the aforementioned decoding delay calculations
are valid when L > 1 as no PM computations and path
duplications are required for L = 1.

B. Fast SCF Decoder

The first trial of an SCF decoder, in addition to decoding
the codeword, computes decision metrics and maintains a list
of bit-flip positions. The remaining trials, on the other hand,
do not compute any decision metric. Therefore, the decoding
latency of the first trial differs from that of the remaining
trials. In the following, we provide the decoding latencies
of our proposed fast SCF and the existing fast SCF (FSCF)
decoders [16]. Since the decoding-latency calculations are very
similar to those presented in Section V-A, we briefly mention
the results below.

The decoding latency of the initial trials for the FSCF and
proposed SCF decoders are tabulated in Table I.

The proposed decoders for the rate-1 and SPC nodes require
more time steps than the FSCF decoders. This is because
the FSCF decoders for both nodes flip only single coded
bit, whereas our proposed decoders flip multiple coded bits.
Although the FSCF decoders consume slightly fewer time
steps, they incur a significant error-correction performance loss
as evident from Fig. 4.

For the remaining decoding trials, we assume that bit flip-
ping can be carried out instantaneously. Under this assumption,
the decoding latency of both the FSCF and our proposed
decoders are 1, 0, 1, and 2 time steps for the REP, rate-1,
SPC and type-I nodes, respectively.

For the remaining nodes, our proposed decoders require
fewer time steps than the FSCF decoders. In particular,
the FSCF decoders consume t− 1, 2t− 2, 2t− 3, and t + 1
time steps for decoding type-II, type III, type-IV and type-V
nodes, respectively. The proposed decoders, on the other hand,
require only 1 or 2 time steps to decode these nodes.

VI. SIMULATION RESULTS

In this section, we compare the BER and block-error-rate
(BLER) performances of the proposed fast SCL and fast SCF
decoders with that of the existing decoders. We have used a
16-bit CRC defined by the generator polynomial x16 + x15 +
x12 +x7+x6+x4 +x3+1 (0xC86C), unless otherwise stated.
Systematic polar codes [19] with random BPSK-modulated
codewords were transmitted through AWGN channel.
Furthermore, simple Gaussian approximation method [22]
with a design Eb/N0 of 4.75 dB was used to design the

Fig. 3. BER and BLER performances of SCL and proposed fast SCL
decoders for a P (1024, 256) polar code.

TABLE II

NUMBER OF SPECIAL NODES FOR DIFFERENT POLAR CODES

polar codes. We have included the performance of the SC and
the oracle-assisted SC (SC-Oracle)4 decoders in our simulation
results to provide a better insight into the performance of
different decoders.

Fig. 3 compares the BER and BLER performances of
the proposed fast list decoder with the LLR-based SCL
decoder [17]. Note that the proposed decoder, while achieving
the performance of the SCL decoder, has a decoding latency of
almost 16% and 23% less than that of the FSCL decoder [12]
for L = 2 and 4, respectively (see Table III). In particular,
considering the special nodes in the simulated P (1024, 256)
with 16-bit CRC provided in Table II, the proposed fast
SCL decoder consumes 226 and 250 time steps, whereas the
FSCL decoder requires 269 and 323 time steps to complete
the decoding when L = 2 and 4, respectively.

Fig. 4 compares the BER and BLER performances of
the proposed SCF decoder with those of the SCF [15] and

4We employ an oracle-assisted SC decoder which is able to correct the first
erroneous bit at the decision level.
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TABLE III

DECODING LATENCY COMPARISON OF DIFFERENT SCL DECODERS

Fig. 4. BER and BLER performances of SCF, proposed fast SCF and FSCF
decoders for a P (128, 96) polar code and Tmax = 7.

TABLE IV

DECODING LATENCY COMPARISON OF DIFFERENT

SCF DECODERS IN THE FIRST TRIAL

FSCF [16] decoders for a P (128, 96) with 8-bit CRC (0xEA).
Due to the possibility of multiple bits flipping in our proposed
fast SCF decoder, it slightly outperforms the SCF decoder.
Furthermore, our proposed decoder significantly outperforms
the FSCF decoder, whose performance degradation is mainly
due to the decision metrics used in the decoding of SPC node.
Note that multiple SPC nodes exist in the FSCF decoding
tree of P (128, 96) with 8-bit CRC. The FSCF decoder per-
formance without SPC nodes is presented in Fig 4. It can be
seen that the performance of the FSCF decoder is significantly
improved without SCP nodes. The required number of time
steps for the FSCF and proposed fast SCF decoders in their
first trials, along with the reduction in the decoding latency
using our proposed fast decoder instead of the SCF [15]
decoder are provided in Table IV.

The BER and BLER performances of different SCF
decoders are depicted in Fig 5. Note that the performance of
our proposed fast SCF decoder is identical to that of the SCF
decoder with 77% fewer required number of time steps. More
specifically, our proposed fast SCF decoder consumes 234 time
steps in its initial trial. Whereas, the SCF decoder requires

Fig. 5. BER and BLER performances of proposed fast SCL and different
SCF decoders for a P (512, 256) polar code.

1022 time steps. Here, we have made the assumption that
finding bit flip positions is done instantaneously. Thus, the SCF
decoder in each trial consumes the same number of time steps
as that of the SC decoder. On the other hand, the FSCF decoder
consumes 158 time steps in its first trial, however, it fails to
achieve the performance of the SCF decoder. Furthermore,
in the next trials, our proposed decoder requires 90 time steps
while, the FSCF decoder takes 116 time steps.

Fig. 5 also illustrates the BER and BLER performances
of the proposed fast SCL decoder. The required number of
time steps of the proposed fast SCL decoder is 135 and 159
respectively, for L = 2 and 4 which is 19% and 25% less than
that of the FSCL decoder [12]. Moreover, we can compare
the performance of the SCF and the SCL decoders in Fig.5.
It is observed that the performance of the proposed fast SCF
decoder with Tmax = 15 is identical to that of the proposed
fast SCL decoder with L = 2. However, in higher list sizes,
such as L = 4, the proposed fast SCL decoder outperforms
the proposed fast SCF decoder. Although, the proposed SCL
decoder consumes fewer time steps than the proposed SCF
decoder, its memory complexity is two and four times that of
the proposed SCF decoder when L = 2 and 4, respectively.

VII. CONCLUSION

We presented fast list decoders for five recently-identified
nodes, i.e., type-I, type-II, type-III, type-IV and type-V nodes.
The proposed decoders, while achieving the same bit-error-
rate performance, reduce the decoding latency of the list
decoders significantly. We also proposed fast SC flip decoders.
To that end, we first proposed a new decision metric which
can be computed without the decoding tree traversal. Using
the proposed decision metric, we introduced fast parallel SC
flip decoders for many special nodes of the polar-code decod-
ing tree. The proposed fast flip decoders achieve significant
decoding speed improvement and, unlike the existing fast flip
decoders, show the same error-correction performance as of
the conventional SC flip decoder.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:54:07 UTC from IEEE Xplore.  Restrictions apply. 



4574 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 7, JULY 2019

REFERENCES

[1] “Performance study of polar code candidates,” document R1-1703538,
TSG-RANWG1 #88, 3GPP, Ericsson, Athens, Greece, Feb. 2017.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless chan-
nels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073,
Jul. 2009.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[4] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, Dec. 2011.

[5] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[6] M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of
polar codes: Identification and decoding of new nodes,” IEEE Commun.
Lett., vol. 21, no. 11, pp. 2360–2363, Nov. 2017.

[7] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross,
“Flexible and low-complexity encoding and decoding of systematic
polar codes,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2732–2745,
Jul. 2016.

[8] K. Niu, K. Chen, J. Lin, and Q. T. Zhang, “Polar codes: Primary concepts
and practical decoding algorithms,” IEEE Commun. Mag., vol. 52, no. 7,
pp. 192–203, Jul. 2014.

[9] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 Gbit/s unrolled
hardware polar decoder,” Electron. Lett., vol. 51, no. 10, pp. 762–763,
May 2015.

[10] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list
decoders for polar codes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2,
pp. 318–328, Feb. 2016.

[11] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list
decoder architecture based on sphere decoding,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2368–2380, Dec. 2016.

[12] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-
cancellation list decoders for polar codes,” IEEE Trans. Signal Process.,
vol. 65, no. 21, pp. 5756–5769, Nov. 2017.

[13] M. Hanif, M. H. Ardakani, and M. Ardakani, “Fast list decoding of polar
codes: Decoders for additional nodes,” in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops (WCNCW), Apr. 2018, pp. 37–42.

[14] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-mode unrolled
architectures for polar decoders,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 63, no. 9, pp. 1443–1453, Sep. 2016.

[15] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-
complexity improved successive cancellation decoder for polar codes,”
in Proc. 48th Asilomar Conf. Signals, Syst. Comput., Nov. 2014,
pp. 2116–2120.

[16] P. Giard and A. Burg, “Fast-SSC-flip decoding of polar codes,” in Proc.
IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr. 2018,
pp. 73–77.

[17] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, Oct. 2015. [Online]. Available:
http://arxiv.org/abs/1401.3753

[18] R. Silverman and M. Balser, “Coding for constant-data-rate sys-
tems,” Trans. IRE Prof. Group Inf. Theory, vol. 4, no. 4, pp. 50–63,
Sep. 1954.

[19] E. Arıkan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15,
no. 8, pp. 860–862, Aug. 2011.

[20] C. Condo, F. Ercan, and W. Gross, “Improved successive cancellation
flip decoding of polar codes based on error distribution,” in Proc.
IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr. 2018,
pp. 19–24.

[21] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding
of polar codes,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2333–2345,
Jun. 2018.

[22] P. Trifonov, “Randomized chained polar subcodes,” in Proc. IEEE Wire-
less Commun. Netw. Conf. Workshops (WCNCW), Apr. 2018, pp. 25–30.

Maryam Haghighi Ardakani received the B.Sc.
degree in electrical engineering from the University
of Isfahan, Isfahan, Iran, in 2013, and the M.S.
degree in electrical engineering from Özyeğin Uni-
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